1
|
Yang L, Zhu A, Aman JM, Denberg D, Kilwein MD, Marmion RA, Johnson ANT, Veraksa A, Singh M, Wühr M, Shvartsman SY. ERK synchronizes embryonic cleavages in Drosophila. Dev Cell 2024; 59:3061-3071.e6. [PMID: 39208802 PMCID: PMC11895397 DOI: 10.1016/j.devcel.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/13/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Extracellular-signal-regulated kinase (ERK) signaling controls development and homeostasis and is genetically deregulated in human diseases, including neurocognitive disorders and cancers. Although the list of ERK functions is vast and steadily growing, the full spectrum of processes controlled by any specific ERK activation event remains unknown. Here, we show how ERK functions can be systematically identified using targeted perturbations and global readouts of ERK activation. Our experimental model is the Drosophila embryo, where ERK signaling at the embryonic poles has thus far only been associated with the transcriptional patterning of the future larva. Through a combination of live imaging and phosphoproteomics, we demonstrated that ERK activation at the poles is also critical for maintaining the speed and synchrony of embryonic cleavages. The presented approach to interrogating phosphorylation networks identifies a hidden function of a well-studied signaling event and sets the stage for similar studies in other organisms.
Collapse
Affiliation(s)
- Liu Yang
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Audrey Zhu
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Javed M Aman
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
| | - David Denberg
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544, USA
| | - Marcus D Kilwein
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Robert A Marmion
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Alex N T Johnson
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Mona Singh
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
| | - Martin Wühr
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Stanislav Y Shvartsman
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Flatiron Institute, New York, NY 10010, USA.
| |
Collapse
|
2
|
Kondo A, Tanaka H, Rai S, Shima H, Matsumura I, Watanabe T. Depletion of Ppp6c in hematopoietic and vascular endothelial cells causes embryonic lethality and decreased hematopoietic potential. Exp Hematol 2024; 133:104205. [PMID: 38490577 DOI: 10.1016/j.exphem.2024.104205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Protein phosphatase 6 (PP6) is a serine/threonine (Ser/Thr) protein phosphatase, and its catalytic subunit is Ppp6c. PP6 forms the PP2A subfamily with PP2A and PP4. The diverse phenotypes observed following small interfering RNA (siRNA)-based knockdown of Ppp6c in cultured mammalian cells suggest that PP6 plays roles in cell growth and DNA repair. There is also evidence that PP6 regulates nuclear factor kappa B (NF-κB) signaling and mitogen-activated protein kinases and inactivates transforming growth factor-β-activated kinase 1 (TAK1). Loss of Ppp6c causes several abnormalities, including those of T cell and regulatory T cell function, neurogenesis, oogenesis, and spermatogenesis. PP2A has been reported to play an important role in erythropoiesis. However, the roles of PP6 in other hematopoietic cells have not been investigated. We generated Ppp6cfl/fl;Tie2-Cre (Ppp6cTKO) mice, in which Ppp6c was specifically deleted in hematopoietic and vascular endothelial cells. Ppp6cTKO mice displayed embryonic lethality. Ppp6c deficiency increased the number of dead cells and decreased the percentages of erythroid and monocytic cells during fetal hematopoiesis. By contrast, the number of Lin-Sca-1+c-Kit+ cells, which give rise to all hematopoietic cells, was slightly increased, but their colony-forming cell activity was markedly decreased. Ppp6c deficiency also increased phosphorylation of extracellular signal-regulated kinase 1/2 and c-Jun amino (N)-terminal kinase in fetal liver hematopoietic cells.
Collapse
Affiliation(s)
- Ayumi Kondo
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Hirokazu Tanaka
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Shinya Rai
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Hiroshi Shima
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan.
| |
Collapse
|
3
|
Ito M, Tanuma N, Kotani Y, Murai K, Kondo A, Sumiyoshi M, Shima H, Matsuda S, Watanabe T. Oncogenic K-Ras G12V cannot overcome proliferation failure caused by loss of Ppp6c in mouse embryonic fibroblasts. FEBS Open Bio 2024; 14:545-554. [PMID: 38318686 PMCID: PMC10988750 DOI: 10.1002/2211-5463.13775] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/11/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Protein phosphatase 6 is a Ser/Thr protein phosphatase and its catalytic subunit is Ppp6c. Ppp6c is thought to be indispensable for proper growth of normal cells. On the other hand, loss of Ppp6c accelerates growth of oncogenic Ras-expressing cells. Although it has been studied in multiple contexts, the role(s) of Ppp6c in cell proliferation remains controversial. It is unclear how oncogenic K-Ras overcomes cell proliferation failure induced by Ppp6c deficiency; therefore, in this study, we attempted to shed light on how oncogenic K-Ras modulates tumor cell growth. Contrary to our expectations, loss of Ppp6c decreased proliferation, anchorage-independent growth in soft agar, and tumor formation of oncogenic Ras-expressing mouse embryonic fibroblasts (MEFs). These findings show that oncogenic K-RasG12V cannot overcome proliferation failure caused by loss of Ppp6c in MEFs.
Collapse
Affiliation(s)
- Mai Ito
- Department of Biological Science, Graduate School of Humanities and SciencesNara Women's UniversityJapan
| | - Nobuhiro Tanuma
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Yui Kotani
- Department of Biological Science, Graduate School of Humanities and SciencesNara Women's UniversityJapan
| | - Kokoro Murai
- Department of Biological Science, Graduate School of Humanities and SciencesNara Women's UniversityJapan
| | - Ayumi Kondo
- Department of Biological Science, Graduate School of Humanities and SciencesNara Women's UniversityJapan
| | - Mami Sumiyoshi
- Department of Cell Signaling, Institute of Biomedical ScienceKansai Medical UniversityHirakataJapan
| | - Hiroshi Shima
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Satoshi Matsuda
- Department of Cell Signaling, Institute of Biomedical ScienceKansai Medical UniversityHirakataJapan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and SciencesNara Women's UniversityJapan
| |
Collapse
|
4
|
Matsuoka M, Sakai D, Shima H, Watanabe T. Neuron-specific loss of Ppp6c induces neonatal death and decreases the number of cortical neurons and interneurons. Biochem Biophys Res Commun 2024; 693:149353. [PMID: 38101002 DOI: 10.1016/j.bbrc.2023.149353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Protein phosphatase 6 (PP6) is a Ser/Thr protein phosphatase with the catalytic subunit Ppp6c. Recent cell-level studies have revealed that Ppp6c knockdown suppresses neurite outgrowth, suggesting that Ppp6c is involved in the development of the nervous system. We found that the function of PP6 in neurons is essential for mouse survival after birth, as all neural-stem-cell-specific KO (Ppp6cNKO) and neuron-specific KO mice died within 2 days of birth. By contrast, approximately 40 % of oligodendrocyte-specific KO mice died within 2 days of birth, whereas others survived until weaning or later, suggesting that the lethality of PP6 loss differs between neurons and oligodendrocytes. Furthermore, the fetal brain of Ppp6cNKO mice exhibited decreased numbers of neurons in layers V-VI and interneurons in layer I of the neocortex. These results suggest for the first time that Ppp6c is essential for neonatal survival and proper development of neurons and interneurons in the neocortex.
Collapse
Affiliation(s)
- Miki Matsuoka
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, 630-8506, Japan
| | - Daisuke Sakai
- Department of Biology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Hiroshi Shima
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, 981-1293, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, 630-8506, Japan.
| |
Collapse
|
5
|
Xiao T, Yang Z, Wang W, Deng M, Peng H, Huang Z, Liu J, Lu K. Role of the epsilon glutathione S-transferases in xanthotoxin tolerance in Spodoptera litura. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105592. [PMID: 37945225 DOI: 10.1016/j.pestbp.2023.105592] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 11/12/2023]
Abstract
Spodoptera litura, a polyphagous lepidopteran pest, demonstrates a remarkable capacity to adapt to varying host plants by efficiently detoxifying phytochemicals. However, the underlying mechanism for this adaptation is not well understood. Herein, twenty eplison glutathione S-transferase genes (GSTes) were characterized and their roles in phytochemical tolerance were analyzed in S. litura. Most of the GSTe genes were mainly expressed in the larval midgut and fat body. Exposure to the phytochemicals, especially xanthotoxin, induced the expression of most GSTe genes. Molecular docking analysis revealed that xanthotoxin could form stable bonds with six xanthotoxin-responsive GSTes, with binding free energies ranging from -36.44 to -68.83 kcal mol-1. Knockdown of these six GSTe genes increased the larval susceptibility to xanthotoxin. Furthermore, xanthotoxin exposure significantly upregulated the expression of two transcription factor genes CncC and MafK. Silencing of either CncC or MafK reduced the expression of GSTe16, which exhibited the largest change in response to xanthotoxin. Additionally, analysis of the promoter sequence of GSTe16 revealed the presence of seven CncC/Maf binding sites. Luciferase reporter assays showed that CncC and MafK enhanced the expression of GSTe16, leading to the increased xanthotoxin tolerance in S. litura. These findings provide insight into the functions and transcriptional regulatory mechanisms of GSTes, thereby enhancing our understanding of the role of GSTs in the adaptation of lepidopteran pests to phytochemicals.
Collapse
Affiliation(s)
- Tianxiang Xiao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zhiming Yang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wenxiu Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Mengqing Deng
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Haoxue Peng
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zifan Huang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Jianping Liu
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Kai Lu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
6
|
Hu Y, Comjean A, Attrill H, Antonazzo G, Thurmond J, Chen W, Li F, Chao T, Mohr SE, Brown NH, Perrimon N. PANGEA: a new gene set enrichment tool for Drosophila and common research organisms. Nucleic Acids Res 2023; 51:W419-W426. [PMID: 37125646 PMCID: PMC10320058 DOI: 10.1093/nar/gkad331] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/28/2023] [Accepted: 04/29/2023] [Indexed: 05/02/2023] Open
Abstract
Gene set enrichment analysis (GSEA) plays an important role in large-scale data analysis, helping scientists discover the underlying biological patterns over-represented in a gene list resulting from, for example, an 'omics' study. Gene Ontology (GO) annotation is the most frequently used classification mechanism for gene set definition. Here we present a new GSEA tool, PANGEA (PAthway, Network and Gene-set Enrichment Analysis; https://www.flyrnai.org/tools/pangea/), developed to allow a more flexible and configurable approach to data analysis using a variety of classification sets. PANGEA allows GO analysis to be performed on different sets of GO annotations, for example excluding high-throughput studies. Beyond GO, gene sets for pathway annotation and protein complex data from various resources as well as expression and disease annotation from the Alliance of Genome Resources (Alliance). In addition, visualizations of results are enhanced by providing an option to view network of gene set to gene relationships. The tool also allows comparison of multiple input gene lists and accompanying visualisation tools for quick and easy comparison. This new tool will facilitate GSEA for Drosophila and other major model organisms based on high-quality annotated information available for these species.
