1
|
An mTOR feedback loop mediates the 'flare' ('rebound') response to MET tyrosine kinase inhibition. Sci Rep 2023; 13:1378. [PMID: 36697438 PMCID: PMC9876934 DOI: 10.1038/s41598-023-28648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
Targeted therapy significantly impairs tumour growth but suffers from limitations, among which the 'flare' ('rebound') effect. Among cancers driven by tyrosine kinase receptors, those relying on alterations of the MET oncogene benefit from treatment by specific inhibitors. Previously, we reported that discontinuation of MET tyrosine kinase receptor inhibition causes 'rebound' activation of the oncogene, with a post-treatment transient hyperphosphorylation phase that culminates into a dramatic increase in cancer cell proliferation. The molecular mechanisms behind the 'MET burst' after treatment cessation are unknown but critically important for patients. Here we identify a positive feedback loop mediated by the AKT/mTOR pathway leading to (a) enhanced MET translation by activating p70S6K and 4EBP1 and (b) MET hyper-phosphorylation by inactivation of the tyrosine-phosphatase PTP1B. The latter effect is due to m-TOR-driven PTP1B phosphorylation of the inhibitory residues Ser50 and Ser378. These data provide in vitro evidence for the use of mTOR inhibitors to prevent the 'flare effect' in MET targeted therapy, with potential applicative ramifications for patient clinical management.
Collapse
|
2
|
Pal D, De K, Shanks CM, Feng K, Yates TB, Morrell-Falvey J, Davidson RB, Parks JM, Muchero W. Core cysteine residues in the Plasminogen-Apple-Nematode (PAN) domain are critical for HGF/c-MET signaling. Commun Biol 2022; 5:646. [PMID: 35778602 PMCID: PMC9249922 DOI: 10.1038/s42003-022-03582-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 06/10/2022] [Indexed: 11/09/2022] Open
Abstract
The Plasminogen-Apple-Nematode (PAN) domain, with a core of four to six cysteine residues, is found in > 28,000 proteins across 959 genera. Still, its role in protein function is not fully understood. The PAN domain was initially characterized in numerous proteins, including HGF. Dysregulation of HGF-mediated signaling results in multiple deadly cancers. The binding of HGF to its cell surface receptor, c-MET, triggers all biological impacts. Here, we show that mutating four core cysteine residues in the HGF PAN domain reduces c-MET interaction, subsequent c-MET autophosphorylation, and phosphorylation of its downstream targets, perinuclear localization, cellular internalization of HGF, and its receptor, c-MET, and c-MET ubiquitination. Furthermore, transcriptional activation of HGF/c-MET signaling-related genes involved in cancer progression, invasion, metastasis, and cell survival were impaired. Thus, targeting the PAN domain of HGF may represent a mechanism for selectively regulating the binding and activation of the c-MET pathway.
Collapse
Affiliation(s)
- Debjani Pal
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA
| | - Kuntal De
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA
| | - Carly M Shanks
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA
| | - Kai Feng
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA
| | - Timothy B Yates
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA.,Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jennifer Morrell-Falvey
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA
| | - Russell B Davidson
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA
| | - Jerry M Parks
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA
| | - Wellington Muchero
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA. .,Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
3
|
Kawase N, Sugihara A, Kajiwara K, Hiroshima M, Akamatsu K, Nada S, Matsumoto K, Ueda M, Okada M. SRC kinase activator CDCP1 promotes hepatocyte growth factor-induced cell migration/invasion of a subset of breast cancer cells. J Biol Chem 2022; 298:101630. [PMID: 35085554 PMCID: PMC8867115 DOI: 10.1016/j.jbc.2022.101630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/20/2022] Open
Abstract
Cancer invasion and metastasis are the major causes of cancer patient mortality. Various growth factors, including hepatocyte growth factor (HGF), are known to promote cancer invasion and metastasis, but the regulatory mechanisms involved are not fully understood. Here, we show that HGF-promoted migration and invasion of breast cancer cells are regulated by CUB domain–containing protein 1 (CDCP1), a transmembrane activator of SRC kinase. In metastatic human breast cancer cell line MDA-MB-231, which highly expresses the HGF receptor MET and CDCP1, we show that CDCP1 knockdown attenuated HGF-induced MET activation, followed by suppression of lamellipodia formation and cell migration/invasion. In contrast, in the low invasive/nonmetastatic breast cancer cell line T47D, which had no detectable MET and CDCP1 expression, ectopic MET expression stimulated the HGF-dependent activation of invasive activity, and concomitant CDCP1 expression activated SRC and further promoted invasive activity. In these cells, CDCP1 expression dramatically activated HGF-induced membrane remodeling, which was accompanied by activation of the small GTPase Rac1. Analysis of guanine nucleotide exchange factors revealed that ARHGEF7 was specifically required for CDCP1-dependent induction of HGF-induced invasive ability. Furthermore, immunofluorescence staining demonstrated that CDCP1 coaccumulated with ARHGEF7. Finally, we confirmed that the CDCP1-SRC axis was also crucial for HGF and ARHGEF7-RAC1 signaling in MDA-MB-231 cells. Altogether, these results demonstrate that the CDCP1-SRC-ARHGEF7-RAC1 pathway plays an important role in the HGF-induced invasion of a subset of breast cancer cells.
