1
|
Putnová I, Putnová BM, Hurník P, Štembírek J, Buchtová M, Kolísková P. Primary cilia-associated signalling in squamous cell carcinoma of head and neck region. Front Oncol 2024; 14:1413255. [PMID: 39234399 PMCID: PMC11372790 DOI: 10.3389/fonc.2024.1413255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Squamous cell carcinoma (SCC) of the head and neck originates from the mucosal lining of the upper aerodigestive tract, including the lip, tongue, nasopharynx, oropharynx, larynx and hypopharynx. In this review, we summarise what is currently known about the potential function of primary cilia in the pathogenesis of this disease. As primary cilia represent a key cellular structure for signal transduction and are related to cell proliferation, an understanding of their role in carcinogenesis is necessary for the design of new treatment approaches. Here, we introduce cilia-related signalling in head and neck squamous cell carcinoma (HNSCC) and its possible association with HNSCC tumorigenesis. From this point of view, PDGF, EGF, Wnt and Hh signalling are discussed as all these pathways were found to be dysregulated in HNSCC. Moreover, we review the clinical potential of small molecules affecting primary cilia signalling to target squamous cell carcinoma of the head and neck area.
Collapse
Affiliation(s)
- Iveta Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Anatomy, Histology and Embryology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Barbora Moldovan Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Pathological Morphology and Parasitology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Pavel Hurník
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Jan Štembírek
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czechia
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Petra Kolísková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
2
|
Zhong BH, Dong M. The implication of ciliary signaling pathways for epithelial-mesenchymal transition. Mol Cell Biochem 2024; 479:1535-1543. [PMID: 37490178 PMCID: PMC11224103 DOI: 10.1007/s11010-023-04817-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/15/2023] [Indexed: 07/26/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT), which plays an essential role in development, tissue repair and fibrosis, and cancer progression, is a reversible cellular program that converts epithelial cells to mesenchymal cell states characterized by motility-invasive properties. The mostly signaling pathways that initiated and controlled the EMT program are regulated by a solitary, non-motile organelle named primary cilium. Acting as a signaling nexus, primary cilium dynamically concentrates signaling molecules to respond to extracellular cues. Recent research has provided direct evidence of connection between EMT and primary ciliogenesis in multiple contexts, but the mechanistic understanding of this relationship is complicated and still undergoing. In this review, we describe the current knowledge about the ciliary signaling pathways involved in EMT and list the direct evidence that shows the link between them, trying to figure out the intricate relationship between EMT and primary ciliogenesis, which may aid the future development of primary cilium as a novel therapeutic approach targeted to EMT.
Collapse
Affiliation(s)
- Bang-Hua Zhong
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ming Dong
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
3
|
Wang Y, Liu J, Zheng S, Cao L, Li Y, Sheng R. The deubiquitinase USP10 mediates crosstalk between the LKB1/AMPK axis and Wnt/β-catenin signaling in cancer. FEBS Lett 2023; 597:3061-3071. [PMID: 37873736 DOI: 10.1002/1873-3468.14763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023]
Abstract
The liver kinase B1 (LKB1)/AMP-activated protein kinase (AMPK) axis pivotally controls cell metabolism and suppresses abnormal growth in various cancers. Wnt/β-catenin is a frequently dysregulated signaling pathway that drives oncogenesis. Here, we discovered a crosstalk mechanism between the LKB1/AMPK axis and Wnt/β-catenin signaling. Activated AMPK phosphorylates the deubiquitinase USP10 to potentiate the deubiquitination and stabilization of the key scaffold protein Axin1. This phosphorylation also strengthens the binding between USP10 and β-catenin and supports the phase transition of β-catenin. Both processes suppress Wnt/β-catenin amplitude in parallel and inhibit colorectal cancer growth in a clinically relevant manner. Collectively, we established a crosstalk route by which LKB1/AMPK regulates Wnt/β-catenin signaling in cancer. USP10 acts as the hub in this process, thus enabling LKB1/AMPK to suppress tumor growth via regulation of both metabolism and cell proliferation.
Collapse
Affiliation(s)
- Yinuo Wang
- College of Life and Health Science, Northeastern University, Shenyang, China
| | - Jingwei Liu
- College of Basic Medical Science, China Medical University, Shenyang, China
| | - Shaoqin Zheng
- College of Life and Health Science, Northeastern University, Shenyang, China
| | - Liu Cao
- College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yiwei Li
- Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ren Sheng
- College of Life and Health Science, Northeastern University, Shenyang, China
| |
Collapse
|
4
|
Hoffmann F, Bolz S, Junger K, Klose F, Stehle IF, Ueffing M, Boldt K, Beyer T. Paralog-specific TTC30 regulation of Sonic hedgehog signaling. Front Mol Biosci 2023; 10:1268722. [PMID: 38074101 PMCID: PMC10701685 DOI: 10.3389/fmolb.2023.1268722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/09/2023] [Indexed: 02/12/2024] Open
Abstract
The intraflagellar transport (IFT) machinery is essential for cilia assembly, maintenance, and trans-localization of signaling proteins. The IFT machinery consists of two large multiprotein complexes, one of which is the IFT-B. TTC30A and TTC30B are integral components of this complex and were previously shown to have redundant functions in the context of IFT, preventing the disruption of IFT-B and, thus, having a severe ciliogenesis defect upon loss of one paralog. In this study, we re-analyzed the paralog-specific protein complexes and discovered a potential involvement of TTC30A or TTC30B in ciliary signaling. Specifically, we investigated a TTC30A-specific interaction with protein kinase A catalytic subunit α, a negative regulator of Sonic hedgehog (Shh) signaling. Defects in this ciliary signaling pathway are often correlated to synpolydactyly, which, intriguingly, is also linked to a rare TTC30 variant. For an in-depth analysis of this unique interaction and the influence on Shh, TTC30A or B single- and double-knockout hTERT-RPE1 were employed, as well as rescue cells harboring wildtype TTC30 or the corresponding mutation. We could show that mutant TTC30A inhibits the ciliary localization of Smoothened. This observed effect is independent of Patched1 but associated with a distinct phosphorylated PKA substrate accumulation upon treatment with forskolin. This rather prominent phenotype was attenuated in mutant TTC30B. Mass spectrometry analysis of wildtype versus mutated TTC30A or TTC30B uncovered differences in protein complex patterns and identified an impaired TTC30A-IFT57 interaction as the possible link leading to synpolydactyly. We could observe no impact on cilia assembly, leading to the hypothesis that a slight decrease in IFT-B binding can be compensated, but mild phenotypes, like synpolydactyly, can be induced by subtle signaling changes. Our systematic approach revealed the paralog-specific influence of TTC30A KO and mutated TTC30A on the activity of PRKACA and the uptake of Smoothened into the cilium, resulting in a downregulation of Shh. This downregulation, combined with interactome alterations, suggests a potential mechanism of how mutant TTC30A is linked to synpolydactyly.
Collapse
Affiliation(s)
- Felix Hoffmann
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | - Tina Beyer
- *Correspondence: Felix Hoffmann, ; Tina Beyer,
| |
Collapse
|
5
|
Jimenez MT, Clark ML, Wright JM, Michieletto MF, Liu S, Erickson I, Dohnalova L, Uhr GT, Tello-Cajiao J, Joannas L, Williams A, Gagliani N, Bewtra M, Tomov VT, Thaiss CA, Henao-Mejia J. The miR-181 family regulates colonic inflammation through its activity in the intestinal epithelium. J Exp Med 2022; 219:213450. [PMID: 36074090 PMCID: PMC9462864 DOI: 10.1084/jem.20212278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/02/2022] [Accepted: 08/11/2022] [Indexed: 11/04/2022] Open
Abstract
The intestinal epithelium is a key physical interface that integrates dietary and microbial signals to regulate nutrient uptake and mucosal immune cell function. The transcriptional programs that regulate intestinal epithelial cell (IEC) quiescence, proliferation, and differentiation have been well characterized. However, how gene expression networks critical for IECs are posttranscriptionally regulated during homeostasis or inflammatory disease remains poorly understood. Herein, we show that a conserved family of microRNAs, miR-181, is significantly downregulated in IECs from patients with inflammatory bowel disease and mice with chemical-induced colitis. Strikingly, we showed that miR-181 expression within IECs, but not the hematopoietic system, is required for protection against severe colonic inflammation in response to epithelial injury in mice. Mechanistically, we showed that miR-181 expression increases the proliferative capacity of IECs, likely through the regulation of Wnt signaling, independently of the gut microbiota composition. As epithelial reconstitution is crucial to restore intestinal homeostasis after injury, the miR-181 family represents a potential therapeutic target against severe intestinal inflammation.
Collapse
Affiliation(s)
- Monica T Jimenez
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Megan L Clark
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jasmine M Wright
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michaël F Michieletto
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Suying Liu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Isabel Erickson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Lenka Dohnalova
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Giulia T Uhr
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - John Tello-Cajiao
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Leonel Joannas
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Adam Williams
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Nicola Gagliani
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Meenakshi Bewtra
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA.,Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA
| | - Vesselin T Tomov
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Christoph A Thaiss
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
6
|
Di Minin G, Holzner M, Grison A, Dumeau CE, Chan W, Monfort A, Jerome-Majewska LA, Roelink H, Wutz A. TMED2 binding restricts SMO to the ER and Golgi compartments. PLoS Biol 2022; 20:e3001596. [PMID: 35353806 PMCID: PMC9000059 DOI: 10.1371/journal.pbio.3001596] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 04/11/2022] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
Hedgehog (HH) signaling is important for embryonic pattering and stem cell differentiation. The G protein–coupled receptor (GPCR) Smoothened (SMO) is the key HH signal transducer modulating both transcription-dependent and transcription-independent responses. We show that SMO protects naive mouse embryonic stem cells (ESCs) from dissociation-induced cell death. We exploited this SMO dependency to perform a genetic screen in haploid ESCs where we identify the Golgi proteins TMED2 and TMED10 as factors for SMO regulation. Super-resolution microscopy shows that SMO is normally retained in the endoplasmic reticulum (ER) and Golgi compartments, and we demonstrate that TMED2 binds to SMO, preventing localization to the plasma membrane. Mutation of TMED2 allows SMO accumulation at the plasma membrane, recapitulating early events after HH stimulation. We demonstrate the physiologic relevance of this interaction in neural differentiation, where TMED2 functions to repress HH signal strength. Identification of TMED2 as a binder and upstream regulator of SMO opens the way for unraveling the events in the ER–Golgi leading to HH signaling activation. Hedgehog signals orchestrate tissue patterning by binding the receptor Patched and restricting the signal transducer Smoothened. A genetic screen reveals Tmed2 as a new interactor of Smoothened that is required for regulating Smoothened transport from the endoplasmic reticulum and Golgi to the plasma membrane and hence modulating the strength of Hedgehog signal transduction.
Collapse
Affiliation(s)
- Giulio Di Minin
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology ETH Hönggerberg, Zurich, Switzerland
- * E-mail: (GDM); (AW)
| | - Markus Holzner
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology ETH Hönggerberg, Zurich, Switzerland
| | - Alice Grison
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Charles E. Dumeau
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology ETH Hönggerberg, Zurich, Switzerland
| | - Wesley Chan
- Department Anatomy and Cell Biology, Human Genetics and McGill University, Montreal, Canada
- Department of Pediatrics, Human Genetics and McGill University, Montreal, Canada
| | - Asun Monfort
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology ETH Hönggerberg, Zurich, Switzerland
| | - Loydie A. Jerome-Majewska
- Department Anatomy and Cell Biology, Human Genetics and McGill University, Montreal, Canada
- Department of Pediatrics, Human Genetics and McGill University, Montreal, Canada
| | - Henk Roelink
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Anton Wutz
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology ETH Hönggerberg, Zurich, Switzerland
- * E-mail: (GDM); (AW)
| |
Collapse
|
7
|
Wang X, Jiang L, Thao K, Sussman C, LaBranche T, Palmer M, Harris P, McKnight GS, Hoeflich K, Schalm S, Torres V. Protein Kinase A Downregulation Delays the Development and Progression of Polycystic Kidney Disease. J Am Soc Nephrol 2022; 33:1087-1104. [PMID: 35236775 PMCID: PMC9161799 DOI: 10.1681/asn.2021081125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/14/2022] [Indexed: 11/03/2022] Open
Abstract
Background: Upregulation of cAMP-dependent and -independent PKA signaling is thought to promote cystogenesis in polycystic kidney disease (PKD). PKA-I regulatory subunit RIα is increased in kidneys of orthologous mouse models. Kidney-specific knockout of RIα upregulates PKA activity, induces cystic disease in wild-type mice, and aggravates it in Pkd1 RC/RC mice. Methods: PKA-I activation or inhibition was compared to EPAC activation or PKA-II inhibition using Pkd1 RC/RC metanephric organ cultures. The effect of constitutive PKA (preferentially PKA-I) downregulation in vivo was ascertained by kidney-specific expression of a dominant negative RIαB allele in Pkd1 RC/RC mice obtained by crossing Prkar1α R1αB/WT, Pkd1 RC/RC, and Pkhd1-Cre mice (C57BL/6 background). The effect of pharmacologic PKA inhibition using a novel, selective PRKACA inhibitor (BLU2864) was tested in mIMCD3 3D cultures, metanephric organ cultures, and Pkd1 RC/RC mice on a C57BL/6 x 129S6/Sv F1 background. Mice were sacrificed at 16 weeks of age. Results: PKA-I activation promoted and inhibition prevented ex vivo P-Ser133 CREB expression and cystogenesis. EPAC activation or PKA-II inhibition had no or only minor effects. BLU2864 inhibited in vitro mIMCD3 cystogenesis and ex vivo P-Ser133 CREB expression and cystogenesis. Genetic downregulation of PKA activity and BLU2864 directly and/or indirectly inhibited many pro-proliferative pathways and were both protective in vivo BLU2864 had no detectable on- or off-target adverse effects. Conclusions: PKA-I is the main PKA isozyme promoting cystogenesis. Direct PKA inhibition may be an effective strategy to treat PKD and other conditions where PKA signaling is upregulated. By acting directly on PKA, the inhibition may be more effective than or substantially increase the efficacy of treatments that only affect PKA activity by lowering cAMP.