Collapse
Affiliation(s)
- Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Helen Attrill
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Giulia Antonazzo
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Jim Thurmond
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Weihang Chen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Fangge Li
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Tiffany Chao
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Stephanie E Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Nicholas H Brown
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02138, USA
| |
Collapse
|
7
|
Terakawa A, Hu Y, Kokaji T, Yugi K, Morita K, Ohno S, Pan Y, Bai Y, Parkhitko AA, Ni X, Asara JM, Bulyk ML, Perrimon N, Kuroda S. Trans-omics analysis of insulin action reveals a cell growth subnetwork which co-regulates anabolic processes. iScience 2022; 25:104231. [PMID: 35494245 PMCID: PMC9044165 DOI: 10.1016/j.isci.2022.104231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/09/2022] [Accepted: 04/06/2022] [Indexed: 12/16/2022] Open
Abstract
Insulin signaling promotes anabolic metabolism to regulate cell growth through multi-omic interactions. To obtain a comprehensive view of the cellular responses to insulin, we constructed a trans-omic network of insulin action in Drosophila cells that involves the integration of multi-omic data sets. In this network, 14 transcription factors, including Myc, coordinately upregulate the gene expression of anabolic processes such as nucleotide synthesis, transcription, and translation, consistent with decreases in metabolites such as nucleotide triphosphates and proteinogenic amino acids required for transcription and translation. Next, as cell growth is required for cell proliferation and insulin can stimulate proliferation in a context-dependent manner, we integrated the trans-omic network with results from a CRISPR functional screen for cell proliferation. This analysis validates the role of a Myc-mediated subnetwork that coordinates the activation of genes involved in anabolic processes required for cell growth. A trans-omic network of insulin action in Drosophila cells was constructed Insulin co-regulates various anabolic processes in a time-dependent manner The trans-omic network and a CRISPR screen for cell proliferation were integrated A Myc-mediated subnetwork promoting anabolic processes is required for cell growth
Collapse
Affiliation(s)
- Akira Terakawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Toshiya Kokaji
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Data Science Center, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan
| | - Katsuyuki Yugi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Institute for Advanced Biosciences, Keio University, Fujisawa, 252-8520, Japan
| | - Keigo Morita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satoshi Ohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yifei Pan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Yunfan Bai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Andrey A. Parkhitko
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaochun Ni
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - John M. Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02175, USA
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham & Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Corresponding author
| | - Shinya Kuroda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- Corresponding author
| |
Collapse
|
8
|
OUP accepted manuscript. Brief Funct Genomics 2022; 21:243-269. [DOI: 10.1093/bfgp/elac007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/14/2022] Open
|
9
|
Thangadurai S, Bajgiran M, Manickam S, Mohana-Kumaran N, Azzam G. CTP synthase: the hissing of the cellular serpent. Histochem Cell Biol 2022; 158:517-534. [PMID: 35881195 PMCID: PMC9314535 DOI: 10.1007/s00418-022-02133-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 12/24/2022]
Abstract
CTP biosynthesis is carried out by two pathways: salvage and de novo. CTPsyn catalyzes the latter. The study of CTPsyn activity in mammalian cells began in the 1970s, and various fascinating discoveries were made regarding the role of CTPsyn in cancer and development. However, its ability to fit into a cellular serpent-like structure, termed 'cytoophidia,' was only discovered a decade ago by three independent groups of scientists. Although the self-assembly of CTPsyn into a filamentous structure is evolutionarily conserved, the enzyme activity upon this self-assembly varies in different species. CTPsyn is required for cellular development and homeostasis. Changes in the expression of CTPsyn cause developmental changes in Drosophila melanogaster. A high level of CTPsyn activity and formation of cytoophidia are often observed in rapidly proliferating cells such as in stem and cancer cells. Meanwhile, the deficiency of CTPsyn causes severe immunodeficiency leading to immunocompromised diseases caused by bacteria, viruses, and parasites, making CTPsyn an attractive therapeutic target. Here, we provide an overview of the role of CTPsyn in cellular and disease perspectives along with its potential as a drug target.
Collapse
Affiliation(s)
- Shallinie Thangadurai
- grid.11875.3a0000 0001 2294 3534School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Morteza Bajgiran
- grid.11875.3a0000 0001 2294 3534School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Sharvin Manickam
- grid.11875.3a0000 0001 2294 3534School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Nethia Mohana-Kumaran
- grid.11875.3a0000 0001 2294 3534School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Ghows Azzam
- grid.11875.3a0000 0001 2294 3534School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia ,grid.454125.3Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000 Kajang, Selangor Malaysia
| |
Collapse
|
10
|
Sawyer JK, Kabiri Z, Montague RA, Allen SR, Stewart R, Paramore SV, Cohen E, Zaribafzadeh H, Counter CM, Fox DT. Exploiting codon usage identifies intensity-specific modifiers of Ras/MAPK signaling in vivo. PLoS Genet 2020; 16:e1009228. [PMID: 33296356 PMCID: PMC7752094 DOI: 10.1371/journal.pgen.1009228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/21/2020] [Accepted: 10/27/2020] [Indexed: 01/05/2023] Open
Abstract
Signal transduction pathways are intricately fine-tuned to accomplish diverse biological processes. An example is the conserved Ras/mitogen-activated-protein-kinase (MAPK) pathway, which exhibits context-dependent signaling output dynamics and regulation. Here, by altering codon usage as a novel platform to control signaling output, we screened the Drosophila genome for modifiers specific to either weak or strong Ras-driven eye phenotypes. Our screen enriched for regions of the genome not previously connected with Ras phenotypic modification. We mapped the underlying gene from one modifier to the ribosomal gene RpS21. In multiple contexts, we show that RpS21 preferentially influences weak Ras/MAPK signaling outputs. These data show that codon usage manipulation can identify new, output-specific signaling regulators, and identify RpS21 as an in vivo Ras/MAPK phenotypic regulator. Cellular communication is critical in controlling the growth of organs and must be carefully regulated to prevent disease. The Ras signaling pathway is frequently used for cellular communication of tissue growth regulation but can operate at different signaling strengths. Here, we used a novel strategy to identify genes that specifically tune weak or strong Ras signaling states. We find that the gene RpS21 preferentially tunes weak Ras signaling states.
Collapse
Affiliation(s)
- Jessica K. Sawyer
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Zahra Kabiri
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Ruth A. Montague
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Scott R. Allen
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Rebeccah Stewart
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sarah V. Paramore
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Erez Cohen
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Hamed Zaribafzadeh
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Christopher M. Counter
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail: (CMC); (DTF)
| | - Donald T. Fox
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail: (CMC); (DTF)
| |
Collapse
|
11
|
Sun L, Zhang J, Chen W, Chen Y, Zhang X, Yang M, Xiao M, Ma F, Yao Y, Ye M, Zhang Z, Chen K, Chen F, Ren Y, Ni S, Zhang X, Yan Z, Sun Z, Zhou H, Yang H, Xie S, Haque ME, Huang K, Yang Y. Attenuation of epigenetic regulator SMARCA4 and ERK-ETS signaling suppresses aging-related dopaminergic degeneration. Aging Cell 2020; 19:e13210. [PMID: 32749068 PMCID: PMC7511865 DOI: 10.1111/acel.13210] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/16/2020] [Accepted: 07/12/2020] [Indexed: 11/27/2022] Open
Abstract
How complex interactions of genetic, environmental factors and aging jointly contribute to dopaminergic degeneration in Parkinson's disease (PD) is largely unclear. Here, we applied frequent gene co‐expression analysis on human patient substantia nigra‐specific microarray datasets to identify potential novel disease‐related genes. In vivo Drosophila studies validated two of 32 candidate genes, a chromatin‐remodeling factor SMARCA4 and a biliverdin reductase BLVRA. Inhibition of SMARCA4 was able to prevent aging‐dependent dopaminergic degeneration not only caused by overexpression of BLVRA but also in four most common Drosophila PD models. Furthermore, down‐regulation of SMARCA4 specifically in the dopaminergic neurons prevented shortening of life span caused by α‐synuclein and LRRK2. Mechanistically, aberrant SMARCA4 and BLVRA converged on elevated ERK‐ETS activity, attenuation of which by either genetic or pharmacological manipulation effectively suppressed dopaminergic degeneration in Drosophila in vivo. Down‐regulation of SMARCA4 or drug inhibition of MEK/ERK also mitigated mitochondrial defects in PINK1 (a PD‐associated gene)‐deficient human cells. Our findings underscore the important role of epigenetic regulators and implicate a common signaling axis for therapeutic intervention in normal aging and a broad range of age‐related disorders including PD.
Collapse
Affiliation(s)
- Ling Sun
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
| | - Jie Zhang
- Department of Medical and Molecular Genetics School of Medicine Indiana University Indianapolis IN USA
| | - Wenfeng Chen
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
| | - Yun Chen
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
| | - Xiaohui Zhang
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
| | - Mingjuan Yang
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
| | - Min Xiao
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
| | - Fujun Ma
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
| | - Yizhou Yao
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
| | - Meina Ye
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
| | - Zhenkun Zhang
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
| | - Kai Chen
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
| | - Fei Chen
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
| | - Yujun Ren
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
| | - Shiwei Ni
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
| | - Xi Zhang
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
| | - Zhangming Yan
- MOE Key Lab of Bioinformatics School of Life Sciences Tsinghua University Beijing China
| | - Zhi‐Rong Sun
- MOE Key Lab of Bioinformatics School of Life Sciences Tsinghua University Beijing China
| | - Hai‐Meng Zhou
- Zhejiang Provincial Key Laboratory of Applied Enzymology Yangtze Delta Region Institute of Tsinghua University Jiaxing China
| | - Hongqin Yang
- Key Laboratory of Optoelectronic Science and Technology for Medicine Ministry of Education Fujian Normal University Fuzhou China
| | - Shusen Xie
- Key Laboratory of Optoelectronic Science and Technology for Medicine Ministry of Education Fujian Normal University Fuzhou China
| | - M. Emdadul Haque
- Department of Biochemistry College of Medicine and Health Sciences United Arab Emirates University Al‐Ain United Arab Emirates
| | - Kun Huang
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
- Department of Hematology and Oncology School of Medicine Indiana University Indianapolis IN USA
| | - Yufeng Yang
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
- Key Laboratory of Optoelectronic Science and Technology for Medicine Ministry of Education Fujian Normal University Fuzhou China
| |
Collapse
|
12
|
Shokri L, Inukai S, Hafner A, Weinand K, Hens K, Vedenko A, Gisselbrecht SS, Dainese R, Bischof J, Furger E, Feuz JD, Basler K, Deplancke B, Bulyk ML. A Comprehensive Drosophila melanogaster Transcription Factor Interactome. Cell Rep 2020; 27:955-970.e7. [PMID: 30995488 PMCID: PMC6485956 DOI: 10.1016/j.celrep.2019.03.071] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/04/2019] [Accepted: 03/18/2019] [Indexed: 12/14/2022] Open
Abstract
Combinatorial interactions among transcription factors (TFs) play essential roles in generating gene expression specificity and diversity in metazoans. Using yeast 2-hybrid (Y2H) assays on nearly all sequence-specific Drosophila TFs, we identified 1,983 protein-protein interactions (PPIs), more than doubling the number of currently known PPIs among Drosophila TFs. For quality assessment, we validated a subset of our interactions using MITOMI and bimolecular fluorescence complementation assays. We combined our interactome with prior PPI data to generate an integrated Drosophila TF-TF binary interaction network. Our analysis of ChIP-seq data, integrating PPI and gene expression information, uncovered different modes by which interacting TFs are recruited to DNA. We further demonstrate the utility of our Drosophila interactome in shedding light on human TF-TF interactions. This study reveals how TFs interact to bind regulatory elements in vivo and serves as a resource of Drosophila TF-TF binary PPIs for understanding tissue-specific gene regulation. Combinatorial regulation by transcription factors (TFs) is one mechanism for achieving condition and tissue-specific gene regulation. Shokri et al. mapped TF-TF interactions between most Drosophila TFs, reporting a comprehensive TF-TF network integrated with previously known interactions. They used this network to discern distinct TF-DNA binding modes.