Collapse
Affiliation(s)
- Naoyuki Kawase
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Atsuya Sugihara
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kentaro Kajiwara
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Michio Hiroshima
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Kanako Akamatsu
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Laboratory of Oncogene Research, World Premier International Immunology Frontier Research Centre, Osaka University, Suita, Osaka, Japan
| | - Shigeyuki Nada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Masahiro Ueda
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan; Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Masato Okada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Laboratory of Oncogene Research, World Premier International Immunology Frontier Research Centre, Osaka University, Suita, Osaka, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
4
|
Chen JJ, Sun X, Mao QQ, Jiang XY, Zhao XG, Xu WJ, Zhong L. Increased expression of hematological and neurological expressed 1 (HN1) is associated with a poor prognosis of hepatocellular carcinoma and its knockdown inhibits cell growth and migration partly by down-regulation of c-Met. Kaohsiung J Med Sci 2019; 36:196-205. [PMID: 31749294 DOI: 10.1002/kjm2.12156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022] Open
Abstract
Hematologic and neurological expression 1 (HN1) has been reported to involved in certain cancers, but its role in hepatocellular carcinoma (HCC) is largely unknown. The contribution of HN1 to HCC progression was investigated in the present study. We found that HN1 was significantly up-regulated in HCC tissues, compared with normal tissues, by analyzing the Oncomine and Human Protein Atlas database; and found that high expression of HN1 was markedly associated with worse overall survival, relapse-free survival, progression- free survival and disease-specific survival in HCC patients via exploring the Kaplan-Meier plotter database. Functional assays revealed that HN1 knockdown by siRNA induced G1 cell cycle arrest, and inhibited the growth and migration of HCC cells; accordingly, HN1 over-expression promoted HCC cells proliferation and migration. Further studies indicated that HN1 knockdown reduced the expression of cyclin D1 and CDK4, while upregulated the cell cycle inhibitor p21WAF1/Cip1. Moreover, HN1 knockdown decreased c-Met (receptor tyrosine kinase of hepatocyte growth factor) expression, and suppressed ERK activation, which is a common downstream signaling pathway triggered by c-Met; consistently, HN1 over-expression reversed these effects. Meanwhile, down-regulation of c-Met partly eliminated the effect of HN1 over-expression in HCC cells. Thus, the present findings suggested that HN1 promotes the progression of HCC to some extent by up-regulating the expression of c-Met, and may act as a potential biomarker and therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Jia-Jie Chen
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Xu Sun
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Qi-Qi Mao
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Xiao-Yun Jiang
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Xian-Guang Zhao
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Wei-Jia Xu
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Liang Zhong
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Mahameed M, Wilhelm T, Darawshi O, Obiedat A, Tommy WS, Chintha C, Schubert T, Samali A, Chevet E, Eriksson LA, Huber M, Tirosh B. The unfolded protein response modulators GSK2606414 and KIRA6 are potent KIT inhibitors. Cell Death Dis 2019; 10:300. [PMID: 30931942 PMCID: PMC6443726 DOI: 10.1038/s41419-019-1523-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 12/17/2022]
Abstract
IRE1, PERK, and ATF6 are the three transducers of the mammalian canonical unfolded protein response (UPR). GSK2606414 is a potent inhibitor of PERK, while KIRA6 inhibits the kinase activity of IRE1. Both molecules are frequently used to probe the biological roles of the UPR in mammalian cells. In a direct binding assay, GSK2606414 bound to the cytoplasmic domain of KIT with dissociation constants (Kd) value of 664 ± 294 nM whereas KIRA6 showed a Kd value of 10.8 ± 2.9 µM. In silico docking studies confirmed a compact interaction of GSK2606414 and KIRA6 with KIT ATP binding pocket. In cultured cells, GSK2606414 inhibited KIT tyrosine kinase activity at nanomolar concentrations and in a PERK-independent manner. Moreover, in contrast to other KIT inhibitors, GSK2606414 enhanced KIT endocytosis and its lysosomal degradation. Although KIRA6 also inhibited KIT at nanomolar concentrations, it did not prompt KIT degradation, and rescued KIT from GSK2606414-mediated degradation. Consistent with KIT inhibition, nanomolar concentrations of GSK2606414 and KIRA6 were sufficient to induce cell death in a KIT signaling-dependent mast cell leukemia cell line. Our data show for the first time that KIT is a shared target for two seemingly unrelated UPR inhibitors at concentrations that overlap with PERK and IRE1 inhibition. Furthermore, these data underscore discrepancies between in vitro binding measurements of kinase inhibitors and inhibition of the tyrosine kinase receptors in living cells.
Collapse
Affiliation(s)
- Mohamed Mahameed
- Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Thomas Wilhelm
- Institute of Biochemistry and Molecular Immunology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Odai Darawshi
- Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Akram Obiedat
- Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Weiss-Sadan Tommy
- Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Chetan Chintha
- Apoptosis Research Centre, National University of Ireland Galway, Galway, H91 TK33, Ireland
| | | | - Afshin Samali
- Apoptosis Research Centre, National University of Ireland Galway, Galway, H91 TK33, Ireland
| | - Eric Chevet
- INSERM U1242, Université de Rennes, Rennes, France.,Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göthenburg, Sweden
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Boaz Tirosh
- Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
6
|
Li W, Xiong X, Abdalla A, Alejo S, Zhu L, Lu F, Sun H. HGF-induced formation of the MET-AXL-ELMO2-DOCK180 complex promotes RAC1 activation, receptor clustering, and cancer cell migration and invasion. J Biol Chem 2018; 293:15397-15418. [PMID: 30108175 PMCID: PMC6177597 DOI: 10.1074/jbc.ra118.003063] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/23/2018] [Indexed: 12/25/2022] Open
Abstract
The MET proto-oncogene-encoded receptor tyrosine kinase (MET) and AXL receptor tyrosine kinase (AXL) are independently operating receptor tyrosine kinases (RTKs) that are functionally associated with aggressive and invasive cancer cell growth. However, how MET and AXL regulate the migratory properties of cancer cells remains largely unclear. We report here that the addition of hepatocyte growth factor (HGF), the natural ligand of MET, to serum-starved human glioblastoma cells induces the rapid activation of both MET and AXL and formation of highly polarized MET-AXL clusters on the plasma membrane. HGF also promoted the formation of the MET and AXL protein complexes and phosphorylation of AXL, independent of AXL's ligand, growth arrest-specific 6 (GAS6). The HGF-induced MET-AXL complex stimulated rapid and dynamic cytoskeleton reorganization by activating the small GTPase RAC1, a process requiring both MET and AXL kinase activities. We further found that HGF also promotes the recruitment of ELMO2 and DOCK180, a bipartite guanine nucleotide exchange factor for RAC1, to the MET-AXL complex and thereby stimulates the RAC1-dependent cytoskeleton reorganization. We also demonstrated that the MET-AXL-ELMO2-DOCK180 complex is critical for HGF-induced cell migration and invasion in glioblastoma or other cancer cells. Our findings uncover a critical HGF-dependent signaling pathway that involves the assembly of a large protein complex consisting of MET, AXL, ELMO2, and DOCK180 on the plasma membrane, leading to RAC1-dependent cell migration and invasion in various cancer cells.
