1
|
Patel PA, LaConte LEW, Liang C, Cecere T, Rajan D, Srivastava S, Mukherjee K. Genetic evidence for splicing-dependent structural and functional plasticity in CASK protein. J Med Genet 2024; 61:759-768. [PMID: 38670634 PMCID: PMC11290809 DOI: 10.1136/jmg-2023-109747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Pontocerebellar hypoplasia (PCH) may present with supratentorial phenotypes and is often accompanied by microcephaly. Damaging mutations in the X-linked gene CASK produce self-limiting microcephaly with PCH in females but are often lethal in males. CASK deficiency leads to early degeneration of cerebellar granule cells but its role in other regions of the brain remains uncertain. METHOD We generated a conditional Cask knockout mice and deleted Cask ubiquitously after birth at different times. We examined the clinical features in several subjects with damaging mutations clustered in the central part of the CASK protein. We have performed phylogenetic analysis and RT-PCR to assess the splicing pattern within the same protein region and performed in silico structural analysis to examine the effect of splicing on the CASK's structure. RESULT We demonstrate that deletion of murine Cask after adulthood does not affect survival but leads to cerebellar degeneration and ataxia over time. Intriguingly, damaging hemizygous CASK mutations in boys who display microcephaly and cerebral dysfunction but without PCH are known. These mutations are present in two vertebrate-specific CASK exons. These exons are subject to alternative splicing both in forebrain and hindbrain. Inclusion of these exons differentially affects the molecular structure and hence possibly the function/s of the CASK C-terminus. CONCLUSION Loss of CASK function disproportionately affects the cerebellum. Clinical data, however, suggest that CASK may have additional vertebrate-specific function/s that play a role in the mammalian forebrain. Thus, CASK has an ancient function shared between invertebrates and vertebrates as well as novel vertebrate-specific function/s.
Collapse
Affiliation(s)
- Paras A Patel
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
| | - Leslie E W LaConte
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Chen Liang
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
| | - Thomas Cecere
- Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Deepa Rajan
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarika Srivastava
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- Department of Genetics, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Konark Mukherjee
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- Department of Genetics, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Liu X, Qin H, Liu Y, Ma J, Li Y, He Y, Zhu H, Mao L. The biological functions and pathological mechanisms of CASK in various diseases. Heliyon 2024; 10:e28863. [PMID: 38638974 PMCID: PMC11024568 DOI: 10.1016/j.heliyon.2024.e28863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
Background As a scaffold protein, calcium/calmodulin-dependent serine protein kinase (CASK) has been extensively studied in a variety of tissues throughout the body. The Cask gene is ubiquitous in several tissues, such as the neurons, islets, heart, kidneys and sperm, and is mostly localised in the cytoplasm adjacent to the basement membrane. CASK binds to a variety of proteins through its domains to exerting its biological activity. Scope of review Here, we discuss the role of CASK in multiple tissues throughout the body. The role of different CASK domains in regulating neuronal development, neurotransmitter release and synaptic vesicle secretion was emphasised; the regulatory mechanism of CASK on the function of pancreatic islet β cells was analysed; the role of CASK in cardiac physiology, kidney and sperm development was discussed; and the role of CASK in different tumours was compared. Finally, we clarify the importance of the Cask gene in the body, and how deletion or mutation of the Cask gene can have adverse consequences. Major conclusions CASK is a conserved gene with similar roles in various tissues. The function of the Cask gene in the nervous system is mainly involved in the development of the nervous system and the release of neurotransmitters. In the endocrine system, an involvement of CASK has been reported in the process of insulin vesicle transport. CASK is also involved in cardiomyocyte ion channel regulation, kidney and sperm development, and tumour proliferation. CASK is an indispensable gene for the whole body, and CASK mutations can cause foetal malformations or death at birth. In this review, we summarise the biological functions and pathological mechanisms of CASK in various systems, thereby providing a basis for further in-depth studies of CASK functions.
Collapse
Affiliation(s)
- Xingjing Liu
- Department of Endocrinology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Haonan Qin
- Department of Orthopedics, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Yuanyuan Liu
- Department of Endocrinology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Jingjing Ma
- Department of Endocrinology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Yiming Li
- Department of Endocrinology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Yu He
- Department of Endocrinology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Huimin Zhu
- Department of Electrophysiology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Li Mao
- Department of Endocrinology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| |
Collapse
|
3
|
Tibbe D, Ferle P, Krisp C, Nampoothiri S, Mirzaa G, Assaf M, Parikh S, Kutsche K, Kreienkamp HJ. Regulation of Liprin-α phase separation by CASK is disrupted by a mutation in its CaM kinase domain. Life Sci Alliance 2022; 5:5/10/e202201512. [PMID: 36137748 PMCID: PMC9500383 DOI: 10.26508/lsa.202201512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Mutations in the human CASK gene cause a neurodevelopmental disorder; we show that CASK regulates condensate formation of Liprin-alpha 2 and that patient mutations in the CaM kinase domain interfere with Liprin binding and regulation of condensate formation. CASK is a unique membrane-associated guanylate kinase (MAGUK) because of its Ca2+/calmodulin-dependent kinase (CaMK) domain. We describe four male patients with a severe neurodevelopmental disorder with microcephaly carrying missense variants affecting the CaMK domain. One boy who carried the p.E115K variant and died at an early age showed pontocerebellar hypoplasia (PCH) in addition to microcephaly, thus exhibiting the classical MICPCH phenotype observed in individuals with CASK loss-of-function variants. All four variants selectively weaken the interaction of CASK with Liprin-α2, a component of the presynaptic active zone. Liprin-α proteins form spherical phase-separated condensates, which we observe here in Liprin-α2 overexpressing HEK293T cells. Large Liprin-α2 clusters were also observed in transfected primary-cultured neurons. Cluster formation of Liprin-α2 is reversed in the presence of CASK; this is associated with altered phosphorylation of Liprin-α2. The p.E115K variant fails to interfere with condensate formation. As the individual carrying this variant had the severe MICPCH disorder, we suggest that regulation of Liprin-α2–mediated phase condensate formation is a new functional feature of CASK which must be maintained to prevent PCH.
Collapse
Affiliation(s)
- Debora Tibbe
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pia Ferle
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Krisp
- Institute for Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences and Research Centre, Cochin, India
| | - Ghayda Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA.,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Melissa Assaf
- Banner Children's Specialists Neurology Clinic, Glendale, AZ, USA
| | - Sumit Parikh
- Pediatric Neurology, Cleveland Clinic, Cleveland, OH, USA
| | - Kerstin Kutsche
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Jürgen Kreienkamp
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Brauer EK, Ahsan N, Popescu GV, Thelen JJ, Popescu SC. Back From the Dead: The Atypical Kinase Activity of a Pseudokinase Regulator of Cation Fluxes During Inducible Immunity. FRONTIERS IN PLANT SCIENCE 2022; 13:931324. [PMID: 36035673 PMCID: PMC9403797 DOI: 10.3389/fpls.2022.931324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Pseudokinases are thought to lack phosphotransfer activity due to altered canonical catalytic residues within their kinase domain. However, a subset of pseudokinases maintain activity through atypical phosphotransfer mechanisms. The Arabidopsis ILK1 is a pseudokinase from the Raf-like MAP3K family and is the only known plant pseudokinase with confirmed protein kinase activity. ILK1 activity promotes disease resistance and molecular pattern-induced root growth inhibition through its stabilization of the HAK5 potassium transporter with the calmodulin-like protein CML9. ILK1 also has a kinase-independent function in salt stress suggesting that it interacts with additional proteins. We determined that members of the ILK subfamily are the sole pseudokinases within the Raf-like MAP3K family and identified 179 novel putative ILK1 protein interactors. We also identified 70 novel peptide targets for ILK1, the majority of which were phosphorylated in the presence of Mn2+ instead of Mg2+ in line with modifications in ILK1's DFG cofactor binding domain. Overall, the ILK1-targeted or interacting proteins included diverse protein types including transporters (HAK5, STP1), protein kinases (MEKK1, MEKK3), and a cytokinin receptor (AHK2). The expression of 31 genes encoding putative ILK1-interacting or phosphorylated proteins, including AHK2, were altered in the root and shoot in response to molecular patterns suggesting a role for these genes in immunity. We describe a potential role for ILK1 interactors in the context of cation-dependent immune signaling, highlighting the importance of K+ in MAMP responses. This work further supports the notion that ILK1 is an atypical kinase with an unusual cofactor dependence that may interact with multiple proteins in the cell.
