1
|
Joshi J, Bhutada S, Martin DR, Guzowski J, Blankenberg D, Apte SS. DICED (Database of Identified Cleavage Sites Endemic to Diseases States): A Searchable Web Interface for Terminomics/Degradomics. Proteomics 2025:e202500007. [PMID: 40351053 DOI: 10.1002/pmic.202500007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/09/2025] [Accepted: 04/25/2025] [Indexed: 05/14/2025]
Abstract
Proteolysis is an irreversible posttranslational modification with immense biological impact. Owing to its high disease significance, there is growing interest in investigating proteolysis on the proteome scale, termed degradomics. We developed 'Database of Identified Cleavage sites Endemic to Disease states' (DICED; https://diced.lerner.ccf.org/), as a searchable knowledgebase to promote collaboration and knowledge sharing in degradomics. DICED was designed and constructed using Python, JavaScript, HTML, and PostgreSQL. Django (https://www.djangoproject.com) was chosen as the primary framework for its security features and support for agile development. DICED can be utilized on major web browsers and operating systems for easy access to high-throughput mass spectrometry-identified cleaved protein termini. The data was obtained using N-terminomics, comprising N-terminal protein labeling, labeled peptide enrichment, mass spectrometry and positional peptide annotation. The DICED database contains experimentally derived N-terminomics peptide datasets from tissues, diseases, or digests of tissue protein libraries using individual proteases and is searchable using UniProt ID, protein name, gene symbol or up to 100 peptide sequences. The tabular output format can be exported as a CSV file. Although DICED presently accesses data from a single laboratory, it is freely available as a Galaxy tool and the underlying database is scalable, permitting addition of new datasets and features.
Collapse
Affiliation(s)
- Jayadev Joshi
- Center for Computational Life Sciences, Cleveland Clinic Research, Cleveland, Ohio, USA
| | - Sumit Bhutada
- Department of Biomedical Engineering, Cleveland Clinic Research, Cleveland, Ohio, USA
| | - Daniel R Martin
- Department of Biomedical Engineering, Cleveland Clinic Research, Cleveland, Ohio, USA
| | - Joyce Guzowski
- Central Administration, Cleveland Clinic Research, Cleveland, Ohio, USA
| | - Daniel Blankenberg
- Center for Computational Life Sciences, Cleveland Clinic Research, Cleveland, Ohio, USA
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Research, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Vlok M, Solis N, Sadasivan J, Mohamud Y, Warsaba R, Kizhakkedathu J, Luo H, Overall CM, Jan E. Identification of the proteolytic signature in CVB3-infected cells. J Virol 2024; 98:e0049824. [PMID: 38953667 PMCID: PMC11265341 DOI: 10.1128/jvi.00498-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Coxsackievirus B3 (CVB3) encodes proteinases that are essential for processing of the translated viral polyprotein. Viral proteinases also target host proteins to manipulate cellular processes and evade innate antiviral responses to promote replication and infection. While some host protein substrates of the CVB3 3C and 2A cysteine proteinases have been identified, the full repertoire of targets is not known. Here, we utilize an unbiased quantitative proteomics-based approach termed terminal amine isotopic labeling of substrates (TAILS) to conduct a global analysis of CVB3 protease-generated N-terminal peptides in both human HeLa and mouse cardiomyocyte (HL-1) cell lines infected with CVB3. We identified >800 proteins that are cleaved in CVB3-infected HeLa and HL-1 cells including the viral polyprotein, known substrates of viral 3C proteinase such as PABP, DDX58, and HNRNPs M, K, and D and novel cellular proteins. Network and GO-term analysis showed an enrichment in biological processes including immune response and activation, RNA processing, and lipid metabolism. We validated a subset of candidate substrates that are cleaved under CVB3 infection and some are direct targets of 3C proteinase in vitro. Moreover, depletion of a subset of TAILS-identified target proteins decreased viral yield. Characterization of two target proteins showed that expression of 3Cpro-targeted cleaved fragments of emerin and aminoacyl-tRNA synthetase complex-interacting multifunctional protein 2 modulated autophagy and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, respectively. The comprehensive identification of host proteins targeted during virus infection provides insights into the cellular pathways manipulated to facilitate infection. IMPORTANCE RNA viruses encode proteases that are responsible for processing viral proteins into their mature form. Viral proteases also target and cleave host cellular proteins; however, the full catalog of these target proteins is incomplete. We use a technique called terminal amine isotopic labeling of substrates (TAILS), an N-terminomics to identify host proteins that are cleaved under virus infection. We identify hundreds of cellular proteins that are cleaved under infection, some of which are targeted directly by viral protease. Revealing these target proteins provides insights into the host cellular pathways and antiviral signaling factors that are modulated to promote virus infection and potentially leading to virus-induced pathogenesis.
Collapse
Affiliation(s)
- Marli Vlok
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nestor Solis
- Department of Oral and Biological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jibin Sadasivan
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yasir Mohamud
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart and Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
- St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Reid Warsaba
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jayachandran Kizhakkedathu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Honglin Luo
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart and Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
- St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher M. Overall
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral and Biological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Yonsei Frontier Lab, Yonsei University, Seoul, Republic of Korea
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Ziegler AR, Dufour A, Scott NE, Edgington-Mitchell LE. Ion Mobility-Based Enrichment-Free N-Terminomics Analysis Reveals Novel Legumain Substrates in Murine Spleen. Mol Cell Proteomics 2024; 23:100714. [PMID: 38199506 PMCID: PMC10862022 DOI: 10.1016/j.mcpro.2024.100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Aberrant levels of the asparaginyl endopeptidase legumain have been linked to inflammation, neurodegeneration, and cancer, yet our understanding of this protease is incomplete. Systematic attempts to identify legumain substrates have been previously confined to in vitro studies, which fail to mirror physiological conditions and obscure biologically relevant cleavage events. Using high-field asymmetric waveform ion mobility spectrometry (FAIMS), we developed a streamlined approach for proteome and N-terminome analyses without the need for N-termini enrichment. Compared to unfractionated proteomic analysis, we demonstrate FAIMS fractionation improves N-termini identification by >2.5 fold, resulting in the identification of >2882 unique N-termini from limited sample amounts. In murine spleens, this approach identifies 6366 proteins and 2528 unique N-termini, with 235 cleavage events enriched in WT compared to legumain-deficient spleens. Among these, 119 neo-N-termini arose from asparaginyl endopeptidase activities, representing novel putative physiological legumain substrates. The direct cleavage of selected substrates by legumain was confirmed using in vitro assays, providing support for the existence of physiologically relevant extra-lysosomal legumain activity. Combined, these data shed critical light on the functions of legumain and demonstrate the utility of FAIMS as an accessible method to improve depth and quality of N-terminomics studies.
Collapse
Affiliation(s)
- Alexander R Ziegler
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Antoine Dufour
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Nichollas E Scott
- Department of Microbiology and Immunology, Peter Doherty Institute, The University of Melbourne, Parkville, Victoria, Australia.
| | - Laura E Edgington-Mitchell
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
4
|
Kollet O, Das A, Karamanos N, Auf dem Keller U, Sagi I. Redefining metalloproteases specificity through network proteolysis. Trends Mol Med 2024; 30:147-163. [PMID: 38036391 PMCID: PMC11004056 DOI: 10.1016/j.molmed.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
Proteolytic processes on cell surfaces and extracellular matrix (ECM) sustain cell behavior and tissue integrity in health and disease. Matrix metalloproteases (MMPs) and a disintegrin and metalloproteases (ADAMs) remodel cell microenvironments through irreversible proteolysis of ECM proteins and cell surface bioactive molecules. Pan-MMP inhibitors in inflammation and cancer clinical trials have encountered challenges due to promiscuous activities of MMPs. Systems biology advances revealed that MMPs initiate multifactorial proteolytic cascades, creating new substrates, activating or suppressing other MMPs, and generating signaling molecules. This review highlights the intricate network that underscores the role of MMPs beyond individual substrate-enzyme activities. Gaining insight into MMP function and tissue specificity is crucial for developing effective drug discovery strategies and novel therapeutics. This requires considering the dynamic cellular processes and consequences of network proteolysis.
Collapse
Affiliation(s)
- Orit Kollet
- The Weizmann Institute of Science, Department of Immunology and Regenerative Biology, Rehovot, Israel
| | - Alakesh Das
- The Weizmann Institute of Science, Department of Immunology and Regenerative Biology, Rehovot, Israel
| | - Nikos Karamanos
- University of Patras, Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, Patras, Greece
| | - Ulrich Auf dem Keller
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Lyngby, Denmark
| | - Irit Sagi
- The Weizmann Institute of Science, Department of Immunology and Regenerative Biology, Rehovot, Israel.
| |
Collapse
|
5
|
Puławski W, Koliński A, Koliński M. Integrative modeling of diverse protein-peptide systems using CABS-dock. PLoS Comput Biol 2023; 19:e1011275. [PMID: 37405984 DOI: 10.1371/journal.pcbi.1011275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023] Open
Abstract
The CABS model can be applied to a wide range of protein-protein and protein-peptide molecular modeling tasks, such as simulating folding pathways, predicting structures, docking, and analyzing the structural dynamics of molecular complexes. In this work, we use the CABS-dock tool in two diverse modeling tasks: 1) predicting the structures of amyloid protofilaments and 2) identifying cleavage sites in the peptide substrates of proteolytic enzymes. In the first case, simulations of the simultaneous docking of amyloidogenic peptides indicated that the CABS model can accurately predict the structures of amyloid protofilaments which have an in-register parallel architecture. Scoring based on a combination of symmetry criteria and estimated interaction energy values for bound monomers enables the identification of protofilament models that closely match their experimental structures for 5 out of 6 analyzed systems. For the second task, it has been shown that CABS-dock coarse-grained docking simulations can be used to identify the positions of cleavage sites in the peptide substrates of proteolytic enzymes. The cleavage site position was correctly identified for 12 out of 15 analyzed peptides. When combined with sequence-based methods, these docking simulations may lead to an efficient way of predicting cleavage sites in degraded proteins. The method also provides the atomic structures of enzyme-substrate complexes, which can give insights into enzyme-substrate interactions that are crucial for the design of new potent inhibitors.