Collapse
Affiliation(s)
- Leila Shokri
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sachi Inukai
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Antonina Hafner
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Systems Biology Graduate Program, Harvard University, Cambridge, MA 02138, USA; Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Kathryn Weinand
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Bioinformatics and Integrative Genomics Ph.D. Program, Harvard University, Cambridge, MA 02138, USA
| | - Korneel Hens
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Anastasia Vedenko
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stephen S Gisselbrecht
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Riccardo Dainese
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Johannes Bischof
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Edy Furger
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Jean-Daniel Feuz
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
| | - Martha L Bulyk
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Systems Biology Graduate Program, Harvard University, Cambridge, MA 02138, USA; Bioinformatics and Integrative Genomics Ph.D. Program, Harvard University, Cambridge, MA 02138, USA; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Hu C, Wang W, Ju D, Chen GM, Tan XL, Mota-Sanchez D, Yang XQ. Functional characterization of a novel λ-cyhalothrin metabolizing glutathione S-transferase, CpGSTe3, from the codling moth Cydia pomonella. PEST MANAGEMENT SCIENCE 2020; 76:1039-1047. [PMID: 31515930 DOI: 10.1002/ps.5614] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Recent work has shown that two codling moth (Cydia pomonella) glutathione S-transferase genes (GSTs), CpGSTd1 and CpGSTd3, can metabolize λ-cyhalothrin, one of the recommended insecticides for C. pomonella control worldwide. However, systematical characterization of delta and epsilon GSTs, especially their potential contributions in the metabolism of λ-cyhalothrin, is currently still lacking in C. pomonella. RESULTS In this study, a total of nine cDNA sequences were identified in C. pomonella, including four in the delta and five in the epsilon subclasses. RT-qPCR showed that seven GSTs were ubiquitously expressed at all developmental stages, and CpGSTe2, CpGSTe3, and CpGSTe4 were mainly expressed in larvae. The mRNA levels of CpGSTd2, CpGSTd4, and CpGSTe5 were significantly higher in male than in female adults. Tissue-specific expression analysis revealed that the CpGSTe2, CpGSTe3, and CpGSTe4 were highly expressed in the midgut while CpGSTd2 and CpGSTd4 were predominantly expressed in the Malpighian tubules. The transcripts of these GSTs (except CpGSTe1) were co-expressed following exposure to LD10 of λ-cyhalothrin for 3 h. Recombinant CpGSTd4, CpGSTe2, and CpGSTe3 proteins expressed in Escherichia coli displayed glutathione-conjugating activity toward 1-chloro-2,4-dinitrobenzene. In addition, λ-cyhalothrin could inhibit the activity of recombinant CpGSTd4, CpGSTe2, and CpGSTe3 enzymes, but only recombinant CpGSTe3 showed λ-cyhalothrin metabolic capacity, with 21.88 ± 1.09% of parental compound being depleted within 1 h. CONCLUSION These data show that CpGSTe3 is a third GST gene, encoding an enzyme that metabolizes λ-cyhalothrin in C. pomonella. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chao Hu
- Key Laboratory of Economic and Applied Entomology of Liaoning Province, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Wei Wang
- Key Laboratory of Economic and Applied Entomology of Liaoning Province, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Di Ju
- Key Laboratory of Economic and Applied Entomology of Liaoning Province, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Gao-Man Chen
- Key Laboratory of Economic and Applied Entomology of Liaoning Province, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xiao-Ling Tan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - David Mota-Sanchez
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Xue-Qing Yang
- Key Laboratory of Economic and Applied Entomology of Liaoning Province, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
14
|
Gupta SK, Srivastava M, Osmanoglu Ö, Dandekar T. Genome-wide inference of the Camponotus floridanus protein-protein interaction network using homologous mapping and interacting domain profile pairs. Sci Rep 2020; 10:2334. [PMID: 32047225 PMCID: PMC7012867 DOI: 10.1038/s41598-020-59344-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Apart from some model organisms, the interactome of most organisms is largely unidentified. High-throughput experimental techniques to determine protein-protein interactions (PPIs) are resource intensive and highly susceptible to noise. Computational methods of PPI determination can accelerate biological discovery by identifying the most promising interacting pairs of proteins and by assessing the reliability of identified PPIs. Here we present a first in-depth study describing a global view of the ant Camponotus floridanus interactome. Although several ant genomes have been sequenced in the last eight years, studies exploring and investigating PPIs in ants are lacking. Our study attempts to fill this gap and the presented interactome will also serve as a template for determining PPIs in other ants in future. Our C. floridanus interactome covers 51,866 non-redundant PPIs among 6,274 proteins, including 20,544 interactions supported by domain-domain interactions (DDIs), 13,640 interactions supported by DDIs and subcellular localization, and 10,834 high confidence interactions mediated by 3,289 proteins. These interactions involve and cover 30.6% of the entire C. floridanus proteome.
Collapse
Affiliation(s)
- Shishir K Gupta
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, D-97074, Würzburg, Germany.,Department of Microbiology, Biocenter, Am Hubland, D-97074, Würzburg, Germany
| | - Mugdha Srivastava
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, D-97074, Würzburg, Germany
| | - Özge Osmanoglu
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, D-97074, Würzburg, Germany
| | - Thomas Dandekar
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, D-97074, Würzburg, Germany. .,EMBL Heidelberg, BioComputing Unit, Meyerhofstraße 1, 69117, Heidelberg, Germany.
| |
Collapse
|
15
|
Ray M, Singh G, Lakhotia SC. Altered levels of hsromega lncRNAs further enhance Ras signaling during ectopically activated Ras induced R7 differentiation in Drosophila. Gene Expr Patterns 2019; 33:20-36. [DOI: 10.1016/j.gep.2019.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022]
|
16
|
Urwyler O, Izadifar A, Vandenbogaerde S, Sachse S, Misbaer A, Schmucker D. Branch-restricted localization of phosphatase Prl-1 specifies axonal synaptogenesis domains. Science 2019; 364:364/6439/eaau9952. [DOI: 10.1126/science.aau9952] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 03/29/2019] [Indexed: 01/21/2023]
Abstract
Central nervous system (CNS) circuit development requires subcellular control of synapse formation and patterning of synapse abundance. We identified the Drosophila membrane-anchored phosphatase of regenerating liver (Prl-1) as an axon-intrinsic factor that promotes synapse formation in a spatially restricted fashion. The loss of Prl-1 in mechanosensory neurons reduced the number of CNS presynapses localized on a single axon collateral and organized as a terminal arbor. Flies lacking all Prl-1 protein had locomotor defects. The overexpression of Prl-1 induced ectopic synapses. In mechanosensory neurons, Prl-1 modulates the insulin receptor (InR) signaling pathway within a single contralateral axon compartment, thereby affecting the number of synapses. The axon branch–specific localization and function of Prl-1 depend on untranslated regions of the prl-1 messenger RNA (mRNA). Therefore, compartmentalized restriction of Prl-1 serves as a specificity factor for the subcellular control of axonal synaptogenesis.
Collapse
|
17
|
Schmich F, Kuipers J, Merdes G, Beerenwinkel N. netprioR: a probabilistic model for integrative hit prioritisation of genetic screens. Stat Appl Genet Mol Biol 2019; 18:sagmb-2018-0033. [PMID: 30840598 DOI: 10.1515/sagmb-2018-0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the post-genomic era of big data in biology, computational approaches to integrate multiple heterogeneous data sets become increasingly important. Despite the availability of large amounts of omics data, the prioritisation of genes relevant for a specific functional pathway based on genetic screening experiments, remains a challenging task. Here, we introduce netprioR, a probabilistic generative model for semi-supervised integrative prioritisation of hit genes. The model integrates multiple network data sets representing gene-gene similarities and prior knowledge about gene functions from the literature with gene-based covariates, such as phenotypes measured in genetic perturbation screens, for example, by RNA interference or CRISPR/Cas9. We evaluate netprioR on simulated data and show that the model outperforms current state-of-the-art methods in many scenarios and is on par otherwise. In an application to real biological data, we integrate 22 network data sets, 1784 prior knowledge class labels and 3840 RNA interference phenotypes in order to prioritise novel regulators of Notch signalling in Drosophila melanogaster. The biological relevance of our predictions is evaluated using in silico and in vivo experiments. An efficient implementation of netprioR is available as an R package at http://bioconductor.org/packages/netprioR.
Collapse
Affiliation(s)
- Fabian Schmich
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Jack Kuipers
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Gunter Merdes
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
18
|
Heigwer F, Scheeder C, Miersch T, Schmitt B, Blass C, Pour Jamnani MV, Boutros M. Time-resolved mapping of genetic interactions to model rewiring of signaling pathways. eLife 2018; 7:40174. [PMID: 30592458 PMCID: PMC6319608 DOI: 10.7554/elife.40174] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/21/2018] [Indexed: 12/23/2022] Open
Abstract
Context-dependent changes in genetic interactions are an important feature of cellular pathways and their varying responses under different environmental conditions. However, methodological frameworks to investigate the plasticity of genetic interaction networks over time or in response to external stresses are largely lacking. To analyze the plasticity of genetic interactions, we performed a combinatorial RNAi screen in Drosophila cells at multiple time points and after pharmacological inhibition of Ras signaling activity. Using an image-based morphology assay to capture a broad range of phenotypes, we assessed the effect of 12768 pairwise RNAi perturbations in six different conditions. We found that genetic interactions form in different trajectories and developed an algorithm, termed MODIFI, to analyze how genetic interactions rewire over time. Using this framework, we identified more statistically significant interactions compared to end-point assays and further observed several examples of context-dependent crosstalk between signaling pathways such as an interaction between Ras and Rel which is dependent on MEK activity. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Florian Heigwer
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,HBIGS Graduate School, Heidelberg University, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Christian Scheeder
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.,HBIGS Graduate School, Heidelberg University, Heidelberg, Germany
| | - Thilo Miersch
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Barbara Schmitt
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Claudia Blass
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Mischan Vali Pour Jamnani
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Michael Boutros
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
19
|
Kawata K, Yugi K, Hatano A, Kokaji T, Tomizawa Y, Fujii M, Uda S, Kubota H, Matsumoto M, Nakayama KI, Kuroda S. Reconstruction of global regulatory network from signaling to cellular functions using phosphoproteomic data. Genes Cells 2018; 24:82-93. [PMID: 30417516 DOI: 10.1111/gtc.12655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022]
Abstract
Cellular signaling regulates various cellular functions via protein phosphorylation. Phosphoproteomic data potentially include information for a global regulatory network from signaling to cellular functions, but a procedure to reconstruct this network using such data has yet to be established. In this paper, we provide a procedure to reconstruct a global regulatory network from signaling to cellular functions from phosphoproteomic data by integrating prior knowledge of cellular functions and inference of the kinase-substrate relationships (KSRs). We used phosphoproteomic data from insulin-stimulated Fao hepatoma cells and identified protein phosphorylation regulated by insulin specifically over-represented in cellular functions in the KEGG database. We inferred kinases for protein phosphorylation by KSRs, and connected the kinases in the insulin signaling layer to the phosphorylated proteins in the cellular functions, revealing that the insulin signal is selectively transmitted via the Pi3k-Akt and Erk signaling pathways to cellular adhesions and RNA maturation, respectively. Thus, we provide a method to reconstruct global regulatory network from signaling to cellular functions based on phosphoproteomic data.