Collapse
Affiliation(s)
- Elizabeth K. Brauer
- Boyce Thompson Institute for Plant Research, Ithaca, NY, United States
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, United States
| | - Nagib Ahsan
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - George V. Popescu
- Boyce Thompson Institute for Plant Research, Ithaca, NY, United States
| | - Jay J. Thelen
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Sorina C. Popescu
- Boyce Thompson Institute for Plant Research, Ithaca, NY, United States
| |
Collapse
|
5
|
Mukherjee K, LaConte LEW, Srivastava S. The Non-Linear Path from Gene Dysfunction to Genetic Disease: Lessons from the MICPCH Mouse Model. Cells 2022; 11:1131. [PMID: 35406695 PMCID: PMC8997851 DOI: 10.3390/cells11071131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/09/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
Most human disease manifests as a result of tissue pathology, due to an underlying disease process (pathogenesis), rather than the acute loss of specific molecular function(s). Successful therapeutic strategies thus may either target the correction of a specific molecular function or halt the disease process. For the vast majority of brain diseases, clear etiologic and pathogenic mechanisms are still elusive, impeding the discovery or design of effective disease-modifying drugs. The development of valid animal models and their proper characterization is thus critical for uncovering the molecular basis of the underlying pathobiological processes of brain disorders. MICPCH (microcephaly and pontocerebellar hypoplasia) is a monogenic condition that results from variants of an X-linked gene, CASK (calcium/calmodulin-dependent serine protein kinase). CASK variants are associated with a wide range of clinical presentations, from lethality and epileptic encephalopathies to intellectual disabilities, microcephaly, and autistic traits. We have examined CASK loss-of-function mutations in model organisms to simultaneously understand the pathogenesis of MICPCH and the molecular function/s of CASK. Our studies point to a highly complex relationship between the potential molecular function/s of CASK and the phenotypes observed in model organisms and humans. Here we discuss the implications of our observations from the pathogenesis of MICPCH as a cautionary narrative against oversimplifying molecular interpretations of data obtained from genetically modified animal models of human diseases.
Collapse
Affiliation(s)
- Konark Mukherjee
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA; (L.E.W.L.); (S.S.)
- Department of Psychiatry, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Leslie E. W. LaConte
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA; (L.E.W.L.); (S.S.)
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Sarika Srivastava
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA; (L.E.W.L.); (S.S.)
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| |
Collapse
|
6
|
Patel PA, Hegert JV, Cristian I, Kerr A, LaConte LEW, Fox MA, Srivastava S, Mukherjee K. Complete loss of the X-linked gene CASK causes severe cerebellar degeneration. J Med Genet 2022; 59:1044-1057. [PMID: 35149592 DOI: 10.1136/jmedgenet-2021-108115] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/13/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Heterozygous loss of X-linked genes like CASK and MeCP2 (Rett syndrome) causes developmental delay in girls, while in boys, loss of the only allele of these genes leads to epileptic encephalopathy. The mechanism for these disorders remains unknown. CASK-linked cerebellar hypoplasia is presumed to result from defects in Tbr1-reelin-mediated neuronal migration. METHOD Here we report clinical and histopathological analyses of a deceased 2-month-old boy with a CASK-null mutation. We next generated a mouse line where CASK is completely deleted (hemizygous and homozygous) from postmigratory neurons in the cerebellum. RESULT The CASK-null human brain was smaller in size but exhibited normal lamination without defective neuronal differentiation, migration or axonal guidance. The hypoplastic cerebellum instead displayed astrogliosis and microgliosis, which are markers for neuronal loss. We therefore hypothesise that CASK loss-induced cerebellar hypoplasia is the result of early neurodegeneration. Data from the murine model confirmed that in CASK loss, a small cerebellum results from postdevelopmental degeneration of cerebellar granule neurons. Furthermore, at least in the cerebellum, functional loss from CASK deletion is secondary to degeneration of granule cells and not due to an acute molecular functional loss of CASK. Intriguingly, female mice with heterozygous deletion of CASK in the cerebellum do not display neurodegeneration. CONCLUSION We suggest that X-linked neurodevelopmental disorders like CASK mutation and Rett syndrome are pathologically neurodegenerative; random X-chromosome inactivation in heterozygous mutant girls, however, results in 50% of cells expressing the functional gene, resulting in a non-progressive pathology, whereas complete loss of the only allele in boys leads to unconstrained degeneration and encephalopathy.
Collapse
Affiliation(s)
- Paras A Patel
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
| | - Julia V Hegert
- Department of Pathology, Orlando Health, Orlando, Florida, USA
| | | | - Alicia Kerr
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
| | | | - Michael A Fox
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA.,School of Neuroscience, Blacksburg, Virginia, USA
| | - Sarika Srivastava
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA.,Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Konark Mukherjee
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA .,Department of Psychiatry, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| |
Collapse
|
7
|
Liu R, Zhan S, Che Y, Shen J. Reactivities of the Front Pocket N-Terminal Cap Cysteines in Human Kinases. J Med Chem 2021; 65:1525-1535. [PMID: 34647463 DOI: 10.1021/acs.jmedchem.1c01186] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The front pocket (FP) N-terminal cap (Ncap) cysteine is the most popular site of covalent modification in kinases. A long-standing hypothesis associates the Ncap position with cysteine hyper-reactivity; however, traditional computational predictions suggest that the FP Ncap cysteines are predominantly unreactive. Here we applied the state-of-the-art continuous constant pH molecular dynamics (CpHMD) to test the Ncap hypothesis. Simulations found that the Ncap cysteines of BTK/BMX/TEC/ITK/TXK, JAK3, and MKK7 are reactive to varying degrees; however, those of BLK and EGFR/ERBB2/ERBB4 possessing a Ncap+3 aspartate are unreactive. Analysis suggested that hydrogen bonding and electrostatic interactions drive the reactivity, and their absence renders the Ncap cysteine unreactive. To further test the Ncap hypothesis, we examined the FP Ncap+2 cysteines in JNK1/JNK2/JNK3 and CASK. Our work offers a systematic understanding of the cysteine structure-reactivity relationship and illustrates the use of CpHMD to differentiate cysteines toward the design of targeted covalent inhibitors with reduced chemical reactivities.
Collapse
Affiliation(s)
- Ruibin Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Shaoqi Zhan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Ye Che
- Discovery Sciences, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
8
|
Russ N, Schröder M, Berger BT, Mandel S, Aydogan Y, Mauer S, Pohl C, Drewry DH, Chaikuad A, Müller S, Knapp S. Design and Development of a Chemical Probe for Pseudokinase Ca 2+/calmodulin-Dependent Ser/Thr Kinase. J Med Chem 2021; 64:14358-14376. [PMID: 34543009 DOI: 10.1021/acs.jmedchem.1c00845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CASK (Ca2+/calmodulin-dependent Ser/Thr kinase) is a member of the MAGUK (membrane-associated guanylate kinase) family that functions as neurexin kinases with roles implicated in neuronal synapses and trafficking. The lack of a canonical DFG motif, which is altered to GFG in CASK, led to the classification as a pseudokinase. However, functional studies revealed that CASK can still phosphorylate substrates in the absence of divalent metals. CASK dysfunction has been linked to many diseases, including colorectal cancer, Parkinson's disease, and X-linked mental retardation, suggesting CASK as a potential drug target. Here, we exploited structure-based design for the development of highly potent and selective CASK inhibitors based on 2,4-diaminopyrimidine-5-carboxamides targeting an unusual pocket created by the GFG motif. The presented inhibitor design offers a more general strategy for the development of pseudokinase ligands that harbor unusual sequence motifs. It also provides a first chemical probe for studying the biological roles of CASK.
Collapse
Affiliation(s)
- Nadine Russ
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany.,Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
| | - Martin Schröder
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany.,Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
| | - Benedict-Tilman Berger
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany.,Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
| | - Sebastian Mandel
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany.,Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
| | - Yagmur Aydogan
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany.,Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
| | - Sandy Mauer
- Buchman Institute for Molecular Life Science and Institute of Biochemistry II, Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Christian Pohl
- Buchman Institute for Molecular Life Science and Institute of Biochemistry II, Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - David H Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,UNC Lineberger Comprehensive Cancer Center, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Apirat Chaikuad
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany.,Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
| | - Susanne Müller
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany.,Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
| | - Stefan Knapp
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany.,Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany.,German Cancer Network (DKTK) and Frankfurt Cancer Institute (FCI), Goethe University Frankfurt am Main, Frankfurt am Main 60438, Germany
| |
Collapse
|
9
|
Paul A, Srinivasan N. Genome-wide and structural analyses of pseudokinases encoded in the genome of Arabidopsis thaliana provide functional insights. Proteins 2020; 88:1620-1638. [PMID: 32667690 DOI: 10.1002/prot.25981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/26/2020] [Accepted: 07/12/2020] [Indexed: 12/31/2022]
Abstract
Protein Kinase-Like Non-Kinases (PKLNKs), commonly known as "pseudokinases", are homologous to eukaryotic Ser/Thr/Tyr protein kinases (PKs) but lack the crucial aspartate residue in the catalytic loop, indispensable for phosphotransferase activity. Therefore, they are predicted to be "catalytically inactive" enzyme homologs. Analysis of protein-kinase like sequences from Arabidopsis thaliana led to the identification of more than 120 pseudokinases lacking catalytic aspartate, majority of which are closely related to the plant-specific receptor-like kinase family. These pseudokinases engage in different biological processes, enabled by their diverse domain architectures and specific subcellular localizations. Structural comparison of pseudokinases with active and inactive conformations of canonical PKs, belonging to both plant and animal origin, revealed unique structural differences. The currently available crystal structures of pseudokinases show that the loop topologically equivalent to activation segment of PKs adopts a distinct-folded conformation, packing against the pseudoenzyme core, in contrast to the extended and inhibitory geometries observed for active and inactive states, respectively, of catalytic PKs. Salt-bridge between ATP-binding Lys and DFG-Asp as well as hydrophobic interactions between the conserved nonpolar residue C-terminal to the equivalent DFG motif and nonpolar residues in C-helix mediate such a conformation in pseudokinases. This results in enhanced solvent accessibility of the pseudocatalytic loop in pseudokinases that can possibly serve as an interacting surface while associating with other proteins. Specifically, our analysis identified several residues that may be involved in pseudokinase regulation and hints at the repurposing of pseudocatalytic residues to achieve mechanistic control over noncatalytic functions of pseudoenzymes.