Collapse
Affiliation(s)
- Wenjing Li
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154-4003 and
- the School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Xiahui Xiong
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154-4003 and
| | - Amro Abdalla
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154-4003 and
| | - Salvador Alejo
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154-4003 and
| | - Linyu Zhu
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154-4003 and
| | - Fei Lu
- the School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Hong Sun
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154-4003 and
| |
Collapse
|
7
|
Hu Q, Qin Y, Zhang B, Liang C, Ji S, Shi S, Xu W, Xiang J, Liang D, Ni Q, Yu X, Xu J. FBW7 increases the chemosensitivity of pancreatic cancer cells to gemcitabine through upregulation of ENT1. Oncol Rep 2017; 38:2069-2077. [PMID: 28765935 PMCID: PMC5652962 DOI: 10.3892/or.2017.5856] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/24/2017] [Indexed: 02/06/2023] Open
Abstract
F-box and WD repeat domain-containing 7 (FBW7) has been characterized as a tumor suppressor, and its mutation or decreased expression has been observed in many types of human cancers. Our recent studies have uncovered that in pancreatic cancer, the KRAS mutation decreased FBW7 expression through phosphorylation and subsequent ubiquitination. Moreover, FBW7 inhibited aerobic glycolysis in pancreatic cancer via induction of thioredoxin-interacting protein (TXNIP), a mitochondrial localized tumor suppressor. The roles of FBW7 in anti-apoptosis and drug resistance via proteosomal degradation of myeloid cell leukemia-1 (MCL-1), which is an anti-apoptotic factor have been reported. However, the role of FBW7 in the chemotherapeutic resistance of pancreatic cancer to gemcitabine has seldom been reported. In the present study, we demonstrated that overexpression of FBW7 in pancreatic cancer cells rendered increased sensitivity to gemcitabine. Mechanistically, FBW7 promoted gemcitabine sensitivity via upregulation of equilibrative nucleoside transporter 1 (ENT1) at the protein level rather than the transcriptional level. In depth analysis demonstrated that the ENT1 protein level could be increased by lysosome inhibition. Taken together, our results demonstrated that FBW7 could be a target for improving the therapeutic efficacy of gemcitabine by induction of ENT1.
Collapse
Affiliation(s)
- Qiangsheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Jinfeng Xiang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Dingkong Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
8
|
Grandal MM, Havrylov S, Poulsen TT, Koefoed K, Dahlman A, Galler GR, Conrotto P, Collins S, Eriksen KW, Kaufman D, Woude GF, Jacobsen HJ, Horak ID, Kragh M, Lantto J, Bouquin T, Park M, Pedersen MW. Simultaneous Targeting of Two Distinct Epitopes on MET Effectively Inhibits MET- and HGF-Driven Tumor Growth by Multiple Mechanisms. Mol Cancer Ther 2017; 16:2780-2791. [DOI: 10.1158/1535-7163.mct-17-0374] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/03/2017] [Accepted: 08/02/2017] [Indexed: 11/16/2022]
|
9
|
Hu CT, Wu JR, Cheng CC, Wu WS. The Therapeutic Targeting of HGF/c-Met Signaling in Hepatocellular Carcinoma: Alternative Approaches. Cancers (Basel) 2017; 9:cancers9060058. [PMID: 28587113 PMCID: PMC5483877 DOI: 10.3390/cancers9060058] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/23/2017] [Accepted: 05/24/2017] [Indexed: 12/22/2022] Open
Abstract
The poor prognosis of hepatocellular carcinoma (HCC), one of the most devastating cancers worldwide, is due to frequent recurrence and metastasis. Among the metastatic factors in the tumor microenvironment, hepatocyte growth factor (HGF) has been well known to play critical roles in tumor progression, including HCC. Therefore, c-Met is now regarded as the most promising therapeutic target for the treatment of HCC. However, there are still concerns about resistance and the side effects of using conventional inhibitors of c-Met, such as tyrosine kinase inhibitors. Recently, many alternative strategies of c-Met targeting have been emerging. These include targeting the downstream effectors of c-Met, such as hydrogen peroxide-inducible clone 5 (Hic-5), to block the reactive oxygen species (ROS)-mediated signaling for HCC progression. Also, inhibition of endosomal regulators, such as PKCε and GGA3, may perturb the c-Met endosomal signaling for HCC cell migration. On the other hand, many herbal antagonists of c-Met-dependent signaling, such as saponin, resveratrol, and LZ-8, were identified. Taken together, it can be anticipated that more effective and safer c-Met targeting strategies for preventing HCC progression can be established in the future.
Collapse
Affiliation(s)
- Chi-Tan Hu
- Research Centre for Hepatology, Department of Internal Medicine, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien 970, Taiwan.
| | - Jia-Ru Wu
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Chuan-Chu Cheng
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Wen-Sheng Wu
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| |
Collapse
|
10
|
Zhu L, Xiong X, Kim Y, Okada N, Lu F, Zhang H, Sun H. Acid sphingomyelinase is required for cell surface presentation of Met receptor tyrosine kinase in cancer cells. J Cell Sci 2016; 129:4238-4251. [PMID: 27802163 DOI: 10.1242/jcs.191684] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/30/2016] [Indexed: 12/22/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are embedded in the lipid bilayer of the plasma membrane, but the specific roles of various lipids in cell signaling remain largely uncharacterized. We have previously found that acid sphingomyelinase (ASM; also known as SMPD1) regulates the conserved DAF-2 (the ortholog IGF-1R in mammals) RTK signaling pathway in Caenorhabditis elegans How ASM and its catalytic products, ceramides, control RTK signaling pathways remain unclear. Here, we report that ASM regulates the homeostasis of Met, an RTK that is frequently overexpressed in various cancers. Inactivation of ASM led to a rapid loss of Met from the plasma membrane, reduced Met phosphorylation and activation, and induced Met accumulation in the trans-Golgi network (TGN). However, trafficking of integrin β3 and vesicular stomatitis virus glycoprotein (VSVG) was largely unaffected. Knockdown of syntaxin 6 (STX6) also blocked the Golgi exit of Met. Depletion of either ASM or STX6 led to aberrant trafficking of Met to lysosomes, promoting its degradation. Our studies reveal that ASM and ceramides, together with STX6 and cholesterol, constitute a new regulatory mechanism for the exit of Met from the Golgi during its biosynthetic route, which is used to rapidly replenish and regulate the plasma membrane levels of Met in various cancer cells.