Collapse
Affiliation(s)
- Kentaro Kawata
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Japan
| | - Katsuyuki Yugi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Japan.,YCI Laboratory for Trans-Omics, Young Chief Investigator Program, RIKEN Center for Integrative Medical Science, Yokohama, Japan.,Institute for Advanced Biosciences, Keio University, Fujisawa, Japan.,PRESTO, Japan Science and Technology Agency, Yokohama, Japan
| | - Atsushi Hatano
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Japan
| | - Toshiya Kokaji
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | - Yoko Tomizawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Japan
| | - Masashi Fujii
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Japan.,Molecular Genetics Research Laboratory, Graduate School of Science, University of Tokyo, Bunkyo-ku, Japan
| | - Shinsuke Uda
- Division of Integrated Omics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Kubota
- Division of Integrated Omics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shinya Kuroda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Bunkyo-ku, Japan
| |
Collapse
|
20
|
Huang J, Wang H. Hsp83/Hsp90 Physically Associates with Insulin Receptor to Promote Neural Stem Cell Reactivation. Stem Cell Reports 2018; 11:883-896. [PMID: 30245208 PMCID: PMC6178561 DOI: 10.1016/j.stemcr.2018.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022] Open
Abstract
Neural stem cells (NSCs) have the ability to exit quiescence and reactivate in response to physiological stimuli. In the Drosophila brain, insulin receptor (InR)/phosphatidylinositol 3-kinase (PI3K)/Akt pathway triggers NSC reactivation. However, intrinsic mechanisms that control the InR/PI3K/Akt pathway during reactivation remain unknown. Here, we have identified heat shock protein 83 (Hsp83/Hsp90), a molecular chaperone, as an intrinsic regulator of NSC reactivation. Hsp83 is both necessary and sufficient for NSC reactivation by promoting the activation of InR pathway in larval brains in the presence of dietary amino acids. Both Hsp83 and its co-chaperone Cdc37 physically associate with InR. Finally, reactivation defects observed in brains depleted of hsp83 were rescued by over-activation of the InR/PI3K/Akt pathway, suggesting that Hsp83 functions upstream of the InR/PI3K/Akt pathway during NSC reactivation. Given the conservation of Hsp83 and the InR pathway, our finding may provide insights into the molecular mechanisms underlying mammalian NSC reactivation. Hsp83/Hsp90 and its co-chaperone Cdc37 are required for NSC reactivation Hsp83 overexpression results in premature NSC reactivation on fed condition Hsp83 and Cdc37 physically associate with InR Hsp83 and Cdc37 are required for the activation of InR pathway in NSCs
Collapse
Affiliation(s)
- Jiawen Huang
- Neuroscience & Behavioural Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Hongyan Wang
- Neuroscience & Behavioural Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
21
|
Kawata K, Hatano A, Yugi K, Kubota H, Sano T, Fujii M, Tomizawa Y, Kokaji T, Tanaka KY, Uda S, Suzuki Y, Matsumoto M, Nakayama KI, Saitoh K, Kato K, Ueno A, Ohishi M, Hirayama A, Soga T, Kuroda S. Trans-omic Analysis Reveals Selective Responses to Induced and Basal Insulin across Signaling, Transcriptional, and Metabolic Networks. iScience 2018; 7:212-229. [PMID: 30267682 PMCID: PMC6161632 DOI: 10.1016/j.isci.2018.07.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 07/13/2018] [Accepted: 07/26/2018] [Indexed: 12/18/2022] Open
Abstract
The concentrations of insulin selectively regulate multiple cellular functions. To understand how insulin concentrations are interpreted by cells, we constructed a trans-omic network of insulin action in FAO hepatoma cells using transcriptomic data, western blotting analysis of signaling proteins, and metabolomic data. By integrating sensitivity into the trans-omic network, we identified the selective trans-omic networks stimulated by high and low doses of insulin, denoted as induced and basal insulin signals, respectively. The induced insulin signal was selectively transmitted through the pathway involving Erk to an increase in the expression of immediate-early and upregulated genes, whereas the basal insulin signal was selectively transmitted through a pathway involving Akt and an increase of Foxo phosphorylation and a reduction of downregulated gene expression. We validated the selective trans-omic network in vivo by analysis of the insulin-clamped rat liver. This integrated analysis enabled molecular insight into how liver cells interpret physiological insulin signals to regulate cellular functions.
Collapse
Affiliation(s)
- Kentaro Kawata
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Atsushi Hatano
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Katsuyuki Yugi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; YCI Laboratory for Trans-Omics, Young Chief Investigator Program, RIKEN Center for Integrative Medical Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Institute for Advanced Biosciences, Keio University, Fujisawa 252-8520, Japan; PRESTO, Japan Science and Technology Agency, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroyuki Kubota
- Division of Integrated Omics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takanori Sano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Masashi Fujii
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Molecular Genetics Research Laboratory, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoko Tomizawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiya Kokaji
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Kaori Y Tanaka
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Shinsuke Uda
- Division of Integrated Omics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kaori Saitoh
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Keiko Kato
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Ayano Ueno
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Maki Ohishi
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Shinya Kuroda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
22
|
PpV, acting via the JNK pathway, represses apoptosis during normal development of Drosophila wing. Apoptosis 2018; 23:554-562. [DOI: 10.1007/s10495-018-1479-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
23
|
Ma X, Lu JY, Dong Y, Li D, Malagon JN, Xu T. PP6 Disruption Synergizes with Oncogenic Ras to Promote JNK-Dependent Tumor Growth and Invasion. Cell Rep 2018; 19:2657-2664. [PMID: 28658615 DOI: 10.1016/j.celrep.2017.05.092] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/10/2017] [Accepted: 05/29/2017] [Indexed: 01/21/2023] Open
Abstract
RAS genes are frequently mutated in cancers, yet an effective treatment has not been developed, partly because of an incomplete understanding of signaling within Ras-related tumors. To address this, we performed a genetic screen in Drosophila, aiming to find mutations that cooperate with oncogenic Ras (RasV12) to induce tumor overgrowth and invasion. We identified fiery mountain (fmt), a regulatory subunit of the protein phosphatase 6 (PP6) complex, as a tumor suppressor that synergizes with RasV12 to drive c-Jun N-terminal kinase (JNK)-dependent tumor growth and invasiveness. We show that Fmt negatively regulates JNK upstream of dTAK1. We further demonstrate that disruption of PpV, the catalytic subunit of PP6, mimics fmt loss-of-function-induced tumorigenesis. Finally, Fmt synergizes with PpV to inhibit JNK-dependent tumor progression. Our data here further highlight the power of Drosophila as a model system to unravel molecular mechanisms that may be relevant to human cancer biology.
Collapse
Affiliation(s)
- Xianjue Ma
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06519, USA
| | - Jin-Yu Lu
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06519, USA
| | - Yongli Dong
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06519, USA
| | - Daming Li
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06519, USA
| | - Juan N Malagon
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06519, USA
| | - Tian Xu
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06519, USA; State Key Laboratory of Genetic Engineering and National Center for International Research, Fudan-Yale Biomedical Research Center, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai 200433, China.
| |
Collapse
|
24
|
An Integrative Analysis of the InR/PI3K/Akt Network Identifies the Dynamic Response to Insulin Signaling. Cell Rep 2017; 16:3062-3074. [PMID: 27626673 DOI: 10.1016/j.celrep.2016.08.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 06/21/2016] [Accepted: 08/09/2016] [Indexed: 11/20/2022] Open
Abstract
Insulin regulates an essential conserved signaling pathway affecting growth, proliferation, and metabolism. To expand our understanding of the insulin pathway, we combine biochemical, genetic, and computational approaches to build a comprehensive Drosophila InR/PI3K/Akt network. First, we map the dynamic protein-protein interaction network surrounding the insulin core pathway using bait-prey interactions connecting 566 proteins. Combining RNAi screening and phospho-specific antibodies, we find that 47% of interacting proteins affect pathway activity, and, using quantitative phosphoproteomics, we demonstrate that ∼10% of interacting proteins are regulated by insulin stimulation at the level of phosphorylation. Next, we integrate these orthogonal datasets to characterize the structure and dynamics of the insulin network at the level of protein complexes and validate our method by identifying regulatory roles for the Protein Phosphatase 2A (PP2A) and Reptin-Pontin chromatin-remodeling complexes as negative and positive regulators of ribosome biogenesis, respectively. Altogether, our study represents a comprehensive resource for the study of the evolutionary conserved insulin network.
Collapse
|
25
|
Pinzón JH, Reed AR, Shalaby NA, Buszczak M, Rodan AR, Rothenfluh A. Alcohol-Induced Behaviors Require a Subset of Drosophila JmjC-Domain Histone Demethylases in the Nervous System. Alcohol Clin Exp Res 2017; 41:2015-2024. [PMID: 28940624 DOI: 10.1111/acer.13508] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/15/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Long-lasting transcriptional changes underlie a number of adaptations that contribute to alcohol use disorders (AUD). Chromatin remodeling, including histone methylation, can confer distinct, long-lasting transcriptional changes, and histone methylases are known to play a role in the development of addiction. Conversely, little is known about the relevance of Jumonji (JmjC) domain-containing demethylases in AUDs. We systematically surveyed the alcohol-induced phenotypes of null mutations in all 13 Drosophila JmjC genes. METHODS We used a collection of JmjC mutants, the majority of which we generated by homologous recombination, and assayed them in the Booze-o-mat to determine their naïve sensitivity to sedation and their tolerance (change in sensitivity upon repeat exposure). Mutants with reproducible phenotypes had their phenotypes rescued with tagged genomic transgenes, and/or phenocopied by nervous system-specific knockdown using RNA interference (RNAi). RESULTS Four of the 13 JmjC genes (KDM3, lid, NO66, and HSPBAP1) showed reproducible ethanol (EtOH) sensitivity phenotypes. Some of the phenotypes were observed across doses, for example, the enhanced EtOH sensitivity of KDM3KO and NO66KO , but others were dose dependent, such as the reduced EtOH sensitivity of HSPBAP1KO , or the enhanced EtOH tolerance of NO66KO . These phenotypes were rescued by their respective genomic transgenes in KDM3KO and NO66KO mutants. While we were unable to rescue lidk mutants, knockdown of lid in the nervous system recapitulated the lidk phenotype, as was observed for KDM3KO and NO66KO RNAi-mediated knockdown. CONCLUSIONS Our study reveals that the Drosophila JmjC-domain histone demethylases Lid, KDM3, NO66, and HSPBAP1 are required for normal EtOH-induced sedation and tolerance. Three of 3 tested of those 4 JmjC genes are required in the nervous system for normal alcohol-induced behavioral responses, suggesting that this gene family is an intriguing avenue for future research.
Collapse
Affiliation(s)
- Jorge H Pinzón
- Department of Psychiatry, Southwestern Medical Center, University of Texas, Dallas, Texas.,Molecular Biology, Southwestern Medical Center, University of Texas, Dallas, Texas
| | - Addison R Reed
- Department of Psychiatry, University of Utah, Salt Lake City, Utah
| | - Nevine A Shalaby
- Molecular Biology, Southwestern Medical Center, University of Texas, Dallas, Texas
| | - Michael Buszczak
- Molecular Biology, Southwestern Medical Center, University of Texas, Dallas, Texas
| | - Aylin R Rodan
- Departments of Internal Medicine/Division of Nephrology, Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Adrian Rothenfluh
- Department of Psychiatry, Southwestern Medical Center, University of Texas, Dallas, Texas.,Department of Psychiatry, University of Utah, Salt Lake City, Utah
| |
Collapse
|
26
|
Drk-mediated signaling to Rho kinase is required for anesthesia-resistant memory in Drosophila. Proc Natl Acad Sci U S A 2017; 114:10984-10989. [PMID: 28973902 DOI: 10.1073/pnas.1704835114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Anesthesia-resistant memory (ARM) was described decades ago, but the mechanisms that underlie this protein synthesis-independent form of consolidated memory in Drosophila remain poorly understood. Whether the several signaling molecules, receptors, and synaptic proteins currently implicated in ARM operate in one or more pathways and how they function in the process remain unclear. We present evidence that Drk, the Drosophila ortholog of the adaptor protein Grb2, is essential for ARM within adult mushroom body neurons. Significantly, Drk signals engage the Rho kinase Drok, implicating dynamic cytoskeletal changes in ARM, and this is supported by reduced F-actin in the mutants and after pharmacological inhibition of Drok. Interestingly, Drk-Drok signaling appears independent of the function of Radish (Rsh), a protein long implicated in ARM, suggesting that the process involves at least two distinct molecular pathways. Based on these results, we propose that signaling pathways involved in structural plasticity likely underlie this form of translation-independent memory.