Collapse
Affiliation(s)
- Anindita Paul
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
10
|
Wu X, Cai Q, Chen Y, Zhu S, Mi J, Wang J, Zhang M. Structural Basis for the High-Affinity Interaction between CASK and Mint1. Structure 2020; 28:664-673.e3. [DOI: 10.1016/j.str.2020.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/01/2020] [Accepted: 04/01/2020] [Indexed: 11/24/2022]
|
11
|
Patel PA, Liang C, Arora A, Vijayan S, Ahuja S, Wagley PK, Settlage R, LaConte LEW, Goodkin HP, Lazar I, Srivastava S, Mukherjee K. Haploinsufficiency of X-linked intellectual disability gene CASK induces post-transcriptional changes in synaptic and cellular metabolic pathways. Exp Neurol 2020; 329:113319. [PMID: 32305418 DOI: 10.1016/j.expneurol.2020.113319] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/04/2020] [Accepted: 04/15/2020] [Indexed: 12/17/2022]
Abstract
Heterozygous mutations in the X-linked gene CASK are associated with intellectual disability, microcephaly, pontocerebellar hypoplasia, optic nerve hypoplasia and partially penetrant seizures in girls. The Cask+/- heterozygous knockout female mouse phenocopies the human disorder and exhibits postnatal microencephaly, cerebellar hypoplasia and optic nerve hypoplasia. It is not known if Cask+/- mice also display seizures, nor is known the molecular mechanism by which CASK haploinsufficiency produces the numerous documented phenotypes. 24-h video electroencephalography demonstrates that despite sporadic seizure activity, the overall electrographic patterns remain unaltered in Cask+/- mice. Additionally, seizure threshold to the commonly used kindling agent, pentylenetetrazol, remains unaltered in Cask+/- mice, indicating that even in mice the seizure phenotype is only partially penetrant and may have an indirect mechanism. RNA sequencing experiments on Cask+/- mouse brain uncovers a very limited number of changes, with most differences arising in the transcripts of extracellular matrix proteins and the transcripts of a group of nuclear proteins. In contrast to limited changes at the transcript level, quantitative whole-brain proteomics using iTRAQ quantitative mass-spectrometry reveals major changes in synaptic, metabolic/mitochondrial, cytoskeletal, and protein metabolic pathways. Unbiased protein-protein interaction mapping using affinity chromatography demonstrates that CASK may form complexes with proteins belonging to the same functional groups in which altered protein levels are observed. We discuss the mechanism of the observed changes in the context of known molecular function/s of CASK. Overall, our data indicate that the phenotypic spectrum of female Cask+/- mice includes sporadic seizures and thus closely parallels that of CASK haploinsufficient girls; the Cask+/- mouse is thus a face-validated model for CASK-related pathologies. We therefore surmise that CASK haploinsufficiency is likely to affect brain structure and function due to dysregulation of several cellular pathways including synaptic signaling and cellular metabolism.
Collapse
Affiliation(s)
- P A Patel
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States; Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, United States
| | - C Liang
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| | - A Arora
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| | - S Vijayan
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - S Ahuja
- Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - P K Wagley
- Neurology, University of Virginia, Charlottesville, VA, USA
| | - R Settlage
- Advanced Research Computing, Virginia Tech, Blacksburg, VA, United States
| | - L E W LaConte
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| | - H P Goodkin
- Neurology, University of Virginia, Charlottesville, VA, USA
| | - I Lazar
- Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - S Srivastava
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| | - K Mukherjee
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States; Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States; Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States.
| |
Collapse
|
12
|
Abstract
Pseudokinases are members of the protein kinase superfamily but signal primarily through noncatalytic mechanisms. Many pseudokinases contribute to the pathologies of human diseases, yet they remain largely unexplored as drug targets owing to challenges associated with modulation of their biological functions. Our understanding of the structure and physiological roles of pseudokinases has improved substantially over the past decade, revealing intriguing similarities between pseudokinases and their catalytically active counterparts. Pseudokinases often adopt conformations that are analogous to those seen in catalytically active kinases and, in some cases, can also bind metal cations and/or nucleotides. Several clinically approved kinase inhibitors have been shown to influence the noncatalytic functions of active kinases, providing hope that similar properties in pseudokinases could be pharmacologically regulated. In this Review, we discuss known roles of pseudokinases in disease, their unique structural features and the progress that has been made towards developing pseudokinase-directed therapeutics.
Collapse
|
13
|
Bayer KU, Schulman H. CaM Kinase: Still Inspiring at 40. Neuron 2019; 103:380-394. [PMID: 31394063 DOI: 10.1016/j.neuron.2019.05.033] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/12/2019] [Accepted: 05/21/2019] [Indexed: 01/07/2023]
Abstract
The Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) was touted as a memory molecule, even before its involvement in long-term potentiation (LTP) was shown. The enzyme has not disappointed, with subsequent demonstrations of remarkable structural and regulatory properties. Its neuronal functions now extend to long-term depression (LTD), and last year saw the first direct evidence for memory storage by CaMKII. Although CaMKII may have taken the spotlight, it is a member of a large family of diverse and interesting CaM kinases. Our aim is to place CaMKII in context of the other CaM kinases and then review certain aspects of this kinase that are of current interest.
Collapse
Affiliation(s)
- K Ulrich Bayer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | |
Collapse
|
14
|
Ribeiro AJM, Das S, Dawson N, Zaru R, Orchard S, Thornton JM, Orengo C, Zeqiraj E, Murphy JM, Eyers PA. Emerging concepts in pseudoenzyme classification, evolution, and signaling. Sci Signal 2019; 12:eaat9797. [PMID: 31409758 DOI: 10.1126/scisignal.aat9797] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The 21st century is witnessing an explosive surge in our understanding of pseudoenzyme-driven regulatory mechanisms in biology. Pseudoenzymes are proteins that have sequence homology with enzyme families but that are proven or predicted to lack enzyme activity due to mutations in otherwise conserved catalytic amino acids. The best-studied pseudoenzymes are pseudokinases, although examples from other families are emerging at a rapid rate as experimental approaches catch up with an avalanche of freely available informatics data. Kingdom-wide analysis in prokaryotes, archaea and eukaryotes reveals that between 5 and 10% of proteins that make up enzyme families are pseudoenzymes, with notable expansions and contractions seemingly associated with specific signaling niches. Pseudoenzymes can allosterically activate canonical enzymes, act as scaffolds to control assembly of signaling complexes and their localization, serve as molecular switches, or regulate signaling networks through substrate or enzyme sequestration. Molecular analysis of pseudoenzymes is rapidly advancing knowledge of how they perform noncatalytic functions and is enabling the discovery of unexpected, and previously unappreciated, functions of their intensively studied enzyme counterparts. Notably, upon further examination, some pseudoenzymes have previously unknown enzymatic activities that could not have been predicted a priori. Pseudoenzymes can be targeted and manipulated by small molecules and therefore represent new therapeutic targets (or anti-targets, where intervention should be avoided) in various diseases. In this review, which brings together broad bioinformatics and cell signaling approaches in the field, we highlight a selection of findings relevant to a contemporary understanding of pseudoenzyme-based biology.