Collapse
Affiliation(s)
- Linyu Zhu
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China.,Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89135, USA
| | - Xiahui Xiong
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89135, USA
| | - Yongsoon Kim
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89135, USA
| | - Naomi Okada
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89135, USA
| | - Fei Lu
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Hui Zhang
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89135, USA
| | - Hong Sun
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89135, USA
| |
Collapse
|
11
|
Murat CDB, da Rosa PWL, Fortes MAHZ, Corrêa L, Machado MCC, Novak EM, Siqueira SAC, Pereira MAA, Corrêa-Giannella ML, Giannella-Neto D, Giorgi RR. Differential expression of genes encoding proteins of the HGF/MET system in insulinomas. Diabetol Metab Syndr 2015; 7:84. [PMID: 26435753 PMCID: PMC4591639 DOI: 10.1186/s13098-015-0079-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 09/22/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Insulinomas are the most common functional pancreatic neuroendocrine tumors, whereas histopathological features do not predict their biological behaviour. In an attempt to better understand the molecular processes involved in the tumorigenesis of islet beta cells, the present study evaluated the expression of genes belonging to the hepatocyte growth factor and its receptor (HGF/MET) system, namely, MET, HGF; HGFAC and ST14 (encode HGF activator and matriptase, respectively, two serine proteases that catalyze conversion of pro-HGF to active HGF); and SPINT1 and SPINT2 (encode serine peptidase inhibitors Kunitz type 1 and type 2, respectively, two inhibitors of HGF activator and of matriptase). METHODS Quantitative real-time reverse transcriptase polymerase chain reaction was employed to assess RNA expression of the target genes in 24 sporadic insulinomas: 15 grade 1 (G1), six grade 2 (G2) and three hepatic metastases. Somatic mutations of MET gene were searched by direct sequencing of exons 2, 10, 14, 16, 17 and 19. RESULTS Overexpression of MET was observed in the three hepatic metastases concomitantly with upregulation of the genes encoding HGF and matriptase and downregulation of SPINT1. A positive correlation was observed between MET RNA expression and Ki-67 proliferation index while a negative correlation was detected between SPINT1 expression and the mitotic index. No somatic mutations were found in MET gene. CONCLUSION The final effect of the increased expression of HGF, its activator (matriptase) and its specific receptor (MET) together with a decreased expression of one potent inhibitor of matriptase (SPINT1) is probably a contribution to tumoral progression and metastatization in insulinomas.
Collapse
Affiliation(s)
- Cahuê De Bernardis Murat
- />Laboratório de Endocrinologia Celular e Molecular (LIM-25) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), Av. Dr. Arnaldo, 455, 01246-903 São Paulo, SP Brazil
| | - Paula Waki Lopes da Rosa
- />Laboratório de Endocrinologia Celular e Molecular (LIM-25) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), Av. Dr. Arnaldo, 455, 01246-903 São Paulo, SP Brazil
| | - Maria Angela Henriques Zanella Fortes
- />Laboratório de Endocrinologia Celular e Molecular (LIM-25) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), Av. Dr. Arnaldo, 455, 01246-903 São Paulo, SP Brazil
| | - Luciana Corrêa
- />Departamento de Patologia Oral, Faculdade de Odontologia da Universidade de São Paulo, São Paulo, Brazil
| | | | - Estela Maria Novak
- />Laboratório de Biologia Molecular da Fundação Pró-Sangue Hemocentro de São Paulo, São Paulo, Brazil
| | | | | | - Maria Lucia Corrêa-Giannella
- />Laboratório de Endocrinologia Celular e Molecular (LIM-25) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), Av. Dr. Arnaldo, 455, 01246-903 São Paulo, SP Brazil
- />Centro de Terapia Celular e Molecular (NUCEL/NETCEM) da FMUSP, São Paulo, Brazil
| | - Daniel Giannella-Neto
- />Programa de Pós-Graduação em Medicina, Universidade Nove de Julho—UNINOVE, São Paulo, Brazil
| | - Ricardo Rodrigues Giorgi
- />Laboratório de Endocrinologia Celular e Molecular (LIM-25) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), Av. Dr. Arnaldo, 455, 01246-903 São Paulo, SP Brazil
- />Programa de Pós Graduação em Ciências da Saúde, Universidade de Santo Amaro (UNISA), São Paulo, Brazil
| |
Collapse
|
12
|
Palmieri G, Ombra M, Colombino M, Casula M, Sini M, Manca A, Paliogiannis P, Ascierto PA, Cossu A. Multiple Molecular Pathways in Melanomagenesis: Characterization of Therapeutic Targets. Front Oncol 2015; 5:183. [PMID: 26322273 PMCID: PMC4530319 DOI: 10.3389/fonc.2015.00183] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/26/2015] [Indexed: 12/12/2022] Open
Abstract
Molecular mechanisms involved in pathogenesis of malignant melanoma have been widely studied and novel therapeutic treatments developed in recent past years. Molecular targets for therapy have mostly been recognized in the RAS–RAF–MEK–ERK and PI3K–AKT signaling pathways; small-molecule inhibitors were drawn to specifically target key kinases. Unfortunately, these targeted drugs may display intrinsic or acquired resistance and various evidences suggest that inhibition of a single effector of the signal transduction cascades involved in melanoma pathogenesis may be ineffective in blocking the tumor growth. In this sense, a wider comprehension of the multiple molecular alterations accounting for either response or resistance to treatments with targeted inhibitors may be helpful in assessing, which is the most effective combination of such therapies. In the present review, we summarize the known molecular mechanisms underlying either intrinsic and acquired drug resistance either alternative roads to melanoma pathogenesis, which may become targets for innovative anticancer approaches.
Collapse
Affiliation(s)
- Giuseppe Palmieri
- Unità di Genetica dei Tumori, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche , Sassari , Italy
| | - MariaNeve Ombra
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche , Avellino , Italy
| | - Maria Colombino
- Unità di Genetica dei Tumori, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche , Sassari , Italy
| | - Milena Casula
- Unità di Genetica dei Tumori, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche , Sassari , Italy
| | - MariaCristina Sini
- Unità di Genetica dei Tumori, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche , Sassari , Italy
| | - Antonella Manca
- Unità di Genetica dei Tumori, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche , Sassari , Italy
| | - Panagiotis Paliogiannis
- Dipartimento di Scienze Chirurgiche, Microchirurgiche e Mediche, Università di Sassari , Sassari , Italy
| | | | - Antonio Cossu
- Dipartimento di Scienze Chirurgiche, Microchirurgiche e Mediche, Università di Sassari , Sassari , Italy
| |
Collapse
|
13
|
Sacco JJ, Clague MJ. Dysregulation of the Met pathway in non-small cell lung cancer: implications for drug targeting and resistance. Transl Lung Cancer Res 2015; 4:242-52. [PMID: 26207212 PMCID: PMC4483475 DOI: 10.3978/j.issn.2218-6751.2015.03.05] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 12/16/2022]
Abstract
The receptor tyrosine kinase, Met, orchestrates a complex signalling network that physiologically drives a programme of 'invasive growth'. In cancer however, this process may be co-opted to promote proliferation, survival and metastasis of cancer cells. Met is thus a key therapeutic target, not least in non-small cell lung cancer (NSCLC) where it is one of the most commonly dysregulated driver oncogenes. Identifying robust biomarkers that allow the selection of patients most likely to respond to Met targeted therapies will however be essential to realising their potential. This has been underlined recently by the early termination of three pivotal phase III trials investigating Met targeted agents in NSCLC, all of which failed to show clinical benefit. In contrast to these trials, which were relatively unselective, a couple of early phase trials have recently been instigated that select patients on the basis of Met amplification. While still at an early stage, interim results are relatively encouraging and strengthen the rationale for using Met amplifaction as a biomarker. Here we will discuss this and other aberrations in Met signalling in relation to their significance in the therapeutic targeting of Met.