Collapse
Affiliation(s)
- Wojciech Puławski
- Bioinformatics Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | | | - Michał Koliński
- Bioinformatics Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Sua-Cespedes C, Lacerda JT, Zanetti G, David DD, Moraes MN, de Assis LVM, Castrucci AML. Melanopsin (OPN4) is a novel player in skin homeostasis and attenuates UVA-induced effects. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B: BIOLOGY 2023; 242:112702. [PMID: 37018912 DOI: 10.1016/j.jphotobiol.2023.112702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/10/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023]
Abstract
The presence of melanopsin (OPN4) has been shown in cultured murine melanocytes and was associated with ultraviolet A radiation (UVA) reception. Here we demonstrated the protective role of OPN4 in skin physiology and the increased UVA-induced damage in its absence. Histological analysis showed a thicker dermis and thinner hypodermal white adipose tissue layer in Opn4-/- (KO) mice than in wild-type (WT) animals. Proteomics analyses revealed molecular signatures associated with proteolysis, remodeling chromatin, DNA damage response (DDR), immune response, and oxidative stress coupled with antioxidant responses in the skin of Opn4 KO mice compared to WT. Skin protein variants were found in Opn4 KO mice and Opn2, Opn3, and Opn5 gene expressions were increased in the genotype. We investigated each genotype response to UVA stimulus (100 kJ/m2). We found an increase of Opn4 gene expression following stimulus on the skin of WT mice suggesting melanopsin as a UVA sensor. Proteomics findings suggest that UVA decreases DDR pathways associated with ROS accumulation and lipid peroxidation in the skin of Opn4 KO mice. Relative changes in methylation (H3-K79) and acetylation sites of histone between genotypes and differentially modulated by UVA stimulus were also observed. We also identified alterations of molecular traits of the central hypothalamus-pituitary- adrenal (HPA) and the skin HPA-like axes in the absence of OPN4. Higher skin corticosterone levels were detected in UVA-stimulated Opn4 KO compared to irradiated WT mice. Taken altogether, functional proteomics associated with gene expression experiments allowed a high-throughput evaluation that suggests an important protective role of OPN4 in regulating skin physiology in the presence and absence of UVA radiation.
Collapse
Affiliation(s)
- Cristhian Sua-Cespedes
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - José Thalles Lacerda
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Giovanna Zanetti
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Daniela Dantas David
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Maria Nathalia Moraes
- Department of Biological Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, São Paulo, Brazil
| | | | - Ana Maria L Castrucci
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Biology, University of Virginia, Charlottesville, USA.
| |
Collapse
|
7
|
Wang R, Wang Z, Lu H. Separation methods for system-wide profiling of protein terminome. Proteomics 2023; 23:e2100374. [PMID: 35997653 DOI: 10.1002/pmic.202100374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022]
Abstract
Protein N- and C-termini have specific biochemical properties and functions. They play vital roles in various biological processes, such as protein stability and localization. In addition, post-translational modifications and proteolytic processing generate different proteoforms at protein termini. In recent years, terminomics has attracted significant attention, and numerous strategies have been developed to achieve high-throughput and global terminomics analysis. This review summarizes the recent protein N-termini and C-termini enrichment methods and their application in different samples. We also look ahead further application of terminomics in profiling protease substrates and discovery of disease biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Rui Wang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Zhongjie Wang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Haojie Lu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China.,Department of Chemistry and Key Laboratory of Glycoconjugates Research Ministry of Public Health, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Haack AM, Overall CM, Auf dem Keller U. Degradomics technologies in matrisome exploration. Matrix Biol 2022; 114:1-17. [PMID: 36280126 DOI: 10.1016/j.matbio.2022.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Consisting of a defined set of extracellular proteins secreted from resident cells and with minor contributions from serum proteins, the extracellular matrix (ECM) is an essential component of all tissues. Maintaining tissue homeostasis, structural support and cellular control through cell-ECM communication, the ECM has come to be viewed as not just a passive structural entity but rather as a dynamic signaling conduit between cells and the extracellular compartment. Proteins and their cleavage products mediate this communication, and aberrant signaling, either directly or indirectly distorting the ECM, results in pathological conditions including cancer, inflammation, fibrosis, and neurodegenerative diseases. Characterization of ECM components, the matrisome, the extracellular environment and their changes in disease is therefore of importance to understand and mitigate by developing novel therapeutics. Liquid chromatography-mass spectrometry (LC-MS) proteomics has been integral to protein and proteome research for decades and long superseded the obsolescent gel-based approaches. A continuous effort has ensured progress with increased sensitivity and throughput as more advanced equipment has been developed hand in hand with specialized enrichment, detection, and identification methods. Part of this effort lies in the field of degradomics, a branch of proteomics focused on discovering novel protease substrates by identification of protease-generated neo-N termini, the N-terminome, and characterizing the responsible protease networks. Various methods to do so have been developed, some specialized for specific tissue types, others for particular proteases, throughput, or ease of use. This review aims to provide an overview of the state-of-the-art proteomics techniques that have successfully been recently utilized to characterize proteolytic cleavages in the ECM and thereby guided new research and understanding of the ECM and matrisome biology.
Collapse
Affiliation(s)
- Aleksander M Haack
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800 Kongens Lyngby, Denmark
| | - Christopher M Overall
- Department of Biochemistry and Molecular Biology, Department of Oral Biological and Medical Sciences, Centre for Blood Research, University of British Columbia, 4.401 Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada.
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
9
|
Low serum levels of promatrix metalloproteinase-2 and -9 occur during acute Babesia canis infection in dogs. Vet Parasitol 2021; 300:109612. [PMID: 34735844 DOI: 10.1016/j.vetpar.2021.109612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/23/2022]
Abstract
Inflammation is a hallmark of the acute Babesia canis infection. Promatrix metalloproteinase (proMMP)-2 and -9 are involved in inflammation, but their levels have not been analyzed in canine babesiosis. We hypothesized that in dogs infected with B. canis, serum proMMP-2 and -9 levels change between presentation and recovery. Degree of the change differs if dogs develop systemic inflammatory response syndrome (SIRS). This study included 24 dogs with an acute B. canis infection, at presentation and after two weeks. We used routine hematology and biochemistry methods, spectrophotometry for the acute-phase proteins, microscopy for parasitemia and zymography for (pro)MMPs. In vitro endothelial cells and leukocyte short-term cultures, and platelet lysates were used to detect specific MMP activity. Statistical analyses included Wilcoxon test for paired samples, Mann-Whitney U test and Spearman's rank correlation. Our results showed that endothelial cells, leukocytes and platelets are the source of proMMP-2 and proMMP-9. Furthermore, both proMMPs were lower at presentation than after recovery (p < 0.001). At presentation, proMMP-9 levels correlated with parasitemia (rho = -0.616, p = 0.009), total leukocyte (rho = 0.704, p < 0.001) and neutrophil counts (rho = 0.741, p < 0.001). Extent of alterations in proMMP-2 levels between presentation and recovery was lower (p = 0.038) in dogs with SIRS than in non-SIRS dogs, while levels of proMMP-9 were comparable between these groups. Our conclusion is that during the acute B. canis infection, low serum levels of proMMP-2 and proMMP-9 at presentation reflect thrombocytopenia and leukopenia. Decreased proMMP-2 level could be associated with SIRS.
Collapse
|
10
|
Chen L, Kashina A. Post-translational Modifications of the Protein Termini. Front Cell Dev Biol 2021; 9:719590. [PMID: 34395449 PMCID: PMC8358657 DOI: 10.3389/fcell.2021.719590] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Post-translational modifications (PTM) involve enzyme-mediated covalent addition of functional groups to proteins during or after synthesis. These modifications greatly increase biological complexity and are responsible for orders of magnitude change between the variety of proteins encoded in the genome and the variety of their biological functions. Many of these modifications occur at the protein termini, which contain reactive amino- and carboxy-groups of the polypeptide chain and often are pre-primed through the actions of cellular machinery to expose highly reactive residues. Such modifications have been known for decades, but only a few of them have been functionally characterized. The vast majority of eukaryotic proteins are N- and C-terminally modified by acetylation, arginylation, tyrosination, lipidation, and many others. Post-translational modifications of the protein termini have been linked to different normal and disease-related processes and constitute a rapidly emerging area of biological regulation. Here we highlight recent progress in our understanding of post-translational modifications of the protein termini and outline the role that these modifications play in vivo.
Collapse
Affiliation(s)
| | - Anna Kashina
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
11
|
Abstract
Proteases play a central role in regulating renal pathophysiology and are increasingly evaluated as actionable drug targets. Here, we review the role of proteolytic systems in inflammatory kidney disease. Inflammatory kidney diseases are associated with broad dysregulations of extracellular and intracellular proteolysis. As an example of a proteolytic system, the complement system plays a significant role in glomerular inflammatory kidney disease and is currently under clinical investigation. Based on two glomerular kidney diseases, lupus nephritis, and membranous nephropathy, we portrait two proteolytic pathomechanisms and the role of the complement system. We discuss how profiling proteolytic activity in patient samples could be used to stratify patients for more targeted interventions in inflammatory kidney diseases. We also describe novel comprehensive, quantitative tools to investigate the entirety of proteolytic processes in a tissue sample. Emphasis is placed on mass spectrometric approaches that enable the comprehensive analysis of the complement system, as well as protease activities and regulation in general.
Collapse
|
12
|
Demir F, Kizhakkedathu JN, Rinschen MM, Huesgen PF. MANTI: Automated Annotation of Protein N-Termini for Rapid Interpretation of N-Terminome Data Sets. Anal Chem 2021; 93:5596-5605. [PMID: 33729755 PMCID: PMC8027985 DOI: 10.1021/acs.analchem.1c00310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/04/2021] [Indexed: 12/23/2022]
Abstract
Site-specific proteolytic processing is an important, irreversible post-translational protein modification with implications in many diseases. Enrichment of protein N-terminal peptides followed by mass spectrometry-based identification and quantification enables proteome-wide characterization of proteolytic processes and protease substrates but is challenged by the lack of specific annotation tools. A common problem is, for example, ambiguous matches of identified peptides to multiple protein entries in the databases used for identification. We developed MaxQuant Advanced N-termini Interpreter (MANTI), a standalone Perl software with an optional graphical user interface that validates and annotates N-terminal peptides identified by database searches with the popular MaxQuant software package by integrating information from multiple data sources. MANTI utilizes diverse annotation information in a multistep decision process to assign a conservative preferred protein entry for each N-terminal peptide, enabling automated classification according to the likely origin and determines significant changes in N-terminal peptide abundance. Auxiliary R scripts included in the software package summarize and visualize key aspects of the data. To showcase the utility of MANTI, we generated two large-scale TAILS N-terminome data sets from two different animal models of chemically and genetically induced kidney disease, puromycin adenonucleoside-treated rats (PAN), and heterozygous Wilms Tumor protein 1 mice (WT1). MANTI enabled rapid validation and autonomous annotation of >10 000 identified terminal peptides, revealing novel proteolytic proteoforms in 905 and 644 proteins, respectively. Quantitative analysis indicated that proteolytic activities with similar sequence specificity are involved in the pathogenesis of kidney injury and proteinuria in both models, whereas coagulation processes and complement activation were specifically induced after chemical injury.