Collapse
Affiliation(s)
- António J M Ribeiro
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sayoni Das
- Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Natalie Dawson
- Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Rossana Zaru
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sandra Orchard
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Janet M Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Christine Orengo
- Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Elton Zeqiraj
- Astbury Centre for Structural Molecular Biology, Molecular and Cellular Biology, Faculty of Biological Sciences, Astbury Building, Room 8.109, University of Leeds, Leeds LS2 9JT, UK
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
15
|
Kwon A, Scott S, Taujale R, Yeung W, Kochut KJ, Eyers PA, Kannan N. Tracing the origin and evolution of pseudokinases across the tree of life. Sci Signal 2019; 12:12/578/eaav3810. [PMID: 31015289 DOI: 10.1126/scisignal.aav3810] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein phosphorylation by eukaryotic protein kinases (ePKs) is a fundamental mechanism of cell signaling in all organisms. In model vertebrates, ~10% of ePKs are classified as pseudokinases, which have amino acid changes within the catalytic machinery of the kinase domain that distinguish them from their canonical kinase counterparts. However, pseudokinases still regulate various signaling pathways, usually doing so in the absence of their own catalytic output. To investigate the prevalence, evolutionary relationships, and biological diversity of these pseudoenzymes, we performed a comprehensive analysis of putative pseudokinase sequences in available eukaryotic, bacterial, and archaeal proteomes. We found that pseudokinases are present across all domains of life, and we classified nearly 30,000 eukaryotic, 1500 bacterial, and 20 archaeal pseudokinase sequences into 86 pseudokinase families, including ~30 families that were previously unknown. We uncovered a rich variety of pseudokinases with notable expansions not only in animals but also in plants, fungi, and bacteria, where pseudokinases have previously received cursory attention. These expansions are accompanied by domain shuffling, which suggests roles for pseudokinases in plant innate immunity, plant-fungal interactions, and bacterial signaling. Mechanistically, the ancestral kinase fold has diverged in many distinct ways through the enrichment of unique sequence motifs to generate new families of pseudokinases in which the kinase domain is repurposed for noncanonical nucleotide binding or to stabilize unique, inactive kinase conformations. We further provide a collection of annotated pseudokinase sequences in the Protein Kinase Ontology (ProKinO) as a new mineable resource for the signaling community.
Collapse
Affiliation(s)
- Annie Kwon
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Steven Scott
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.,Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Rahil Taujale
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Wayland Yeung
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Krys J Kochut
- Department of Computer Science, University of Georgia, Athens, GA 30602, USA
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA. .,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
16
|
LaConte LEW, Chavan V, DeLuca S, Rubin K, Malc J, Berry S, Gail Summers C, Mukherjee K. An N-terminal heterozygous missense CASK mutation is associated with microcephaly and bilateral retinal dystrophy plus optic nerve atrophy. Am J Med Genet A 2018; 179:94-103. [PMID: 30549415 DOI: 10.1002/ajmg.a.60687] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/26/2018] [Accepted: 10/17/2018] [Indexed: 11/08/2022]
Abstract
Heterozygous loss-of-function mutations in the X-linked gene CASK are associated with mental retardation and microcephaly with pontine and cerebellar hypoplasia (MICPCH) and ophthalmological disorders including optic nerve atrophy (ONA) and optic nerve hypoplasia (ONH). Recently, we have demonstrated that CASK(+/-) mice display ONH with 100% penetrance but exhibit no change in retinal lamination or structure. It is not clear if CASK loss-of-function predominantly affects retinal ganglion cells, or if other retinal cells like photoreceptors are also involved. Here, we report a heterozygous missense mutation in the N-terminal calcium/calmodulin-dependent kinase (CaMK) domain of the CASK protein in which a highly conserved leucine is mutated to the cyclic amino acid proline. In silico analysis suggests that the mutation may produce destabilizing structural changes. Experimentally, we observe pronounced misfolding and insolubility of the CASKL209P protein. Interestingly, the remaining soluble mutant protein fails to interact with Mint1, which specifically binds to CASK's CaMK domain, suggesting a mechanism for the phenotypes observed with the CASKL209P mutation. In addition to microcephaly, cerebellar hypoplasia and delayed development, the subject with the L209P mutation also presented with bilateral retinal dystrophy and ONA. Electroretinography indicated that rod photoreceptors are the most prominently affected cells. Our data suggest that the CASK interactions mediated by the CaMK domain may play a crucial role in retinal function, and thus, in addition to ONH, individuals with mutations in the CASK gene may exhibit other retinal disorders, depending on the nature of mutation.
Collapse
Affiliation(s)
| | - Vrushali Chavan
- Virginia Tech Carilion Research Institute, Roanoke, Virginia
| | | | - Karol Rubin
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, Minnesota
| | - Jessica Malc
- Virginia Tech Carilion Research Institute, Roanoke, Virginia
| | - Susan Berry
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.,Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, Minnesota
| | - C Gail Summers
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.,Department of Ophthalmology & Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota
| | | |
Collapse
|
17
|
PseudoGTPase domains in p190RhoGAP proteins: a mini-review. Biochem Soc Trans 2018; 46:1713-1720. [PMID: 30514771 DOI: 10.1042/bst20180481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 02/07/2023]
Abstract
Pseudoenzymes generally lack detectable catalytic activity despite adopting the overall protein fold of their catalytically competent counterparts, indeed 'pseudo' family members seem to be incorporated in all enzyme classes. The small GTPase enzymes are important signaling proteins, and recent studies have identified many new family members with noncanonical residues within the catalytic cleft, termed pseudoGTPases. To illustrate recent discoveries in the field, we use the p190RhoGAP proteins as an example. p190RhoGAP proteins (ARHGAP5 and ARHGAP35) are the most abundant GTPase activating proteins for the Rho family of small GTPases. These are key regulators of Rho signaling in processes such as cell migration, adhesion and cytokinesis. Structural biology has complemented and guided biochemical analyses for these proteins and has allowed discovery of two cryptic pseudoGTPase domains, and the re-classification of a third, previously identified, GTPase-fold domain as a pseudoGTPase. The three domains within p190RhoGAP proteins illustrate the diversity of this rapidly expanding pseudoGTPase group.
Collapse
|
18
|
LaConte LEW, Srivastava S, Mukherjee K. Probing Protein Kinase-ATP Interactions Using a Fluorescent ATP Analog. Methods Mol Biol 2018; 1647:171-183. [PMID: 28809002 DOI: 10.1007/978-1-4939-7201-2_11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Eukaryotic protein kinases are an intensely investigated class of enzymes which have garnered attention due to their usefulness as drug targets. Determining the regulation of ATP binding to a protein kinase is not only critical for understanding function in a cellular context but also for designing kinase-specific molecular inhibitors. Here, we provide a general procedure for characterizing ATP binding to eukaryotic protein kinases. The protocol can be adapted to identify the conditions under which a particular kinase is activated. The approach is simple, requiring only a fluorescent ATP analog such as TNP-ATP or MANT-ATP and an instrument to monitor changes in fluorescence. Although the interaction kinetics between a kinase and a given ATP analog may differ from that of native ATP, this disadvantage is offset by the ease of performing and interpreting this assay. Importantly, it can be optimized to probe a large variety of conditions under which the kinase-nucleotide binding might be affected.
Collapse
Affiliation(s)
- Leslie E W LaConte
- Virginia Tech Carilion Research Institute, Roanoke, 2 Riverside Circle, Roanoke, VA, 24016, USA
| | - Sarika Srivastava
- Virginia Tech Carilion Research Institute, Roanoke, 2 Riverside Circle, Roanoke, VA, 24016, USA
| | - Konark Mukherjee
- Virginia Tech Carilion Research Institute, Roanoke, 2 Riverside Circle, Roanoke, VA, 24016, USA. .,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24060, USA.
| |
Collapse
|
19
|
Two microcephaly-associated novel missense mutations in CASK specifically disrupt the CASK-neurexin interaction. Hum Genet 2018; 137:231-246. [PMID: 29426960 DOI: 10.1007/s00439-018-1874-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/31/2018] [Indexed: 12/23/2022]
Abstract
Deletion and truncation mutations in the X-linked gene CASK are associated with severe intellectual disability (ID), microcephaly and pontine and cerebellar hypoplasia in girls (MICPCH). The molecular origin of CASK-linked MICPCH is presumed to be due to disruption of the CASK-Tbr-1 interaction. This hypothesis, however, has not been directly tested. Missense variants in CASK are typically asymptomatic in girls. We report three severely affected girls with heterozygous CASK missense mutations (M519T (2), G659D (1)) who exhibit ID, microcephaly, and hindbrain hypoplasia. The mutation M519T results in the replacement of an evolutionarily invariant methionine located in the PDZ signaling domain known to be critical for the CASK-neurexin interaction. CASKM519T is incapable of binding to neurexin, suggesting a critically important role for the CASK-neurexin interaction. The mutation G659D is in the SH3 (Src homology 3) domain of CASK, replacing a semi-conserved glycine with aspartate. We demonstrate that the CASKG659D mutation affects the CASK protein in two independent ways: (1) it increases the protein's propensity to aggregate; and (2) it disrupts the interface between CASK's PDZ (PSD95, Dlg, ZO-1) and SH3 domains, inhibiting the CASK-neurexin interaction despite residing outside of the domain deemed critical for neurexin interaction. Since heterozygosity of other aggregation-inducing mutations (e.g., CASKW919R) does not produce MICPCH, we suggest that the G659D mutation produces microcephaly by disrupting the CASK-neurexin interaction. Our results suggest that disruption of the CASK-neurexin interaction, not the CASK-Tbr-1 interaction, produces microcephaly and cerebellar hypoplasia. These findings underscore the importance of functional validation for variant classification.