Collapse
Affiliation(s)
- Xiaofang Wang
- X Wang, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, United States
| | - Li Jiang
- L Jiang, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, United States
| | - Ka Thao
- K Thao, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, United States
| | - Caroline Sussman
- C Sussman, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, United States
| | | | | | - Peter Harris
- P Harris, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, United States
| | - G Stanley McKnight
- G McKnight, Department of Pharmacology, University of Washington, Seattle, United States
| | - Klaus Hoeflich
- K Hoeflich, Blueprint Medicines, Cambridge, United States
| | | | - Vicente Torres
- V Torres, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, United States
| |
Collapse
|
8
|
Li J, Wei T, Zhang J, Liang T. Intraductal Papillary Mucinous Neoplasms of the Pancreas: A Review of Their Genetic Characteristics and Mouse Models. Cancers (Basel) 2021; 13:cancers13215296. [PMID: 34771461 PMCID: PMC8582516 DOI: 10.3390/cancers13215296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Pancreatic cancer is one of the deadliest cancers with the lowest survival rate. Little progress has been achieved in prolonging the survival for patients with pancreatic adenocarcinoma. Hence, special attention should be paid to pre-cancerous lesions, for instance, an intraductal papillary mucinous neoplasm (IPMN). Here, we reviewed its genetic characteristics and the mouse models involving mutations in specific pathways, and updated our current perception of how this lesion develops into a precursor of invasive cancer. Abstract The intraductal papillary mucinous neoplasm (IPMN) is attracting research attention because of its increasing incidence and proven potential to progress into invasive pancreatic ductal adenocarcinoma (PDAC). In this review, we summarized the key signaling pathways or protein complexes (GPCR, TGF, SWI/SNF, WNT, and PI3K) that appear to be involved in IPMN pathogenesis. In addition, we collected information regarding all the genetic mouse models that mimic the human IPMN phenotype with specific immunohistochemistry techniques. The mouse models enable us to gain insight into the complex mechanism of the origin of IPMN, revealing that it can be developed from both acinar cells and duct cells according to different models. Furthermore, recent genomic studies describe the potential mechanism by which heterogeneous IPMN gives rise to malignant carcinoma through sequential, branch-off, or de novo approaches. The most intractable problem is that the risk of malignancy persists to some extent even if the primary IPMN is excised with a perfect margin, calling for the re-evaluation and improvement of diagnostic, pre-emptive, and therapeutic measures.
Collapse
Affiliation(s)
- Jin Li
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The First Affiliated Hospital of Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China; (J.L.); (T.W.); (J.Z.)
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou 310000, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou 310000, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou 310000, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Tao Wei
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The First Affiliated Hospital of Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China; (J.L.); (T.W.); (J.Z.)
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou 310000, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou 310000, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou 310000, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Jian Zhang
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The First Affiliated Hospital of Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China; (J.L.); (T.W.); (J.Z.)
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou 310000, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou 310000, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou 310000, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The First Affiliated Hospital of Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China; (J.L.); (T.W.); (J.Z.)
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou 310000, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou 310000, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou 310000, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Correspondence: ; Tel./Fax: +86-571-87236688
| |
Collapse
|
9
|
Cai E, Zhang J, Ge X. Control of the Hedgehog pathway by compartmentalized PKA in the primary cilium. SCIENCE CHINA-LIFE SCIENCES 2021; 65:500-514. [PMID: 34505970 DOI: 10.1007/s11427-021-1975-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/01/2021] [Indexed: 01/20/2023]
Abstract
The Hedgehog (Hh) signaling is one of the essential signaling pathways during embryogenesis and in adults. Hh signal transduction relies on primary cilium, a specialized cell surface organelle viewed as the hub of cell signaling. Protein kinase A (PKA) has been recognized as a potent negative regulator of the Hh pathway, raising the question of how such a ubiquitous kinase specifically regulates one signaling pathway. We reviewed recent genetic, molecular and biochemical studies that have advanced our mechanistic understanding of PKA's role in Hh signaling in vertebrates, focusing on the compartmentalized PKA at the centrosome and in the primary cilium. We outlined the recently developed genetic and optical tools that can be harvested to study PKA activities during the course of Hh signal transduction.
Collapse
Affiliation(s)
- Eva Cai
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA, 95340, USA
| | - Jingyi Zhang
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA, 95340, USA
| | - Xuecai Ge
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA, 95340, USA.
| |
Collapse
|
10
|
Li R, Salehi-Rad R, Crosson W, Momcilovic M, Lim RJ, Ong SL, Huang ZL, Zhang T, Abascal J, Dumitras C, Jing Z, Park SJ, Krysan K, Shackelford DB, Tran LM, Liu B, Dubinett SM. Inhibition of Granulocytic Myeloid-Derived Suppressor Cells Overcomes Resistance to Immune Checkpoint Inhibition in LKB1-Deficient Non-Small Cell Lung Cancer. Cancer Res 2021; 81:3295-3308. [PMID: 33853830 PMCID: PMC8776246 DOI: 10.1158/0008-5472.can-20-3564] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/08/2021] [Accepted: 04/12/2021] [Indexed: 01/19/2023]
Abstract
LKB1 inactivating mutations are commonly observed in patients with KRAS-mutant non-small cell lung cancer (NSCLC). Although treatment of NSCLC with immune checkpoint inhibitors (ICI) has resulted in improved overall survival in a subset of patients, studies have revealed that co-occurring KRAS/LKB1 mutations drive primary resistance to ICIs in NSCLC. Effective therapeutic options that overcome ICI resistance in LKB1-mutant NSCLC are limited. Here, we report that loss of LKB1 results in increased secretion of the C-X-C motif (CXC) chemokines with an NH2-terminal Glu-Leu-Arg (ELR) motif in premalignant and cancerous cells, as well as in genetically engineered murine models (GEMM) of NSCLC. Heightened levels of ELR+ CXC chemokines in LKB1-deficient murine models of NSCLC positively correlated with increased abundance of granulocytic myeloid-derived suppressor cells (G-MDSC) locally within the tumor microenvironment and systemically in peripheral blood and spleen. Depletion of G-MDSCs with antibody or functional inhibition via all-trans-retinoic acid (ATRA) led to enhanced antitumor T-cell responses and sensitized LKB1-deficent murine tumors to PD-1 blockade. Combination therapy with anti-PD-1 and ATRA improved local and systemic T-cell proliferation and generated tumor-specific immunity. Our findings implicate ELR+ CXC chemokine-mediated enrichment of G-MDSCs as a potential mediator of immunosuppression in LKB1-deficient NSCLC and provide a rationale for using ATRA in combination with anti-PD-1 therapy in patients with LKB1-deficient NSCLC refractory to ICIs. SIGNIFICANCE: These findings show that accumulation of myeloid-derived suppressor cells in LKB1-deficient non-small cell lung cancer can be overcome via treatment with all-trans-retinoic acid, sensitizing tumors to immunotherapy.
Collapse
Affiliation(s)
- Rui Li
- Department of Medicine, Division of Pulmonary and Critical Care, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, 43-229 CHS, Los Angeles, CA 90095-1690, USA
| | - Ramin Salehi-Rad
- Department of Medicine, Division of Pulmonary and Critical Care, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, 43-229 CHS, Los Angeles, CA 90095-1690, USA,Department of Medicine, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA
| | - William Crosson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Drive South, 23-120 CHS, Box 951735, Los Angeles, CA 90095-1735, USA
| | - Milica Momcilovic
- Department of Medicine, Division of Pulmonary and Critical Care, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, 43-229 CHS, Los Angeles, CA 90095-1690, USA
| | - Raymond J. Lim
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Drive South, 23-120 CHS, Box 951735, Los Angeles, CA 90095-1735, USA
| | - Stephanie L. Ong
- Department of Medicine, Division of Pulmonary and Critical Care, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, 43-229 CHS, Los Angeles, CA 90095-1690, USA
| | - Zi Ling Huang
- Department of Medicine, Division of Pulmonary and Critical Care, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, 43-229 CHS, Los Angeles, CA 90095-1690, USA
| | - Tianhao Zhang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Drive South, 23-120 CHS, Box 951735, Los Angeles, CA 90095-1735, USA
| | - Jensen Abascal
- Department of Medicine, Division of Pulmonary and Critical Care, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, 43-229 CHS, Los Angeles, CA 90095-1690, USA
| | - Camelia Dumitras
- Department of Medicine, Division of Pulmonary and Critical Care, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, 43-229 CHS, Los Angeles, CA 90095-1690, USA
| | - Zhe Jing
- Department of Medicine, Division of Pulmonary and Critical Care, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, 43-229 CHS, Los Angeles, CA 90095-1690, USA
| | - Stacy J. Park
- Department of Medicine, Division of Pulmonary and Critical Care, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, 43-229 CHS, Los Angeles, CA 90095-1690, USA
| | - Kostyantyn Krysan
- Department of Medicine, Division of Pulmonary and Critical Care, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, 43-229 CHS, Los Angeles, CA 90095-1690, USA
| | - David B. Shackelford
- Department of Medicine, Division of Pulmonary and Critical Care, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, 43-229 CHS, Los Angeles, CA 90095-1690, USA,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Drive South, 23-120 CHS, Box 951735, Los Angeles, CA 90095-1735, USA
| | - Linh M. Tran
- Department of Medicine, Division of Pulmonary and Critical Care, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, 43-229 CHS, Los Angeles, CA 90095-1690, USA
| | - Bin Liu
- Department of Medicine, Division of Pulmonary and Critical Care, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, 43-229 CHS, Los Angeles, CA 90095-1690, USA,Corresponding authors: Bin Liu and Steven M. Dubinett. David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, 43-229 CHS, Los Angeles, CA 90095-1690, USA. Phone: 310-267-2725; ;
| | - Steven M. Dubinett
- Department of Medicine, Division of Pulmonary and Critical Care, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, 43-229 CHS, Los Angeles, CA 90095-1690, USA,Department of Medicine, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Drive South, 23-120 CHS, Box 951735, Los Angeles, CA 90095-1735, USA,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, 757 Westwood Plaza, Los Angeles, CA 90095, USA,Jonsson Comprehensive Cancer Center, UCLA, 8-684 Factor Building, Box 951781, Los Angeles, CA 90095-1781, USA,Corresponding authors: Bin Liu and Steven M. Dubinett. David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, 43-229 CHS, Los Angeles, CA 90095-1690, USA. Phone: 310-267-2725; ;
| |
Collapse
|
11
|
May EA, Kalocsay M, D'Auriac IG, Schuster PS, Gygi SP, Nachury MV, Mick DU. Time-resolved proteomics profiling of the ciliary Hedgehog response. J Cell Biol 2021; 220:211991. [PMID: 33856408 PMCID: PMC8054476 DOI: 10.1083/jcb.202007207] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 02/01/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
The primary cilium is a signaling compartment that interprets Hedgehog signals through changes of its protein, lipid, and second messenger compositions. Here, we combine proximity labeling of cilia with quantitative mass spectrometry to unbiasedly profile the time-dependent alterations of the ciliary proteome in response to Hedgehog. This approach correctly identifies the three factors known to undergo Hedgehog-regulated ciliary redistribution and reveals two such additional proteins. First, we find that a regulatory subunit of the cAMP-dependent protein kinase (PKA) rapidly exits cilia together with the G protein-coupled receptor GPR161 in response to Hedgehog, and we propose that the GPR161/PKA module senses and amplifies cAMP signals to modulate ciliary PKA activity. Second, we identify the phosphatase Paladin as a cell type-specific regulator of Hedgehog signaling that enters primary cilia upon pathway activation. The broad applicability of quantitative ciliary proteome profiling promises a rapid characterization of ciliopathies and their underlying signaling malfunctions.
Collapse
Affiliation(s)
- Elena A May
- Center of Human and Molecular Biology, Saarland University School of Medicine, Homburg, Germany
| | - Marian Kalocsay
- Department of Systems Biology, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA.,Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Inès Galtier D'Auriac
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA
| | - Patrick S Schuster
- Center of Human and Molecular Biology, Saarland University School of Medicine, Homburg, Germany
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Maxence V Nachury
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA
| | - David U Mick
- Center of Human and Molecular Biology, Saarland University School of Medicine, Homburg, Germany.,Center for Molecular Signaling, Department of Medical Biochemistry and Molecular Biology, Saarland University School of Medicine, Homburg, Germany
| |
Collapse
|
12
|
Lai KKY, Kahn M. Pharmacologically Targeting the WNT/β-Catenin Signaling Cascade: Avoiding the Sword of Damocles. Handb Exp Pharmacol 2021; 269:383-422. [PMID: 34463849 DOI: 10.1007/164_2021_523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
WNT/β-catenin signaling plays fundamental roles in numerous developmental processes and in adult tissue homeostasis and repair after injury, by controlling cellular self-renewal, activation, division, differentiation, movement, genetic stability, and apoptosis. As such, it comes as no surprise that dysregulation of WNT/β-catenin signaling is associated with various diseases, including cancer, fibrosis, neurodegeneration, etc. Although multiple agents that specifically target the WNT/β-catenin signaling pathway have been studied preclinically and a number have entered clinical trials, none has been approved by the FDA to date. In this chapter, we provide our insights as to the reason(s) it has been so difficult to safely pharmacologically target the WNT/β-catenin signaling pathway and discuss the significant efforts undertaken towards this goal.