Collapse
|
27
|
A Kinome RNAi Screen in Drosophila Identifies Novel Genes Interacting with Lgl, aPKC, and Crb Cell Polarity Genes in Epithelial Tissues. G3-GENES GENOMES GENETICS 2017; 7:2497-2509. [PMID: 28611255 PMCID: PMC5555457 DOI: 10.1534/g3.117.043513] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In both Drosophila melanogaster and mammalian systems, epithelial structure and underlying cell polarity are essential for proper tissue morphogenesis and organ growth. Cell polarity interfaces with multiple cellular processes that are regulated by the phosphorylation status of large protein networks. To gain insight into the molecular mechanisms that coordinate cell polarity with tissue growth, we screened a boutique collection of RNAi stocks targeting the kinome for their capacity to modify Drosophila “cell polarity” eye and wing phenotypes. Initially, we identified kinase or phosphatase genes whose depletion modified adult eye phenotypes associated with the manipulation of cell polarity complexes (via overexpression of Crb or aPKC). We next conducted a secondary screen to test whether these cell polarity modifiers altered tissue overgrowth associated with depletion of Lgl in the wing. These screens identified Hippo, Jun kinase (JNK), and Notch signaling pathways, previously linked to cell polarity regulation of tissue growth. Furthermore, novel pathways not previously connected to cell polarity regulation of tissue growth were identified, including Wingless (Wg/Wnt), Ras, and lipid/Phospho-inositol-3-kinase (PI3K) signaling pathways. Additionally, we demonstrated that the “nutrient sensing” kinases Salt Inducible Kinase 2 and 3 (SIK2 and 3) are potent modifiers of cell polarity phenotypes and regulators of tissue growth. Overall, our screen has revealed novel cell polarity-interacting kinases and phosphatases that affect tissue growth, providing a platform for investigating molecular mechanisms coordinating cell polarity and tissue growth during development.
Collapse
|
28
|
Park SM, Park HR, Lee JH. MAPK3 at the Autism-Linked Human 16p11.2 Locus Influences Precise Synaptic Target Selection at Drosophila Larval Neuromuscular Junctions. Mol Cells 2017; 40:151-161. [PMID: 28196412 PMCID: PMC5339506 DOI: 10.14348/molcells.2017.2307] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 01/10/2023] Open
Abstract
Proper synaptic function in neural circuits requires precise pairings between correct pre- and post-synaptic partners. Errors in this process may underlie development of neuropsychiatric disorders, such as autism spectrum disorder (ASD). Development of ASD can be influenced by genetic factors, including copy number variations (CNVs). In this study, we focused on a CNV occurring at the 16p11.2 locus in the human genome and investigated potential defects in synaptic connectivity caused by reduced activities of genes located in this region at Drosophila larval neuromuscular junctions, a well-established model synapse with stereotypic synaptic structures. A mutation of rolled, a Drosophila homolog of human mitogen-activated protein kinase 3 (MAPK3) at the 16p11.2 locus, caused ectopic innervation of axonal branches and their abnormal defasciculation. The specificity of these phenotypes was confirmed by expression of wild-type rolled in the mutant background. Albeit to a lesser extent, we also observed ectopic innervation patterns in mutants defective in Cdk2, Gαq, and Gp93, all of which were expected to interact with Rolled MAPK3. A further genetic analysis in double heterozygous combinations revealed a synergistic interaction between rolled and Gp93. In addition, results from RT-qPCR analyses indicated consistently reduced rolled mRNA levels in Cdk2, Gαq, and Gp93 mutants. Taken together, these data suggest a central role of MAPK3 in regulating the precise targeting of presynaptic axons to proper postsynaptic targets, a critical step that may be altered significantly in ASD.
Collapse
Affiliation(s)
- Sang Mee Park
- Department of Oral Pathology and BK21Plus Project, School of Dentistry, Pusan National University, Yangsan 50612,
Korea
| | - Hae Ryoun Park
- Department of Oral Pathology and BK21Plus Project, School of Dentistry, Pusan National University, Yangsan 50612,
Korea
- Institute of Translational Dental Sciences, Pusan National University, Yangsan 50612,
Korea
| | - Ji Hye Lee
- Department of Oral Pathology and BK21Plus Project, School of Dentistry, Pusan National University, Yangsan 50612,
Korea
- Institute of Translational Dental Sciences, Pusan National University, Yangsan 50612,
Korea
| |
Collapse
|
29
|
Yang L, Veraksa A. Single-Step Affinity Purification of ERK Signaling Complexes Using the Streptavidin-Binding Peptide (SBP) Tag. Methods Mol Biol 2017; 1487:113-126. [PMID: 27924562 DOI: 10.1007/978-1-4939-6424-6_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Elucidation of biological functions of signaling proteins is facilitated by studying their protein-protein interaction networks. Affinity purification combined with mass spectrometry (AP-MS) has become a favorite method to study protein complexes. Here we describe a procedure for single-step purification of ERK (Rolled) and associated proteins from Drosophila cultured cells. The use of the streptavidin-binding peptide (SBP) tag allows for a highly efficient isolation of native ERK signaling complexes, which are suitable for subsequent analysis by mass spectrometry. Our analysis of the ERK interactome has identified both known and novel signaling components. This method can be easily adapted for SBP-based purification of protein complexes in any expression system.
Collapse
Affiliation(s)
- Liu Yang
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA, 02125, USA
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA, 02125, USA.
| |
Collapse
|
30
|
Rosu C, Cueto R, Russo PS. Poly(colloid)s: "Polymerization" of Poly(l-tyrosine)-silica Composite Particles through the Photoinduced Cross-Linking of Unmodified Proteins Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:8392-8402. [PMID: 27504929 DOI: 10.1021/acs.langmuir.6b01815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Photoinduced cross-linking of unmodified proteins, PICUP, was extended to core-shell silica-polypeptide composite particles to produce poly(colloid)s. Silica particles coated with poly(l-tyrosine), PTYR-SiO2, served as the monomer units. The PICUP reaction accomplished the formation of dityrosil linkages between the tyrosine units by illumination of photo-oxidizing ruthenium(II) bipyridyl catalyst under physiological conditions. The PICUP method was compared with an enzymatic route intermediated by horseradish peroxidase as catalyst. The PTYR-SiO2 particles feature high PTYR content in the shell, which facilitated the formation of heavily cross-linked but unstructured aggregates. After magnetic alignment of superparamagnetic PTYR-SiO2-cobalt composite particles, only the PICUP approach enabled the preparation of isolated chain-like poly(colloid)s. The cross-linking products were confirmed by FTIR. The native secondary structure of poly(l-tyrosine) is preserved in these poly(colloid)s. Because the PICUP reaction does not require the modification of the polypeptide structure, the cross-linked PTYR will retain its characteristic functions as a poly(amino acid). The PICUP method opens the door to a variety of PTYR-based poly(colloid) architectures.
Collapse
Affiliation(s)
- Cornelia Rosu
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
- Department of Chemistry and Macromolecular Studies Group, Louisiana State University , Baton Rouge, Louisiana 70803, United States
- Georgia Tech Polymer Network, GTPN, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Rafael Cueto
- Department of Chemistry and Macromolecular Studies Group, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Paul S Russo
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
- Department of Chemistry and Macromolecular Studies Group, Louisiana State University , Baton Rouge, Louisiana 70803, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
- Georgia Tech Polymer Network, GTPN, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
31
|
Ashton-Beaucage D, Lemieux C, Udell CM, Sahmi M, Rochette S, Therrien M. The Deubiquitinase USP47 Stabilizes MAPK by Counteracting the Function of the N-end Rule ligase POE/UBR4 in Drosophila. PLoS Biol 2016; 14:e1002539. [PMID: 27552662 PMCID: PMC4994957 DOI: 10.1371/journal.pbio.1002539] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 07/28/2016] [Indexed: 01/06/2023] Open
Abstract
RAS-induced MAPK signaling is a central driver of the cell proliferation apparatus. Disruption of this pathway is widely observed in cancer and other pathologies. Consequently, considerable effort has been devoted to understanding the mechanistic aspects of RAS-MAPK signal transmission and regulation. While much information has been garnered on the steps leading up to the activation and inactivation of core pathway components, comparatively little is known on the mechanisms controlling their expression and turnover. We recently identified several factors that dictate Drosophila MAPK levels. Here, we describe the function of one of these, the deubiquitinase (DUB) USP47. We found that USP47 acts post-translationally to counteract a proteasome-mediated event that reduces MAPK half-life and thereby dampens signaling output. Using an RNAi-based genetic interaction screening strategy, we identified UBC6, POE/UBR4, and UFD4, respectively, as E2 and E3 enzymes that oppose USP47 activity. Further characterization of POE-associated factors uncovered KCMF1 as another key component modulating MAPK levels. Together, these results identify a novel protein degradation module that governs MAPK levels. Given the role of UBR4 as an N-recognin ubiquitin ligase, our findings suggest that RAS-MAPK signaling in Drosophila is controlled by the N-end rule pathway and that USP47 counteracts its activity.
Collapse
Affiliation(s)
- Dariel Ashton-Beaucage
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montreal, Quebec, Canada
| | - Caroline Lemieux
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montreal, Quebec, Canada
| | - Christian M. Udell
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montreal, Quebec, Canada
| | - Malha Sahmi
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montreal, Quebec, Canada
| | - Samuel Rochette
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montreal, Quebec, Canada
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montreal, Quebec, Canada
- Département de pathologie et de biologie cellulaire, Université de Montréal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
32
|
Liu K, Chen HL, Wang S, Gu MM, Chen XM, Zhang SL, Yu KJ, You QS. High Expression of RIOK2 and NOB1 Predict Human Non-small Cell Lung Cancer Outcomes. Sci Rep 2016; 6:28666. [PMID: 27346559 PMCID: PMC4921844 DOI: 10.1038/srep28666] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/08/2016] [Indexed: 01/29/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality worldwide. However, there is a shortage of suitable diagnostic markers for early stages of NSCLC, and therapeutic targets are limited. Right open reading frame (Rio) kinase 2 (RIOK2) and Nin one binding (NOB1) protein are important accessory factors in ribosome assembly and are highly expressed in malignant tumours; moreover, they interact with each other. However, the RIOK2 expression profile and its clinical significance as well as NOB1's mechanism in NSCLC remain unknown. In this study, NSCLC cell lines and 15 NSCLC tumour tissues (paired with adjacent normal lung tissues) were collected for a real-time quantitative PCR (RT-qPCR) analysis. In addition, 153 NSCLC cases and 27 normal lung tissues were used in an immunohistochemical analysis to evaluate the RIOK2 and NOB1 expression profiles, their clinicopathological factors in NSCLC and their correlations with prognoses. RIOK2 and NOB1 were highly expressed in NSCLC cells and tissues, and their expression profiles were significantly associated with the Tumour Node Metastasis (TNM) clinical stage, lymph node metastasis, and differentiation. RIOK2 expression was correlated with NOB1. The results suggested that simultaneously determining the expression of RIOK2 and NOB1 will improve the diagnostic rate in early stages of NSCLC. Moreover, RIOK2 and NOB1 might be potential targets for NSCLC therapy.