Collapse
|
20
|
Liang C, Kerr A, Qiu Y, Cristofoli F, Van Esch H, Fox MA, Mukherjee K. Optic Nerve Hypoplasia Is a Pervasive Subcortical Pathology of Visual System in Neonates. Invest Ophthalmol Vis Sci 2017; 58:5485-5496. [PMID: 29067402 PMCID: PMC5656421 DOI: 10.1167/iovs.17-22399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Purpose Optic nerve hypoplasia (ONH) is the most common cause of childhood congenital blindness in developed nations, yet the fundamental pathobiology of ONH remains unknown. The objective of this study was to employ a ‘face validated' murine model to determine the timing of onset and the pathologic characteristics of ONH. Methods Based on the robust linkage between X-linked CASK haploinsufficiency and clinically diagnosed ONH, we hypothesized that heterozygous deletion of CASK (CASK(+/−)) in rodents will produce an optic nerve pathology closely recapitulating ONH. We quantitatively analyzed the entire subcortical visual system in female CASK(+/−) mice using immunohistochemistry, anterograde axonal tracing, toluidine blue staining, transmission electron microscopy, and serial block-face scanning electron microscopy. Results CASK haploinsuffiency in mice phenocopies human ONH with complete penetrance, thus satisfying the ‘face validity'. We demonstrate that the optic nerve in CASK(+/−) mice is not only thin, but is comprised of atrophic retinal axons and displays reactive astrogliosis. Myelination of the optic nerve axons remains unchanged. Moreover, we demonstrate a significant decrease in retinal ganglion cell (RGC) numbers and perturbation in retinothalamic connectivity. Finally, we used this mouse model to define the onset and progression of ONH pathology, demonstrating for the first time that optic nerve defects arise at neonatally in CASK(+/−)mice. Conclusions Optic nerve hypoplasia is a complex neuropathology of the subcortical visual system involving RGC loss, axonopathy, and synaptopathy and originates at a developmental stage in mice that corresponds to the late third trimester development in humans.
Collapse
Affiliation(s)
- Chen Liang
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, Virginia, United States.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States
| | - Alicia Kerr
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, Virginia, United States.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia, United States
| | - Yangfengzhong Qiu
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, Virginia, United States
| | | | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Michael A Fox
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, Virginia, United States.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States
| | - Konark Mukherjee
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, Virginia, United States.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States
| |
Collapse
|
21
|
Metal coordination in kinases and pseudokinases. Biochem Soc Trans 2017; 45:653-663. [PMID: 28620027 DOI: 10.1042/bst20160327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 11/17/2022]
Abstract
Protein phosphorylation, mediated by protein kinases, is a key event in the regulation of eukaryotic signal transduction. The majority of eukaryotic protein kinases perform phosphoryl transfer, assisted by two divalent metal ions. About 10% of all human protein kinases are, however, thought to be catalytically inactive. These kinases lack conserved residues of the kinase core and are classified as pseudokinases. Yet, it has been demonstrated that pseudokinases are critically involved in biological functions. Here, we show how pseudokinases have developed strategies by modifying amino acid residues in order to achieve stable, active-like conformations. This includes binding of the co-substrate ATP in a two metal-, one metal- or even no metal-binding mode. Examples of the respective pseudokinases are provided on a structural basis and compared with a canonical protein kinase, Protein Kinase A. Moreover, the functional roles of both independent metal-binding sites, Me1 and Me2, are discussed. Lack of phosphotransferase activity does not implicate a loss of function and can easily point to alternative roles of pseudokinases, i.e. acting as switches or scaffolds, and having evolved as components crucial for cellular cross-talk and signaling. Interestingly, pseudokinases are present in all kingdoms of life and their specific roles remain enigmatic. More studies are needed to unravel the crucial functions of those interesting proteins.
Collapse
|
22
|
Abstract
The pseudokinase complement of the human kinase superfamily consists of approximately 60 signaling proteins, which lacks one or more of the amino acids typically required to correctly align ATP and metal ions, and phosphorylate protein substrates. Recent studies in the pseudokinase field have begun to expose the biological relevance of pseudokinases, which are now thought to perform a diverse range of physiological roles and are connected to a multitude of human diseases, including cancer. In this review, we discuss how and why members of the 'pseudokinome' represent important new targets for drug discovery, and describe how knowledge of protein structure and function provides informative clues to help guide the rational chemical design or repurposing of inhibitors to target pseudokinases.
Collapse
|
23
|
LaConte LEW, Chavan V, Liang C, Willis J, Schönhense EM, Schoch S, Mukherjee K. CASK stabilizes neurexin and links it to liprin-α in a neuronal activity-dependent manner. Cell Mol Life Sci 2016; 73:3599-621. [PMID: 27015872 PMCID: PMC4982824 DOI: 10.1007/s00018-016-2183-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/23/2016] [Accepted: 03/14/2016] [Indexed: 11/28/2022]
Abstract
CASK, a MAGUK family protein, is an essential protein present in the presynaptic compartment. CASK's cellular role is unknown, but it interacts with multiple proteins important for synapse formation and function, including neurexin, liprin-α, and Mint1. CASK phosphorylates neurexin in a divalent ion-sensitive manner, although the functional relevance of this activity is unclear. Here we find that liprin-α and Mint1 compete for direct binding to CASK, but neurexin1β eliminates this competition, and all four proteins form a complex. We describe a novel mode of interaction between liprin-α and CASK when CASK is bound to neurexin1β. We show that CASK phosphorylates neurexin, modulating the interaction of liprin-α with the CASK-neurexin1β-Mint1 complex. Thus, CASK creates a regulatory and structural link between the presynaptic adhesion molecule neurexin and active zone organizer, liprin-α. In neuronal culture, CASK appears to regulate the stability of neurexin by linking it with this multi-protein presynaptic active zone complex.
Collapse
Affiliation(s)
- Leslie E W LaConte
- Virginia Tech Carilion Research Institute, 2 Riverside Cir., Roanoke, VA, 24016, USA
| | - Vrushali Chavan
- Virginia Tech Carilion Research Institute, 2 Riverside Cir., Roanoke, VA, 24016, USA
| | - Chen Liang
- Virginia Tech Carilion Research Institute, 2 Riverside Cir., Roanoke, VA, 24016, USA
| | - Jeffery Willis
- Virginia Tech Carilion Research Institute, 2 Riverside Cir., Roanoke, VA, 24016, USA
| | | | - Susanne Schoch
- Institute of Neuropathology, Sigmund Freud Strasse 25, 53105, Bonn, Germany
| | - Konark Mukherjee
- Virginia Tech Carilion Research Institute, 2 Riverside Cir., Roanoke, VA, 24016, USA.
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24060, USA.
| |
Collapse
|
24
|
X-linked intellectual disability gene CASK regulates postnatal brain growth in a non-cell autonomous manner. Acta Neuropathol Commun 2016; 4:30. [PMID: 27036546 PMCID: PMC4818453 DOI: 10.1186/s40478-016-0295-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 01/07/2023] Open
Abstract
The phenotypic spectrum among girls with heterozygous mutations in the X-linked intellectual disability (XLID) gene CASK (calcium/calmodulin-dependent serine protein kinase) includes postnatal microcephaly, ponto-cerebellar hypoplasia, seizures, optic nerve hypoplasia, growth retardation and hypotonia. Although CASK knockout mice were previously reported to exhibit perinatal lethality and a 3-fold increased apoptotic rate in the brain, CASK deletion was not found to affect neuronal physiology and their electrical properties. The pathogenesis of CASK associated disorders and the potential function of CASK therefore remains unknown. Here, using Cre-LoxP mediated gene excision experiments; we demonstrate that deleting CASK specifically from mouse cerebellar neurons does not alter the cerebellar architecture or function. We demonstrate that the neuron-specific deletion of CASK in mice does not cause perinatal lethality but induces severe recurrent epileptic seizures and growth retardation before the onset of adulthood. Furthermore, we demonstrate that although neuron-specific haploinsufficiency of CASK is inconsequential, the CASK mutation associated human phenotypes are replicated with high fidelity in CASK heterozygous knockout female mice (CASK(+/-)). These data suggest that CASK-related phenotypes are not purely neuronal in origin. Surprisingly, the observed microcephaly in CASK(+/-) animals is not associated with a specific loss of CASK null brain cells indicating that CASK regulates postnatal brain growth in a non-cell autonomous manner. Using biochemical assay, we also demonstrate that CASK can interact with metabolic proteins. CASK knockdown in human cell lines cause reduced cellular respiration and CASK(+/-) mice display abnormalities in muscle and brain oxidative metabolism, suggesting a novel function of CASK in metabolism. Our data implies that some phenotypic components of CASK heterozygous deletion mutation associated disorders represent systemic manifestation of metabolic stress and therefore amenable to therapeutic intervention.