Collapse
Affiliation(s)
- Keane K Y Lai
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Michael Kahn
- Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
13
|
Sundara Rajan S, Ludwig KR, Hall KL, Jones TL, Caplen NJ. Cancer biology functional genomics: From small RNAs to big dreams. Mol Carcinog 2020; 59:1343-1361. [PMID: 33043516 PMCID: PMC7702050 DOI: 10.1002/mc.23260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022]
Abstract
The year 2021 marks the 20th anniversary of the first publications reporting the discovery of the gene silencing mechanism, RNA interference (RNAi) in mammalian cells. Along with the many studies that delineated the proteins and substrates that form the RNAi pathway, this finding changed our understanding of the posttranscriptional regulation of mammalian gene expression. Furthermore, the development of methods that exploited the RNAi pathway began the technological revolution that eventually enabled the interrogation of mammalian gene function-from a single gene to the whole genome-in only a few days. The needs of the cancer research community have driven much of this progress. In this perspective, we highlight milestones in the development and application of RNAi-based methods to study carcinogenesis. We discuss how RNAi-based functional genetic analysis of exemplar tumor suppressors and oncogenes furthered our understanding of cancer initiation and progression and explore how such studies formed the basis of genome-wide scale efforts to identify cancer or cancer-type specific vulnerabilities, including studies conducted in vivo. Furthermore, we examine how RNAi technologies have revealed new cancer-relevant molecular targets and the implications for cancer of the first RNAi-based drugs. Finally, we discuss the future of functional genetic analysis, highlighting the increasing availability of complementary approaches to analyze cancer gene function.
Collapse
Affiliation(s)
- Soumya Sundara Rajan
- Functional Genetics Section, Genetics BranchCenter for Cancer Research, National Cancer Institute, NIHBethesdaMarylandUSA
| | - Katelyn R. Ludwig
- Functional Genetics Section, Genetics BranchCenter for Cancer Research, National Cancer Institute, NIHBethesdaMarylandUSA
| | - Katherine L. Hall
- Functional Genetics Section, Genetics BranchCenter for Cancer Research, National Cancer Institute, NIHBethesdaMarylandUSA
| | - Tamara L. Jones
- Functional Genetics Section, Genetics BranchCenter for Cancer Research, National Cancer Institute, NIHBethesdaMarylandUSA
| | - Natasha J. Caplen
- Functional Genetics Section, Genetics BranchCenter for Cancer Research, National Cancer Institute, NIHBethesdaMarylandUSA
| |
Collapse
|
14
|
Wang B, Liang Z, Liu P. Functional aspects of primary cilium in signaling, assembly and microenvironment in cancer. J Cell Physiol 2020; 236:3207-3219. [PMID: 33107052 PMCID: PMC7984063 DOI: 10.1002/jcp.30117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/16/2020] [Accepted: 10/11/2020] [Indexed: 12/12/2022]
Abstract
The primary cilium is an antennae‐like structure extent outside the cell surface. It has an important role in regulating cell‐signaling transduction to affect proliferation, differentiation and migration. Evidence is accumulating that ciliary defects lead to ciliopathies and ciliary deregulation also play crucial roles in cancer formation and progression. Interestingly, restoring the cilia can suppress proliferation in some cancer cell. However, t he role of primary cilia in cancer still be debated. In this article, we review the role of the primary cilium in cancer through architecture, signaling pathways, cilia assembly and disassembly regulators, and summarized the new findings of the primary cilium in tumor microenvironments and different cancers, highlighting novel possibilities for therapeutic target in cancer.
Collapse
Affiliation(s)
- Bo Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zheyong Liang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Peijun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
15
|
Farooqi AA, Attar R, Sabitaliyevich UY, Alaaeddine N, de Sousa DP, Xu B, C. Cho W. The Prowess of Andrographolide as a Natural Weapon in the War against Cancer. Cancers (Basel) 2020; 12:2159. [PMID: 32759728 PMCID: PMC7465495 DOI: 10.3390/cancers12082159] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 07/25/2020] [Indexed: 02/06/2023] Open
Abstract
There has been a paradigm shift in our understanding about the multifaceted nature of cancer, and a wealth of information has revealed that single-target drugs are not good enough to provide satisfactory clinical outcomes and therapeutic effects for complex diseases which involve multiple factors. Therefore, there has been a reignition to search for natural products having premium pharmacological activities aim to efficiently target multiple deregulated cellular signaling pathways. Andrographolide, a diterpene lactone from Andrographis paniculata was brought into to the limelight because of its ability to inhibit cancer cell proliferation and induce apoptosis. Here we reviewed andrographolide on cellular pathways regulation including Wnt/β-catenin, mTOR, VEGF-mediated intracellular signaling, as well as TRAIL-mediated apoptosis to inhibit cancer development.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan;
| | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University, İstanbul 34755, Turkey;
| | | | - Nada Alaaeddine
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut 00961, Lebanon;
| | | | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai 519087, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| |
Collapse
|
16
|
Pak E, MacKenzie EL, Zhao X, Pazyra-Murphy MF, Park PMC, Wu L, Shaw DL, Addleson EC, Cayer SS, Lopez BGC, Agar NYR, Rubin LL, Qi J, Merk DJ, Segal RA. A large-scale drug screen identifies selective inhibitors of class I HDACs as a potential therapeutic option for SHH medulloblastoma. Neuro Oncol 2019; 21:1150-1163. [PMID: 31111916 PMCID: PMC7594547 DOI: 10.1093/neuonc/noz089] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Medulloblastoma (MB) is one of the most frequent malignant brain tumors of children, and a large set of these tumors is characterized by aberrant activation of the sonic hedgehog (SHH) pathway. While some tumors initially respond to inhibition of the SHH pathway component Smoothened (SMO), tumors ultimately recur due to downstream resistance mechanisms, indicating a need for novel therapeutic options. METHODS Here we performed a targeted small-molecule screen on a stable, SHH-dependent murine MB cell line (SMB21). Comprehensive isotype profiling of histone deacetylase (HDAC) inhibitors was performed, and effects of HDAC inhibition were evaluated in cell lines both sensitive and resistant to SMO inhibition. Lastly, distinct mouse models of SHH MB were used to demonstrate pharmacologic efficacy in vivo. RESULTS A subset of the HDAC inhibitors tested significantly inhibit tumor growth of SMB21 cells by preventing SHH pathway activation. Isotype profiling of HDAC inhibitors, together with genetic approaches suggested that concerted inhibition of multiple class I HDACs is necessary to achieve pathway inhibition. Of note, class I HDAC inhibitors were also efficacious in suppressing growth of diverse SMO inhibitor‒resistant clones of SMB21 cells. Finally, we show that the novel HDAC inhibitor quisinostat targets multiple class I HDACs, is well tolerated in mouse models, and robustly inhibits growth of SHH MB cells in vivo as well as in vitro. CONCLUSIONS Our data provide strong evidence that quisinostat or other class I HDAC inhibitors might be therapeutically useful for patients with SHH MB, including those resistant to SMO inhibition.
Collapse
Affiliation(s)
- Ekaterina Pak
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ethan L MacKenzie
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Xuesong Zhao
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria F Pazyra-Murphy
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul M C Park
- Department of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Lei Wu
- Department of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel L Shaw
- Department of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Emily C Addleson
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Suzanne S Cayer
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Begoña G-C Lopez
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Jun Qi
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel J Merk
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
- Hertie-Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| | - Rosalind A Segal
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Charawi S, Just PA, Savall M, Abitbol S, Traore M, Metzger N, Ravinger R, Cavard C, Terris B, Perret C. LKB1 signaling is activated in CTNNB1-mutated HCC and positively regulates β-catenin-dependent CTNNB1-mutated HCC. J Pathol 2018; 247:435-443. [PMID: 30566242 DOI: 10.1002/path.5202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/12/2018] [Accepted: 11/13/2018] [Indexed: 12/18/2022]
Abstract
Hepatocellular carcinomas (HCCs) are known to be highly heterogenous. Within the extensive histopathological and molecular heterogeneity of HCC, tumors with mutations in CTNNB1, encoding β-catenin (CTNNB1-mutated HCC), constitute a very homogeneous group. We previously characterized a distinctive metabolic and histological phenotype for CTNNB1-mutated HCC. They were found to be well-differentiated, almost never steatotic, and often cholestatic, with a microtrabecular or acinar growth pattern. Here, we investigated whether LKB1, which controls energy metabolism, cell polarity, and cell growth, mediates the specific phenotype of CTNNB1-mutated HCC. The LKB1 protein was overexpressed in CTNNB1-mutated HCC and oncogenic activation of β-catenin in human HCC cells induced the post-transcriptional accumulation of the LKB1 protein encoded by the LKB1 (STK11) gene. Hierarchical clustering, based on the expression of a murine hepatic liver Lkb1 (Stk11) signature in a human public dataset, identified a HCC cluster, composed of almost all the CTNNB1-mutated HCC, that expresses a hepatic liver LKB1 program. This was confirmed by RT-qPCR of an independent cohort of CTNNB1-mutated HCC and the suppression of the LKB1-related profile upon β-catenin silencing of CTNNB1-mutated human hepatoma cell lines. Previous studies described an epistatic relationship between LKB1 and CTNNB1 in which LKB1 acts upstream of CTNNB1. Thus, we also analyzed the consequences of Lkb1 deletion on the zonation of hepatic metabolism, known to be the hallmark of β-catenin signaling in the liver. Lkb1 was required for the establishment of metabolic zonation in the mouse liver by positively modulating β-catenin signaling. We identified positive reciprocal cross talk between the canonical Wnt pathway and LKB1, both in normal liver physiology and during tumorigenesis that likely participates in the amplification of the β-catenin signaling by LKB1 and the distinctive phenotype of the CTNNB1-mutated HCC. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sara Charawi
- Development Reproduction Cancer, INSERM, U1016, Institut Cochin, Paris, France.,Development Reproduction Cancer, CNRS, UMR8104, Paris, France.,Development Reproduction Cancer, Université Paris Descartes, Paris, France.,Equipe labellisée LNCC
| | - Pierre-Alexandre Just
- Development Reproduction Cancer, INSERM, U1016, Institut Cochin, Paris, France.,Development Reproduction Cancer, CNRS, UMR8104, Paris, France.,Development Reproduction Cancer, Université Paris Descartes, Paris, France.,Equipe labellisée LNCC.,Department of Pathology, APHP, Hôpitaux Universitaires Paris Centre, Hôpital Cochin, Paris, France
| | - Mathilde Savall
- Development Reproduction Cancer, INSERM, U1016, Institut Cochin, Paris, France.,Development Reproduction Cancer, CNRS, UMR8104, Paris, France.,Development Reproduction Cancer, Université Paris Descartes, Paris, France.,Equipe labellisée LNCC
| | - Shirley Abitbol
- Development Reproduction Cancer, INSERM, U1016, Institut Cochin, Paris, France.,Development Reproduction Cancer, CNRS, UMR8104, Paris, France.,Development Reproduction Cancer, Université Paris Descartes, Paris, France.,Equipe labellisée LNCC
| | - Massiré Traore
- Development Reproduction Cancer, INSERM, U1016, Institut Cochin, Paris, France.,Development Reproduction Cancer, CNRS, UMR8104, Paris, France.,Development Reproduction Cancer, Université Paris Descartes, Paris, France.,Equipe labellisée LNCC
| | - Nolwenn Metzger
- Development Reproduction Cancer, INSERM, U1016, Institut Cochin, Paris, France.,Development Reproduction Cancer, CNRS, UMR8104, Paris, France.,Development Reproduction Cancer, Université Paris Descartes, Paris, France.,Equipe labellisée LNCC
| | - Roland Ravinger
- Development Reproduction Cancer, INSERM, U1016, Institut Cochin, Paris, France.,Development Reproduction Cancer, CNRS, UMR8104, Paris, France.,Development Reproduction Cancer, Université Paris Descartes, Paris, France.,Equipe labellisée LNCC
| | - Catherine Cavard
- Development Reproduction Cancer, INSERM, U1016, Institut Cochin, Paris, France.,Development Reproduction Cancer, CNRS, UMR8104, Paris, France.,Development Reproduction Cancer, Université Paris Descartes, Paris, France.,Equipe labellisée LNCC
| | - Benoit Terris
- Development Reproduction Cancer, INSERM, U1016, Institut Cochin, Paris, France.,Development Reproduction Cancer, CNRS, UMR8104, Paris, France.,Development Reproduction Cancer, Université Paris Descartes, Paris, France.,Equipe labellisée LNCC.,Department of Pathology, APHP, Hôpitaux Universitaires Paris Centre, Hôpital Cochin, Paris, France
| | - Christine Perret
- Development Reproduction Cancer, INSERM, U1016, Institut Cochin, Paris, France.,Development Reproduction Cancer, CNRS, UMR8104, Paris, France.,Development Reproduction Cancer, Université Paris Descartes, Paris, France.,Equipe labellisée LNCC.,Department of Pathology, APHP, Hôpitaux Universitaires Paris Centre, Hôpital Cochin, Paris, France
| |
Collapse
|
18
|
Viau A, Bienaimé F, Lukas K, Todkar AP, Knoll M, Yakulov TA, Hofherr A, Kretz O, Helmstädter M, Reichardt W, Braeg S, Aschman T, Merkle A, Pfeifer D, Dumit VI, Gubler MC, Nitschke R, Huber TB, Terzi F, Dengjel J, Grahammer F, Köttgen M, Busch H, Boerries M, Walz G, Triantafyllopoulou A, Kuehn EW. Cilia-localized LKB1 regulates chemokine signaling, macrophage recruitment, and tissue homeostasis in the kidney. EMBO J 2018; 37:embj.201798615. [PMID: 29925518 PMCID: PMC6068446 DOI: 10.15252/embj.201798615] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 05/13/2018] [Accepted: 05/22/2018] [Indexed: 12/24/2022] Open
Abstract
Polycystic kidney disease (PKD) and other renal ciliopathies are characterized by cysts, inflammation, and fibrosis. Cilia function as signaling centers, but a molecular link to inflammation in the kidney has not been established. Here, we show that cilia in renal epithelia activate chemokine signaling to recruit inflammatory cells. We identify a complex of the ciliary kinase LKB1 and several ciliopathy‐related proteins including NPHP1 and PKD1. At homeostasis, this ciliary module suppresses expression of the chemokine CCL2 in tubular epithelial cells. Deletion of LKB1 or PKD1 in mouse renal tubules elevates CCL2 expression in a cell‐autonomous manner and results in peritubular accumulation of CCR2+ mononuclear phagocytes, promoting a ciliopathy phenotype. Our findings establish an epithelial organelle, the cilium, as a gatekeeper of tissue immune cell numbers. This represents an unexpected disease mechanism for renal ciliopathies and establishes a new model for how epithelial cells regulate immune cells to affect tissue homeostasis.