Collapse
Affiliation(s)
- Kun Liu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | | | - Shuo Wang
- Nantong University, Nantong, 226001, China
| | - Ming-Ming Gu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xin-Ming Chen
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | | | | | - Qing-Sheng You
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
33
|
Zugasti O, Thakur N, Belougne J, Squiban B, Kurz CL, Soulé J, Omi S, Tichit L, Pujol N, Ewbank JJ. A quantitative genome-wide RNAi screen in C. elegans for antifungal innate immunity genes. BMC Biol 2016; 14:35. [PMID: 27129311 PMCID: PMC4850687 DOI: 10.1186/s12915-016-0256-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/18/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Caenorhabditis elegans has emerged over the last decade as a useful model for the study of innate immunity. Its infection with the pathogenic fungus Drechmeria coniospora leads to the rapid up-regulation in the epidermis of genes encoding antimicrobial peptides. The molecular basis of antimicrobial peptide gene regulation has been previously characterized through forward genetic screens. Reverse genetics, based on RNAi, provide a complementary approach to dissect the worm's immune defenses. RESULTS We report here the full results of a quantitative whole-genome RNAi screen in C. elegans for genes involved in regulating antimicrobial peptide gene expression. The results will be a valuable resource for those contemplating similar RNAi-based screens and also reveal the limitations of such an approach. We present several strategies, including a comprehensive class clustering method, to overcome these limitations and which allowed us to characterize the different steps of the interaction between C. elegans and the fungus D. coniospora, leading to a complete description of the MAPK pathway central to innate immunity in C. elegans. The results further revealed a cross-tissue signaling, triggered by mitochondrial dysfunction in the intestine, that suppresses antimicrobial peptide gene expression in the nematode epidermis. CONCLUSIONS Overall, our results provide an unprecedented system's level insight into the regulation of C. elegans innate immunity. They represent a significant contribution to our understanding of host defenses and will lead to a better comprehension of the function and evolution of animal innate immunity.
Collapse
Affiliation(s)
- Olivier Zugasti
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
- Present address: Institut de Biologie du Développement de Marseille, CNRS, UMR6216, Case 907, Marseille, France
| | - Nishant Thakur
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Jérôme Belougne
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Barbara Squiban
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
- Present address: Section of Hematology/Oncology, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - C Léopold Kurz
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
- Present address: Institut de Biologie du Développement de Marseille, CNRS, UMR6216, Case 907, Marseille, France
| | - Julien Soulé
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
- Present address: Institut de Genomique Fonctionnelle, 141, rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | - Shizue Omi
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Laurent Tichit
- Institut de Mathématiques de Marseille, Aix Marseille Université, I2M Centrale Marseille, CNRS UMR 7373, 13453, Marseille, France
| | - Nathalie Pujol
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France.
| | - Jonathan J Ewbank
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France.
| |
Collapse
|
34
|
A Cross-Species Study of PI3K Protein-Protein Interactions Reveals the Direct Interaction of P85 and SHP2. Sci Rep 2016; 6:20471. [PMID: 26839216 PMCID: PMC4738311 DOI: 10.1038/srep20471] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/05/2016] [Indexed: 12/14/2022] Open
Abstract
Using a series of immunoprecipitation (IP) – tandem mass spectrometry (LC-MS/MS) experiments and reciprocal BLAST, we conducted a fly-human cross-species comparison of the phosphoinositide-3-kinase (PI3K) interactome in a drosophila S2R+ cell line and several NSCLC and human multiple myeloma cell lines to identify conserved interacting proteins to PI3K, a critical signaling regulator of the AKT pathway. Using H929 human cancer cells and drosophila S2R+ cells, our data revealed an unexpected direct binding of Corkscrew, the drosophila ortholog of the non-receptor protein tyrosine phosphatase type II (SHP2) to the Pi3k21B (p60) regulatory subunit of PI3K (p50/p85 human ortholog) but no association with Pi3k92e, the human ortholog of the p110 catalytic subunit. The p85-SHP2 association was validated in human cell lines, and formed a ternary regulatory complex with GRB2-associated-binding protein 2 (GAB2). Validation experiments with knockdown of GAB2 and Far-Western blots proved the direct interaction of SHP2 with p85, independent of adaptor proteins and transfected FLAG-p85 provided evidence that SHP2 binding on p85 occurred on the SH2 domains. A disruption of the SHP2-p85 complex took place after insulin/IGF1 stimulation or imatinib treatment, suggesting that the direct SHP2-p85 interaction was both independent of AKT activation and positively regulates the ERK signaling pathway.
Collapse
|
35
|
Pokharel YR, Saarela J, Szwajda A, Rupp C, Rokka A, Lal Kumar Karna S, Teittinen K, Corthals G, Kallioniemi O, Wennerberg K, Aittokallio T, Westermarck J. Relevance Rank Platform (RRP) for Functional Filtering of High Content Protein-Protein Interaction Data. Mol Cell Proteomics 2015; 14:3274-83. [PMID: 26499835 DOI: 10.1074/mcp.m115.050773] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Indexed: 11/06/2022] Open
Abstract
High content protein interaction screens have revolutionized our understanding of protein complex assembly. However, one of the major challenges in translation of high content protein interaction data is identification of those interactions that are functionally relevant for a particular biological question. To address this challenge, we developed a relevance ranking platform (RRP), which consist of modular functional and bioinformatic filters to provide relevance rank among the interactome proteins. We demonstrate the versatility of RRP to enable a systematic prioritization of the most relevant interaction partners from high content data, highlighted by the analysis of cancer relevant protein interactions for oncoproteins Pin1 and PME-1. We validated the importance of selected interactions by demonstration of PTOV1 and CSKN2B as novel regulators of Pin1 target c-Jun phosphorylation and reveal previously unknown interacting proteins that may mediate PME-1 effects via PP2A-inhibition. The RRP framework is modular and can be modified to answer versatile research problems depending on the nature of the biological question under study. Based on comparison of RRP to other existing filtering tools, the presented data indicate that RRP offers added value especially for the analysis of interacting proteins for which there is no sufficient prior knowledge available. Finally, we encourage the use of RRP in combination with either SAINT or CRAPome computational tools for selecting the candidate interactors that fulfill the both important requirements, functional relevance, and high confidence interaction detection.
Collapse
Affiliation(s)
- Yuba Raj Pokharel
- From the ‡Institute for Molecular Medicine Finland FIMM, University of Helsinki, PO Box 20, FIN-00014 Helsinki, Finland; §Centre for Biotechnology, ‖Faculty of Life Science and Biotechnology, South Asian University, New Delhi 110021, India
| | - Jani Saarela
- From the ‡Institute for Molecular Medicine Finland FIMM, University of Helsinki, PO Box 20, FIN-00014 Helsinki, Finland
| | - Agnieszka Szwajda
- From the ‡Institute for Molecular Medicine Finland FIMM, University of Helsinki, PO Box 20, FIN-00014 Helsinki, Finland
| | | | | | | | - Kaisa Teittinen
- **Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere and Tampere University Hospital, FIN-33014, Tampere, Finland
| | | | - Olli Kallioniemi
- From the ‡Institute for Molecular Medicine Finland FIMM, University of Helsinki, PO Box 20, FIN-00014 Helsinki, Finland
| | - Krister Wennerberg
- From the ‡Institute for Molecular Medicine Finland FIMM, University of Helsinki, PO Box 20, FIN-00014 Helsinki, Finland
| | - Tero Aittokallio
- From the ‡Institute for Molecular Medicine Finland FIMM, University of Helsinki, PO Box 20, FIN-00014 Helsinki, Finland
| | - Jukka Westermarck
- From the ‡Institute for Molecular Medicine Finland FIMM, University of Helsinki, PO Box 20, FIN-00014 Helsinki, Finland; §Centre for Biotechnology, ¶Department of Pathology,University of Turku and Åbo Akademi, Turku, Finland, PO Box 123, FIN-20521 Turku, Finland.;
| |
Collapse
|
36
|
Lim B, Dsilva CJ, Levario TJ, Lu H, Schüpbach T, Kevrekidis IG, Shvartsman SY. Dynamics of Inductive ERK Signaling in the Drosophila Embryo. Curr Biol 2015; 25:1784-90. [PMID: 26096970 DOI: 10.1016/j.cub.2015.05.039] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/14/2015] [Accepted: 05/20/2015] [Indexed: 12/11/2022]
Abstract
Transient activation of the highly conserved extracellular-signal-regulated kinase (ERK) establishes precise patterns of cell fates in developing tissues. Quantitative parameters of these transients are essentially unknown, but a growing number of studies suggest that changes in these parameters can lead to a broad spectrum of developmental abnormalities. We provide a detailed quantitative picture of an ERK-dependent inductive signaling event in the early Drosophila embryo, an experimental system that offers unique opportunities for high-throughput studies of developmental signaling. Our analysis reveals a spatiotemporal pulse of ERK activation that is consistent with a model in which transient production of a short-ranged ligand feeds into a simple signal interpretation system. The pulse of ERK signaling acts as a switch in controlling the expression of the ERK target gene. The quantitative approach that led to this model, based on the integration of data from fixed embryos and live imaging, can be extended to other developmental systems patterned by transient inductive signals.
Collapse
Affiliation(s)
- Bomyi Lim
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Carmeline J Dsilva
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Thomas J Levario
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hang Lu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Trudi Schüpbach
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ioannis G Kevrekidis
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
37
|
Sopko R, Lin YB, Makhijani K, Alexander B, Perrimon N, Brückner K. A systems-level interrogation identifies regulators of Drosophila blood cell number and survival. PLoS Genet 2015; 11:e1005056. [PMID: 25749252 PMCID: PMC4352040 DOI: 10.1371/journal.pgen.1005056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 02/05/2015] [Indexed: 12/12/2022] Open
Abstract
In multicellular organisms, cell number is typically determined by a balance of intracellular signals that positively and negatively regulate cell survival and proliferation. Dissecting these signaling networks facilitates the understanding of normal development and tumorigenesis. Here, we study signaling by the Drosophila PDGF/VEGF Receptor (Pvr) in embryonic blood cells (hemocytes) and in the related cell line Kc as a model for the requirement of PDGF/VEGF receptors in vertebrate cell survival and proliferation. The system allows the investigation of downstream and parallel signaling networks, based on the ability of Pvr to activate Ras/Erk, Akt/TOR, and yet-uncharacterized signaling pathway/s, which redundantly mediate cell survival and contribute to proliferation. Using Kc cells, we performed a genome wide RNAi screen for regulators of cell number in a sensitized, Pvr deficient background. We identified the receptor tyrosine kinase (RTK) Insulin-like receptor (InR) as a major Pvr Enhancer, and the nuclear hormone receptors Ecdysone receptor (EcR) and ultraspiracle (usp), corresponding to mammalian Retinoid X Receptor (RXR), as Pvr Suppressors. In vivo analysis in the Drosophila embryo revealed a previously unrecognized role for EcR to promote apoptotic death of embryonic blood cells, which is balanced with pro-survival signaling by Pvr and InR. Phosphoproteomic analysis demonstrates distinct modes of cell number regulation by EcR and RTK signaling. We define common phosphorylation targets of Pvr and InR that include regulators of cell survival, and unique targets responsible for specialized receptor functions. Interestingly, our analysis reveals that the selection of phosphorylation targets by signaling receptors shows qualitative changes depending on the signaling status of the cell, which may have wide-reaching implications for other cell regulatory systems.
Collapse
Affiliation(s)
- Richelle Sopko
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - You Bin Lin
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Kalpana Makhijani
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Brandy Alexander
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Katja Brückner
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, United States of America
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
38
|
Linz DM, Tomoyasu Y. RNAi screening of developmental toolkit genes: a search for novel wing genes in the red flour beetle, Tribolium castaneum. Dev Genes Evol 2015; 225:11-22. [PMID: 25613748 DOI: 10.1007/s00427-015-0488-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
Abstract
The amazing array of diversity among insect wings offers a powerful opportunity to study the mechanisms guiding morphological evolution. Studies in Drosophila (the fruit fly) have identified dozens of genes important for wing development. These genes are often called candidate genes, serving as an ideal starting point to study wing development in other insects. However, we also need to explore beyond the candidate genes to gain a more comprehensive view of insect wing evolution. As a first step away from the traditional candidate genes, we utilized Tribolium (the red flour beetle) as a model and assessed the potential involvement of a group of developmental toolkit genes (embryonic patterning genes) in beetle wing development. We hypothesized that the highly pleiotropic nature of these developmental genes would increase the likelihood of finding novel wing genes in Tribolium. Through the RNA interference screening, we found that Tc-cactus has a less characterized (but potentially evolutionarily conserved) role in wing development. We also found that the odd-skipped family genes are essential for the formation of the thoracic pleural plates, including the recently discovered wing serial homologs in Tribolium. In addition, we obtained several novel insights into the function of these developmental genes, such as the involvement of mille-pattes and Tc-odd-paired in metamorphosis. Despite these findings, no gene we examined was found to have novel wing-related roles unique in Tribolium. These results suggest a relatively conserved nature of developmental toolkit genes and highlight the limited degree to which these genes are co-opted during insect wing evolution.