Collapse
|
25
|
Hammarén HM, Virtanen AT, Silvennoinen O. Nucleotide-binding mechanisms in pseudokinases. Biosci Rep 2015; 36:e00282. [PMID: 26589967 PMCID: PMC4718504 DOI: 10.1042/bsr20150226] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/11/2015] [Accepted: 11/20/2015] [Indexed: 01/01/2023] Open
Abstract
Pseudokinases are classified by the lack of one or several of the highly conserved motifs involved in nucleotide (nt) binding or catalytic activity of protein kinases (PKs). Pseudokinases represent ∼10% of the human kinome and they are found in all evolutionary classes of kinases. It has become evident that pseudokinases, which were initially considered somewhat peculiar dead kinases, are important components in several signalling cascades. Furthermore, several pseudokinases have been linked to human diseases, particularly cancer, which is raising interest for therapeutic approaches towards these proteins. The ATP-binding pocket is a well-established drug target and elucidation of the mechanism and properties of nt binding in pseudokinases is of significant interest and importance. Recent studies have demonstrated that members of the pseudokinase family are very diverse in structure as well as in their ability and mechanism to bind nts or perform phosphoryl transfer reactions. This diversity also precludes prediction of pseudokinase function, or the importance of nt binding for said function, based on primary sequence alone. Currently available data indicate that ∼40% of pseudokinases are able to bind nts, whereas only few are able to catalyse occasional phosphoryl transfer. Pseudokinases employ diverse mechanisms to bind nts, which usually occurs at low, but physiological, affinity. ATP binding serves often a structural role but in most cases the functional roles are not precisely known. In the present review, we discuss the various mechanisms that pseudokinases employ for nt binding and how this often low-affinity binding can be accurately analysed.
Collapse
Affiliation(s)
- Henrik M Hammarén
- School of Medicine, University of Tampere, Biokatu 8, FI-33014 Tampere, Finland
| | - Anniina T Virtanen
- School of Medicine, University of Tampere, Biokatu 8, FI-33014 Tampere, Finland
| | - Olli Silvennoinen
- School of Medicine, University of Tampere, Biokatu 8, FI-33014 Tampere, Finland Clinical Hematology, Department of Internal Medicine, Tampere University Hospital, Medisiinarinkatu 3, FI-33520 Tampere, Finland
| |
Collapse
|
26
|
The Tribbles 2 (TRB2) pseudokinase binds to ATP and autophosphorylates in a metal-independent manner. Biochem J 2015; 467:47-62. [PMID: 25583260 DOI: 10.1042/bj20141441] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The human Tribbles (TRB)-related pseudokinases are CAMK (calcium/calmodulin-dependent protein kinase)-related family members that have evolved a series of highly unusual motifs in the 'pseudocatalytic' domain. In canonical kinases, conserved amino acids bind to divalent metal ions and align ATP prior to efficient phosphoryl-transfer to substrates. However, in pseudokinases, atypical residues give rise to diverse and often unstudied biochemical and structural features that are thought to be central to cellular functions. TRB proteins play a crucial role in multiple signalling networks and overexpression confers cancer phenotypes on human cells, marking TRB pseudokinases out as a novel class of drug target. In the present paper, we report that the human pseudokinase TRB2 retains the ability to both bind and hydrolyse ATP weakly in vitro. Kinase activity is metal-independent and involves a catalytic lysine residue, which is conserved in TRB proteins throughout evolution alongside several unique amino acids in the active site. A similar low level of autophosphorylation is also preserved in the closely related human TRB3. By employing chemical genetics, we establish that the nucleotide-binding site of an 'analogue-sensitive' (AS) TRB2 mutant can be targeted with specific bulky ligands of the pyrazolo-pyrimidine (PP) chemotype. Our analysis confirms that TRB2 retains low levels of ATP binding and/or catalysis that is targetable with small molecules. Given the significant clinical successes associated with targeting of cancer-associated kinases with small molecule inhibitors, it is likely that similar approaches will be useful for further evaluating the TRB pseudokinases, with the translation of this information likely to furnish new leads for drug discovery.
Collapse
|
27
|
Abstract
Protein phosphorylation lies at the heart of cell signalling, and somatic mutation(s) in kinases drives and sustains a multitude of human diseases, including cancer. The human protein kinase superfamily (the kinome) encodes approximately 50 'pseudokinases', which were initially predicted to be incapable of dynamic cell signalling when compared with canonical enzymatically active kinases. This assumption was supported by bioinformatics, which showed that amino acid changes at one or more key loci, making up the nucleotide-binding site or phosphotransferase machinery, were conserved in multiple vertebrate and non-vertebrate pseudokinase homologues. Protein kinases are highly attractive targets for drug discovery, as evidenced by the approval of almost 30 kinase inhibitors in oncology, and the successful development of the dual JAK1/2 (Janus kinase 1/2) inhibitor ruxolitinib for inflammatory indications. However, for such a large (>550) protein family, a remarkable number have still not been analysed at the molecular level, and only a surprisingly small percentage of kinases have been successfully targeted clinically. This is despite evidence that many are potential candidates for the development of new therapeutics. Indeed, several recent reports confirm that disease-associated pseudokinases can bind to nucleotide co-factors at concentrations achievable in the cell. Together, these findings suggest that drug targeting using either ATP-site or unbiased ligand-discovery approaches should now be attempted using the validation technology currently employed to evaluate their classic protein kinase counterparts. In the present review, we discuss members of the human pseudokinome repertoire, and catalogue somatic amino acid pseudokinase mutations that are emerging as the depth and clinical coverage of the human cancer pseudokinome expand.
Collapse
|
28
|
Kerns SJ, Agafonov RV, Cho YJ, Pontiggia F, Otten R, Pachov DV, Kutter S, Phung LA, Murphy PN, Thai V, Alber T, Hagan MF, Kern D. The energy landscape of adenylate kinase during catalysis. Nat Struct Mol Biol 2015; 22:124-31. [PMID: 25580578 PMCID: PMC4318763 DOI: 10.1038/nsmb.2941] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/26/2014] [Indexed: 12/17/2022]
Abstract
Kinases perform phosphoryl-transfer reactions in milliseconds; without enzymes, these reactions would take about 8,000 years under physiological conditions. Despite extensive studies, a comprehensive understanding of kinase energy landscapes, including both chemical and conformational steps, is lacking. Here we scrutinize the microscopic steps in the catalytic cycle of adenylate kinase, through a combination of NMR measurements during catalysis, pre-steady-state kinetics, molecular-dynamics simulations and crystallography of active complexes. We find that the Mg(2+) cofactor activates two distinct molecular events: phosphoryl transfer (>10(5)-fold) and lid opening (10(3)-fold). In contrast, mutation of an essential active site arginine decelerates phosphoryl transfer 10(3)-fold without substantially affecting lid opening. Our results highlight the importance of the entire energy landscape in catalysis and suggest that adenylate kinases have evolved to activate key processes simultaneously by precise placement of a single, charged and very abundant cofactor in a preorganized active site.
Collapse
Affiliation(s)
- S Jordan Kerns
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Roman V Agafonov
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Young-Jin Cho
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Francesco Pontiggia
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Renee Otten
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Dimitar V Pachov
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Steffen Kutter
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Lien A Phung
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Padraig N Murphy
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Vu Thai
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | | | - Michael F Hagan
- Department of Physics, Brandeis University, Waltham, Massachusetts, USA
| | - Dorothee Kern
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| |
Collapse
|
29
|
Anjum R, Ayoubian H, Schmitz F. Differential synaptic distribution of the scaffold proteins Cask and Caskin1 in the bovine retina. Mol Cell Neurosci 2014; 62:19-29. [DOI: 10.1016/j.mcn.2014.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/24/2014] [Accepted: 08/10/2014] [Indexed: 11/26/2022] Open
|
30
|
Mukherjee K, Slawson JB, Christmann BL, Griffith LC. Neuron-specific protein interactions of Drosophila CASK-β are revealed by mass spectrometry. Front Mol Neurosci 2014; 7:58. [PMID: 25071438 PMCID: PMC4075472 DOI: 10.3389/fnmol.2014.00058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/08/2014] [Indexed: 11/13/2022] Open
Abstract
Modular scaffolding proteins are designed to have multiple interactors. CASK, a member of the membrane-associated guanylate kinase (MAGUK) superfamily, has been shown to have roles in many tissues, including neurons and epithelia. It is likely that the set of proteins it interacts with is different in each of these diverse tissues. In this study we asked if within the Drosophila central nervous system, there were neuron-specific sets of CASK-interacting proteins. A YFP-tagged CASK-β transgene was expressed in genetically defined subsets of neurons in the Drosophila brain known to be important for CASK function, and proteins present in an anti-GFP immunoprecipitation were identified by mass spectrometry. Each subset of neurons had a distinct set of interacting proteins, suggesting that CASK participates in multiple protein networks and that these networks may be different in different neuronal circuits. One common set of proteins was associated with mitochondria, and we show here that endogenous CASK-β co-purifies with mitochondria. We also determined CASK-β posttranslational modifications for one cell type, supporting the idea that this technique can be used to assess cell- and circuit-specific protein modifications as well as protein interaction networks.