Collapse
Affiliation(s)
- Amandine Viau
- Renal Department, University Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,INSERM U1151, Institut Necker Enfants Malades, Department of Growth and Signaling, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Frank Bienaimé
- Renal Department, University Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,INSERM U1151, Institut Necker Enfants Malades, Department of Growth and Signaling, Université Paris Descartes-Sorbonne Paris Cité, Paris, France.,Service d'Explorations Fonctionnelles, Hôpital Necker-Enfants Malades, Paris, France
| | - Kamile Lukas
- Renal Department, University Medical Center, Freiburg, Germany
| | | | - Manuel Knoll
- Department of Rheumatology and Clinical Immunology, University Medical Center, Freiburg, Germany
| | - Toma A Yakulov
- Renal Department, University Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexis Hofherr
- Renal Department, University Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Kretz
- Renal Department, University Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Neuroanatomy, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Helmstädter
- Renal Department, University Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wilfried Reichardt
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Medical Physics, Department of Radiology, and Comprehensive Cancer Center, University Medical Center, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simone Braeg
- Renal Department, University Medical Center, Freiburg, Germany
| | - Tom Aschman
- Department of Rheumatology and Clinical Immunology, University Medical Center, Freiburg, Germany
| | - Annette Merkle
- Medical Physics, Department of Radiology, and Comprehensive Cancer Center, University Medical Center, Freiburg, Germany
| | - Dietmar Pfeifer
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Freiburg, Germany
| | - Verónica I Dumit
- Center for Biological Systems Analysis (ZBSA), Core Facility Proteomics, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Marie-Claire Gubler
- INSERM UMR1163, Laboratory of Inherited Kidney Diseases, Necker-Enfants Malades Hospital, Paris, France.,Imagine Institute, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Roland Nitschke
- Center for Biological Systems Analysis (ZBSA), Life Imaging Center, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Center for Biological Signaling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Tobias B Huber
- Renal Department, University Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Center for Biological Signaling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Fabiola Terzi
- INSERM U1151, Institut Necker Enfants Malades, Department of Growth and Signaling, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Jörn Dengjel
- Center for Biological Systems Analysis (ZBSA), Core Facility Proteomics, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Florian Grahammer
- Renal Department, University Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Köttgen
- Renal Department, University Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hauke Busch
- German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Melanie Boerries
- German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research (IMMZ), Albert-Ludwigs-University, Freiburg, Germany
| | - Gerd Walz
- Renal Department, University Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Biological Signaling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Antigoni Triantafyllopoulou
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Rheumatology and Clinical Immunology, University Medical Center, Freiburg, Germany.,Department of Rheumatology and Clinical Immunology, Charité - University Medical Centre Berlin, Berlin, Germany
| | - E Wolfgang Kuehn
- Renal Department, University Medical Center, Freiburg, Germany .,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Biological Signaling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
Breslow DK, Hoogendoorn S, Kopp AR, Morgens DW, Vu BK, Kennedy MC, Han K, Li A, Hess GT, Bassik MC, Chen JK, Nachury MV. A CRISPR-based screen for Hedgehog signaling provides insights into ciliary function and ciliopathies. Nat Genet 2018; 50:460-471. [PMID: 29459677 PMCID: PMC5862771 DOI: 10.1038/s41588-018-0054-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/22/2017] [Indexed: 01/10/2023]
Abstract
Primary cilia organize Hedgehog signaling and shape embryonic development, and their dysregulation is the unifying cause of ciliopathies. We conducted a functional genomic screen for Hedgehog signaling by engineering antibiotic-based selection of Hedgehog-responsive cells and applying genome-wide CRISPR-mediated gene disruption. The screen can robustly identify factors required for ciliary signaling with few false positives or false negatives. Characterization of hit genes uncovered novel components of several ciliary structures, including a protein complex that contains δ-tubulin and ε-tubulin and is required for centriole maintenance. The screen also provides an unbiased tool for classifying ciliopathies and showed that many congenital heart disorders are caused by loss of ciliary signaling. Collectively, our study enables a systematic analysis of ciliary function and of ciliopathies, and also defines a versatile platform for dissecting signaling pathways through CRISPR-based screening.
Collapse
Affiliation(s)
- David K Breslow
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Sascha Hoogendoorn
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Adam R Kopp
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - David W Morgens
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Brandon K Vu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Margaret C Kennedy
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Kyuho Han
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Amy Li
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Gaelen T Hess
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - James K Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Maxence V Nachury
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Ophthalmology, UCSF, San Francisco, CA, USA.
| |
Collapse
|
20
|
Augereau C, Collet L, Vargiu P, Guerra C, Ortega S, Lemaigre FP, Jacquemin P. Chronic pancreatitis and lipomatosis are associated with defective function of ciliary genes in pancreatic ductal cells. Hum Mol Genet 2018; 25:5017-5026. [PMID: 28159992 DOI: 10.1093/hmg/ddw332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 09/23/2016] [Accepted: 09/25/2016] [Indexed: 12/18/2022] Open
Abstract
Genetic diseases associated with defects in primary cilia are classified as ciliopathies. Pancreatic lesions and ductal cysts are found in patients with ciliopathic polycystic kidney diseases suggesting a close connection between pancreatic defects and primary cilia. Here we investigate the role of two genes whose deletion is known to cause primary cilium defects, namely Hnf6 and Lkb1, in pancreatic ductal homeostasis. We find that mice with postnatal duct-specific deletion of Hnf6 or Lkb1 show duct dilations. Cells lining dilated ducts present shorter cilia with swollen tips, suggesting defective intraciliary transport. This is associated with signs of chronic pancreatitis, namely acinar-to-ductal metaplasia, acinar proliferation and apoptosis, presence of inflammatory infiltrates, fibrosis and lipomatosis. Our data reveal a tight association between ductal ciliary defects and pancreatitis with perturbed acinar homeostasis and differentiation. Such injuries can account for the increased risk to develop pancreatic cancer in Peutz-Jeghers patients who carry LKB1 loss-of-function mutations.
Collapse
Affiliation(s)
- Cécile Augereau
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Louis Collet
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Pierfrancesco Vargiu
- Transgenic Mice Core Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Carmen Guerra
- Molecular Oncology, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Sagrario Ortega
- Transgenic Mice Core Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | | | - Patrick Jacquemin
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| |
Collapse
|
21
|
Wheway G, Nazlamova L, Hancock JT. Signaling through the Primary Cilium. Front Cell Dev Biol 2018; 6:8. [PMID: 29473038 PMCID: PMC5809511 DOI: 10.3389/fcell.2018.00008] [Citation(s) in RCA: 323] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
The presence of single, non-motile “primary” cilia on the surface of epithelial cells has been well described since the 1960s. However, for decades these organelles were believed to be vestigial, with no remaining function, having lost their motility. It wasn't until 2003, with the discovery that proteins responsible for transport along the primary cilium are essential for hedgehog signaling in mice, that the fundamental importance of primary cilia in signal transduction was realized. Little more than a decade later, it is now clear that the vast majority of signaling pathways in vertebrates function through the primary cilium. This has led to the adoption of the term “the cells's antenna” as a description for the primary cilium. Primary cilia are particularly important during development, playing fundamental roles in embryonic patterning and organogenesis, with a suite of inherited developmental disorders known as the “ciliopathies” resulting from mutations in genes encoding cilia proteins. This review summarizes our current understanding of the role of these fascinating organelles in a wide range of signaling pathways.
Collapse
Affiliation(s)
- Gabrielle Wheway
- Department of Applied Science, Faculty of Health and Applied Sciences, Centre for Research in Biosciences, University of the West of England, Bristol, United Kingdom
| | - Liliya Nazlamova
- Department of Applied Science, Faculty of Health and Applied Sciences, Centre for Research in Biosciences, University of the West of England, Bristol, United Kingdom
| | - John T Hancock
- Department of Applied Science, Faculty of Health and Applied Sciences, Centre for Research in Biosciences, University of the West of England, Bristol, United Kingdom
| |
Collapse
|
22
|
A synthetic combinatorial approach to disabling deviant Hedgehog signaling. Sci Rep 2018; 8:1133. [PMID: 29348431 PMCID: PMC5773580 DOI: 10.1038/s41598-018-19408-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/29/2017] [Indexed: 12/20/2022] Open
Abstract
Mutations in components of the Hedgehog (HH) signal transduction pathway are found in the majority of basal cell carcinoma (BCC) and medulloblastoma incidents. Cancerous cells with intrinsic or acquired resistance to antagonists targeting the seven transmembrane effector Smoothened (SMO) frequently invoke alternative mechanisms for maintaining deviant activity of the GLI DNA binding proteins. Here we introduce a chemical agent that simultaneously achieves inhibition of SMO and GLI activity by direct targeting of the SMO heptahelical domain and the GLI-modifying enzymes belonging to the histone deacetylase (HDAC) family. We demonstrate a small molecule SMO-HDAC antagonist (IHR-SAHA) retains inhibitory activity for GLI transcription induced by SMO-dependent and -independent mechanisms frequently associated with cancer biogenesis. Synthetic combinatorial therapeutic agents such as IHR-SAHA that a priori disable cancer drivers and anticipated mechanisms of drug resistance could extend the duration of disease remission, and provide an alternative clinical development path for realizing combinatorial therapy modalities.
Collapse
|
23
|
Pathology and genetics of hereditary colorectal cancer. Pathology 2018; 50:49-59. [DOI: 10.1016/j.pathol.2017.09.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/11/2017] [Indexed: 12/15/2022]
|
24
|
Park EYJ, Kwak M, Ha K, So I. Identification of clustered phosphorylation sites in PKD2L1: how PKD2L1 channel activation is regulated by cyclic adenosine monophosphate signaling pathway. Pflugers Arch 2017; 470:505-516. [PMID: 29230552 DOI: 10.1007/s00424-017-2095-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/21/2017] [Accepted: 12/01/2017] [Indexed: 01/01/2023]
Abstract
Polycystic kidney disease 2-like-1 (PKD2L1), or polycystin-L or TRPP2, formerly TRPP3, is a transient receptor potential (TRP) superfamily member. It is a calcium-permeable non-selective cation channel that regulates intracellular calcium concentration and thereby calcium signaling. PKD2L1 has been reported to take part in hedgehog signaling in renal primary cilia and sour tasting coupling with PKD1L3. In addition to the previous reports, PKD2L1 is recently found to play a crucial role in localization with β2-adrenergic receptor (β2AR) on the neuronal primary cilia. The disruption of PKD2L1 leads to the loss of β2AR on the primary cilia and reduction in intracellular concentration of cyclic adenosine monophosphate (cAMP). Since the role of cAMP and PKA is frequently mentioned in the studies of PKD diseases, we investigated on the mechanism of cAMP regulation in relation to the function of PKD2L1 channel. In this study, we observed the activity of PKD2L1 channel increased by the downstream cascades of β2AR and found the clustered phosphorylation sites, Ser-682, Ser-685, and Ser-686 that are significant in the channel regulation by phosphorylation.