Collapse
Affiliation(s)
- David M Linz
- Department of Biology, Miami University, 700E High St., Oxford, OH, 45056, USA
| | | |
Collapse
|
39
|
Li X, Wang W, Chen J. From pathways to networks: connecting dots by establishing protein-protein interaction networks in signaling pathways using affinity purification and mass spectrometry. Proteomics 2014; 15:188-202. [PMID: 25137225 DOI: 10.1002/pmic.201400147] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/28/2014] [Accepted: 08/13/2014] [Indexed: 12/27/2022]
Abstract
Signal transductions are the basis of biological activities in all living organisms. Studying the signaling pathways, especially under physiological conditions, has become one of the most important facets of modern biological research. During the last decade, MS has been used extensively in biological research and is proven to be effective in addressing important biological questions. Here, we review the current progress in the understanding of signaling networks using MS approaches. We will focus on studies of protein-protein interactions that use affinity purification followed by MS approach. We discuss obstacles to affinity purification, data processing, functional validation, and identification of transient interactions and provide potential solutions for pathway-specific proteomics analysis, which we hope one day will lead to a comprehensive understanding of signaling networks in humans.
Collapse
Affiliation(s)
- Xu Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|
40
|
Liu SM, Lu J, Lee HC, Chung FH, Ma N. miR-524-5p suppresses the growth of oncogenic BRAF melanoma by targeting BRAF and ERK2. Oncotarget 2014; 5:9444-59. [PMID: 25275294 PMCID: PMC4253445 DOI: 10.18632/oncotarget.2452] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 06/20/2014] [Indexed: 01/07/2023] Open
Abstract
It has been well documented that miRNAs can modulate the effectiveness of cancer-associated signaling pathways. Mitogen-activated protein kinase (MAPK/ERK) signaling plays an essential role in the progression of many cancers, including melanoma and colon cancers. However, no single miRNA is reported to directly target multiple components of the MAPK/ERK pathway. We performed a miRNA PCR array screening with various MAPK/ERK signaling activities. The miRNA array data revealed that the expression of miR-524-5p was decreased in cells with an active MAPK/ERK pathway and confirmed that the expression of miR-524-5p is inversely associated with the activity of the MAPK/ERK pathway. We demonstrated that miR-524-5p directly binds to the 3'-untranslated regions of both BRAFandERK2 and suppresses the expression of these proteins. Because BRAF and ERK2 are the main components of MAPK signaling, the overexpression of miR-524-5p effectively inhibits MAPK/ERK signaling, tumor proliferation, and melanoma cell migration. Moreover, tumors overexpressing miR-524-5p were significantly smaller than those of the negative control mice. Our findings provide new insight into the role of miR-524-5p as an important miRNA that negatively regulates the MAPK/ERK signaling pathway, suggesting that miR-524-5p could be a potent therapeutic candidate for melanoma treatment.
Collapse
Affiliation(s)
- Szu-Mam Liu
- Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan
| | - Jean Lu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hoong-Chien Lee
- Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan
- Center for Dynamical Biomarkers and Translational Medicine, National Central University, Jhongli, Taiwan
- Department of Physics, Chung Yuan Christian University, Jhongli, Taiwan
| | - Feng-Hsiang Chung
- Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan
- Center for Dynamical Biomarkers and Translational Medicine, National Central University, Jhongli, Taiwan
| | - Nianhan Ma
- Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan
| |
Collapse
|
41
|
Rhee DY, Cho DY, Zhai B, Slattery M, Ma L, Mintseris J, Wong CY, White KP, Celniker SE, Przytycka TM, Gygi SP, Obar RA, Artavanis-Tsakonas S. Transcription factor networks in Drosophila melanogaster. Cell Rep 2014; 8:2031-2043. [PMID: 25242320 DOI: 10.1016/j.celrep.2014.08.038] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/09/2014] [Accepted: 08/16/2014] [Indexed: 11/15/2022] Open
Abstract
Specific cellular fates and functions depend on differential gene expression, which occurs primarily at the transcriptional level and is controlled by complex regulatory networks of transcription factors (TFs). TFs act through combinatorial interactions with other TFs, cofactors, and chromatin-remodeling proteins. Here, we define protein-protein interactions using a coaffinity purification/mass spectrometry method and study 459 Drosophila melanogaster transcription-related factors, representing approximately half of the established catalog of TFs. We probe this network in vivo, demonstrating functional interactions for many interacting proteins, and test the predictive value of our data set. Building on these analyses, we combine regulatory network inference models with physical interactions to define an integrated network that connects combinatorial TF protein interactions to the transcriptional regulatory network of the cell. We use this integrated network as a tool to connect the functional network of genetic modifiers related to mastermind, a transcriptional cofactor of the Notch pathway.
Collapse
Affiliation(s)
- David Y Rhee
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Dong-Yeon Cho
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Bo Zhai
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew Slattery
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Lijia Ma
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Julian Mintseris
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christina Y Wong
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin P White
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Susan E Celniker
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Teresa M Przytycka
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Robert A Obar
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Spyros Artavanis-Tsakonas
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Biogen Idec, Inc., Cambridge, MA 02142, USA.
| |
Collapse
|
42
|
Yugi K, Kubota H, Toyoshima Y, Noguchi R, Kawata K, Komori Y, Uda S, Kunida K, Tomizawa Y, Funato Y, Miki H, Matsumoto M, Nakayama KI, Kashikura K, Endo K, Ikeda K, Soga T, Kuroda S. Reconstruction of insulin signal flow from phosphoproteome and metabolome data. Cell Rep 2014; 8:1171-83. [PMID: 25131207 DOI: 10.1016/j.celrep.2014.07.021] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/13/2014] [Accepted: 07/15/2014] [Indexed: 12/20/2022] Open
Abstract
Cellular homeostasis is regulated by signals through multiple molecular networks that include protein phosphorylation and metabolites. However, where and when the signal flows through a network and regulates homeostasis has not been explored. We have developed a reconstruction method for the signal flow based on time-course phosphoproteome and metabolome data, using multiple databases, and have applied it to acute action of insulin, an important hormone for metabolic homeostasis. An insulin signal flows through a network, through signaling pathways that involve 13 protein kinases, 26 phosphorylated metabolic enzymes, and 35 allosteric effectors, resulting in quantitative changes in 44 metabolites. Analysis of the network reveals that insulin induces phosphorylation and activation of liver-type phosphofructokinase 1, thereby controlling a key reaction in glycolysis. We thus provide a versatile method of reconstruction of signal flow through the network using phosphoproteome and metabolome data.
Collapse
Affiliation(s)
- Katsuyuki Yugi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Kubota
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan; Division of integrated Omics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan; PRESTO, Japan Science and Technology Corporation, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Yu Toyoshima
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Rei Noguchi
- Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kentaro Kawata
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasunori Komori
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinsuke Uda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan; Division of integrated Omics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Katsuyuki Kunida
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoko Tomizawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yosuke Funato
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroaki Miki
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Kasumi Kashikura
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Keiko Endo
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Kazutaka Ikeda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Shinya Kuroda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan; CREST, Japan Science and Technology Corporation, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
43
|
Futran AS, Link AJ, Seger R, Shvartsman SY. ERK as a model for systems biology of enzyme kinetics in cells. Curr Biol 2014; 23:R972-9. [PMID: 24200329 DOI: 10.1016/j.cub.2013.09.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A key step towards a chemical picture of enzyme catalysis was taken in 1913, when Leonor Michaelis and Maud Menten published their studies of sucrose hydrolysis by invertase. Based on a novel experimental design and a mathematical model, their work offered a quantitative view of biochemical kinetics well before the protein nature of enzymes was established and complexes with substrates could be detected. Michaelis-Menten kinetics provides a solid framework for enzyme kinetics in vitro, but what about kinetics in cells, where enzymes can be highly regulated and participate in a multitude of interactions? We discuss this question using the Extracellular Signal Regulated Kinase (ERK), which controls a myriad functions in cells, as a model of an important enzyme for which we have crystal structures, quantitative in vitro assays, and a vast list of binding partners. Despite great progress, we still cannot quantitatively predict how the rates of ERK-dependent reactions respond to genetic and pharmacological perturbations. Achieving this goal, which is important from both fundamental and practical standpoints, requires measuring the rates of enzyme reactions in their native environment and interpreting these measurements using simple but realistic mathematical models--the two elements which served as the cornerstones for Michaelis' and Menten's seminal 1913 paper.
Collapse
Affiliation(s)
- Alan S Futran
- Department of Chemical and Biological Engineering, Princeton University, Princeton, USA
| | | | | | | |
Collapse
|
44
|
Weinberg F, Schulze E, Fatouros C, Schmidt E, Baumeister R, Brummer T. Expression pattern and first functional characterization of riok-1 in Caenorhabditis elegans. Gene Expr Patterns 2014; 15:124-34. [PMID: 24929033 DOI: 10.1016/j.gep.2014.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 01/08/2023]
Abstract
Rio kinases are atypical serine/threonine kinases that emerge as potential cooperation partners in Ras-driven tumors. In the current study, we performed an RNAi screen in Caenorhabditis elegans to identify suppressors of oncogenic Ras signaling. Aberrant Ras/Raf signaling in C. elegans leads to the formation of a multi-vulva (Muv) phenotype. We found that depletion of riok-1, the C. elegans orthologue of the mammalian RioK1, suppressed the Muv phenotype. By using a promoter GFP construct, we could show that riok-1 is expressed in neuronal cells, the somatic gonad, the vulva, the uterus and the spermatheca. Furthermore, we observed developmental defects in the gonad upon riok-1 knockdown in a wildtype background. Our data suggest that riok-1 is a modulator of the Ras signaling pathway, suggesting implications for novel interventions in the context of Ras-driven tumors.