Collapse
Affiliation(s)
- Konark Mukherjee
- Department of Biology, Volen Center for Complex Systems, National Center for Behavioral Genomics, Brandeis University Waltham, MA, USA
| | - Justin B Slawson
- Department of Biology, Volen Center for Complex Systems, National Center for Behavioral Genomics, Brandeis University Waltham, MA, USA
| | - Bethany L Christmann
- Department of Biology, Volen Center for Complex Systems, National Center for Behavioral Genomics, Brandeis University Waltham, MA, USA
| | - Leslie C Griffith
- Department of Biology, Volen Center for Complex Systems, National Center for Behavioral Genomics, Brandeis University Waltham, MA, USA
| |
Collapse
|
31
|
LaConte LEW, Chavan V, Mukherjee K. Identification and glycerol-induced correction of misfolding mutations in the X-linked mental retardation gene CASK. PLoS One 2014; 9:e88276. [PMID: 24505460 PMCID: PMC3914952 DOI: 10.1371/journal.pone.0088276] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 01/09/2014] [Indexed: 11/21/2022] Open
Abstract
The overwhelming amount of available genomic sequence variation information demands a streamlined approach to examine known pathogenic mutations of any given protein. Here we seek to outline a strategy to easily classify pathogenic missense mutations that cause protein misfolding and are thus good candidates for chaperone-based therapeutic strategies, using previously identified mutations in the gene CASK. We applied a battery of bioinformatics algorithms designed to predict potential impact on protein structure to five pathogenic missense mutations in the protein CASK that have been shown to underlie pathologies ranging from X-linked mental retardation to autism spectrum disorder. A successful classification of the mutations as damaging was not consistently achieved despite the known pathogenicity. In addition to the bioinformatics analyses, we performed molecular modeling and phylogenetic comparisons. Finally, we developed a simple high-throughput imaging assay to measure the misfolding propensity of the CASK mutants in situ. Our data suggests that a phylogenetic analysis may be a robust method for predicting structurally damaging mutations in CASK. Mutations in two evolutionarily invariant residues (Y728C and W919R) exhibited a strong propensity to misfold and form visible aggregates in the cytosolic milieu. The remaining mutations (R28L, Y268H, and P396S) showed no evidence of aggregation and maintained their interactions with known CASK binding partners liprin-α3 Mint-1, and Veli, indicating an intact structure. Intriguingly, the protein aggregation caused by the Y728C and W919R mutations was reversed by treating the cells with a chemical chaperone (glycerol), providing a possible therapeutic strategy for treating structural mutations in CASK in the future.
Collapse
Affiliation(s)
- Leslie E. W. LaConte
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, United States of America
| | - Vrushali Chavan
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, United States of America
| | - Konark Mukherjee
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, United States of America
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
32
|
Liu H, Wang H, Teng M, Li X. The multiple nucleotide-divalent cation binding modes of Saccharomyces cerevisiae CK2α indicate a possible co-substrate hydrolysis product (ADP/GDP) release pathway. ACTA ACUST UNITED AC 2014; 70:501-13. [PMID: 24531484 DOI: 10.1107/s1399004713027879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/10/2013] [Indexed: 12/14/2022]
Abstract
CK2 is a ubiquitous and conserved protein kinase in eukaryotic organisms and is important in many biological processes. It is unique in maintaining constitutive activity and in using both ATP and GTP as phosphor donors. In this study, crystal structures of recombinant Saccharomyces cerevisiae CK2α (scCK2α) complexed with GMPPNP, ATP and AMPPN with either Mg2+ or Mn2+ as the coordinated divalent cation are presented. The overall structure of scCK2α shows high similarity to its homologous proteins by consisting of two domains with the co-substrate lying in the cleft between them. However, three characteristic features distinguish scCK2α from its homologues. Firstly, the Lys45-Glu53 and Arg48-Glu53 interactions in scCK2α lead Lys50 to adopt a unique conformation that is able to stabilize the γ-phosphate of the co-substrate, which makes the existence of the `essential divalent cation' not so essential. The multiple nucleotide-divalent cation binding modes of the active site of scCK2α are apparently different from the two-divalent-cation-occupied active site of Zea mays CK2α and human CK2α. Secondly, conformational change of Glu53 in scCK2α-AMPPN breaks its interaction with Lys45 and Arg48; as a result, the co-substrate binding pocket becomes more open. This may suggest a clue to a possible ADP/GDP-release pathway, because the NE1 atom of the Trp in the `DWG motif' of CK2α forms a hydrogen bond to the O atom of Leu212, which seems to make ADP release by means of the `DFG-in flip to DFG-out' model found in most eukaryotic protein kinases impossible. Coincidentally, two sulfate ions which may mimic two phosphate groups were captured by Arg161 and Lys197 around the pocket. Mutagenesis and biochemical experiments on R161A and K197A mutants support the above proposal. Finally, scCK2α is unique in containing an insertion region whose function had not been identified in previous research. It is found that the insertion region contributes to maintaining the constitutively active conformation of the scCK2α catalytic site, but does not participate in interaction with the regulatory subunits.
Collapse
Affiliation(s)
- Huihui Liu
- School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Hong Wang
- School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Maikun Teng
- School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Xu Li
- School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
33
|
Abstract
Kinases catalyse the phosphorylation of target substrates on hydroxy group-containing residues as a means to nucleate multi-component complexes or to stabilize unique conformational states. Through this biochemical activity, kinases play critical roles in many signal transduction and disease pathways. Pseudokinases constitute a subclass of these enzymes that were originally predicted as inactive on the basis of mutations of key conserved active-site residues. However, recent biochemical and structural analyses have revealed several enzymatically active pseudokinases, suggesting either that novel mechanisms of phosphorylation are at play or that the constraints for highly conserved active-site residues are looser than originally anticipated. The purpose of the present review is to summarize several of the active pseudokinases, and one in particular termed KSR (kinase suppressor of Ras), which was recently found to possess a kinase activity that can become accelerated through an allosteric mechanism. Utilization of catalytic activity or structural features of the kinase fold may be key to the function of many pseudokinases.
Collapse
|
34
|
Grütter C, Sreeramulu S, Sessa G, Rauh D. Structural characterization of the RLCK family member BSK8: a pseudokinase with an unprecedented architecture. J Mol Biol 2013; 425:4455-67. [PMID: 23911552 DOI: 10.1016/j.jmb.2013.07.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/21/2013] [Accepted: 07/25/2013] [Indexed: 10/26/2022]
Abstract
Brassinosteroid signaling kinases (BSKs) are plant-specific receptor-like cytoplasmic protein kinases involved in the brassinosteroid signaling pathway. Unlike common protein kinases, they possess a naturally occurring alanine residue at the "gatekeeper" position, as well as other sequence variations. How BSKs activate downstream proteins such as BSU1, as well as the structural consequences of their unusual sequential features, was unclear. We crystallized the catalytic domain of BSK8 and solved its structure by multiple-wavelength anomalous dispersion phasing methods to a resolution of 1.5Å. In addition, a co-crystal structure of BSK8 with 5-adenylyl imidodiphosphate (AMP-PNP) revealed unusual conformational arrangements of the nucleotide phosphate groups and catalytic key motifs, typically not observed for active protein kinases. Sequential analysis and comparisons with known pseudokinase structures suggest that BSKs represent constitutively inactive protein kinases that regulate brassinosteroid signal transfer through an allosteric mechanism.
Collapse
Affiliation(s)
- Christian Grütter
- Technische Universität Dortmund Fakultät Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| | | | | | | |
Collapse
|
35
|
Abstract
CASK (Ca2+/calmodulin-activated serine kinase) is a synaptic protein that interacts with the cytosolic tail of adhesion molecules such as neurexins, syncam and syndecans. It belongs to the MAGUK (membrane-associated guanylate kinase) family of scaffolding proteins which are known to decorate cell–cell junctions. CASK is an essential gene in mammals, critical for neurodevelopment. Mutations in the CASK gene in humans result in phenotypes that range from intellectual disability to lethality. Despite its importance, CASK has a single genetic isoform located in the short arm of the X chromosome near an evolutionary breakpoint. Surprisingly, CASK is a non-essential gene in invertebrates and displays functional divergence. In the present article, we describe the phylogenetic differences in existing CASK orthologues. The CASK gene has undergone a huge expansion in size (~55-fold). Almost all of this expansion is a direct result of an increase in the size of the introns. The coding region of CASK orthologues, and hence the protein, exhibit a high degree of evolutionary conservation. Within the protein, domain arrangement is completely conserved and substitution rates are higher in the connecting loop regions [L27 (Lin2, Lin7)] than within the domain. Our analyses of single residue substitutions and genotype–phenotype relationships suggest that, other than intronic expansion, the dramatic functional changes of CASK are driven by subtle (non-radical) primary structure changes within the CASK protein and concomitant changes in its protein interactors.