Collapse
Affiliation(s)
- Eunice Yon June Park
- Department of Physiology, Seoul National University, College of Medicine, Biomedical Science Building 117, 103 Daehakro, Jongro-gu, Seoul, 110-799, South Korea
| | - Misun Kwak
- Department of Physiology, Seoul National University, College of Medicine, Biomedical Science Building 117, 103 Daehakro, Jongro-gu, Seoul, 110-799, South Korea
| | - Kotdaji Ha
- Department of Physiology, University of California, San Francisco, CA, 94158-2517, USA
| | - Insuk So
- Department of Physiology, Seoul National University, College of Medicine, Biomedical Science Building 117, 103 Daehakro, Jongro-gu, Seoul, 110-799, South Korea.
| |
Collapse
|
25
|
Ryan KE, Kim PS, Fleming JT, Brignola E, Cheng FY, Litingtung Y, Chiang C. Lkb1 regulates granule cell migration and cortical folding of the cerebellar cortex. Dev Biol 2017; 432:165-177. [PMID: 28974424 PMCID: PMC5694378 DOI: 10.1016/j.ydbio.2017.09.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 12/17/2022]
Abstract
Cerebellar growth and foliation require the Hedgehog-driven proliferation of granule cell precursors (GCPs) in the external granule layer (EGL). However, that increased or extended GCP proliferation generally does not elicit ectopic folds suggests that additional determinants control cortical expansion and foliation during cerebellar development. Here, we find that genetic loss of the serine-threonine kinase Liver Kinase B1 (Lkb1) in GCPs increased cerebellar cortical size and foliation independent of changes in proliferation or Hedgehog signaling. This finding is unexpected given that Lkb1 has previously shown to be critical for Hedgehog pathway activation in cultured cells. Consistent with unchanged proliferation rate of GCPs, the cortical expansion of Lkb1 mutants is accompanied by thinning of the EGL. The plane of cell division, which has been implicated in diverse processes from epithelial surface expansions to gyrification of the human cortex, remains unchanged in the mutants when compared to wild-type controls. However, we find that Lkb1 mutants display delayed radial migration of post-mitotic GCPs that coincides with increased cortical size, suggesting that aberrant cell migration may contribute to the cortical expansion and increase foliation. Taken together, our results reveal an important role for Lkb1 in regulating cerebellar cortical size and foliation in a Hedgehog-independent manner.
Collapse
Affiliation(s)
- Kaitlyn E Ryan
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN 37232, USA
| | - Patrick S Kim
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN 37232, USA
| | - Jonathan T Fleming
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN 37232, USA
| | - Emily Brignola
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN 37232, USA
| | - Frances Y Cheng
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN 37232, USA
| | - Ying Litingtung
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN 37232, USA
| | - Chin Chiang
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN 37232, USA.
| |
Collapse
|
26
|
Zhu L, Su F, Xu Y, Zou Q. Network-based method for mining novel HPV infection related genes using random walk with restart algorithm. Biochim Biophys Acta Mol Basis Dis 2017; 1864:2376-2383. [PMID: 29197659 DOI: 10.1016/j.bbadis.2017.11.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/03/2017] [Accepted: 11/26/2017] [Indexed: 12/27/2022]
Abstract
The human papillomavirus (HPV), a common virus that infects the reproductive tract, may lead to malignant changes within the infection area in certain cases and is directly associated with such cancers as cervical cancer, anal cancer, and vaginal cancer. Identification of novel HPV infection related genes can lead to a better understanding of the specific signal pathways and cellular processes related to HPV infection, providing information for the development of more efficient therapies. In this study, several novel HPV infection related genes were predicted by a computation method based on the known genes involved in HPV infection from HPVbase. This method applied the algorithm of random walk with restart (RWR) to a protein-protein interaction (PPI) network. The candidate genes were further filtered by the permutation and association tests. These steps eliminated genes occupying special positions in the PPI network and selected key genes with strong associations to known HPV infection related genes based on the interaction confidence and functional similarity obtained from published databases, such as STRING, gene ontology (GO) terms and KEGG pathways. Our study identified 104 novel HPV infection related genes, a number of which were confirmed to relate to the infection processes and complications of HPV infection, as reported in the literature. These results demonstrate the reliability of our method in identifying HPV infection related genes. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang.
Collapse
Affiliation(s)
- Liucun Zhu
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Fangchu Su
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - YaoChen Xu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Quan Zou
- School of Computer Science and Technology, TianJin University, Tianjin 300350, China.
| |
Collapse
|
27
|
Gruber W, Peer E, Elmer DP, Sternberg C, Tesanovic S, Del Burgo P, Coni S, Canettieri G, Neureiter D, Bartz R, Kohlhof H, Vitt D, Aberger F. Targeting class I histone deacetylases by the novel small molecule inhibitor 4SC-202 blocks oncogenic hedgehog-GLI signaling and overcomes smoothened inhibitor resistance. Int J Cancer 2017; 142:968-975. [PMID: 29055107 PMCID: PMC5813224 DOI: 10.1002/ijc.31117] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/24/2017] [Accepted: 10/04/2017] [Indexed: 12/27/2022]
Abstract
Aberrant activation of Hedgehog (HH)/GLI signaling is causally involved in numerous human malignancies, including basal cell carcinoma (BCC) and medulloblastoma. HH pathway antagonists targeting smoothened (SMO), an essential effector of canonical HH/GLI signaling, show significant clinical success in BCC patients and have recently been approved for the treatment of advanced and metastatic BCC. However, rapid and frequent development of drug resistance to SMO inhibitors (SMOi) together with severe side effects caused by prolonged SMOi treatment call for alternative treatment strategies targeting HH/GLI signaling downstream of SMO. In this study, we report that 4SC-202, a novel clinically validated inhibitor of class I histone deacetylases (HDACs), efficiently blocks HH/GLI signaling. Notably, 4SC-202 treatment abrogates GLI activation and HH target gene expression in both SMOi-sensitive and -resistant cells. Mechanistically, we propose that the inhibition of HDACs 1/2/3 is crucial for targeting oncogenic HH/GLI signaling, and that class I HDAC inhibitors either in combination with SMOi or as second-line therapy may improve the treatment options for HH-associated malignancies with SMOi resistance.
Collapse
Affiliation(s)
- Wolfgang Gruber
- Department of Molecular Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, 5020, Austria
| | - Elisabeth Peer
- Department of Molecular Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, 5020, Austria
| | - Dominik P Elmer
- Department of Molecular Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, 5020, Austria
| | - Christina Sternberg
- Department of Molecular Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, 5020, Austria
| | - Suzana Tesanovic
- Department of Molecular Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, 5020, Austria
| | - Pedro Del Burgo
- Department of Molecular Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, 5020, Austria
| | - Sonia Coni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Daniel Neureiter
- Institute of Pathology, Cancer Cluster Salzburg, Paracelsus Medical University, Salzburger Landeskliniken (SALK), Salzburg, 5020, Austria
| | - René Bartz
- 4SC AG, Planegg-Martinsried, 82152, Germany
| | - Hella Kohlhof
- 4SC AG, Planegg-Martinsried, 82152, Germany.,Immunic AG, Planegg-Martinsried, 82152, Germany
| | - Daniel Vitt
- 4SC AG, Planegg-Martinsried, 82152, Germany.,Immunic AG, Planegg-Martinsried, 82152, Germany
| | - Fritz Aberger
- Department of Molecular Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, 5020, Austria
| |
Collapse
|
28
|
Extra-mitochondrial prosurvival BCL-2 proteins regulate gene transcription by inhibiting the SUFU tumour suppressor. Nat Cell Biol 2017; 19:1226-1236. [PMID: 28945232 PMCID: PMC5657599 DOI: 10.1038/ncb3616] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 08/17/2017] [Indexed: 02/07/2023]
Abstract
Direct interactions between pro- and anti-apoptotic BCL-2 family members form the basis of cell death decision-making at the outer mitochondrial membrane (OMM). Here we report that three antiapoptotic BCL-2 proteins (MCL-1, BCL-2, and BCL-XL) found untethered from the OMM function as transcriptional regulators of a prosurvival and growth program. Antiapoptotic BCL-2 proteins engage a BCL-2 homology (BH) domain sequence found in Suppressor of Fused (SUFU), a tumor suppressor and antagonist of the GLI DNA binding proteins. BCL-2 proteins directly promote SUFU turnover, inhibit SUFU-GLI interaction, and induce the expression of the GLI target genes BCL-2, MCL-1, and BCL-XL. Antiapoptotic BCL-2 protein/SUFU feedforward signaling promotes cancer cell survival and growth and can be disabled with BH3 mimetics – small molecules that target antiapoptotic BCL-2 proteins. Our findings delineate a chemical strategy for countering drug resistance in GLI-associated tumors and reveal unanticipated functions for BCL-2 proteins as transcriptional regulators.
Collapse
|
29
|
LKB1 as a Tumor Suppressor in Uterine Cancer: Mouse Models and Translational Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 943:211-241. [PMID: 27910069 DOI: 10.1007/978-3-319-43139-0_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The LKB1 tumor suppressor was identified in 1998 as the gene mutated in the Peutz-Jeghers Syndrome (PJS), a hereditary cancer predisposition characterized by gastrointestinal polyposis and a high incidence of cancers, particularly carcinomas, at a variety of anatomic sites including the gastrointestinal tract, lung, and female reproductive tract. Women with PJS have a high incidence of carcinomas of the uterine corpus (endometrium) and cervix. The LKB1 gene is also somatically mutated in human cancers arising at these sites. Work in mouse models has highlighted the potency of LKB1 as an endometrial tumor suppressor and its distinctive roles in driving invasive and metastatic growth. These in vivo models represent tractable experimental systems for the discovery of underlying biological principles and molecular processes regulated by LKB1 in the context of tumorigenesis and also serve as useful preclinical model systems for experimental therapeutics. Here we review LKB1's known roles in mTOR signaling, metabolism, and cell polarity, with an emphasis on human pathology and mouse models relevant to uterine carcinogenesis, including cancers of the uterine corpus and cervix.
Collapse
|
30
|
Ye H, Wang X, Constans MM, Sussman CR, Chebib FT, Irazabal MV, Young WF, Harris PC, Kirschner LS, Torres VE. The regulatory 1α subunit of protein kinase A modulates renal cystogenesis. Am J Physiol Renal Physiol 2017; 313:F677-F686. [PMID: 28615245 DOI: 10.1152/ajprenal.00119.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 11/22/2022] Open
Abstract
The failure of the polycystins (PCs) to function in primary cilia is thought to be responsible for autosomal dominant polycystic kidney disease (ADPKD). Primary cilia integrate multiple cellular signaling pathways, including calcium, cAMP, Wnt, and Hedgehog, which control cell proliferation and differentiation. It has been proposed that mutated PCs result in reduced intracellular calcium, which in turn upregulates cAMP, protein kinase A (PKA) signaling, and subsequently other proliferative signaling pathways. However, the role of PKA in ADPKD has not been directly ascertained in vivo, although the expression of the main regulatory subunit of PKA in cilia and other compartments (PKA-RIα, encoded by PRKAR1A) is increased in a mouse model orthologous to ADPKD. Therefore, we generated a kidney-specific knockout of Prkar1a to examine the consequences of constitutive upregulation of PKA on wild-type and Pkd1 hypomorphic (Pkd1RC) backgrounds. Kidney-specific loss of Prkar1a induced renal cystic disease and markedly aggravated cystogenesis in the Pkd1RC models. In both settings, it was accompanied by upregulation of Src, Ras, MAPK/ERK, mTOR, CREB, STAT3, Pax2 and Wnt signaling. On the other hand, Gli3 repressor activity was enhanced, possibly contributing to hydronephrosis and impaired glomerulogenesis in some animals. To assess the relevance of these observations in humans we looked for and found evidence for kidney and liver cystic phenotypes in the Carney complex, a tumoral syndrome caused by mutations in PRKAR1A These observations expand our understanding of the pathogenesis of ADPKD and demonstrate the importance of PRKAR1A highlighting PKA as a therapeutic target in ADPKD.
Collapse
Affiliation(s)
- Hong Ye
- Mayo Clinic, Rochester Minnesota; and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The primary cilium is an antenna-like, immotile organelle present on most types of mammalian cells, which interprets extracellular signals that regulate growth and development. Although once considered a vestigial organelle, the primary cilium is now the focus of considerable interest. We now know that ciliary defects lead to a panoply of human diseases, termed ciliopathies, and the loss of this organelle may be an early signature event during oncogenic transformation. Ciliopathies include numerous seemingly unrelated developmental syndromes, with involvement of the retina, kidney, liver, pancreas, skeletal system and brain. Recent studies have begun to clarify the key mechanisms that link cilium assembly and disassembly to the cell cycle, and suggest new possibilities for therapeutic intervention.
Collapse
Affiliation(s)
- Irma Sánchez
- Department of Pathology, NYU School of Medicine, Smilow Research Building, 522 First Avenue, New York, New York 10016, USA
| | - Brian David Dynlacht
- Department of Pathology, NYU School of Medicine, Smilow Research Building, 522 First Avenue, New York, New York 10016, USA
| |
Collapse
|
32
|
KIF7 attenuates prostate tumor growth through LKB1-mediated AKT inhibition. Oncotarget 2017; 8:54558-54571. [PMID: 28903364 PMCID: PMC5589603 DOI: 10.18632/oncotarget.17421] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/10/2017] [Indexed: 12/26/2022] Open
Abstract
This study investigated kinesin family member 7 (KIF7) expression and function in prostate cancer (PCa). Our results showed that KIF7 was significantly downregulated in PCa, compared with normal, benign prostatic hyperplasia and prostate intraepithelial neoplasia tissues, partially through promoter hypermethylation. We further investigated the effects of KIF7 coiled coil (CC) domain and motor domain (MD) on PCa development in vitro and in vivo. Our results showed that KIF7-CC but not KIF7-MD significantly attenuated proliferation and colony formation, impeded migration and invasion, induced apoptosis and sensitized PCa cells to paclitaxel. Further analysis revealed that KIF7-CC enhanced LKB1 expression and phosphorylation at Ser428, which induced PTEN phosphorylation at Ser380/Thr382/383 and consequently blocked AKT phosphorylation at Ser473. Downregulation of LKB1 significantly attenuated the suppressive effects of KIF7-CC on cell proliferation, colony formation and AKT phosphorylation. Furthermore, our in vivo studies showed that KIF7-CC reduced prostate tumorigenesis in cell-derived xenografts. Downregulation of LKB1 abrogated the anti-tumor effects of KIF7-CC in these xenografts. Taken together, these findings provide the first evidence to support the role of KIF7 as a negative regulator that inhibits PCa development partially through LKB1-mediated AKT inhibition.