Collapse
Affiliation(s)
- Fatih Demir
- Department
of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark
- Central
Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
| | - Jayachandran N. Kizhakkedathu
- Centre
for Blood Research, Department of Pathology & Laboratory Medicine,
School of Biomedical Engineering, Department of Chemistry, University of British Columbia, 251-2222 Health Sciences Mall, Vancouver V6T 1Z3, British Columbia, Canada
| | - Markus M. Rinschen
- Department
of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark
- III.
Department of Medicine, University Medical
Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Pitter F. Huesgen
- Central
Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Cologne
Excellence Cluster Cellular Stress Response in Aging-Associated Diseases
(CECAD), Medical Faculty and University Hospital, Institute of Biochemistry,
Department of Chemistry, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| |
Collapse
|
13
|
Frey AM, Chaput D, Shaw LN. Insight into the human pathodegradome of the V8 protease from Staphylococcus aureus. Cell Rep 2021; 35:108930. [PMID: 33826899 PMCID: PMC8054439 DOI: 10.1016/j.celrep.2021.108930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/03/2020] [Accepted: 03/11/2021] [Indexed: 12/03/2022] Open
Abstract
Staphylococcus aureus possesses ten extracellular proteases with mostly unknown targets in the human proteome. To assist with bacterial protease target discovery, we have applied and compared two N-terminomics methods to investigate cleavage of human serum proteins by S. aureus V8 protease, discovering 85 host-protein targets. Among these are virulence-relevant complement, iron sequestration, clotting cascade, and host protease inhibitor proteins. Protein cleavage sites have been identified, providing insight into the disruption of host protein function by V8. Complement proteins are cleaved within peptidase and sushi domains, and host protease inhibitors are cleaved outside their protease-trapping motifs. Our data highlight the potential for further application of N-terminomics in discovery of bacterial protease substrates in other host niches and provide omics-scale insight into the role of the V8 protease in S. aureus pathogenesis. S. aureus-secreted proteases are central to disease causation, but the discovery of their host substrates has been limited. Frey et al. use N-terminomic approaches to uncover human serum targets of the V8 protease that are from virulence-relevant processes such as the host inflammatory network and nutrient sequestration.
Collapse
Affiliation(s)
- Andrew Michael Frey
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Dale Chaput
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Lindsey Neil Shaw
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
14
|
Leduc C, Dupont L, Joannes L, Monseur C, Baiwir D, Mazzucchelli G, Deroanne C, Colige A, Bekhouche M. In vivo N-Terminomics Highlights Novel Functions of ADAMTS2 and ADAMTS14 in Skin Collagen Matrix Building. Front Mol Biosci 2021; 8:643178. [PMID: 33816558 PMCID: PMC8017238 DOI: 10.3389/fmolb.2021.643178] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
A disintegrin and metalloproteinase with thrombospondin type I motif (ADAMTS)2 and ADAMTS14 were originally known for their ability to cleave the aminopropeptides of fibrillar collagens. Previous work using N-terminomic approach (N-TAILS) in vitro led to the identification of new substrates, including some molecules involved in TGF-β signaling. Here, N-TAILS was used to investigate the substrates of these two enzymes in vivo, by comparing the N-terminomes of the skin of wild type mice, mice deficient in ADAMTS2, in ADAMTS14 and in both ADAMTS2 and ADAMTS14. This study identified 68 potential extracellular and cell surface proteins, with the majority of them being cleaved by both enzymes. These analyses comfort their role in collagen matrix organization and suggest their implication in inflammatory processes. Regarding fibrillar collagen, this study demonstrates that both ADAMTS2 and ADAMTS14 are involved in the processing of the aminopropeptide of alpha1 and alpha2 type V collagen. It also revealed the existence of several cleavage sites in the Col1 domain and in the C-propeptide of type I collagens. In addition to collagens and other extracellular proteins, two major components of the cell cytoskeleton, actin and vimentin, were also identified as potential substrates. The latter data were confirmed in vitro using purified enzymes and could potentially indicate other functions for ADAMTS2 and 14. This original investigation of mouse skin degradomes by N-terminomic highlights the essential role of ADAMTS2 and ADAMTS14 in collagen matrix synthesis and turnover, and gives clues to better understand their functions in skin pathophysiology. Data are available via ProteomeXchange with identifier PXD022179.
Collapse
Affiliation(s)
- Cédric Leduc
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Laura Dupont
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Loïc Joannes
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Christine Monseur
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Dominique Baiwir
- GIGA Proteomic Facility, GIGA-Interdisciplinary Cluster for Applied Genoproteomics, University of Liège, Liège, Belgium
| | - Gabriel Mazzucchelli
- GIGA Proteomic Facility, GIGA-Interdisciplinary Cluster for Applied Genoproteomics, University of Liège, Liège, Belgium
| | - Christophe Deroanne
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Alain Colige
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Mourad Bekhouche
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Liège, Belgium.,Tissue Biology and Therapeutic Engineering, Centre National de la Recherche Scientifique/University of Lyon Unité Mixte de Recherche 5305, Lyon, France.,Faculté d'Odontologie de Lyon, Université de Lyon, Université Lyon 1, Lyon, France
| |
Collapse
|
15
|
Andrade-Silva D, Zelanis A, Travaglia-Cardoso SR, Nishiyama MY, Serrano SMT. Venom Profiling of the Insular Species Bothrops alcatraz: Characterization of Proteome, Glycoproteome, and N-Terminome Using Terminal Amine Isotopic Labeling of Substrates. J Proteome Res 2021; 20:1341-1358. [PMID: 33404253 DOI: 10.1021/acs.jproteome.0c00737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bothrops alcatraz, a species endemic to Alcatrazes Islands, is regarded as critically endangered due to its small area of occurrence and the declining quality of its habitat. We recently reported the identification of N-glycans attached to toxins of Bothrops species, showing similar compositions in venoms of the B. jararaca complex (B. jararaca, B. insularis, and B. alcatraz). Here, we characterized B. alcatraz venom using electrophoretic, proteomic, and glycoproteomic approaches. Electrophoresis showed that B. alcatraz venom differs from B. jararaca and B. insularis; however, N-glycan removal revealed similarities between them, indicating that the occupation of N-glycosylation sites contributes to interspecies variability in the B. jararaca complex. Metalloproteinase was the major toxin class identified in the B. alcatraz venom proteome followed by serine proteinase and C-type lectin, and overall, the adult B. alcatraz venom resembles that of B. jararaca juvenile specimens. The comparative glycoproteomic analysis of B. alcatraz venom with B. jararaca and B. insularis indicated that there may be differences in the utilization of N-glycosylation motifs among their different toxin classes. Furthermore, we prospected for the first time the N-terminome of a snake venom using the terminal amine isotopic labeling of substrates (TAILS) approach and report the presence of ∼30% of N-termini corresponding to truncated toxin forms and ∼37% N-terminal sequences blocked by pyroglutamic acid in B. alcatraz venom. These findings underscore a low correlation between venom gland transcriptomes and proteomes and support the view that post-translational processes play a major role in shaping venom phenotypes.
Collapse
Affiliation(s)
- Débora Andrade-Silva
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo 05503-900, Brazil
| | - André Zelanis
- Functional Proteomics Laboratory, Department of Science and Technology, Federal University of São Paulo, (ICT-UNIFESP), São José dos Campos 12231-280, SP, Brazil
| | | | - Milton Y Nishiyama
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo 05503-900, Brazil
| | - Solange M T Serrano
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo 05503-900, Brazil
| |
Collapse
|
16
|
New strategies to identify protease substrates. Curr Opin Chem Biol 2020; 60:89-96. [PMID: 33220627 DOI: 10.1016/j.cbpa.2020.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 12/31/2022]
Abstract
Proteome dynamics is governed by transcription, translation, and post-translational modifications. Limited proteolysis is an irreversible post-translational modification that generates multiple but unique proteoforms from almost every native protein. Elucidating these proteoforms and understanding their dynamics at a system-wide level is of utmost importance because uncontrolled proteolytic cleavages correlate with many pathologies. Mass spectrometry-based degradomics has revolutionized protease research and invented workflows for global identification of protease substrates with resolution down to precise cleavage sites. In this review, we provide an overview of current strategies in protease substrate degradomics and introduce the concept of workflow, mass spectrometry-based and in silico enrichment of protein termini with the perspective of full deconvolution of digital proteome maps for precision medicine, and degradomics biomarker diagnostics.
Collapse
|
17
|
Bingham GC, Lee F, Naba A, Barker TH. Spatial-omics: Novel approaches to probe cell heterogeneity and extracellular matrix biology. Matrix Biol 2020; 91-92:152-166. [DOI: 10.1016/j.matbio.2020.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
|
18
|
Down-regulation of Gremlin1 inhibits inflammatory response and vascular permeability in chronic idiopathic urticaria through suppression of TGF-β signaling pathway. Gene 2020; 756:144916. [PMID: 32580008 DOI: 10.1016/j.gene.2020.144916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/21/2020] [Accepted: 06/17/2020] [Indexed: 12/31/2022]
Abstract
Chronic idiopathic urticaria (CIU) is an unfavorable skin condition which could be maintained for six weeks or longer time. Gremlin1 (GREM1) was recently applied in treatments of many diseases. However, the possible regulatory mechanism of GREM1 in CIU remained unclear. This study aimed to explore the regulatory effects of GREM1 on the inflammatory response and vascular permeability mediated by mast cells of CIU via TGF-β signaling pathway. Initially, microarray analysis was used to identify CIU-related differentially expressed genes and the potential mechanism of this gene. A mouse model of CIU was established. To explore the functional role of GREM1 in CIU, the modeled mice were then injected with GREM1-siRNA, SRI-011381 (the activator of TGF-β signaling pathway), or both, followed by serum test, and immunoglobulin detection. The levels of inflammatory factors and tryptase, β-hexosaminase, histamine in the serum were detected. Besides, vascular endothelial cell permeability and the target relation between GREM1 and TGF-β were also examined. Mice injected with SRI-011381 exhibited higher levels of tryptase, β-hexosaminase, histamine, inflammation-related factors and increased vascular endothelial cell permeability, while GREM1-silenced mice yet expressed opposite tendency. Silencing of GREM1 was demonstrated to inhibit the TGF-β signaling pathway. Taken together, our results demonstrated that down-regulation of GREM1 could potentially impede inflammatory response and vascular permeability by suppressing TGF-β signaling pathway. GREM1 may promote the development of prognosis management and therapeutic treatment in CIU.