Collapse
|
36
|
Zhang H, Photiou A, Grothey A, Stebbing J, Giamas G. The role of pseudokinases in cancer. Cell Signal 2012; 24:1173-84. [PMID: 22330072 DOI: 10.1016/j.cellsig.2012.01.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 01/27/2012] [Indexed: 01/12/2023]
Abstract
Kinases play a critical role in regulating many cellular functions including development, differentiation and proliferation. To date, over 518 proteins with kinase activity, comprising ~2-3% of total cellular proteins, have been identified from within the human kinome. Interestingly, approximately 10% of kinases are categorised as pseudokinases since they lack one or more conserved catalytic residues within their kinase domain and were originally thought to have no enzymatic activity. Recently, there has been strong evidence to suggest that some pseudokinsases can not only function as scaffold proteins, but may also possess kinase activity leading to modulation of cell signalling pathways. Altered activity of these pseudokinases can result in impaired cellular function, particularly in malignancies. In this review we are discussing recent evidence that apart from a scaffolding role, pseudokinases also orchestrate cellular processes as active kinases per se in signalling pathways of malignant cells.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Cancer and Surgery, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK
| | | | | | | | | |
Collapse
|
37
|
Sims LM, Igarashi RY. Regulation of the ATPase activity of ABCE1 from Pyrococcus abyssi by Fe-S cluster status and Mg²⁺: implication for ribosomal function. Arch Biochem Biophys 2012; 524:114-22. [PMID: 22609615 DOI: 10.1016/j.abb.2012.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 01/29/2023]
Abstract
Ribosomal function is dependent on multiple proteins. The ABCE1 ATPase, a unique ABC superfamily member that bears two Fe₄S₄ clusters, is crucial for ribosomal biogenesis and recycling. Here, the ATPase activity of the Pyrococcus abyssi ABCE1 (PabABCE1) was studied using both apo- (without reconstituted Fe-S clusters) and holo- (with full complement of Fe-S clusters reconstituted post-purification) forms, and is shown to be jointly regulated by the status of Fe-S clusters and Mg²⁺. Typically ATPases require Mg²⁺, as is true for PabABCE1, but Mg²⁺ also acts as a negative allosteric effector that modulates ATP affinity of PabABCE1. Physiological [Mg²⁺] inhibits the PabABCE1 ATPase (K(i) of ∼1 μM) for both apo- and holo-PabABCE1. Comparative kinetic analysis of Mg²⁺ inhibition shows differences in degree of allosteric regulation between the apo- and holo-PabABCE1 where the apparent ATP K(m) of apo-PabABCE1 increases >30-fold from ∼30 μM to over 1 mM with M²⁺. This effect would significantly convert the ATPase activity of PabABCE1 from being independent of cellular energy charge (φ) to being dependent on φ with cellular [Mg²⁺]. These findings uncover intricate overlapping effects by both [Mg²⁺] and the status of Fe-S clusters that regulate ABCE1's ATPase activity with implications to ribosomal function.
Collapse
Affiliation(s)
- Lynn M Sims
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | | |
Collapse
|
38
|
Stafford RL, Ear J, Knight MJ, Bowie JU. The molecular basis of the Caskin1 and Mint1 interaction with CASK. J Mol Biol 2011; 412:3-13. [PMID: 21763699 PMCID: PMC3158819 DOI: 10.1016/j.jmb.2011.07.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 07/05/2011] [Accepted: 07/05/2011] [Indexed: 12/21/2022]
Abstract
Calcium/calmodulin-dependent serine protein kinase (CASK) is a conserved multi-domain scaffolding protein involved in brain development, synapse formation, and establishment of cell polarity. To accomplish these diverse functions, CASK participates in numerous protein-protein interactions. In particular, CASK forms competing CASK/Mint1/Velis and CASK/Caskin1/Velis tripartite complexes that physically associate with the cytoplasmic tail of neurexin, a transmembrane protein enriched at presynaptic sites. This study shows that a short linear EEIWVLRK peptide motif from Caskin1 is necessary and sufficient for binding CASK. We also identified the conserved binding site for the peptide on the CASK calmodulin kinase domain. A related EPIWVMRQ peptide from Mint1 was also discovered to be sufficient for binding. Searching all human proteins for the Mint1/Caskin1 consensus peptide ExIWVxR revealed that T-cell lymphoma invasion and metastasis 1 (TIAM1) contains a conserved EEVIWVRRE peptide that was also found to be sufficient for CASK binding in vitro. TIAM1 is well known for its role in tumor metastasis, but it also possesses overlapping cellular and neurological functions with CASK, suggesting a previously unknown cooperation between the two proteins. This new peptide interaction motif also explains how Caskin1 and Mint1 form competing complexes and suggests a new role for the cellular hub protein CASK.
Collapse
Affiliation(s)
- Ryan L. Stafford
- Department of Chemistry and Biochemistry, UCLA-DOE Institute of Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, Boyer Hall, 611 Charles E. Young Dr. E., Los Angeles, CA 90095-1570
| | - Jason Ear
- Department of Chemistry and Biochemistry, UCLA-DOE Institute of Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, Boyer Hall, 611 Charles E. Young Dr. E., Los Angeles, CA 90095-1570
| | - Mary Jane Knight
- Department of Chemistry and Biochemistry, UCLA-DOE Institute of Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, Boyer Hall, 611 Charles E. Young Dr. E., Los Angeles, CA 90095-1570
| | - James U. Bowie
- Department of Chemistry and Biochemistry, UCLA-DOE Institute of Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, Boyer Hall, 611 Charles E. Young Dr. E., Los Angeles, CA 90095-1570
| |
Collapse
|
39
|
Gautel M. Cytoskeletal protein kinases: titin and its relations in mechanosensing. Pflugers Arch 2011; 462:119-34. [PMID: 21416260 PMCID: PMC3114093 DOI: 10.1007/s00424-011-0946-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 12/22/2022]
Abstract
Titin, the giant elastic ruler protein of striated muscle sarcomeres, contains a catalytic kinase domain related to a family of intrasterically regulated protein kinases. The most extensively studied member of this branch of the human kinome is the Ca(2+)-calmodulin (CaM)-regulated myosin light-chain kinases (MLCK). However, not all kinases of the MLCK branch are functional MLCKs, and about half lack a CaM binding site in their C-terminal autoinhibitory tail (AI). A unifying feature is their association with the cytoskeleton, mostly via actin and myosin filaments. Titin kinase, similar to its invertebrate analogue twitchin kinase and likely other "MLCKs", is not Ca(2+)-calmodulin-activated. Recently, local protein unfolding of the C-terminal AI has emerged as a common mechanism in the activation of CaM kinases. Single-molecule data suggested that opening of the TK active site could also be achieved by mechanical unfolding of the AI. Mechanical modulation of catalytic activity might thus allow cytoskeletal signalling proteins to act as mechanosensors, creating feedback mechanisms between cytoskeletal tension and tension generation or cellular remodelling. Similar to other MLCK-like kinases like DRAK2 and DAPK1, TK is linked to protein turnover regulation via the autophagy/lysosomal system, suggesting the MLCK-like kinases have common functions beyond contraction regulation.
Collapse
Affiliation(s)
- Mathias Gautel
- King's College London BHF Centre of Research Excellence, Cardiovascular Division, London, SE1 1UL, UK.
| |
Collapse
|
40
|
Patel AK, Yadav RP, Majava V, Kursula I, Kursula P. Structure of the dimeric autoinhibited conformation of DAPK2, a pro-apoptotic protein kinase. J Mol Biol 2011; 409:369-83. [PMID: 21497605 DOI: 10.1016/j.jmb.2011.03.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 03/24/2011] [Accepted: 03/28/2011] [Indexed: 11/27/2022]
Abstract
The death-associated protein kinase (DAPK) family has been characterized as a group of pro-apoptotic serine/threonine kinases that share specific structural features in their catalytic kinase domain. Two of the DAPK family members, DAPK1 and DAPK2, are calmodulin-dependent protein kinases that are regulated by oligomerization, calmodulin binding, and autophosphorylation. In this study, we have determined the crystal and solution structures of murine DAPK2 in the presence of the autoinhibitory domain, with and without bound nucleotides in the active site. The crystal structure shows dimers of DAPK2 in a conformation that is not permissible for protein substrate binding. Two different conformations were seen in the active site upon the introduction of nucleotide ligands. The monomeric and dimeric forms of DAPK2 were further analyzed for solution structure, and the results indicate that the dimers of DAPK2 are indeed formed through the association of two apposed catalytic domains, as seen in the crystal structure. The structures can be further used to build a model for DAPK2 autophosphorylation and to compare with closely related kinases, of which especially DAPK1 is an actively studied drug target. Our structures also provide a model for both homodimerization and heterodimerization of the catalytic domain between members of the DAPK family. The fingerprint of the DAPK family, the basic loop, plays a central role in the dimerization of the kinase domain.
Collapse
Affiliation(s)
- Ashok K Patel
- Department of Biochemistry, University of Oulu, Finland
| | | | | | | | | |
Collapse
|