Collapse
|
33
|
Diversity of Precursor Lesions For Pancreatic Cancer: The Genetics and Biology of Intraductal Papillary Mucinous Neoplasm. Clin Transl Gastroenterol 2017; 8:e86. [PMID: 28383565 PMCID: PMC5415899 DOI: 10.1038/ctg.2017.3] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA), one of the most lethal cancers worldwide, is associated with two main types of morphologically distinct precursors—pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasm (IPMN). Although the progression of PanIN into invasive cancer has been well characterized, there remains an urgent need to understand the biology of IPMNs, which are larger radiographically detectable cystic tumors. IPMNs comprise a number of subtypes with heterogeneous histopathologic and clinical features. Although frequently remaining benign, a significant proportion exhibits malignant progression. Unfortunately, there are presently no accurate prognosticators for assessing cancer risk in individuals with IPMN. Moreover, the fundamental mechanisms differentiating PanIN and IPMN remain largely obscure, as do those that distinguish IPMN subtypes. Recent studies, however, have identified distinct genetic profiles between PanIN and IPMN, providing a framework to better understand the diversity of the precursors for PDA. Here, we review the clinical, biological, and genetic properties of IPMN and discuss various models for progression of these tumors to invasive PDA.
Collapse
|
34
|
Singh R, Dhanyamraju PK, Lauth M. DYRK1B blocks canonical and promotes non-canonical Hedgehog signaling through activation of the mTOR/AKT pathway. Oncotarget 2017; 8:833-845. [PMID: 27903983 PMCID: PMC5352201 DOI: 10.18632/oncotarget.13662] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/16/2016] [Indexed: 12/20/2022] Open
Abstract
Hedgehog (Hh) signaling plays important roles in embryonic development and in tumor formation. Apart from the well-established stimulation of the GLI family of transcription factors, Hh ligands promote the phosphorylation and activation of mTOR and AKT kinases, yet the molecular mechanism underlying these processes are unknown. Here, we identify the DYRK1B kinase as a mediator between Hh signaling and mTOR/AKT activation. In fibroblasts, Hh signaling induces DYRK1B protein expression, resulting in activation of the mTOR/AKT kinase signaling arm. Furthermore, DYRK1B exerts positive and negative feedback regulation on the Hh pathway itself: It negatively interferes with SMO-elicited canonical Hh signaling, while at the same time it provides positive feed-forward functions by promoting AKT-mediated GLI stability. Due to the fact that the mTOR/AKT pathway is itself subject to strong negative feedback regulation, pharmacological inhibition of DYRK1B results in initial upregulation followed by downregulation of AKT phosphorylation and GLI stabilization. Addressing this issue therapeutically, we show that a pharmacological approach combining a DYRK1B antagonist with an mTOR/AKT inhibitor results in strong GLI1 targeting and in pronounced cytotoxicity in human pancreatic and ovarian cancer cells.
Collapse
Affiliation(s)
- Rajeev Singh
- Philipps University Marburg, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor- and Immunobiology, 35043 Marburg, Germany
| | - Pavan Kumar Dhanyamraju
- Philipps University Marburg, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor- and Immunobiology, 35043 Marburg, Germany
| | - Matthias Lauth
- Philipps University Marburg, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor- and Immunobiology, 35043 Marburg, Germany
| |
Collapse
|
35
|
Development of a triazole class of highly potent Porcn inhibitors. Bioorg Med Chem Lett 2016; 26:5891-5895. [PMID: 27876319 DOI: 10.1016/j.bmcl.2016.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 11/24/2022]
Abstract
The acyltransferase Porcupine (Porcn) is essential for the secretion of Wnt proteins which contribute to embryonic development, tissue regeneration, and tumorigenesis. We have previously discovered four molecular scaffolds harboring Porcn-inhibitory activity. Comparison of their structures led to the identification of a general scaffold that can be readily assembled by modular synthesis. We report herein the development of a triazole version of this new class of Porcn inhibitors. This study yielded IWP-O1, a Porcn inhibitor with an EC50 value of 80pM in a cultured cell reporter assay of Wnt signaling. Additionally, IWP-O1 has significantly improved metabolic stability over our previously reported Porcn inhibitors.
Collapse
|
36
|
Gpr161 anchoring of PKA consolidates GPCR and cAMP signaling. Proc Natl Acad Sci U S A 2016; 113:7786-91. [PMID: 27357676 DOI: 10.1073/pnas.1608061113] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Scaffolding proteins organize the information flow from activated G protein-coupled receptors (GPCRs) to intracellular effector cascades both spatially and temporally. By this means, signaling scaffolds, such as A-kinase anchoring proteins (AKAPs), compartmentalize kinase activity and ensure substrate selectivity. Using a phosphoproteomics approach we identified a physical and functional connection between protein kinase A (PKA) and Gpr161 (an orphan GPCR) signaling. We show that Gpr161 functions as a selective high-affinity AKAP for type I PKA regulatory subunits (RI). Using cell-based reporters to map protein-protein interactions, we discovered that RI binds directly and selectively to a hydrophobic protein-protein interaction interface in the cytoplasmic carboxyl-terminal tail of Gpr161. Furthermore, our data demonstrate that a binary complex between Gpr161 and RI promotes the compartmentalization of Gpr161 to the plasma membrane. Moreover, we show that Gpr161, functioning as an AKAP, recruits PKA RI to primary cilia in zebrafish embryos. We also show that Gpr161 is a target of PKA phosphorylation, and that mutation of the PKA phosphorylation site affects ciliary receptor localization. Thus, we propose that Gpr161 is itself an AKAP and that the cAMP-sensing Gpr161:PKA complex acts as cilium-compartmentalized signalosome, a concept that now needs to be considered in the analyzing, interpreting, and pharmaceutical targeting of PKA-associated functions.
Collapse
|
37
|
Wang J, Zhang K, Wang J, Wu X, Liu X, Li B, Zhu Y, Yu Y, Cheng Q, Hu Z, Guo C, Hu S, Mu B, Tsai CH, Li J, Smith L, Yang L, Liu Q, Chu P, Chang V, Zhang B, Wu M, Jiang X, Yen Y. Underexpression of LKB1 tumor suppressor is associated with enhanced Wnt signaling and malignant characteristics of human intrahepatic cholangiocarcinoma. Oncotarget 2016; 6:18905-20. [PMID: 26056085 PMCID: PMC4662463 DOI: 10.18632/oncotarget.4305] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/13/2015] [Indexed: 11/25/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a rare and highly aggressive malignancy. In this study, we identified the presence of gene deletion and missense mutation leading to inactivation or underexpression of liver kinase B1 (LKB1) tumor suppressor and excluded the involvement of LKB1 gene hypermethylation in ICC tissues. Immunohistochemical analysis showed that LKB1 was underexpressed in a portion of 326 ICC tissues compared to their adjacent normal tissues. By statistical analysis underexpression of LKB1 in ICC tissues significantly correlated with poor survival and malignant disease characteristics in ICC patients. Moreover, we showed that knockdown of LKB1 significantly enhanced growth, migration, and invasion of three LKB1-competent ICC cell lines. Global transcriptional profiling analysis identified multiple malignancy-promoting genes, such as HIF-1α, CD24, Talin1, Vinculin, Wnt5, and signaling pathways including Hedgehog, Wnt/β-catenin, and cell adhesion as novel targets of LKB1 underexpression in ICC cells. Furthermore, knockdown of LKB1 gene expression dramatically enhanced Wnt/β-catenin signaling in ICC cells, while an inverse correlation between LKB1 and nuclear β-catenin was observed in ICC tissues. Our findings suggest a novel mechanism for ICC carcinogenesis in which LKB1 underexpression enhances multiple signaling pathways including Wnt/β-catenin to promote disease progression.
Collapse
Affiliation(s)
- Jinghan Wang
- The First Department of Biliary Surgery, Eastern Hepatobiliary Surgical Hospital, The Second Military Medical University, Shanghai, China.,Department of Molecular Pharmacology, City of Hope National Medical Center, Duarte, California, USA
| | - Keqiang Zhang
- Department of Molecular Pharmacology, City of Hope National Medical Center, Duarte, California, USA
| | - Jinhui Wang
- The Integrative Genomics Core lab of Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California, USA
| | - Xiwei Wu
- The Integrative Genomics Core lab of Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California, USA
| | - Xiyong Liu
- Department of Molecular Pharmacology, City of Hope National Medical Center, Duarte, California, USA
| | - Bin Li
- The First Department of Biliary Surgery, Eastern Hepatobiliary Surgical Hospital, The Second Military Medical University, Shanghai, China
| | - Yan Zhu
- Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Yong Yu
- The First Department of Biliary Surgery, Eastern Hepatobiliary Surgical Hospital, The Second Military Medical University, Shanghai, China
| | - Qingbao Cheng
- The First Department of Biliary Surgery, Eastern Hepatobiliary Surgical Hospital, The Second Military Medical University, Shanghai, China
| | - Zhenli Hu
- Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Chao Guo
- The Integrative Genomics Core lab of Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California, USA
| | - Shuya Hu
- Department of Molecular Pharmacology, City of Hope National Medical Center, Duarte, California, USA
| | - Bing Mu
- The Integrative Genomics Core lab of Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California, USA
| | - Chun-Hao Tsai
- Department of Orthopedic Surgery, School of Medicine, China Medical University, Taichung, Taiwan
| | - Jie Li
- Department of Molecular Pharmacology, City of Hope National Medical Center, Duarte, California, USA
| | - Lynne Smith
- Department of Molecular Pharmacology, City of Hope National Medical Center, Duarte, California, USA
| | - Lu Yang
- The Integrative Genomics Core lab of Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California, USA
| | - Qi Liu
- Department of Molecular Pharmacology, City of Hope National Medical Center, Duarte, California, USA
| | - Peiguo Chu
- Department of Pathology, City of Hope National Medical Center; Duarte, California, USA
| | - Vincent Chang
- Program for Translation Medicine, Taipei Medical University, Taipei, Taiwan
| | - Baihe Zhang
- The First Department of Biliary Surgery, Eastern Hepatobiliary Surgical Hospital, The Second Military Medical University, Shanghai, China
| | - Mengchao Wu
- The First Department of Biliary Surgery, Eastern Hepatobiliary Surgical Hospital, The Second Military Medical University, Shanghai, China
| | - Xiaoqing Jiang
- The First Department of Biliary Surgery, Eastern Hepatobiliary Surgical Hospital, The Second Military Medical University, Shanghai, China
| | - Yun Yen
- Department of Molecular Pharmacology, City of Hope National Medical Center, Duarte, California, USA.,PhD Program of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
38
|
Ma LG, Bian SB, Cui JX, Xi HQ, Zhang KC, Qin HZ, Zhu XM, Chen L. LKB1 inhibits the proliferation of gastric cancer cells by suppressing the nuclear translocation of Yap and β-catenin. Int J Mol Med 2016; 37:1039-48. [PMID: 26936013 DOI: 10.3892/ijmm.2016.2494] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 02/01/2016] [Indexed: 11/06/2022] Open
Abstract
Liver kinase B1 (LKB1) is known to suppress the proliferation, energy metabolism and mesenchymal transition of various cancer cells, and is involved in the regulation of Hippo-Yes-associated protein (Yap) and the Wnt/β-catenin signaling pathways. However, the role of LKB1 in gastric cancer (GC) was not fully understood. Thus, in the present study, we studied LKB1 and found that protein expression (0.37±0.061 vs. 0.59±0.108, P=0.006) and the protein ratio of p-Yap/Yap (0.179±0.085 vs. 0.8±0.126, P=0.001) were reduced in 54 gastric adenocarcinoma (GAC) tissues compared with the matched adjacent non-cancerous tissues, using western blotting and RT-qPCR assays. LKB1 expression was also observed decreased in 109 GAC tissues compared with 54 adjacent non-cancerous tissues (χ2=4.678, P=0.0306), and negatively correlated with the nuclear expression of Yap (r=-0.6997) and β-catenin (r=-0.3510), using immunohistochemical analysis. In GC patients, LKB1 expression was negatively associated with tumor size, tumor infiltration, lymph node metastasis and the TNM stage. LKB1 expression was determined to be positively correlated with longer overall survival of GC patients using Kaplan-Meier analysis (P=0.001). Subsequently, LKB1 expression in human GAC AGS cells was enhanced with a full‑length LKB1 transfection. In vitro and in vivo proliferation was inhibited in LKB1-overexpressing GC cells compared with the control cells. Yap and β-catenin expression were assessed by western blotting and RT-qPCR, and were found to be increased in the cytoplasm but decreased in the nucleus in LKB1-overexpressing GC cells compared with the control cells. The increase in cytoplasmic β-catenin was reversed by the silencing of LKB1 or Yap with shRNAs in LKB1-overexpressing GC cells. Moreover, Yap and β-catenin mRNA were barely altered by LKB1 overexpression. Thus, we concluded that LKB1 expression was reduced in GAC tissues but that it correlated positively with better prognosis for GC patients. LKB1 inhibits the proliferation of GC cells by suppressing the nuclear translocation of Yap and β-catenin.