Collapse
|
14
|
Hu CT, Cheng CC, Wu JR, Pan SM, Wu WS. PKCε-mediated c-Met endosomal processing directs fluctuant c-Met-JNK-paxillin signaling for tumor progression of HepG2. Cell Signal 2015; 27:1544-55. [PMID: 25778903 DOI: 10.1016/j.cellsig.2015.02.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 02/28/2015] [Indexed: 12/16/2022]
Abstract
Hepatocyte growth factor (HGF) induced c-Met signaling play critical roles in the progression of hepatocellular carcinoma (HCC). However, c-Met targeting approaches suffered resistance and side effect, thus identification of more suitable downstream targets is needed. Recently, we demonstrated HGF-induced fluctuant ERK/paxillin signaling within 24h. We further examined the underlying mechanisms for fluctuant c-Met/JNK/paxillin signal cascade within 12h. HGF-induced phosphorylation of c-Met, JNK, and paxillin (Ser178) shared a common fluctuation pattern characterized by an initial peak at 0.5h, a middle drop at 4h, and a later peak at 10h. Dynasore, the inhibitor of dynamin, suppressed HGF-induced c-Met internalization and phosphorylation of JNK and paxillin (Ser178) at 0.5h, indicating that endosome formation is required for initial signal enhancement. Further, depletion of PKCε not only enhanced HGF-induced phosphorylation of JNK and paxillin (Ser178) but also prevented c-Met degradation at 0.5h, suggesting that PKCε mediated c-Met degradation for signal declination. On the other hand, HGF induced colocalizations of both phosphorylated JNK and paxillin with the endosomal recycling protein GGA3 at 10h and depletion of GGA3 abolished membrane recycling of c-Met and phosphorylation of JNK/paxillin at the same time point. Interestingly, HGF induced GGA3 phosphorylation in a PKCε-dependent manner during 0.5-4h, which is associated with c-Met degradation in the same period. Finally, HGF-induced cell migration, invasion and intrahepatic metastasis of HepG2 were prevented by the inhibitors of endocytosis. Our results suggest that critical endosomal components are promising therapeutic targets for preventing HGF-induced progression of HCC.
Collapse
Affiliation(s)
- Chi-Tan Hu
- Research Centre for Hepatology, Department of Internal Medicine, Buddhist Tzu Chi General Hospital and School of Medicine Tzu Chi University, Taiwan
| | - Chuan-Chu Cheng
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Jia-Ru Wu
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Siou-Mei Pan
- Research Centre for Hepatology, Department of Internal Medicine, Buddhist Tzu Chi General Hospital and School of Medicine Tzu Chi University, Taiwan
| | - Wen-Sheng Wu
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
15
|
Oltolina F, Gregoletto L, Colangelo D, Gómez-Morales J, Delgado-López JM, Prat M. Monoclonal antibody-targeted fluorescein-5-isothiocyanate-labeled biomimetic nanoapatites: a promising fluorescent probe for imaging applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:1766-1775. [PMID: 25602940 DOI: 10.1021/la503747s] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Multifunctional biomimetic nanoparticles (NPs) are acquiring increasing interest as carriers in medicine and basic research since they can efficiently combine labels for subsequent tracking, moieties for specific cell targeting, and bioactive molecules, e.g., drugs. In particular, because of their easy synthesis, low cost, good biocompatibility, high resorbability, easy surface functionalization, and pH-dependent solubility, nanocrystalline apatites are promising candidates as nanocarriers. This work describes the synthesis and characterization of bioinspired apatite nanoparticles to be used as fluorescent nanocarriers targeted against the Met/hepatocyte growth factor receptor, which is considered a tumor associated cell surface marker of many cancers. To this aim the nanoparticles have been labeled with Fluorescein-5-isothiocyanate (FITC) by simple isothermal adsorption, in the absence of organic, possibly toxic, molecules, and then functionalized with a monoclonal antibody (mAb) directed against such a receptor. Direct labeling of the nanoparticles allowed tracking the moieties with spatiotemporal resolution and thus following their interaction with cells, expressing or not the targeted receptor, as well as their fate in vitro. Cytofluorometry and confocal microscopy experiments showed that the functionalized nanocarriers, which emitted a strong fluorescent signal, were rapidly and specifically internalized in cells expressing the receptor. Indeed, we found that, once inside the cells expressing the receptor, mAb-functionalized FITC nanoparticles partially dissociated in their two components, with some mAbs being recycled to the cell surface and the FITC-labeled nanoparticles remaining in the cytosol. This work thus shows that FITC-labeled nanoapatites are very promising probes for targeted cell imaging applications.
Collapse
Affiliation(s)
- Francesca Oltolina
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale "Amedeo Avogadro" , Via Solaroli 17, 28100 Novara, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Santonico E, Mattioni A, Panni S, Belleudi F, Mattei M, Torrisi MR, Cesareni G, Castagnoli L. RNF11 is a GGA protein cargo and acts as a molecular adaptor for GGA3 ubiquitination mediated by Itch. Oncogene 2014; 34:3377-90. [DOI: 10.1038/onc.2014.256] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 07/04/2014] [Accepted: 07/08/2014] [Indexed: 11/09/2022]
|
17
|
Woodward AM, Argüeso P. Expression analysis of the transmembrane mucin MUC20 in human corneal and conjunctival epithelia. Invest Ophthalmol Vis Sci 2014; 55:6132-8. [PMID: 25168902 DOI: 10.1167/iovs.14-15269] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Cell surface mucins are a group of highly O-glycosylated transmembrane glycoproteins responsible for the protection of epithelial cells on mucosal surfaces. The aim of this study was to investigate the localization and regulation of mucin 20 (MUC20) at the ocular surface. METHODS Localization of MUC20 in human corneal and conjunctival epithelia was evaluated by immunofluorescence microscopy. Immortalized corneal (HCLE) and conjunctival (HCjE) cell lines were grown at different stages of differentiation and subjected to quantitative PCR and Western blot analyses. Cell surface proteins on apical cell membranes were biotinylated and isolated by neutravidin chromatography. RESULTS The MUC20 was detected throughout the entire human ocular surface epithelia, predominantly in cell membranes within intermediate cell layers. In conjunctiva, MUC20 also was observed in the cytoplasm of apical cells within the stratified squamous epithelium, but not in goblet cells. Quantitative PCR and immunoblotting demonstrated expression of MUC20 in HCLE and HCjE cells. Induction of differentiation with serum-containing medium resulted in upregulation of MUC20 mRNA and protein. Biotin labeling of the surface of stratified cultures revealed low levels of MUC20 protein on apical glycocalyces. Further, MUC20 was not detected in the cell culture media or in human tears, suggesting that the extracellular domain of MUC20 is not released from the ocular surface as described previously for other cell surface mucins. CONCLUSIONS Our results indicate that MUC20 is a novel transmembrane mucin expressed by the human corneal and conjunctival epithelia, and suggest that differential expression of MUC20 during differentiation has a role in maintaining ocular surface homeostasis.