Collapse
|
19
|
Duchesne M, Leonard-Louis S, Landon-Cardinal O, Anquetil C, Mariampillai K, Monzani Q, Benveniste O, Allenbach Y. Edematous myositis: a clinical presentation first suggesting dermatomyositis diagnosis. Brain Pathol 2020; 30:867-876. [PMID: 32323412 DOI: 10.1111/bpa.12844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 11/29/2022] Open
Abstract
AIMS Edema of the limbs is uncommon in idiopathic inflammatory myopathies (IIM). The few reported cases have been associated with severe and refractory dermatomyositis (DM), sometimes in association with cancers. We aimed to determine if edematous myositis is a homogeneous subtype based on clinical, serological and pathological features. METHODS This is a retrospective observational study performed between 2008 and 2015 in the French national referral center for myositis. All adult patients with an inflammatory muscle biopsy and upper limbs edema were included as well as IIM cases without limb edema as controls. Clinical, biological and pathological features were collected. RESULTS Seventeen edematous myositis were included and compared to 174 IIM without edema, including 50 DM controls. Edema was the first manifestation in 23% of patients. Muscle weakness was severe and symmetric, 71% of patients presented dysphagia and a restrictive ventilatory pattern was found in 40%. Fifty-two percent of patients had a typical DM skin rash and 23% had cancer within 3 years of diagnosing myositis. Fifty-three percent of patients presented a myositis specific antibody and only DM-specific antibodies were detected. Classic pathological DM features (perifascicular atrophy, perifascicular/perimysial perivascular inflammation) were uncommon but capillary C5b-9 deposition and MxA expression were seen in 79% and 73% of cases, respectively. A perimysial edema was found in 82% of cases. Seventeen percent of patients died (median follow up of 18 months). Edematous myositis demonstrated more marked capillary C5b-9 deposition compared to IIM controls. There was no clinical, biological or pathological difference with DM controls except for limb edema. CONCLUSION Our study underlines that limb edema could be a symptom of IIM and that edematous myositis are mostly DM. The vasculopathy seems to play a key role in its pathophysiology. Limb edema associated with muscle impairment should suggest the diagnosis of DM in clinical settings.
Collapse
Affiliation(s)
- Mathilde Duchesne
- Department of Pathology, University Hospital of Limoges, Limoges, France.,Laboratory of Neurology, University Hospital of Limoges, Limoges, France.,EA6309, University of Medicine and Pharmacology of Limoges, Limoges, France
| | - Sarah Leonard-Louis
- Department of Neuropathology, APHP, Pitié-Salpêtrière University Hospital, Sorbonne University, University Pierre et Marie Curie, Paris, France.,Department of Neuromyology, National Reference Center of Neuromuscular Disorders, APHP, Pitié-Salpêtrière University Hospital, Sorbonne University, University Pierre et Marie Curie, Paris, France
| | - Océane Landon-Cardinal
- Division of Rheumatology and Research Center, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Céline Anquetil
- Department of Internal Medicine and Clinical Immunology, National Reference Center of Neuromuscular disorders, APHP, Pitié-Salpêtrière University Hospital, Sorbonne University, University Pierre et Marie Curie, Paris, France
| | - Kuberaka Mariampillai
- Department of Internal Medicine and Clinical Immunology, National Reference Center of Neuromuscular disorders, APHP, Pitié-Salpêtrière University Hospital, Sorbonne University, University Pierre et Marie Curie, Paris, France
| | - Quentin Monzani
- Department of Radiology, APHP, Pitié-Salpêtrière University Hospital, Sorbonne University, University Pierre et Marie Curie, Paris, France
| | - Olivier Benveniste
- Department of Internal Medicine and Clinical Immunology, National Reference Center of Neuromuscular disorders, APHP, Pitié-Salpêtrière University Hospital, Sorbonne University, University Pierre et Marie Curie, Paris, France
| | - Yves Allenbach
- Department of Internal Medicine and Clinical Immunology, National Reference Center of Neuromuscular disorders, APHP, Pitié-Salpêtrière University Hospital, Sorbonne University, University Pierre et Marie Curie, Paris, France.,INSERM, UMR974, Sorbonne University, University Pierre et Marie Curie, Paris, France
| |
Collapse
|
20
|
Savickas S, Kastl P, auf dem Keller U. Combinatorial degradomics: Precision tools to unveil proteolytic processes in biological systems. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140392. [DOI: 10.1016/j.bbapap.2020.140392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022]
|
21
|
Bundgaard L, Savickas S, Auf dem Keller U. Mapping the N-Terminome in Tissue Biopsies by PCT-TAILS. Methods Mol Biol 2020; 2043:285-296. [PMID: 31463921 DOI: 10.1007/978-1-4939-9698-8_24] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Proteases play pivotal roles in multiple biological processes in all living organisms and are tightly regulated under normal conditions, but alterations in the proteolytic system and uncontrolled protease activity result in multiple pathological conditions. A disease will most often be defined by an ensemble of cleavage events-a proteolytic signature, thus the system-wide study of protease substrates has gained significant attention and identification of disease specific clusters of protease substrates holds great promise as targets for diagnostics and therapy.In this chapter we describe a method that enables fast and reproducible analysis of protease substrates and proteolytic products in an amount of tissue less than the quantity obtained by a standard biopsy. The method combines tissue disruption and protein extraction by pressure cycling technology (PCT), N-terminal enrichment by tandem mass tag (TMT)-terminal amine isotopic labeling of substrates (TAILS), peptide analysis by mass spectrometry (MS), and a general pipeline for interpretation of the data.
Collapse
Affiliation(s)
- Louise Bundgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Simonas Savickas
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
22
|
Niedermaier S, Huesgen PF. Positional proteomics for identification of secreted proteoforms released by site-specific processing of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140138. [DOI: 10.1016/j.bbapap.2018.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/31/2018] [Accepted: 09/13/2018] [Indexed: 02/06/2023]
|
23
|
Intracellular Localization in Zebrafish Muscle and Conserved Sequence Features Suggest Roles for Gelatinase A Moonlighting in Sarcomere Maintenance. Biomedicines 2019; 7:biomedicines7040093. [PMID: 31795436 PMCID: PMC6966518 DOI: 10.3390/biomedicines7040093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/24/2022] Open
Abstract
Gelatinase A (Mmp2 in zebrafish) is a well-characterized effector of extracellular matrix remodeling, extracellular signaling, and along with other matrix metalloproteinases (MMPs) and extracellular proteases, it plays important roles in the establishment and maintenance of tissue architecture. Gelatinase A is also found moonlighting inside mammalian striated muscle cells, where it has been implicated in the pathology of ischemia-reperfusion injury. Gelatinase A has no known physiological function in muscle cells, and its localization within mammalian cells appears to be due to inefficient recognition of its N-terminal secretory signal. Here we show that Mmp2 is abundant within the skeletal muscle cells of zebrafish, where it localizes to the M-line of sarcomeres and degrades muscle myosin. The N-terminal secretory signal of zebrafish Mmp2 is also challenging to identify, and this is a conserved characteristic of gelatinase A orthologues, suggesting a selective pressure acting to prevent the efficient secretion of this protease. Furthermore, there are several strongly conserved phosphorylation sites within the catalytic domain of gelatinase A orthologues, some of which are phosphorylated in vivo, and which are known to regulate the activity of this protease. We conclude that gelatinase A likely participates in uncharacterized physiological functions within the striated muscle, possibly in the maintenance of sarcomere proteostasis, that are likely regulated by kinases and phosphatases present in the sarcomere.
Collapse
|
24
|
Li F, Wang Y, Li C, Marquez-Lago TT, Leier A, Rawlings ND, Haffari G, Revote J, Akutsu T, Chou KC, Purcell AW, Pike RN, Webb GI, Ian Smith A, Lithgow T, Daly RJ, Whisstock JC, Song J. Twenty years of bioinformatics research for protease-specific substrate and cleavage site prediction: a comprehensive revisit and benchmarking of existing methods. Brief Bioinform 2019; 20:2150-2166. [PMID: 30184176 PMCID: PMC6954447 DOI: 10.1093/bib/bby077] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 01/06/2023] Open
Abstract
The roles of proteolytic cleavage have been intensively investigated and discussed during the past two decades. This irreversible chemical process has been frequently reported to influence a number of crucial biological processes (BPs), such as cell cycle, protein regulation and inflammation. A number of advanced studies have been published aiming at deciphering the mechanisms of proteolytic cleavage. Given its significance and the large number of functionally enriched substrates targeted by specific proteases, many computational approaches have been established for accurate prediction of protease-specific substrates and their cleavage sites. Consequently, there is an urgent need to systematically assess the state-of-the-art computational approaches for protease-specific cleavage site prediction to further advance the existing methodologies and to improve the prediction performance. With this goal in mind, in this article, we carefully evaluated a total of 19 computational methods (including 8 scoring function-based methods and 11 machine learning-based methods) in terms of their underlying algorithm, calculated features, performance evaluation and software usability. Then, extensive independent tests were performed to assess the robustness and scalability of the reviewed methods using our carefully prepared independent test data sets with 3641 cleavage sites (specific to 10 proteases). The comparative experimental results demonstrate that PROSPERous is the most accurate generic method for predicting eight protease-specific cleavage sites, while GPS-CCD and LabCaS outperformed other predictors for calpain-specific cleavage sites. Based on our review, we then outlined some potential ways to improve the prediction performance and ease the computational burden by applying ensemble learning, deep learning, positive unlabeled learning and parallel and distributed computing techniques. We anticipate that our study will serve as a practical and useful guide for interested readers to further advance next-generation bioinformatics tools for protease-specific cleavage site prediction.