Collapse
Affiliation(s)
- Lian-Gang Ma
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Shi-Bo Bian
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Jian-Xin Cui
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Hong-Qing Xi
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Ke-Cheng Zhang
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Hong-Zhen Qin
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Xiao-Ming Zhu
- Institute of Basic Medical Sciences, Chinese People's Liberation Army Academy of Military Medical Sciences, Beijing 100850, P.R. China
| | - Lin Chen
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
39
|
Aberrant expression of Sonic hedgehog signaling in Peutz-Jeghers syndrome. Hum Pathol 2015; 50:153-61. [PMID: 26997450 DOI: 10.1016/j.humpath.2015.09.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 12/21/2022]
Abstract
The SHH signaling pathway is critical for gastrointestinal development and organic patterning, and dysregulation of SHH pathway molecules has been detected in multiple gastrointestinal neoplasms. This study investigated the role of the SHH signaling pathway in PJS. Expression of SHH, PTCH, and GLI1 was examined by real-time PCR and immunohistochemistry in 20 normal tissues and 75 colorectal lesions (25 PJPs, 25 adenomas, and 25 adenocarcinomas). Expression of SHH, PTCH, and GLI1 mRNA was higher in PJPs than in normal tissue (P < .05) and gradually increased along the PJP-adenoma-adenocarcinoma sequence (P < .05). Immunostaining indicated that SHH expression was present in 60% of PJPs, 72% of adenomas, and 84% of carcinomas, whereas 68% of PJPs, 72% of adenomas, and 88% of carcinomas exhibited cytoplasmic expression of PTCH. Moreover, high GLI1 expression was detected in 56% of PJPs, 64% of adenomas, and 80% of carcinomas; and high nuclear expression of GLI1 was observed in 8 adenomas with atypia and 15 carcinomas. Increased SHH, PTCH, and GLI1 protein correlated positively with tumor grade (P = .012, P = .003, and P = .007, respectively), tumor depth (P = .024, P = .007, and P = .01), and lymph node metastasis (P = .05, P = .015, and P = .005). This study identified aberrant expression of SHH pathway molecules in PJS, and the findings may supply a novel mechanism for the development of PJ polyps.
Collapse
|
40
|
Mick DU, Rodrigues RB, Leib RD, Adams CM, Chien AS, Gygi SP, Nachury MV. Proteomics of Primary Cilia by Proximity Labeling. Dev Cell 2015; 35:497-512. [PMID: 26585297 DOI: 10.1016/j.devcel.2015.10.015] [Citation(s) in RCA: 300] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/26/2015] [Accepted: 10/19/2015] [Indexed: 11/17/2022]
Abstract
While cilia are recognized as important signaling organelles, the extent of ciliary functions remains unknown because of difficulties in cataloguing proteins from mammalian primary cilia. We present a method that readily captures rapid snapshots of the ciliary proteome by selectively biotinylating ciliary proteins using a cilia-targeted proximity labeling enzyme (cilia-APEX). Besides identifying known ciliary proteins, cilia-APEX uncovered several ciliary signaling molecules. The kinases PKA, AMPK, and LKB1 were validated as bona fide ciliary proteins and PKA was found to regulate Hedgehog signaling in primary cilia. Furthermore, proteomics profiling of Ift27/Bbs19 mutant cilia correctly detected BBSome accumulation inside Ift27(-/-) cilia and revealed that β-arrestin 2 and the viral receptor CAR are candidate cargoes of the BBSome. This work demonstrates that proximity labeling can be applied to proteomics of non-membrane-enclosed organelles and suggests that proteomics profiling of cilia will enable a rapid and powerful characterization of ciliopathies.
Collapse
Affiliation(s)
- David U Mick
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - Rachel B Rodrigues
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ryan D Leib
- Stanford University Mass Spectrometry, Stanford University, Stanford, CA 94305, USA
| | - Christopher M Adams
- Stanford University Mass Spectrometry, Stanford University, Stanford, CA 94305, USA
| | - Allis S Chien
- Stanford University Mass Spectrometry, Stanford University, Stanford, CA 94305, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Maxence V Nachury
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA.
| |
Collapse
|
41
|
Peña CG, Nakada Y, Saatcioglu HD, Aloisio GM, Cuevas I, Zhang S, Miller DS, Lea JS, Wong KK, DeBerardinis RJ, Amelio AL, Brekken RA, Castrillon DH. LKB1 loss promotes endometrial cancer progression via CCL2-dependent macrophage recruitment. J Clin Invest 2015; 125:4063-76. [PMID: 26413869 DOI: 10.1172/jci82152] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/20/2015] [Indexed: 12/21/2022] Open
Abstract
Endometrial cancer is the most common gynecologic malignancy and the fourth most common malignancy in women. For most patients in whom the disease is confined to the uterus, treatment results in successful remission; however, there are no curative treatments for tumors that have progressed beyond the uterus. The serine/threonine kinase LKB1 has been identified as a potent suppressor of uterine cancer, but the biological modes of action of LKB1 in this context remain incompletely understood. Here, we have shown that LKB1 suppresses tumor progression by altering gene expression in the tumor microenvironment. We determined that LKB1 inactivation results in abnormal, cell-autonomous production of the inflammatory cytokine chemokine (C-C motif) ligand 2 (CCL2) within tumors, which leads to increased recruitment of macrophages with prominent tumor-promoting activities. Inactivation of Ccl2 in an Lkb1-driven mouse model of endometrial cancer slowed tumor progression and increased survival. In human primary endometrial cancers, loss of LKB1 protein was strongly associated with increased CCL2 expression by tumor cells as well as increased macrophage density in the tumor microenvironment. These data demonstrate that CCL2 is a potent effector of LKB1 loss in endometrial cancer, creating potential avenues for therapeutic opportunities.
Collapse
|
42
|
Novellasdemunt L, Antas P, Li VSW. Targeting Wnt signaling in colorectal cancer. A Review in the Theme: Cell Signaling: Proteins, Pathways and Mechanisms. Am J Physiol Cell Physiol 2015; 309:C511-21. [PMID: 26289750 PMCID: PMC4609654 DOI: 10.1152/ajpcell.00117.2015] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/14/2015] [Indexed: 02/06/2023]
Abstract
The evolutionarily conserved Wnt signaling pathway plays essential roles during embryonic development and tissue homeostasis. Notably, comprehensive genetic studies in Drosophila and mice in the past decades have demonstrated the crucial role of Wnt signaling in intestinal stem cell maintenance by regulating proliferation, differentiation, and cell-fate decisions. Wnt signaling has also been implicated in a variety of cancers and other diseases. Loss of the Wnt pathway negative regulator adenomatous polyposis coli (APC) is the hallmark of human colorectal cancers (CRC). Recent advances in high-throughput sequencing further reveal many novel recurrent Wnt pathway mutations in addition to the well-characterized APC and β-catenin mutations in CRC. Despite attractive strategies to develop drugs for Wnt signaling, major hurdles in therapeutic intervention of the pathway persist. Here we discuss the Wnt-activating mechanisms in CRC and review the current advances and challenges in drug discovery.
Collapse
Affiliation(s)
| | - Pedro Antas
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Vivian S W Li
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| |
Collapse
|
43
|
Non-Overlapping Distributions and Functions of the VDAC Family in Ciliogenesis. Cells 2015; 4:331-53. [PMID: 26264029 PMCID: PMC4588040 DOI: 10.3390/cells4030331] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/21/2015] [Accepted: 07/27/2015] [Indexed: 02/06/2023] Open
Abstract
Centrosomes are major microtubule-organizing centers of animal cells that consist of two centrioles. In mitotic cells, centrosomes are duplicated to serve as the poles of the mitotic spindle, while in quiescent cells, centrosomes move to the apical membrane where the oldest centriole is transformed into a basal body to assemble a primary cilium. We recently showed that mitochondrial outer membrane porin VDAC3 localizes to centrosomes where it negatively regulates ciliogenesis. We show here that the other two family members, VDAC1 and VDAC2, best known for their function in mitochondrial bioenergetics, are also found at centrosomes. Like VDAC3, centrosomal VDAC1 is predominantly localized to the mother centriole, while VDAC2 localizes to centriolar satellites in a microtubule-dependent manner. Down-regulation of VDAC1 leads to inappropriate ciliogenesis, while its overexpression suppresses cilia formation, suggesting that VDAC1 and VDAC3 both negatively regulate ciliogenesis. However, this negative effect on ciliogenesis is not shared by VDAC2, which instead appears to promote maturation of primary cilia. Moreover, because overexpression of VDAC3 cannot compensate for depletion of VDAC1, our data suggest that while the entire VDAC family localizes to centrosomes, they have non-redundant functions in cilogenesis.
Collapse
|
44
|
Li YH, Luo J, Mosley YYC, Hedrick VE, Paul LN, Chang J, Zhang G, Wang YK, Banko MR, Brunet A, Kuang S, Wu JL, Chang CJ, Scott MP, Yang JY. AMP-Activated Protein Kinase Directly Phosphorylates and Destabilizes Hedgehog Pathway Transcription Factor GLI1 in Medulloblastoma. Cell Rep 2015; 12:599-609. [PMID: 26190112 DOI: 10.1016/j.celrep.2015.06.054] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/11/2015] [Accepted: 06/15/2015] [Indexed: 12/25/2022] Open
Abstract
The Hedgehog (Hh) pathway regulates cell differentiation and proliferation during development by controlling the Gli transcription factors. Cell fate decisions and progression toward organ and tissue maturity must be coordinated, and how an energy sensor regulates the Hh pathway is not clear. AMP-activated protein kinase (AMPK) is an important sensor of energy stores and controls protein synthesis and other energy-intensive processes. AMPK is directly responsive to intracellular AMP levels, inhibiting a wide range of cell activities if ATP is low and AMP is high. Thus, AMPK can affect development by influencing protein synthesis and other processes needed for growth and differentiation. Activation of AMPK reduces GLI1 protein levels and stability, thus blocking Sonic-hedgehog-induced transcriptional activity. AMPK phosphorylates GLI1 at serines 102 and 408 and threonine 1074. Mutation of these three sites into alanine prevents phosphorylation by AMPK. This leads to increased GLI1 protein stability, transcriptional activity, and oncogenic potency.
Collapse
Affiliation(s)
- Yen-Hsing Li
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| | - Jia Luo
- Departments of Developmental Biology, Genetics, and Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yung-Yi C Mosley
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| | - Victoria E Hedrick
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47906, USA
| | - Lake N Paul
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47906, USA
| | - Julia Chang
- Departments of Developmental Biology, Genetics, and Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - GuangJun Zhang
- Center for Cancer Research, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA; Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| | - Yu-Kuo Wang
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | - Max R Banko
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shihuan Kuang
- Center for Cancer Research, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jen-Leih Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115 Taiwan
| | - Chun-Ju Chang
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA; Center for Cancer Research, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| | - Matthew P Scott
- Departments of Developmental Biology, Genetics, and Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jer-Yen Yang
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA; Center for Cancer Research, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA.