Collapse
Affiliation(s)
- Ashley M Woodward
- Schepens Eye Research Institute and Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Pablo Argüeso
- Schepens Eye Research Institute and Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
18
|
Lu Z, Yang H, Sutton MN, Yang M, Clarke CH, Liao WSL, Bast RC. ARHI (DIRAS3) induces autophagy in ovarian cancer cells by downregulating the epidermal growth factor receptor, inhibiting PI3K and Ras/MAP signaling and activating the FOXo3a-mediated induction of Rab7. Cell Death Differ 2014; 21:1275-89. [PMID: 24769729 DOI: 10.1038/cdd.2014.48] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 01/31/2023] Open
Abstract
The process of autophagy has been described in detail at the molecular level in normal cells, but less is known of its regulation in cancer cells. Aplasia Ras homolog member I (ARHI; DIRAS3) is an imprinted tumor suppressor gene that is downregulated in multiple malignancies including ovarian cancer. Re-expression of ARHI slows proliferation, inhibits motility, induces autophagy and produces tumor dormancy. Our previous studies have implicated autophagy in the survival of dormant ovarian cancer cells and have shown that ARHI is required for autophagy induced by starvation or rapamycin treatment. Re-expression of ARHI in ovarian cancer cells blocks signaling through the PI3K and Ras/MAP pathways, which, in turn, downregulates mTOR and initiates autophagy. Here we show that ARHI is required for autophagy-meditated cancer cell arrest and ARHI inhibits signaling through PI3K/AKT and Ras/MAP by enhancing internalization and degradation of the epidermal growth factor receptor. ARHI-mediated downregulation of PI3K/AKT and Ras/ERK signaling also decreases phosphorylation of FOXo3a, which sequesters this transcription factor in the nucleus. Nuclear retention of FOXo3a induces ATG4 and MAP-LC3-I, required for maturation of autophagosomes, and also increases the expression of Rab7, required for fusion of autophagosomes with lysosomes. Following the knockdown of FOXo3a or Rab7, autophagolysosome formation was observed but was markedly inhibited, resulting in numerous enlarged autophagosomes. ARHI expression correlates with LC3 expression and FOXo3a nuclear localization in surgical specimens of ovarian cancer. Thus, ARHI contributes to the induction of autophagy through multiple mechanisms in ovarian cancer cells.
Collapse
Affiliation(s)
- Z Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-1439, USA
| | - H Yang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-1439, USA
| | - M N Sutton
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-1439, USA
| | - M Yang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-1439, USA
| | - C H Clarke
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-1439, USA
| | - W S-L Liao
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-1439, USA
| | - R C Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-1439, USA
| |
Collapse
|
19
|
He Y, Long J, Zhong W, Fu Y, Li Y, Lin S. Sustained endoplasmic reticulum stress inhibits hepatocyte proliferation via downregulation of c-Met expression. Mol Cell Biochem 2014; 389:151-158. [PMID: 24390087 DOI: 10.1007/s11010-013-1936-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/18/2013] [Indexed: 12/25/2022]
Abstract
The molecular mechanisms of impaired liver regeneration in several liver diseases remain poorly understood. Endoplasmic reticulum (ER) stress has been observed in a variety of liver diseases. The aims of this study were to explore the impacts of ER stress on hepatocyte growth factor (HGF)-induced proliferation and c-Met expression in human hepatocyte L02 cells. Human hepatocyte L02 cells were incubated with thapsigargin (TG) to induce ER stress. 4-Phenylbutyric acid (PBA) was used to rescue ER stress. Activation of glucose-regulated protein 78, phosphorylation of PKR-like ER kinase and eukaryotic translation initiation factor-2α, and the expression of c-Met were determined by western blotting. The expression of c-Met mRNA was observed by reverse transcription polymerase chain reaction. L02 cell proliferation was determined by the MTS assay. L02 cell proliferation was significantly impaired in TG-treated L02 cells from 24 to 48 h, while PBA partly restored the proliferation of L02 cells. In addition, TG treatment significantly decreased the sensitivity of L02 cells to HGF-induced proliferation. PBA partly resumed the sensitivity of L02 cells to HGF-induced proliferation. The expression of c-Met protein in L02 cells was downregulated from 6 h after TG treatment, and PBA partly restored c-Met expression inhibited by TG. The expression of c-Met mRNA was also significantly downregulated from 24 to 48 h after TG treatment. Our results strongly suggest that sustained ER stress inhibits hepatocyte proliferation via downregulation of both c-Met mRNA and protein expression in human hepatocyte L02 cells.