Collapse
Affiliation(s)
- Fuyi Li
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Yanan Wang
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chen Li
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
- Department of Biology, Institute of Molecular Systems Biology,ETH Zürich, Zürich 8093, Switzerland
| | - Tatiana T Marquez-Lago
- Department of Genetics and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, AL, USA
| | - André Leier
- Department of Genetics and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, AL, USA
| | - Neil D Rawlings
- EMBL European Bioinformatics Institute, Wellcome Trust Genome Campus, Wellcome Trust Genome Campus,Hinxton, Cambridgeshire CB10 1SD, UK
| | - Gholamreza Haffari
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia
| | - Jerico Revote
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Tatsuya Akutsu
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
| | - Kuo-Chen Chou
- Gordon Life Science Institute, Boston, MA 02478, USA
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Anthony W Purcell
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Robert N Pike
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia
| | - Geoffrey I Webb
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia
| | - A Ian Smith
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia
| | - Trevor Lithgow
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia
| | - Roger J Daly
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - James C Whisstock
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
25
|
Jobin PG, Solis N, Machado Y, Bell PA, Rai SK, Kwon NH, Kim S, Overall CM, Butler GS. Moonlighting matrix metalloproteinase substrates: Enhancement of proinflammatory functions of extracellular tyrosyl-tRNA synthetase upon cleavage. J Biol Chem 2019; 295:2186-2202. [PMID: 31771979 PMCID: PMC7039567 DOI: 10.1074/jbc.ra119.010486] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/03/2019] [Indexed: 12/19/2022] Open
Abstract
Tyrosyl-tRNA synthetase ligates tyrosine to its cognate tRNA in the cytoplasm, but it can also be secreted through a noncanonical pathway. We found that extracellular tyrosyl-tRNA synthetase (YRS) exhibited proinflammatory activities. In addition to acting as a monocyte/macrophage chemoattractant, YRS initiated signaling through Toll-like receptor 2 (TLR2) resulting in NF-κB activation and release of tumor necrosis factor α (TNFα) and multiple chemokines, including MIP-1α/β, CXCL8 (IL8), and CXCL1 (KC) from THP1 monocyte and peripheral blood mononuclear cell–derived macrophages. Furthermore, YRS up-regulated matrix metalloproteinase (MMP) activity in a TNFα-dependent manner in M0 macrophages. Because MMPs process a variety of intracellular proteins that also exhibit extracellular moonlighting functions, we profiled 10 MMPs for YRS cleavage and identified 55 cleavage sites by amino-terminal oriented mass spectrometry of substrates (ATOMS) positional proteomics and Edman degradation. Stable proteoforms resulted from cleavages near the start of the YRS C-terminal EMAPII domain. All of the MMPs tested cleaved at ADS386↓387LYV and VSG405↓406LVQ, generating 43- and 45-kDa fragments. The highest catalytic efficiency for YRS was demonstrated by MMP7, which is highly expressed by monocytes and macrophages, and by neutrophil-specific MMP8. MMP-cleaved YRS enhanced TLR2 signaling, increased TNFα secretion from macrophages, and amplified monocyte/macrophage chemotaxis compared with unprocessed YRS. The cleavage of YRS by MMP8, but not MMP7, was inhibited by tyrosine, a substrate of the YRS aminoacylation reaction. Overall, the proinflammatory activity of YRS is enhanced by MMP cleavage, which we suggest forms a feed-forward mechanism to promote inflammation.
Collapse
Affiliation(s)
- Parker G Jobin
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Nestor Solis
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yoan Machado
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Peter A Bell
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Simran K Rai
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia V5T 4S6, Canada
| | - Nam Hoon Kwon
- College of Pharmacy, Seoul National University, 151-742, Seoul, Republic of Korea; Medicinal Bioconvergence Research Center, Seoul National University, 151-742, Seoul, Republic of Korea
| | - Sunghoon Kim
- College of Pharmacy, Seoul National University, 151-742, Seoul, Republic of Korea; Medicinal Bioconvergence Research Center, Seoul National University, 151-742, Seoul, Republic of Korea
| | - Christopher M Overall
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| | - Georgina S Butler
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
26
|
Mattern J, Roghi CS, Hurtz M, Knäuper V, Edwards DR, Poghosyan Z. ADAM15 mediates upregulation of Claudin-1 expression in breast cancer cells. Sci Rep 2019; 9:12540. [PMID: 31467400 PMCID: PMC6715704 DOI: 10.1038/s41598-019-49021-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/19/2019] [Indexed: 01/08/2023] Open
Abstract
A Disintegrin and Metalloproteinase-15 (ADAM15) is a transmembrane protein involved in protein ectodomain shedding, cell adhesion and signalling. We previously cloned and characterised alternatively spliced variants of ADAM15 that differ in their intracellular domains and demonstrated correlation of the expression of specific variants with breast cancer prognosis. In this study we have created isogenic cell panels (MDA-MB-231 and MCF-7) expressing five ADAM15 variants including wild-type and catalytically inactive forms. The expression of ADAM15 isoforms in MDA-MB-231 cells led to cell clustering to varying degree, without changes in EMT markers vimentin, slug and E-cadherin. Analysis of tight junction molecules revealed ADAM15 isoform specific, catalytic function dependent upregulation of Claudin-1. The expression of ADAM15A, and to a lesser degree of C and E isoforms led to an increase in Claudin-1 expression in MDA-MB-231 cells, while ADAM15B had no effect. In MCF-7 cells, ADAM15E was the principal variant inducing Claudin-1 expression. Sh-RNA mediated down-regulation of ADAM15 in ADAM15 over-expressing cells reduced Claudin-1 levels. Additionally, downregulation of endogenous ADAM15 expression in T47D cells by shRNA reduced endogenous Claudin-1 expression confirming a role for ADAM15 in regulating Claudin-1 expression. The PI3K/Akt/mTOR pathway was involved in regulating Claudin-1 expression downstream of ADAM15. Immunofluorescence analysis of MDA-MB-231 ADAM15A expressing cells showed Claudin-1 at cell-cell junctions, in the cytoplasm and nuclei. ADAM15 co-localised with Claudin-1 and ZO1 at cell-cell junctions. Immunoprecipitation analysis demonstrated complex formation between ADAM15 and ZO1/ZO2. These findings highlight the importance of ADAM15 Intra Cellular Domain-mediated interactions in regulating substrate selection and breast cancer cell phenotype.
Collapse
Affiliation(s)
- Jens Mattern
- Division of Cancer and Genetics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University Heath Park, Cardiff, CF14 4XN, UK
| | - Christian S Roghi
- School of Biological Sciences and Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Melanie Hurtz
- Division of Cancer and Genetics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University Heath Park, Cardiff, CF14 4XN, UK.,MLM Medical Labs GmbH, Dohrweg 63, 41066, Mönchengladbach, Germany
| | - Vera Knäuper
- Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff, CF14 4XY, UK
| | - Dylan R Edwards
- School of Biological Sciences and Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Zaruhi Poghosyan
- Division of Cancer and Genetics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
27
|
Zelanis A, Oliveira AK, Prudova A, Huesgen PF, Tashima AK, Kizhakkedathu J, Overall CM, Serrano SMT. Deep Profiling of the Cleavage Specificity and Human Substrates of Snake Venom Metalloprotease HF3 by Proteomic Identification of Cleavage Site Specificity (PICS) Using Proteome Derived Peptide Libraries and Terminal Amine Isotopic Labeling of Substrates (TAILS) N-Terminomics. J Proteome Res 2019; 18:3419-3428. [PMID: 31337208 DOI: 10.1021/acs.jproteome.9b00325] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Snakebite is a major medical concern in many parts of the world with metalloproteases playing important roles in the pathological effects of Viperidae venoms, including local tissue damage, hemorrhage, and coagulopathy. Hemorrhagic Factor 3 (HF3), a metalloprotease from Bothrops jararaca venom, induces local hemorrhage and targets extracellular matrix (ECM) components, including collagens and proteoglycans, and plasma proteins. However, the full substrate repertoire of this metalloprotease is unknown. We report positional proteomic studies identifying >2000 N-termini, including neo-N-termini of HF3 cleavage sites in mouse embryonic fibroblast secretome proteins. Terminal amine isotopic labeling of substrates (TAILS) analysis identified a preference for Leu at the P1' position among candidate HF3 substrates including proteins of the ECM and focal adhesions and the cysteine protease inhibitor cystatin-C. Interestingly, 190 unique peptides matched to annotated cleavage sites in the TopFIND N-termini database, suggesting that these cleavages occurred at a site prone to cleavage or might have been generated by other proteases activated upon incubation with HF3, including caspases-3 and -7, cathepsins D and E, granzyme B, and MMPs 2 and 9. Using Proteomic identification of cleavage site specificity (PICS), a tryptic library derived from THP-1 monocytic cells was used as HF3 substrates for identifying protease cleavage sites and sequence preferences in peptides. A total of 799 unique cleavage sites were detected and, in accordance with TAILS analysis using native secreted protein substrates of MEF cells, revealed a clear preference for Leu at P1'. Taken together, these results greatly expand the known substrate degradome of HF3 and reveal potential new targets, which may serve as a basis to better elucidate the complex pathophysiology of snake envenomation.
Collapse
Affiliation(s)
- André Zelanis
- Department of Science and Technology , Federal University of São Paulo (ICT-UNIFESP) , São José dos Campos , SP 12231-280 , Brazil.,Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS) , Instituto Butantan , São Paulo , SP 05503-000 , Brazil
| | - Ana K Oliveira
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS) , Instituto Butantan , São Paulo , SP 05503-000 , Brazil
| | - Anna Prudova
- Centre for Blood Research , University of British Columbia , Vancouver , BC V6T 1Z3 , Canada.,Department of Oral Biological and Medical Sciences, Faculty of Dentistry , University of British Columbia , Vancouver , BC V6T 1Z3 , Canada
| | - Pitter F Huesgen
- Centre for Blood Research , University of British Columbia , Vancouver , BC V6T 1Z3 , Canada.,Central Institute for Engineering, Electronics and Analytics, ZEA-3 , Forschungszentrum Jülich , Juelich 52425 , Germany
| | - Alexandre K Tashima
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS) , Instituto Butantan , São Paulo , SP 05503-000 , Brazil
| | - Jayachandran Kizhakkedathu
- Centre for Blood Research , University of British Columbia , Vancouver , BC V6T 1Z3 , Canada.,Department of Pathology and Laboratory Medicine , University of British Columbia , Vancouver , BC V6T 1Z3 , Canada
| | - Christopher M Overall
- Centre for Blood Research , University of British Columbia , Vancouver , BC V6T 1Z3 , Canada.,Department of Oral Biological and Medical Sciences, Faculty of Dentistry , University of British Columbia , Vancouver , BC V6T 1Z3 , Canada
| | - Solange M T Serrano
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS) , Instituto Butantan , São Paulo , SP 05503-000 , Brazil
| |
Collapse
|
28
|
Henriet P, Emonard H. Matrix metalloproteinase-2: Not (just) a "hero" of the past. Biochimie 2019; 166:223-232. [PMID: 31362036 DOI: 10.1016/j.biochi.2019.07.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 07/22/2019] [Indexed: 01/13/2023]
Abstract
The 72-kDa type IV collagenase or gelatinase A is the second member of the matrix metalloproteinase family, MMP-2. Since the discovery of its first two substrates within components of the extracellular matrix, denatured interstitial type I collagen and native type IV collagen, the roles and various levels of regulation of MMP-2 have been intensively studied, mainly in vitro. Its (over)expression in most if not all tumors was considered a hallmark of cancer aggressiveness and boosted investigations aiming at its inhibition. Unfortunately, the enthusiasm subsided like a soufflé after clinical trial failures, mostly because of insufficient knowledge of in vivo MMP-2 activities and detrimental side effects of broad-spectrum MMP inhibition. Nowadays, MMP-2 remains a major topic of interest in research, the second in the MMP family after MMP-9. This review presents a broad overview of the major features of this protease. This knowledge is crucial to identify diagnostic or therapeutic strategies focusing on MMP-2. In this sense, recent publications and clinical trials underline the potential value of measuring circulating or tissular MMP-2 levels as diagnostic or prognostic tools, or as a useful secondary outcome for therapies against other primary targets. Direct MMP-2 inhibition has benefited from substantial progress in the design of more specific inhibitors but their in vivo application remains challenging but certainly worth the efforts it receives.