Collapse
Affiliation(s)
- Florian Weinberg
- Institute of Biology III, Faculty of Biology, University of Freiburg, Germany; Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany; IMMZ - Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Germany
| | - Ekkehard Schulze
- Institute of Biology III, Faculty of Biology, University of Freiburg, Germany; BIOSS - Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Chronis Fatouros
- Institute of Biology III, Faculty of Biology, University of Freiburg, Germany; Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany; International Max Planck Research School for Molecular and Cell Biology (IMPRS-MCB), Freiburg, Germany
| | - Enrico Schmidt
- Institute of Biology III, Faculty of Biology, University of Freiburg, Germany; Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Ralf Baumeister
- Institute of Biology III, Faculty of Biology, University of Freiburg, Germany; Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany; IMMZ - Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Germany; BIOSS - Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Tilman Brummer
- Institute of Biology III, Faculty of Biology, University of Freiburg, Germany; Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany; IMMZ - Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Germany; BIOSS - Centre for Biological Signalling Studies, University of Freiburg, Germany.
| |
Collapse
|
45
|
Murali T, Pacifico S, Finley RL. Integrating the interactome and the transcriptome of Drosophila. BMC Bioinformatics 2014; 15:177. [PMID: 24913703 PMCID: PMC4229734 DOI: 10.1186/1471-2105-15-177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 05/28/2014] [Indexed: 12/29/2022] Open
Abstract
Background Networks of interacting genes and gene products mediate most cellular and developmental processes. High throughput screening methods combined with literature curation are identifying many of the protein-protein interactions (PPI) and protein-DNA interactions (PDI) that constitute these networks. Most of the detection methods, however, fail to identify the in vivo spatial or temporal context of the interactions. Thus, the interaction data are a composite of the individual networks that may operate in specific tissues or developmental stages. Genome-wide expression data may be useful for filtering interaction data to identify the subnetworks that operate in specific spatial or temporal contexts. Here we take advantage of the extensive interaction and expression data available for Drosophila to analyze how interaction networks may be unique to specific tissues and developmental stages. Results We ranked genes on a scale from ubiquitously expressed to tissue or stage specific and examined their interaction patterns. Interestingly, ubiquitously expressed genes have many more interactions among themselves than do non-ubiquitously expressed genes both in PPI and PDI networks. While the PDI network is enriched for interactions between tissue-specific transcription factors and their tissue-specific targets, a preponderance of the PDI interactions are between ubiquitous and non-ubiquitously expressed genes and proteins. In contrast to PDI, PPI networks are depleted for interactions among tissue- or stage- specific proteins, which instead interact primarily with widely expressed proteins. In light of these findings, we present an approach to filter interaction data based on gene expression levels normalized across tissues or developmental stages. We show that this filter (the percent maximum or pmax filter) can be used to identify subnetworks that function within individual tissues or developmental stages. Conclusions These observations suggest that protein networks are frequently organized into hubs of widely expressed proteins to which are attached various tissue- or stage-specific proteins. This is consistent with earlier analyses of human PPI data and suggests a similar organization of interaction networks across species. This organization implies that tissue or stage specific networks can be best identified from interactome data by using filters designed to include both ubiquitously expressed and specifically expressed genes and proteins.
Collapse
Affiliation(s)
| | | | - Russell L Finley
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| |
Collapse
|
46
|
Doupé DP, Perrimon N. Visualizing and manipulating temporal signaling dynamics with fluorescence-based tools. Sci Signal 2014; 7:re1. [PMID: 24692594 PMCID: PMC4319366 DOI: 10.1126/scisignal.2005077] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The use of genome-wide proteomic and RNA interference approaches has moved our understanding of signal transduction from linear pathways to highly integrated networks centered on core nodes. However, probing the dynamics of flow of information through such networks remains technically challenging. In particular, how the temporal dynamics of an individual pathway can elicit distinct outcomes in a single cell type and how multiple pathways may interact sequentially or synchronously to influence cell fate remain open questions in many contexts. The development of fluorescence-based reporters and optogenetic regulators of pathway activity enables the analysis of signaling in living cells and organisms with unprecedented spatiotemporal resolution and holds the promise of addressing these key questions. We present a brief overview of the evidence for the importance of temporal dynamics in cellular regulation, introduce these fluorescence-based tools, and highlight specific studies that leveraged these tools to probe the dynamics of information flow through signaling networks. In particular, we highlight two studies in Caenorhabditis elegans sensory neurons and cultured mammalian cells that demonstrate the importance of signal dynamics in determining cellular responses.
Collapse
Affiliation(s)
- David P Doupé
- 1Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
47
|
Ashton-Beaucage D, Udell CM, Gendron P, Sahmi M, Lefrançois M, Baril C, Guenier AS, Duchaine J, Lamarre D, Lemieux S, Therrien M. A functional screen reveals an extensive layer of transcriptional and splicing control underlying RAS/MAPK signaling in Drosophila. PLoS Biol 2014; 12:e1001809. [PMID: 24643257 PMCID: PMC3958334 DOI: 10.1371/journal.pbio.1001809] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/05/2014] [Indexed: 12/11/2022] Open
Abstract
A global RNAi screening approach in Drosophila cells identifies a large group of transcription and splicing factors that modulate RAS/MAPK signaling by altering the expression of MAPK. The small GTPase RAS is among the most prevalent oncogenes. The evolutionarily conserved RAF-MEK-MAPK module that lies downstream of RAS is one of the main conduits through which RAS transmits proliferative signals in normal and cancer cells. Genetic and biochemical studies conducted over the last two decades uncovered a small set of factors regulating RAS/MAPK signaling. Interestingly, most of these were found to control RAF activation, thus suggesting a central regulatory role for this event. Whether additional factors are required at this level or further downstream remains an open question. To obtain a comprehensive view of the elements functionally linked to the RAS/MAPK cascade, we used a quantitative assay in Drosophila S2 cells to conduct a genome-wide RNAi screen for factors impacting RAS-mediated MAPK activation. The screen led to the identification of 101 validated hits, including most of the previously known factors associated to this pathway. Epistasis experiments were then carried out on individual candidates to determine their position relative to core pathway components. While this revealed several new factors acting at different steps along the pathway—including a new protein complex modulating RAF activation—we found that most hits unexpectedly work downstream of MEK and specifically influence MAPK expression. These hits mainly consist of constitutive splicing factors and thereby suggest that splicing plays a specific role in establishing MAPK levels. We further characterized two representative members of this group and surprisingly found that they act by regulating mapk alternative splicing. This study provides an unprecedented assessment of the factors modulating RAS/MAPK signaling in Drosophila. In addition, it suggests that pathway output does not solely rely on classical signaling events, such as those controlling RAF activation, but also on the regulation of MAPK levels. Finally, it indicates that core splicing components can also specifically impact alternative splicing. The RAS/MAPK pathway is a cornerstone of the cell proliferation signaling apparatus. It has a notable involvement in cancer as mutations in the components of the pathway are associated with aberrant proliferation. Previous work has focused predominantly on post-translational regulation of RAS/MAPK signaling such that a large and intricate network of factors is now known to act on core pathway components. However, regulation at the pre-translational level has not been examined nearly as extensively and is comparatively poorly understood. In this study, we used an unbiased and global screening approach to survey the Drosophila genome—using Drosophila cultured cells—for novel regulators of this pathway. Surprisingly, a majority of our hits were associated to either transcription or mRNA splicing. We used a series of secondary screening assays to determine which part of the RAS/MAPK pathway these candidates target. We found that these factors were not equally distributed along the pathway, but rather converged predominantly on mapk mRNA expression and processing. Our findings raise the intriguing possibility that regulation of mapk transcript production is a key step for a diverse set of regulatory inputs, and may play an important part in RAS/MAPK signaling dynamics.
Collapse
Affiliation(s)
- Dariel Ashton-Beaucage
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Christian M. Udell
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Patrick Gendron
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Malha Sahmi
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Martin Lefrançois
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Caroline Baril
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Anne-Sophie Guenier
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Jean Duchaine
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Daniel Lamarre
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
- Département de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
- Département d'informatique et de recherche opérationnelle, Université de Montréal, Montréal, Québec, Canada
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
- Département de pathologie et de biologie cellulaire, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
48
|
Mohr SE. RNAi screening in Drosophila cells and in vivo. Methods 2014; 68:82-8. [PMID: 24576618 DOI: 10.1016/j.ymeth.2014.02.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/07/2014] [Accepted: 02/13/2014] [Indexed: 12/31/2022] Open
Abstract
Here, I discuss how RNAi screening can be used effectively to uncover gene function. Specifically, I discuss the types of high-throughput assays that can be done in Drosophila cells and in vivo, RNAi reagent design and available reagent collections, automated screen pipelines, analysis of screen results, and approaches to RNAi results verification.
Collapse
Affiliation(s)
- Stephanie E Mohr
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States.
| |
Collapse
|
49
|
Xu J, Cherry S. Viruses and antiviral immunity in Drosophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:67-84. [PMID: 23680639 PMCID: PMC3826445 DOI: 10.1016/j.dci.2013.05.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/26/2013] [Accepted: 05/02/2013] [Indexed: 05/10/2023]
Abstract
Viral pathogens present many challenges to organisms, driving the evolution of a myriad of antiviral strategies to combat infections. A wide variety of viruses infect invertebrates, including both natural pathogens that are insect-restricted, and viruses that are transmitted to vertebrates. Studies using the powerful tools in the model organism Drosophila have expanded our understanding of antiviral defenses against diverse viruses. In this review, we will cover three major areas. First, we will describe the tools used to study viruses in Drosophila. Second, we will survey the major viruses that have been studied in Drosophila. And lastly, we will discuss the well-characterized mechanisms that are active against these diverse pathogens, focusing on non-RNAi mediated antiviral mechanisms. Antiviral RNAi is discussed in another paper in this issue.
Collapse
Affiliation(s)
- Jie Xu
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
50
|
Genetic and functional studies implicate synaptic overgrowth and ring gland cAMP/PKA signaling defects in the Drosophila melanogaster neurofibromatosis-1 growth deficiency. PLoS Genet 2013; 9:e1003958. [PMID: 24278035 PMCID: PMC3836801 DOI: 10.1371/journal.pgen.1003958] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 10/01/2013] [Indexed: 12/21/2022] Open
Abstract
Neurofibromatosis type 1 (NF1), a genetic disease that affects 1 in 3,000, is caused by loss of a large evolutionary conserved protein that serves as a GTPase Activating Protein (GAP) for Ras. Among Drosophila melanogaster Nf1 (dNf1) null mutant phenotypes, learning/memory deficits and reduced overall growth resemble human NF1 symptoms. These and other dNf1 defects are relatively insensitive to manipulations that reduce Ras signaling strength but are suppressed by increasing signaling through the 3′-5′ cyclic adenosine monophosphate (cAMP) dependent Protein Kinase A (PKA) pathway, or phenocopied by inhibiting this pathway. However, whether dNf1 affects cAMP/PKA signaling directly or indirectly remains controversial. To shed light on this issue we screened 486 1st and 2nd chromosome deficiencies that uncover >80% of annotated genes for dominant modifiers of the dNf1 pupal size defect, identifying responsible genes in crosses with mutant alleles or by tissue-specific RNA interference (RNAi) knockdown. Validating the screen, identified suppressors include the previously implicated dAlk tyrosine kinase, its activating ligand jelly belly (jeb), two other genes involved in Ras/ERK signal transduction and several involved in cAMP/PKA signaling. Novel modifiers that implicate synaptic defects in the dNf1 growth deficiency include the intersectin-related synaptic scaffold protein Dap160 and the cholecystokinin receptor-related CCKLR-17D1 drosulfakinin receptor. Providing mechanistic clues, we show that dAlk, jeb and CCKLR-17D1 are among mutants that also suppress a recently identified dNf1 neuromuscular junction (NMJ) overgrowth phenotype and that manipulations that increase cAMP/PKA signaling in adipokinetic hormone (AKH)-producing cells at the base of the neuroendocrine ring gland restore the dNf1 growth deficiency. Finally, supporting our previous contention that ALK might be a therapeutic target in NF1, we report that human ALK is expressed in cells that give rise to NF1 tumors and that NF1 regulated ALK/RAS/ERK signaling appears conserved in man. Neurofibromatosis type 1 (NF1) is a genetic disease that affects 1 in 3,000 and that is caused by loss of a protein that inactivates Ras oncoproteins. NF1 is a characteristically variable disease that predisposes patients to several symptoms, the most common of which include benign and malignant tumors, reduced growth and learning problems. We and others previously found that fruit fly mutants that lack a highly conserved dNf1 gene are reduced in size and exhibit impaired learning and memory, and that both defects appear due to abnormal Ras and cyclic-AMP (cAMP) signaling. The former was unremarkable, but how loss of dNf1 affects cAMP signaling remains poorly understood. Here we report results of a genetic screen for dominant modifiers of the dNf1 growth defect. This screen and follow-up functional studies support a model in which synaptic defects and reduced cAMP signaling in specific parts of the neuroendocrine ring gland contribute to the dNf1 growth defect. Beyond these results, we show that human ALK is expressed in cells that give rise to NF1 tumors, and that NF1 regulated ALK/RAS/ERK signaling is evolutionary conserved.
Collapse
|