Collapse
Affiliation(s)
- Yihuai He
- Department of Infectious Diseases, Zunyi Medical College, 201 Dalian Street, Zunyi, 563003, Guizhou, China
| | | | | | | | | | | |
Collapse
|
20
|
Rehman AU, Santos-Cortez RLP, Morell RJ, Drummond MC, Ito T, Lee K, Khan AA, Basra MAR, Wasif N, Ayub M, Ali RA, Raza SI, Nickerson DA, Shendure J, Bamshad M, Riazuddin S, Billington N, Khan SN, Friedman PL, Griffith AJ, Ahmad W, Riazuddin S, Leal SM, Friedman TB. Mutations in TBC1D24, a gene associated with epilepsy, also cause nonsyndromic deafness DFNB86. Am J Hum Genet 2014; 94:144-52. [PMID: 24387994 DOI: 10.1016/j.ajhg.2013.12.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/06/2013] [Indexed: 01/12/2023] Open
Abstract
Inherited deafness is clinically and genetically heterogeneous. We recently mapped DFNB86, a locus associated with nonsyndromic deafness, to chromosome 16p. In this study, whole-exome sequencing was performed with genomic DNA from affected individuals from three large consanguineous families in which markers linked to DFNB86 segregate with profound deafness. Analyses of these data revealed homozygous mutation c.208G>T (p.Asp70Tyr) or c.878G>C (p.Arg293Pro) in TBC1D24 as the underlying cause of deafness in the three families. Sanger sequence analysis of TBC1D24 in an additional large family in which deafness segregates with DFNB86 identified the c.208G>T (p.Asp70Tyr) substitution. These mutations affect TBC1D24 amino acid residues that are conserved in orthologs ranging from fruit fly to human. Neither variant was observed in databases of single-nucleotide variants or in 634 chromosomes from ethnically matched control subjects. TBC1D24 in the mouse inner ear was immunolocalized predominantly to spiral ganglion neurons, indicating that DFNB86 deafness might be an auditory neuropathy spectrum disorder. Previously, six recessive mutations in TBC1D24 were reported to cause seizures (hearing loss was not reported) ranging in severity from epilepsy with otherwise normal development to epileptic encephalopathy resulting in childhood death. Two of our four families in which deafness segregates with mutant alleles of TBC1D24 were available for neurological examination. Cosegregation of epilepsy and deafness was not observed in these two families. Although the causal relationship between genotype and phenotype is not presently understood, our findings, combined with published data, indicate that recessive alleles of TBC1D24 can cause either epilepsy or nonsyndromic deafness.
Collapse
Affiliation(s)
- Atteeq U Rehman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA
| | - Regie Lyn P Santos-Cortez
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert J Morell
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA
| | - Meghan C Drummond
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA
| | - Taku Ito
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA
| | - Kwanghyuk Lee
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Asma A Khan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54500, Pakistan
| | - Muhammad Asim R Basra
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54500, Pakistan
| | - Naveed Wasif
- Center for Research in Molecular Medicine, Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Muhammad Ayub
- Institute of Biochemistry, University of Baluchistan, Quetta 87300, Pakistan
| | - Rana A Ali
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54500, Pakistan
| | - Syed I Raza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Michael Bamshad
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Saima Riazuddin
- Division of Pediatric Otolaryngology - Head and Neck Surgery, Cincinnati Children's Research Foundation, Cincinnati, OH 45229 USA; Department of Otolaryngology - Head and Neck Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Neil Billington
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shaheen N Khan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54500, Pakistan
| | | | - Andrew J Griffith
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Sheikh Riazuddin
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54500, Pakistan; Allama Iqbal Medical College and Jinnah Hospital Complex, University of Health Sciences, Lahore 54550, Pakistan
| | - Suzanne M Leal
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA.
| |
Collapse
|
21
|
Iafisco M, Delgado-Lopez JM, Varoni EM, Tampieri A, Rimondini L, Gomez-Morales J, Prat M. Cell surface receptor targeted biomimetic apatite nanocrystals for cancer therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:3834-44. [PMID: 23606568 DOI: 10.1002/smll.201202843] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/28/2013] [Indexed: 05/24/2023]
Abstract
Nanosized drug carriers functionalized with moieties specifically targeting tumor cells are promising tools in cancer therapy, due to their ability to circulate in the bloodstream for longer periods and their selectivity for tumor cells, enabling the sparing of healthy tissues. Because of its biocompatibility, high bioresorbability, and responsiveness to pH changes, synthetic biomimetic nanocrystalline apatites are used as nanocarriers to produce multifunctional nanoparticles, by coupling them with the chemotherapeutic drug doxorubicin (DOXO) and the DO-24 monoclonal antibody (mAb) directed against the Met/Hepatocyte Growth Factor receptor (Met/HGFR), which is over-expressed on different types of carcinomas and thus represents a useful tumor target. The chemical-physical features of the nanoparticles are fully investigated and their interaction with cells expressing (GTL-16 gastric carcinoma line) or not expressing (NIH-3T3 fibroblasts) the Met/HGFR is analyzed. Functionalized nanoparticles specifically bind to and are internalized in cells expressing the receptor (GTL-16) but not in the ones that do not express it (NIH-3T3). Moreover they discharge DOXO in the targeted GTL-16 cells that reach the nucleus and display cytotoxicity as assessed in an MTT assay. Two different types of ternary nanoparticles are prepared, differing for the sequence of the functionalization steps (adsorption of DOXO first and then mAb or vice versa), and it is found that the ones in which mAb is adsorbed first are more efficient under all the examined aspects (binding, internalization, cytotoxicity), possibly because of a better mAb orientation on the nanoparticle surface. These multifunctional nanoparticles could thus be useful instruments for targeted local or systemic drug delivery, allowing a reduction in the therapeutic dose of the drug and thus adverse side effects. Moreover, this work opens new perspectives in the use of nanocrystalline apatites as a new platform for theranostic applications in nanomedicine.