Collapse
Affiliation(s)
- Patrick Henriet
- de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Hervé Emonard
- CNRS and Université de Reims Champagne-Ardenne, UMR 7369, 51100, Reims, France.
| |
Collapse
|
29
|
Jobin PG, Solis N, Machado Y, Bell PA, Kwon NH, Kim S, Overall CM, Butler GS. Matrix metalloproteinases inactivate the proinflammatory functions of secreted moonlighting tryptophanyl-tRNA synthetase. J Biol Chem 2019; 294:12866-12879. [PMID: 31324718 DOI: 10.1074/jbc.ra119.009584] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/11/2019] [Indexed: 01/08/2023] Open
Abstract
Tryptophanyl-tRNA synthetase (WRS) is a cytosolic aminoacyl-tRNA synthetase essential for protein synthesis. WRS is also one of a growing number of intracellular proteins that are attributed distinct noncanonical "moonlighting" functions in the extracellular milieu. Moonlighting aminoacyl-tRNA synthetases regulate processes such as inflammation, but how these multifunctional enzymes are themselves regulated remains unclear. Here, we demonstrate that WRS is secreted from human macrophages, fibroblasts, and endothelial cells in response to the proinflammatory cytokine interferon γ (IFNγ). WRS signaled primarily through Toll-like receptor 2 (TLR2) in macrophages, leading to phosphorylation of the p65 subunit of NF-κB with associated loss of NF-κB inhibitor α (IκB-α) protein. This signaling initiated secretion of tumor necrosis factor α (TNFα) and CXCL8 (IL8) from macrophages. We also demonstrated that WRS is a potent monocyte chemoattractant. Of note, WRS increased matrix metalloproteinase (MMP) activity in the conditioned medium of macrophages in a TNFα-dependent manner. Using purified recombinant proteins and LC-MS/MS to identify proteolytic cleavage sites, we demonstrated that multiple MMPs, but primarily macrophage MMP7 and neutrophil MMP8, cleave secreted WRS at several sites. Loss of the WHEP domain following cleavage at Met48 generated a WRS proteoform that also results from alternative splicing, designated Δ1-47 WRS. The MMP-cleaved WRS lacked TLR signaling and proinflammatory activities. Thus, our results suggest that moonlighting WRS promotes IFNγ proinflammatory activities, and these responses can be dampened by MMPs.
Collapse
Affiliation(s)
- Parker G Jobin
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Nestor Solis
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Faculty of Dentistry, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yoan Machado
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Faculty of Dentistry, Vancouver, British Columbia V6T 1Z3, Canada
| | - Peter A Bell
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Faculty of Dentistry, Vancouver, British Columbia V6T 1Z3, Canada
| | - Nam Hoon Kwon
- College of Pharmacy, Seoul National University, 151-742 Seoul, Republic of Korea; Medicinal Bioconvergance Research Center, Seoul National University, 151-742 Seoul, Republic of Korea
| | - Sunghoon Kim
- College of Pharmacy, Seoul National University, 151-742 Seoul, Republic of Korea; Medicinal Bioconvergance Research Center, Seoul National University, 151-742 Seoul, Republic of Korea
| | - Christopher M Overall
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Faculty of Dentistry, Vancouver, British Columbia V6T 1Z3, Canada.
| | - Georgina S Butler
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Faculty of Dentistry, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
30
|
Subverting bradykinin-evoked inflammation by co-opting the contact system: lessons from survival strategies of Trypanosoma cruzi. Curr Opin Hematol 2019; 25:347-357. [PMID: 30028741 DOI: 10.1097/moh.0000000000000444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW During Chagas disease, Trypanosoma cruzi alternates between intracellular and extracellular developmental forms. After presenting an overview about the roles of the contact system in immunity, I will review experimental studies showing that activation of the kallikrein-kinin system (KKS) translates into mutual benefits to the host/parasite relationship. RECENT FINDINGS T. cruzi trypomastigotes initiate inflammation by activating tissue-resident innate sentinel cells via the TLR2/CXCR2 pathway. Following neutrophil-evoked microvascular leakage, the parasite's major cysteine protease (cruzipain) cleaves plasma-borne kininogens and complement C5. Tightly regulated by angiotensin-converting enzyme (ACE), kinins and C5a in turn further propagate inflammation via iterative cycles of mast cell degranulation, contact system activation, bradykinin release and activation of endothelial bradykinin B2 receptors (B2R). Recently, studies in the intracardiac model of infection revealed a dichotomic role for bradykinin and endothelin-1: generated upon contact activation (mast cell/KKS pathway), these pro-oedematogenic peptides reciprocally stimulate trypomastigote invasion of heart cells that naturally overexpress B2R and endothelin receptors (ETaR/ETbR). SUMMARY Studies focusing on the immunopathogenesis of Chagas disease revealed that the contact system plays a dual role in host/parasite balance: T. cruzi co-opts bradykinin-induced plasma leakage as a strategy to increment heart parasitism and increase immune resistance by upregulating type-1 effector T-cell production in secondary lymphoid tissues.
Collapse
|
31
|
Unlu G, Gamazon ER, Qi X, Levic DS, Bastarache L, Denny JC, Roden DM, Mayzus I, Breyer M, Zhong X, Konkashbaev AI, Rzhetsky A, Knapik EW, Cox NJ. GRIK5 Genetically Regulated Expression Associated with Eye and Vascular Phenomes: Discovery through Iteration among Biobanks, Electronic Health Records, and Zebrafish. Am J Hum Genet 2019; 104:503-519. [PMID: 30827500 PMCID: PMC6407495 DOI: 10.1016/j.ajhg.2019.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/29/2019] [Indexed: 12/15/2022] Open
Abstract
Although the use of model systems for studying the mechanism of mutations that have a large effect is common, we highlight here the ways that zebrafish-model-system studies of a gene, GRIK5, that contributes to the polygenic liability to develop eye diseases have helped to illuminate a mechanism that implicates vascular biology in eye disease. A gene-expression prediction derived from a reference transcriptome panel applied to BioVU, a large electronic health record (EHR)-linked biobank at Vanderbilt University Medical Center, implicated reduced GRIK5 expression in diverse eye diseases. We tested the function of GRIK5 by depletion of its ortholog in zebrafish, and we observed reduced blood vessel numbers and integrity in the eye and increased vascular permeability. Analyses of EHRs in >2.6 million Vanderbilt subjects revealed significant comorbidity of eye and vascular diseases (relative risks 2-15); this comorbidity was confirmed in 150 million individuals from a large insurance claims dataset. Subsequent studies in >60,000 genotyped BioVU participants confirmed the association of reduced genetically predicted expression of GRIK5 with comorbid vascular and eye diseases. Our studies pioneer an approach that allows a rapid iteration of the discovery of gene-phenotype relationships to the primary genetic mechanism contributing to the pathophysiology of human disease. Our findings also add dimension to the understanding of the biology driven by glutamate receptors such as GRIK5 (also referred to as GLUK5 in protein form) and to mechanisms contributing to human eye diseases.
Collapse
Affiliation(s)
- Gokhan Unlu
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Eric R Gamazon
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Data Science Institute, Vanderbilt University, Nashville, TN 37232, USA; Clare Hall, University of Cambridge, Cambridge CB3 9AL, UK
| | - Xinzi Qi
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Daniel S Levic
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Lisa Bastarache
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Departments of Medicine and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joshua C Denny
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Departments of Medicine and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Dan M Roden
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Departments of Medicine and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ilya Mayzus
- Departments of Medicine and Human Genetics, the University of Chicago, Chicago, IL 60637, USA
| | - Max Breyer
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xue Zhong
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Anuar I Konkashbaev
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrey Rzhetsky
- Departments of Medicine and Human Genetics, the University of Chicago, Chicago, IL 60637, USA
| | - Ela W Knapik
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Nancy J Cox
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Data Science Institute, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
32
|
Liberato T, Fukushima I, Kitano ES, Serrano SM, Chammas R, Zelanis A. Proteomic profiling of the proteolytic events in the secretome of the transformed phenotype of melanocyte-derived cells using Terminal Amine Isotopic Labeling of Substrates. J Proteomics 2019; 192:291-298. [DOI: 10.1016/j.jprot.2018.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/15/2018] [Accepted: 09/21/2018] [Indexed: 12/27/2022]
|
33
|
Lapek JD, Jiang Z, Wozniak JM, Arutyunova E, Wang SC, Lemieux MJ, Gonzalez DJ, O'Donoghue AJ. Quantitative Multiplex Substrate Profiling of Peptidases by Mass Spectrometry. Mol Cell Proteomics 2019; 18:968-981. [PMID: 30705125 DOI: 10.1074/mcp.tir118.001099] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/31/2018] [Indexed: 12/14/2022] Open
Abstract
Proteolysis is an integral component of life and has been implicated in many disease processes. To improve our understanding of peptidase function, it is imperative to develop tools to uncover substrate specificity and cleavage efficiency. Here, we combine the quantitative power of tandem mass tags (TMTs) with an established peptide cleavage assay to yield quantitative Multiplex Substrate Profiling by Mass Spectrometry (qMSP-MS). This assay was validated with papain, a well-characterized cysteine peptidase, to generate cleavage efficiency values for hydrolysis of 275 unique peptide bonds in parallel. To demonstrate the breath of this assay, we show that qMSP-MS can uncover the substrate specificity of minimally characterized intramembrane rhomboid peptidases, as well as define hundreds of proteolytic activities in complex biological samples, including secretions from lung cancer cell lines. Importantly, our qMSP-MS library uses synthetic peptides whose termini are unmodified, allowing us to characterize not only endo- but also exo-peptidase activity. Each cleaved peptide sequence can be ranked by turnover rate, and the amino acid sequence of the best substrates can be used for designing fluorescent reporter substrates. Discovery of peptide substrates that are selectively cleaved by peptidases which are active at the site of disease highlights the potential for qMSP-MS to guide the development of peptidase-activating drugs for cancer and infectious disease.