| |
Collapse
|
45
|
Roosing S, Hofree M, Kim S, Scott E, Copeland B, Romani M, Silhavy JL, Rosti RO, Schroth J, Mazza T, Miccinilli E, Zaki MS, Swoboda KJ, Milisa-Drautz J, Dobyns WB, Mikati MA, İncecik F, Azam M, Borgatti R, Romaniello R, Boustany RM, Clericuzio CL, D'Arrigo S, Strømme P, Boltshauser E, Stanzial F, Mirabelli-Badenier M, Moroni I, Bertini E, Emma F, Steinlin M, Hildebrandt F, Johnson CA, Freilinger M, Vaux KK, Gabriel SB, Aza-Blanc P, Heynen-Genel S, Ideker T, Dynlacht BD, Lee JE, Valente EM, Kim J, Gleeson JG. Functional genome-wide siRNA screen identifies KIAA0586 as mutated in Joubert syndrome. eLife 2015; 4:e06602. [PMID: 26026149 PMCID: PMC4477441 DOI: 10.7554/elife.06602] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/28/2015] [Indexed: 12/14/2022] Open
Abstract
Defective primary ciliogenesis or cilium stability forms the basis of human ciliopathies, including Joubert syndrome (JS), with defective cerebellar vermis development. We performed a high-content genome-wide small interfering RNA (siRNA) screen to identify genes regulating ciliogenesis as candidates for JS. We analyzed results with a supervised-learning approach, using SYSCILIA gold standard, Cildb3.0, a centriole siRNA screen and the GTex project, identifying 591 likely candidates. Intersection of this data with whole exome results from 145 individuals with unexplained JS identified six families with predominantly compound heterozygous mutations in KIAA0586. A c.428del base deletion in 0.1% of the general population was found in trans with a second mutation in an additional set of 9 of 163 unexplained JS patients. KIAA0586 is an orthologue of chick Talpid3, required for ciliogenesis and Sonic hedgehog signaling. Our results uncover a relatively high frequency cause for JS and contribute a list of candidates for future gene discoveries in ciliopathies. DOI:http://dx.doi.org/10.7554/eLife.06602.001 Joubert syndrome is a rare disorder that affects the brain and causes physical, mental, and sometimes visual impairments. In individuals with this condition, two parts of the brain called the cerebellar vermis and the brainstem do not develop properly. This is thought to be due to defects in the development and maintenance of tiny hair-like structures called cilia, which are found on the surface of cells. Currently, mutations in 25 different genes are known to be able to cause Joubert syndrome. However, these mutations only account for around 50% of the cases that have been studied, and the ‘unexplained’ cases suggest that mutations in other genes may also cause the disease. Here, Roosing et al. used a technique called a ‘genome-wide siRNA screen’ to identify other genes regulating the formation of cilia that might also be connected with Joubert syndrome. This approach identified almost 600 candidate genes. The data from the screen were combined with gene sequence data from 145 individuals with unexplained Joubert syndrome. Roosing et al. found that individuals with Joubert syndrome from 15 different families had mutations in a gene called KIAA0586. In chickens and mice, this gene—known as Talpid3—is required for the formation of cilia. Roosing et al.'s findings reveal a new gene that is involved in Joubert syndrome and also provides a list of candidate genes for future studies of other conditions caused by defects in the formation of cilia. The next challenges are to find out what causes the remaining unexplained cases of the disease and to understand what roles the genes identified in this study play in cilia. DOI:http://dx.doi.org/10.7554/eLife.06602.002
Collapse
Affiliation(s)
- Susanne Roosing
- Laboratory for Pediatric Brain Disease, New York Genome Center, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Matan Hofree
- Department of Computer Science and Engineering, University of California, San Diego, San Diego, United States
| | - Sehyun Kim
- Department of Pathology and Cancer Institute, Smilow Research Center, New York University School of Medicine, New York, United States
| | - Eric Scott
- Laboratory for Pediatric Brain Disease, New York Genome Center, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Brett Copeland
- Laboratory for Pediatric Brain Disease, New York Genome Center, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Marta Romani
- IRCCS Casa Sollievo della Sofferenza, Mendel Institute, San Giovanni Rotondo, Italy
| | - Jennifer L Silhavy
- Laboratory for Pediatric Brain Disease, New York Genome Center, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Rasim O Rosti
- Laboratory for Pediatric Brain Disease, New York Genome Center, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Jana Schroth
- Laboratory for Pediatric Brain Disease, New York Genome Center, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Tommaso Mazza
- IRCCS Casa Sollievo della Sofferenza, Mendel Institute, San Giovanni Rotondo, Italy
| | - Elide Miccinilli
- IRCCS Casa Sollievo della Sofferenza, Mendel Institute, San Giovanni Rotondo, Italy
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Center, Cairo, Egypt
| | - Kathryn J Swoboda
- Departments of Neurology and Pediatrics, University of Utah School of Medicine, Salt Lake City, United States
| | - Joanne Milisa-Drautz
- Department of Pediatric Genetics, University of New Mexico, Albuquerque, United States
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Hospital, Seattle, United States
| | - Mohamed A Mikati
- Division of Pediatric Neurology, Department of Pediatrics, Duke Institute for Brain Sciences, Duke University Medical Center, Durham, United States
| | - Faruk İncecik
- Department of Pediatric Neurology, Cukurova University Medical Faculty, Balcali, Turkey
| | - Matloob Azam
- Department of Pediatrics and Child Neurology, Wah Medical College, Wah Cantt, Pakistan
| | - Renato Borgatti
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Romina Romaniello
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Rose-Mary Boustany
- Departments of Pediatrics, Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Carol L Clericuzio
- Division of Genetics/Dysmorphology, Department Pediatrics, University of New Mexico, Albuquerque, United States
| | - Stefano D'Arrigo
- Developmental Neurology Division, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Petter Strømme
- Women and Children's Division, Oslo University Hospital, Oslo, Norway
| | - Eugen Boltshauser
- Department of Pediatric Neurology, University Children's Hospital, Zurich, Switzerland
| | - Franco Stanzial
- Department of Pediatrics, Genetic Counselling Service, Regional Hospital of Bolzano, Bolzano, Italy
| | - Marisol Mirabelli-Badenier
- Child Neuropsychiatry Unit, Department of Neurosciences and Rehabilitation, Istituto G. Gaslini, Genoa, Italy
| | - Isabella Moroni
- Unit of Child Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Research Hospital, IRCCS, Rome, Italy
| | - Francesco Emma
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Colin A Johnson
- Section of Ophthalmology and Neurosciences, Wellcome Trust Brenner Building, Leeds Institute of Molecular Medicine, University of Leeds, St. James's University Hospital, Leeds, United Kingdom
| | - Michael Freilinger
- Neuropediatric group, Department of Paediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Keith K Vaux
- Laboratory for Pediatric Brain Disease, New York Genome Center, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Stacey B Gabriel
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, United States
| | - Pedro Aza-Blanc
- High Content Screening Systems, Sanford-Burnham Institute, La Jolla, United States
| | - Susanne Heynen-Genel
- High Content Screening Systems, Sanford-Burnham Institute, La Jolla, United States
| | - Trey Ideker
- Department of Computer Science and Engineering, University of California, San Diego, San Diego, United States
| | - Brian D Dynlacht
- Department of Pathology and Cancer Institute, Smilow Research Center, New York University School of Medicine, New York, United States
| | - Ji Eun Lee
- Samsung Genome Institute, Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Enza Maria Valente
- IRCCS Casa Sollievo della Sofferenza, Mendel Institute, San Giovanni Rotondo, Italy
| | - Joon Kim
- Korea Advanced Institute of Science and Technology, School of Medical Science and Engineering, Daejeon, Republic of Korea
| | - Joseph G Gleeson
- Laboratory for Pediatric Brain Disease, New York Genome Center, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| |
Collapse
|
46
|
Disruption of Wnt/β-Catenin Signaling and Telomeric Shortening Are Inextricable Consequences of Tankyrase Inhibition in Human Cells. Mol Cell Biol 2015; 35:2425-35. [PMID: 25939383 DOI: 10.1128/mcb.00392-15] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 04/28/2015] [Indexed: 01/05/2023] Open
Abstract
Maintenance of chromosomal ends (telomeres) directly contributes to cancer cell immortalization. The telomere protection enzymes belonging to the tankyrase (Tnks) subfamily of poly(ADP-ribose) polymerases (PARPs) have recently been shown to also control transcriptional response to secreted Wnt signaling molecules. Whereas Tnks inhibitors are currently being developed as therapeutic agents for targeting Wnt-related cancers and as modulators of Wnt signaling in tissue-engineering agendas, their impact on telomere length maintenance remains unclear. Here, we leveraged a collection of Wnt pathway inhibitors with previously unassigned mechanisms of action to identify novel pharmacophores supporting Tnks inhibition. A multifaceted experimental approach that included structural, biochemical, and cell biological analyses revealed two distinct chemotypes with selectivity for Tnks enzymes. Using these reagents, we revealed that Tnks inhibition rapidly induces DNA damage at telomeres and telomeric shortening upon long-term chemical exposure in cultured cells. On the other hand, inhibitors of the Wnt acyltransferase Porcupine (Porcn) elicited neither effect. Thus, Tnks inhibitors impact telomere length maintenance independently of their affects on Wnt/β-catenin signaling. We discuss the implications of these findings for anticancer and regenerative medicine agendas dependent upon chemical inhibitors of Wnt/β-catenin signaling.
Collapse
|
47
|
Swarup S, Pradhan-Sundd T, Verheyen EM. Genome-wide identification of phospho-regulators of Wnt signaling in Drosophila. Development 2015; 142:1502-15. [DOI: 10.1242/dev.116715] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Evolutionarily conserved intercellular signaling pathways regulate embryonic development and adult tissue homeostasis in metazoans. The precise control of the state and amplitude of signaling pathways is achieved in part through the kinase- and phosphatase-mediated reversible phosphorylation of proteins. In this study, we performed a genome-wide in vivo RNAi screen for kinases and phosphatases that regulate the Wnt pathway under physiological conditions in the Drosophila wing disc. Our analyses have identified 54 high-confidence kinases and phosphatases capable of modulating the Wnt pathway, including 22 novel regulators. These candidates were also assayed for a role in the Notch pathway, and numerous phospho-regulators were identified. Additionally, each regulator of the Wnt pathway was evaluated in the wing disc for its ability to affect the mechanistically similar Hedgehog pathway. We identified 29 dual regulators that have the same effect on the Wnt and Hedgehog pathways. As proof of principle, we established that Cdc37 and Gilgamesh/CK1γ inhibit and promote signaling, respectively, by functioning at analogous levels of these pathways in both Drosophila and mammalian cells. The Wnt and Hedgehog pathways function in tandem in multiple developmental contexts, and the identification of several shared phospho-regulators serve as potential nodes of control under conditions of aberrant signaling and disease.
Collapse
Affiliation(s)
- Sharan Swarup
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby V5A1S6, British Columbia, Canada
| | - Tirthadipa Pradhan-Sundd
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby V5A1S6, British Columbia, Canada
| | - Esther M. Verheyen
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby V5A1S6, British Columbia, Canada
| |
Collapse
|
48
|
Westcott JM, Prechtl AM, Maine EA, Dang TT, Esparza MA, Sun H, Zhou Y, Xie Y, Pearson GW. An epigenetically distinct breast cancer cell subpopulation promotes collective invasion. J Clin Invest 2015; 125:1927-43. [PMID: 25844900 DOI: 10.1172/jci77767] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 02/27/2015] [Indexed: 12/21/2022] Open
Abstract
Tumor cells can engage in a process called collective invasion, in which cohesive groups of cells invade through interstitial tissue. Here, we identified an epigenetically distinct subpopulation of breast tumor cells that have an enhanced capacity to collectively invade. Analysis of spheroid invasion in an organotypic culture system revealed that these "trailblazer" cells are capable of initiating collective invasion and promote non-trailblazer cell invasion, indicating a commensal relationship among subpopulations within heterogenous tumors. Canonical mesenchymal markers were not sufficient to distinguish trailblazer cells from non-trailblazer cells, suggesting that defining the molecular underpinnings of the trailblazer phenotype could reveal collective invasion-specific mechanisms. Functional analysis determined that DOCK10, ITGA11, DAB2, PDFGRA, VASN, PPAP2B, and LPAR1 are highly expressed in trailblazer cells and required to initiate collective invasion, with DOCK10 essential for metastasis. In patients with triple-negative breast cancer, expression of these 7 genes correlated with poor outcome. Together, our results indicate that spontaneous conversion of the epigenetic state in a subpopulation of cells can promote a transition from in situ to invasive growth through induction of a cooperative form of collective invasion and suggest that therapeutic inhibition of trailblazer cell invasion may help prevent metastasis.
Collapse
|
49
|
Eisner A, Pazyra-Murphy MF, Durresi E, Zhou P, Zhao X, Chadwick EC, Xu PX, Hillman RT, Scott MP, Greenberg ME, Segal RA. The Eya1 phosphatase promotes Shh signaling during hindbrain development and oncogenesis. Dev Cell 2015; 33:22-35. [PMID: 25816987 DOI: 10.1016/j.devcel.2015.01.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/16/2014] [Accepted: 01/26/2015] [Indexed: 12/12/2022]
Abstract
Sonic hedgehog (Shh) signaling is critical in development and oncogenesis, but the mechanisms regulating this pathway remain unclear. Although protein phosphorylation clearly affects Shh signaling, little is known about phosphatases governing the pathway. Here, we conducted a small hairpin RNA (shRNA) screen of the phosphatome and identified Eya1 as a positive regulator of Shh signaling. We find that the catalytically active phosphatase Eya1 cooperates with the DNA-binding protein Six1 to promote gene induction in response to Shh and that Eya1/Six1 together regulate Gli transcriptional activators. We show that Eya1, which is mutated in a human deafness disorder, branchio-oto-renal syndrome, is critical for Shh-dependent hindbrain growth and development. Moreover, Eya1 drives the growth of medulloblastoma, a Shh-dependent hindbrain tumor. Together, these results identify Eya1 and Six1 as key components of the Shh transcriptional network in normal development and in oncogenesis.
Collapse
Affiliation(s)
- Adriana Eisner
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Maria F Pazyra-Murphy
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ershela Durresi
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Pengcheng Zhou
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Xuesong Zhao
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Emily C Chadwick
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - R Tyler Hillman
- Departments of Developmental Biology, Genetics, and Bioengineering, Stanford University School of Medicine, Stanford, CA 94305-5439, USA
| | - Matthew P Scott
- Departments of Developmental Biology, Genetics, and Bioengineering, Stanford University School of Medicine, Stanford, CA 94305-5439, USA
| | | | - Rosalind A Segal
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
50
|
Dhanyamraju PK, Holz PS, Finkernagel F, Fendrich V, Lauth M. Histone deacetylase 6 represents a novel drug target in the oncogenic Hedgehog signaling pathway. Mol Cancer Ther 2015; 14:727-39. [PMID: 25552369 DOI: 10.1158/1535-7163.mct-14-0481] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 12/14/2014] [Indexed: 11/16/2022]
Abstract
Uncontrolled Hedgehog (Hh) signaling is the cause of several malignancies, including the pediatric cancer medulloblastoma, a neuroectodermal tumor affecting the cerebellum. Despite the development of potent Hh pathway antagonists, medulloblastoma drug resistance is still an unresolved issue that requires the identification of novel drug targets. Following up on our observation that histone deacetylase 6 (HDAC6) expression was increased in Hh-driven medulloblastoma, we found that this enzyme is essential for full Hh pathway activation. Intriguingly, these stimulatory effects of HDAC6 are partly integrated downstream of primary cilia, a known HDAC6-regulated structure. In addition, HDAC6 is also required for the complete repression of basal Hh target gene expression. These contrasting effects are mediated by HDAC6's impact on Gli2 mRNA and GLI3 protein expression. As a result of this complex interaction with Hh signaling, global transcriptome analysis revealed that HDAC6 regulates only a subset of Smoothened- and Gli-driven genes, including all well-established Hh targets such as Ptch1 or Gli1. Importantly, medulloblastoma cell survival was severely compromised by HDAC6 inhibition in vitro and pharmacologic HDAC6 blockade strongly reduced tumor growth in an in vivo allograft model. In summary, our data describe an important role for HDAC6 in regulating the mammalian Hh pathway and encourage further studies focusing on HDAC6 as a novel drug target in medulloblastoma.
Collapse
Affiliation(s)
- Pavan Kumar Dhanyamraju
- Philipps University, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Marburg, Germany
| | - Philipp Simon Holz
- Philipps University, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Marburg, Germany
| | - Florian Finkernagel
- Philipps University, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Marburg, Germany
| | - Volker Fendrich
- Department of Surgery, Philipps University, Marburg, Germany
| | - Matthias Lauth
- Philipps University, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Marburg, Germany.
| |
Collapse
|