Collapse
Affiliation(s)
- Michele Iafisco
- Università del Piemonte Orientale, Dipartimento di Scienze della Salute, Via Solaroli 17, 28100 Novara, Italy
| | | | | | | | | | | | | |
Collapse
|
22
|
Singh A, Nascimento JM, Kowar S, Busch H, Boerries M. Boolean approach to signalling pathway modelling in HGF-induced keratinocyte migration. ACTA ACUST UNITED AC 2013; 28:i495-i501. [PMID: 22962472 PMCID: PMC3436837 DOI: 10.1093/bioinformatics/bts410] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Motivation: Cell migration is a complex process that is controlled through the time-sequential feedback regulation of protein signalling and gene regulation. Based on prior knowledge and own experimental data, we developed a large-scale dynamic network describing the onset and maintenance of hepatocyte growth factor-induced migration of primary human keratinocytes. We applied Boolean logic to capture the qualitative behaviour as well as short-and long-term dynamics of the complex signalling network involved in this process, comprising protein signalling, gene regulation and autocrine feedback. Results: A Boolean model has been compiled from time-resolved transcriptome data and literature mining, incorporating the main pathways involved in migration from initial stimulation to phenotype progress. Steady-state analysis under different inhibition and stimulation conditions of known key molecules reproduces existing data and predicts novel interactions based on our own experiments. Model simulations highlight for the first time the necessity of a temporal sequence of initial, transient MET receptor (met proto-oncogene, hepatocyte growth factor receptor) and subsequent, continuous epidermal growth factor/integrin signalling to trigger and sustain migration by autocrine signalling that is integrated through the Focal adhesion kinase protein. We predicted in silico and verified in vitro that long-term cell migration is stopped if any of the two feedback loops are inhibited. Availability: The network file for analysis with the R BoolNet library is available in the Supplementary Information. Contact:melanie.boerries@frias.uni-freiburg.de or hauke.busch@frias.uni-freiburg.de Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Amit Singh
- Freiburg Institute for Advanced Studies, LifeNet, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, Freiburg, Germany
| | | | | | | | | |
Collapse
|
23
|
The role of endosomal signaling triggered by metastatic growth factors in tumor progression. Cell Signal 2013; 25:1539-45. [PMID: 23571269 DOI: 10.1016/j.cellsig.2013.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 03/28/2013] [Indexed: 01/12/2023]
Abstract
Within tumor microenvironment, a lot of growth factors such as hepatocyte growth factor and epidermal growth factor may induce similar signal cascade downstream of receptor tyrosine kinase (RTK) and trigger tumor metastasis synergistically. In the past decades, the intimate relationship of RTK-mediated receptor endocytosis with signal transduction was well established. In general, most RTK undergoes clathrin-dependent endocytosis and/or clathrin-independent endocytosis. The internalized receptors may sustain the signaling within early endosome, recycling to plasma membrane for subsequent ligand engagement or sorting to late endosomes/lysosome for receptor degradation. Moreover, receptor endocytosis influences signal transduction in a temporal and spatial manner for periodical and polarized cellular processes such as cell migration. The endosomal signalings triggered by various metastatic factors are quite similar in some critical points, which are essential for triggering cell migration and tumor progression. There are common regulators for receptor endocytosis including dynamin, Rab4, Rab5, Rab11 and Cbl. Moreover, many critical regulators within the RTK signal pathway such as Grb2, p38, PKC and Src were also modulators of endocytosis. In the future, these may constitute a new category of targets for prevention of tumor metastasis.
Collapse
|
24
|
Hu CT, Cheng CC, Pan SM, Wu JR, Wu WS. PKC mediates fluctuant ERK-paxillin signaling for hepatocyte growth factor-induced migration of hepatoma cell HepG2. Cell Signal 2013; 25:1457-67. [PMID: 23524339 DOI: 10.1016/j.cellsig.2013.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/12/2013] [Indexed: 12/23/2022]
Abstract
Hepatocyte growth factor (HGF) is critical for triggering metastasis of hepatocellular carcinoma cell (HCC). Extracellular signal-regulated kinase (ERK) mediates HGF-induced cell migration via focal adhesion signaling. Protein kinase C (PKC) is a negative regulator of ERK activation, however, both PKC and ERK were required for HGF-induced cell migration. To address this intriguing issue, the signal mechanisms for HGF-induced HepG2 cell migration were investigated in a long-term fashion. HGF-induced phosphorylations of ERK, Src (at Tyr 416) and paxillin (at Ser178 and Tyr31) were up and down for 3 times within 24h. HGF also induced fluctuant PKC activation and Rac degradation. Consistently, HGF induced intermittent actin polarization within 24h, which can be blocked by the inhibitors of PKC (Bisindolymaleimide) and ERK. Inhibitor studies revealed that ERK was required for HGF-induced paxillin phosphorylation at Ser178, whereas PKC and Rac-1 may suppress HGF-induced phosphorylation of ERK and paxillin (at Ser178) and upregulate phosphorylation of paxillin at Tyr31. Based on shRNA technique, PKCα and δ were responsible for suppressing HGF-induced phosphorylation of ERK and paxillin (at Ser178), whereas PKC ε and ζ were required for phosphorylation of paxillin at Tyr31. The HGF-induced fluctuant signaling is reminiscent of c-Met endocytosis. Using Concanavalin A, an inhibitor of endocytosis, we found that c-Met endocytosis was required for PKC to suppress ERK phosphorylation. Moreover, HGF-induced c-Met degradation was also fluctuant, which can be prevented by Bisindolymaleimide. In conclusion, PKC is critical for mediating HGF-induced fluctuant ERK-paxillin signaling during cell migration, probably via triggering endosomal degradation of c-Met.
Collapse
Affiliation(s)
- Chi-Tan Hu
- Research Centre for Hepatology, Department of Internal Medicine, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien, Taiwan
| | | | | | | | | |
Collapse
|
25
|
Combined drug action of 2-phenylimidazo[2,1-b]benzothiazole derivatives on cancer cells according to their oncogenic molecular signatures. PLoS One 2012; 7:e46738. [PMID: 23071625 PMCID: PMC3465283 DOI: 10.1371/journal.pone.0046738] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/04/2012] [Indexed: 12/19/2022] Open
Abstract
The development of targeted molecular therapies has provided remarkable advances into the treatment of human cancers. However, in most tumors the selective pressure triggered by anticancer agents encourages cancer cells to acquire resistance mechanisms. The generation of new rationally designed targeting agents acting on the oncogenic path(s) at multiple levels is a promising approach for molecular therapies. 2-phenylimidazo[2,1-b]benzothiazole derivatives have been highlighted for their properties of targeting oncogenic Met receptor tyrosine kinase (RTK) signaling. In this study, we evaluated the mechanism of action of one of the most active imidazo[2,1-b]benzothiazol-2-ylphenyl moiety-based agents, Triflorcas, on a panel of cancer cells with distinct features. We show that Triflorcas impairs in vitro and in vivo tumorigenesis of cancer cells carrying Met mutations. Moreover, Triflorcas hampers survival and anchorage-independent growth of cancer cells characterized by "RTK swapping" by interfering with PDGFRβ phosphorylation. A restrained effect of Triflorcas on metabolic genes correlates with the absence of major side effects in vivo. Mechanistically, in addition to targeting Met, Triflorcas alters phosphorylation levels of the PI3K-Akt pathway, mediating oncogenic dependency to Met, in addition to Retinoblastoma and nucleophosmin/B23, resulting in altered cell cycle progression and mitotic failure. Our findings show how the unusual binding plasticity of the Met active site towards structurally different inhibitors can be exploited to generate drugs able to target Met oncogenic dependency at distinct levels. Moreover, the disease-oriented NCI Anticancer Drug Screen revealed that Triflorcas elicits a unique profile of growth inhibitory-responses on cancer cell lines, indicating a novel mechanism of drug action. The anti-tumor activity elicited by 2-phenylimidazo[2,1-b]benzothiazole derivatives through combined inhibition of distinct effectors in cancer cells reveal them to be promising anticancer agents for further investigation.
Collapse
|