Collapse
Affiliation(s)
- John D Lapek
- From the ‡Department of Pharmacology, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; From the ‡Department of Pharmacology, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093
| | - Zhenze Jiang
- §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; ¶Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; From the ‡Department of Pharmacology, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093
| | - Jacob M Wozniak
- From the ‡Department of Pharmacology, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093
| | - Elena Arutyunova
- ‖Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Steven C Wang
- §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; **Division of Biological Sciences, University of California, San Diego, 9500, Gilman Drive, La Jolla, California 92093
| | - M Joanne Lemieux
- ‖Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - David J Gonzalez
- From the ‡Department of Pharmacology, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;.
| | - Anthony J O'Donoghue
- §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;.
| |
Collapse
|
34
|
Tharmarajah G, Eckhard U, Jain F, Marino G, Prudova A, Urtatiz O, Fuchs H, de Angelis MH, Overall CM, Van Raamsdonk CD. Melanocyte development in the mouse tail epidermis requires the Adamts9 metalloproteinase. Pigment Cell Melanoma Res 2018; 31:693-707. [PMID: 29781574 DOI: 10.1111/pcmr.12711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022]
Abstract
The mouse tail has an important role in the study of melanogenesis, because mouse tail skin can be used to model human skin pigmentation. To better understand the development of melanocytes in the mouse tail, we cloned two dominant ENU-generated mutations of the Adamts9 gene, Und3 and Und4, which cause an unpigmented ring of epidermis in the middle of the tail, but do not alter pigmentation in the rest of the mouse. Adamts9 encodes a widely expressed zinc metalloprotease with thrombospondin type 1 repeats with few known substrates. Melanocytes are lost in the Adamts9 mutant tail epidermis at a relatively late stage of development, around E18.5. Studies of our Adamts9 conditional allele suggest that there is a melanocyte cell-autonomous requirement for Adamts9. In addition, we used a proteomics approach, TAILS N-terminomics, to identify new Adamts9 candidate substrates in the extracellular matrix of the skin. The tail phenotype of Adamts9 mutants is strikingly similar to the unpigmented trunk belt in Adamts20 mutants, which suggests a particular requirement for Adamts family activity at certain positions along the anterior-posterior axis.
Collapse
Affiliation(s)
- Grace Tharmarajah
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Ulrich Eckhard
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Fagun Jain
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Giada Marino
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Anna Prudova
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Oscar Urtatiz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum Munchen, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Martin H de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum Munchen, German Research Centre for Environmental Health, Neuherberg, Germany.,Chair of Experimental Genetics, School of Life Science, Weihenstephan Technische Universitat, Freising, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Christopher M Overall
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Catherine D Van Raamsdonk
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
35
|
King SL, Goth CK, Eckhard U, Joshi HJ, Haue AD, Vakhrushev SY, Schjoldager KT, Overall CM, Wandall HH. TAILS N-terminomics and proteomics reveal complex regulation of proteolytic cleavage by O-glycosylation. J Biol Chem 2018; 293:7629-7644. [PMID: 29593093 PMCID: PMC5961060 DOI: 10.1074/jbc.ra118.001978] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/27/2018] [Indexed: 12/31/2022] Open
Abstract
Proteolytic processing is an irreversible post-translational modification functioning as a ubiquitous regulator of cellular activity. Protease activity is tightly regulated via control of gene expression, enzyme and substrate compartmentalization, zymogen activation, enzyme inactivation, and substrate availability. Emerging evidence suggests that proteolysis can also be regulated by substrate glycosylation and that glycosylation of individual sites on a substrate can decrease or, in rare cases, increase its sensitivity to proteolysis. Here, we investigated the relationship between site-specific, mucin-type (or GalNAc-type) O-glycosylation and proteolytic cleavage of extracellular proteins. Using in silico analysis, we found that O-glycosylation and cleavage sites are significantly associated with each other. We then used a positional proteomic strategy, terminal amine isotopic labeling of substrates (TAILS), to map the in vivo cleavage sites in HepG2 SimpleCells with and without one of the key initiating GalNAc transferases, GalNAc-T2, and after treatment with exogenous matrix metalloproteinase 9 (MMP9) or neutrophil elastase. Surprisingly, we found that loss of GalNAc-T2 not only increased cleavage, but also decreased cleavage across a broad range of other substrates, including key regulators of the protease network. We also found altered processing of several central regulators of lipid homeostasis, including apolipoprotein B and the phospholipid transfer protein, providing new clues to the previously reported link between GALNT2 and lipid homeostasis. In summary, we show that loss of GalNAc-T2 O-glycosylation leads to a general decrease in cleavage and that GalNAc-T2 O-glycosylation affects key regulators of the cellular proteolytic network, including multiple members of the serpin family.
Collapse
Affiliation(s)
- Sarah L King
- From the Department of Cellular and Molecular Medicine, Centre for Glycomics, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark and
| | - Christoffer K Goth
- From the Department of Cellular and Molecular Medicine, Centre for Glycomics, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark and
| | - Ulrich Eckhard
- the Centre for Blood Research, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Hiren J Joshi
- From the Department of Cellular and Molecular Medicine, Centre for Glycomics, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark and
| | - Amalie D Haue
- From the Department of Cellular and Molecular Medicine, Centre for Glycomics, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark and
| | - Sergey Y Vakhrushev
- From the Department of Cellular and Molecular Medicine, Centre for Glycomics, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark and
| | - Katrine T Schjoldager
- From the Department of Cellular and Molecular Medicine, Centre for Glycomics, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark and
| | - Christopher M Overall
- the Centre for Blood Research, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Hans H Wandall
- From the Department of Cellular and Molecular Medicine, Centre for Glycomics, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark and
| |
Collapse
|
36
|
Gharib SA, Manicone AM, Parks WC. Matrix metalloproteinases in emphysema. Matrix Biol 2018; 73:34-51. [PMID: 29406250 DOI: 10.1016/j.matbio.2018.01.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/14/2017] [Accepted: 01/24/2018] [Indexed: 02/07/2023]
Abstract
Several studies have implicated a causative role for specific matrix metalloproteinases (MMPs) in the development and progression of cigarette smoke-induced chronic obstructive pulmonary disease (COPD) and its severe sequela, emphysema. However, the precise function of any given MMP in emphysema remains an unanswered question. Emphysema results from the degradation of alveolar elastin - among other possible mechanisms - a process that is often thought to be caused by elastolytic proteinases made by macrophages. In this article, we discuss the data suggesting, supporting, or refuting causative roles of macrophage-derived MMPs, with a focus on MMPs-7, -9, -10, -12, and 28, in both the human disease and mouse models of emphysema. Findings from experimental models suggest that some MMPs, such as MMP-12, may directly breakdown elastin, whereas others, particularly MMP-10 and MMP-28, promote the development of emphysema by influencing the proteolytic and inflammatory activities of macrophages.
Collapse
Affiliation(s)
- Sina A Gharib
- Center for Lung Biology, University of Washington, Seattle, WA, USA
| | - Anne M Manicone
- Center for Lung Biology, University of Washington, Seattle, WA, USA
| | - William C Parks
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
37
|
Opdenakker G, Van Damme J, Vranckx JJ. Immunomodulation as Rescue for Chronic Atonic Skin Wounds. Trends Immunol 2018; 39:341-354. [PMID: 29500031 DOI: 10.1016/j.it.2018.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/08/2017] [Accepted: 01/24/2018] [Indexed: 12/11/2022]
Abstract
Chronic skin wounds, caused by arterial or venous insufficiency or by physical pressure, constitute an increasing medical problem as populations age. Whereas typical wounds are characterized by local inflammation that participates in the healing process, atonic wounds lack inflammatory markers, such as neutrophil infiltration, and generally do not heal. Recently, prominent roles in the immunopathology of chronic wounds were attributed to dysregulations in specific cytokines, chemokines, matrix metalloproteinases (MMPs), and their substrates. Together with the complement system, these molecular players provide necessary defense against infections, initiate angiogenesis, and prepare tissue reconstitution. Here, we review the current state of the field and include the concept that, aside from surgery and stem cell therapy, healing may be enhanced by immunomodulating agents.
Collapse
Affiliation(s)
- Ghislain Opdenakker
- Laboratory of Immunobiology and Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium; The Glycobiology Institute, University of Oxford, Oxford, UK.
| | - Jo Van Damme
- Laboratory of Immunobiology and Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Jan Jeroen Vranckx
- Department of Development & Regeneration & Department of Plastic & Reconstructive Surgery, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Sabino F, Egli FE, Savickas S, Holstein J, Kaspar D, Rollmann M, Kizhakkedathu JN, Pohlemann T, Smola H, Auf dem Keller U. Comparative Degradomics of Porcine and Human Wound Exudates Unravels Biomarker Candidates for Assessment of Wound Healing Progression in Trauma Patients. J Invest Dermatol 2018; 138:413-422. [PMID: 28899681 DOI: 10.1016/j.jid.2017.08.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/15/2017] [Accepted: 08/17/2017] [Indexed: 12/20/2022]
Abstract
Impaired cutaneous wound healing is a major complication in elderly people and patients suffering from diabetes, the rate of which is rising in industrialized countries. Heterogeneity of clinical manifestations hampers effective molecular diagnostics and decisions for appropriate therapeutic regimens. Using a customized positional quantitative proteomics workflow, we have established a time-resolved proteome and N-terminome resource from wound exudates in a clinically relevant pig wound model that we exploited as a robust template to interpret a heterogeneous dataset from patients undergoing the same wound treatment. With zyxin, IQGA1, and HtrA1, this analysis and validation by targeted proteomics identified differential abundances and proteolytic processing of proteins of epidermal and dermal origin as prospective biomarker candidates for assessment of critical turning points in wound progression. Thus, we show the possibility of using a fine-tuned animal wound model to bridge the translational gap as a prerequisite for future extended clinical studies with large cohorts of individuals affected by healing impairments. Data are available via ProteomeXchange with identifier PXD006674.
Collapse
Affiliation(s)
- Fabio Sabino
- ETH Zurich, Department of Biology, Institute of Molecular Health Sciences, Zurich, Switzerland; Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Fabian E Egli
- ETH Zurich, Department of Biology, Institute of Molecular Health Sciences, Zurich, Switzerland
| | - Simonas Savickas
- ETH Zurich, Department of Biology, Institute of Molecular Health Sciences, Zurich, Switzerland
| | - Jörg Holstein
- Department of Trauma, Hand, and Reconstructive Surgery, Saarland University Hospital, Homburg, Germany
| | | | - Mika Rollmann
- Department of Trauma, Hand, and Reconstructive Surgery, Saarland University Hospital, Homburg, Germany
| | - Jayachandran N Kizhakkedathu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Chemistry, Centre for Blood Research, 4.401 Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Tim Pohlemann
- Department of Trauma, Hand, and Reconstructive Surgery, Saarland University Hospital, Homburg, Germany
| | | | - Ulrich Auf dem Keller
- ETH Zurich, Department of Biology, Institute of Molecular Health Sciences, Zurich, Switzerland; Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
39
|
Klein T, Eckhard U, Dufour A, Solis N, Overall CM. Proteolytic Cleavage-Mechanisms, Function, and "Omic" Approaches for a Near-Ubiquitous Posttranslational Modification. Chem Rev 2017; 118:1137-1168. [PMID: 29265812 DOI: 10.1021/acs.chemrev.7b00120] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Proteases enzymatically hydrolyze peptide bonds in substrate proteins, resulting in a widespread, irreversible posttranslational modification of the protein's structure and biological function. Often regarded as a mere degradative mechanism in destruction of proteins or turnover in maintaining physiological homeostasis, recent research in the field of degradomics has led to the recognition of two main yet unexpected concepts. First, that targeted, limited proteolytic cleavage events by a wide repertoire of proteases are pivotal regulators of most, if not all, physiological and pathological processes. Second, an unexpected in vivo abundance of stable cleaved proteins revealed pervasive, functionally relevant protein processing in normal and diseased tissue-from 40 to 70% of proteins also occur in vivo as distinct stable proteoforms with undocumented N- or C-termini, meaning these proteoforms are stable functional cleavage products, most with unknown functional implications. In this Review, we discuss the structural biology aspects and mechanisms of catalysis by different protease classes. We also provide an overview of biological pathways that utilize specific proteolytic cleavage as a precision control mechanism in protein quality control, stability, localization, and maturation, as well as proteolytic cleavage as a mediator in signaling pathways. Lastly, we provide a comprehensive overview of analytical methods and approaches to study activity and substrates of proteolytic enzymes in relevant biological models, both historical and focusing on state of the art proteomics techniques in the field of degradomics research.
Collapse
Affiliation(s)
- Theo Klein
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Ulrich Eckhard
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Antoine Dufour
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Nestor Solis
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Christopher M Overall
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
40
|
Matrix metalloproteinases as regulators of inflammatory processes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2036-2042. [DOI: 10.1016/j.bbamcr.2017.05.010] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/06/2017] [Accepted: 05/09/2017] [Indexed: 12/26/2022]
|
41
|
Abbey SR, Eckhard U, Solis N, Marino G, Matthew I, Overall CM. The Human Odontoblast Cell Layer and Dental Pulp Proteomes and N-Terminomes. J Dent Res 2017; 97:338-346. [PMID: 29035686 DOI: 10.1177/0022034517736054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The proteome and N-terminome of the human odontoblast cell layer were identified for the first time by shotgun proteomic and terminal amine isotopic labeling of substrates (TAILS) N-terminomic analyses, respectively, and compared with that of human dental pulp stroma from 26 third molar teeth. After reverse-phase liquid chromatography-tandem mass spectrometry, >170,000 spectra from the shotgun and TAILS analyses were matched by 4 search engines to 4,888 and 12,063 peptides in the odontoblast cell layer and pulp stroma, respectively. Within these peptide groups, 1,543 and 5,841 protein N-termini, as well as 895 and 2,423 unique proteins, were identified with a false discovery rate of ≤1%. Thus, the human dental pulp proteome was expanded by 974 proteins not previously identified among the 4,123 proteins in our 2015 dental pulp study. Further, 222 proteins of the odontoblast cell layer were not found in the pulp stroma, suggesting many of these proteins are synthesized only by odontoblasts. When comparing the proteomes of older and younger donors, differences were more apparent in the odontoblast cell layer than in the dental pulp stroma. In the odontoblast cell layer proteome, we found proteomic evidence for dentin sialophosphoprotein, which is cleaved into dentin sialoprotein and dentin phosphoprotein. By exploring the proteome of the odontoblast cell layer and expanding the known dental pulp proteome, we found distinct proteome differences compared with each other and with dentin. Moreover, between 61% and 66% of proteins also occurred as proteoforms commencing with a neo-N-terminus not annotated in UniProt. Hence, TAILS increased proteome coverage and revealed considerable proteolytic processing, by identifying stable proteoforms in these dynamic dental tissues. All mass spectrometry raw data have been deposited to ProteomeXchange with the identifier <PXD006557>, with the accompanying metadata at Mendeley Data ( https://data.mendeley.com/datasets/b57zfh6wmy/1 ).
Collapse
Affiliation(s)
- S R Abbey
- 1 Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - U Eckhard
- 1 Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada.,2 Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - N Solis
- 1 Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada.,2 Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - G Marino
- 1 Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada.,2 Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - I Matthew
- 1 Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - C M Overall
- 1 Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada.,2 Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,3 Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
42
|
Scharfstein J, Ramos PIP, Barral-Netto M. G Protein-Coupled Kinin Receptors and Immunity Against Pathogens. Adv Immunol 2017; 136:29-84. [PMID: 28950949 DOI: 10.1016/bs.ai.2017.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
For decades, immunologists have considered the complement system as a paradigm of a proteolytic cascade that, acting cooperatively with the immune system, enhances host defense against infectious organisms. In recent years, advances made in thrombosis research disclosed a functional link between activated neutrophils, monocytes, and platelet-driven thrombogenesis. Forging a physical barrier, the fibrin scaffolds generated by synergism between the extrinsic and intrinsic (contact) pathways of coagulation entrap microbes within microvessels, limiting the systemic spread of infection while enhancing the clearance of pathogens by activated leukocytes. Insight from mice models of thrombosis linked fibrin formation via the intrinsic pathway to the autoactivation of factor XII (FXII) by negatively charged "contact" substances, such as platelet-derived polyphosphates and DNA from neutrophil extracellular traps. Following cleavage by FXIIa, activated plasma kallikrein (PK) initiates inflammation by liberating the nonapeptide bradykinin (BK) from an internal domain of high molecular weight kininogen (HK). Acting as a paracrine mediator, BK induces vasodilation and increases microvascular permeability via activation of endothelial B2R, a constitutively expressed subtype of kinin receptor. During infection, neutrophil-driven extravasation of plasma fuels inflammation via extravascular activation of the kallikrein-kinin system (KKS). Whether liberated by plasma-borne PK, tissue kallikrein, and/or microbial-derived proteases, the short-lived kinins activate immature dendritic cells via B2R, thus linking the infection-associated innate immunity/inflammation to the adaptive arm of immunity. As inflammation persists, a GPI-linked carboxypeptidase M removes the C-terminal arginine from the primary kinin, converting the B2R agonist into a high-affinity ligand for B1R, a GPCR subtype that is transcriptionally upregulated in injured/inflamed tissues. As reviewed here, lessons taken from studies of kinin receptor function in experimental infections have shed light on the complex proteolytic circuits that, acting at the endothelial interface, reciprocally couple immunity to the proinflammatory KKS.
Collapse
Affiliation(s)
- Julio Scharfstein
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Center of Health Sciences (CCS), Cidade Universitária, Rio de Janeiro, Brazil.
| | - Pablo I P Ramos
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | | |
Collapse
|
43
|
Comprehensive analysis of human protein N-termini enables assessment of various protein forms. Sci Rep 2017; 7:6599. [PMID: 28747677 PMCID: PMC5529458 DOI: 10.1038/s41598-017-06314-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/09/2017] [Indexed: 01/10/2023] Open
Abstract
Various forms of protein (proteoforms) are generated by genetic variations, alternative splicing, alternative translation initiation, co- or post-translational modification and proteolysis. Different proteoforms are in part discovered by characterizing their N-terminal sequences. Here, we introduce an N-terminal-peptide-enrichment method, Nrich. Filter-aided negative selection formed the basis for the use of two N-blocking reagents and two endoproteases in this method. We identified 6,525 acetylated (or partially acetylated) and 6,570 free protein N-termini arising from 5,727 proteins in HEK293T human cells. The protein N-termini included translation initiation sites annotated in the UniProtKB database, putative alternative translational initiation sites, and N-terminal sites exposed after signal/transit/pro-peptide removal or unknown processing, revealing various proteoforms in cells. In addition, 46 novel protein N-termini were identified in 5′ untranslated region (UTR) sequence with pseudo start codons. Our data showing the observation of N-terminal sequences of mature proteins constitutes a useful resource that may provide information for a better understanding of various proteoforms in cells.
Collapse
|
44
|
Fortelny N, Butler GS, Overall CM, Pavlidis P. Protease-Inhibitor Interaction Predictions: Lessons on the Complexity of Protein-Protein Interactions. Mol Cell Proteomics 2017; 16:1038-1051. [PMID: 28385878 PMCID: PMC5461536 DOI: 10.1074/mcp.m116.065706] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/24/2017] [Indexed: 01/18/2023] Open
Abstract
Protein interactions shape proteome function and thus biology. Identification of protein interactions is a major goal in molecular biology, but biochemical methods, although improving, remain limited in coverage and accuracy. Whereas computational predictions can guide biochemical experiments, low validation rates of predictions remain a major limitation. Here, we investigated computational methods in the prediction of a specific type of interaction, the inhibitory interactions between proteases and their inhibitors. Proteases generate thousands of proteoforms that dynamically shape the functional state of proteomes. Despite the important regulatory role of proteases, knowledge of their inhibitors remains largely incomplete with the vast majority of proteases lacking an annotated inhibitor. To link inhibitors to their target proteases on a large scale, we applied computational methods to predict inhibitory interactions between proteases and their inhibitors based on complementary data, including coexpression, phylogenetic similarity, structural information, co-annotation, and colocalization, and also surveyed general protein interaction networks for potential inhibitory interactions. In testing nine predicted interactions biochemically, we validated the inhibition of kallikrein 5 by serpin B12. Despite the use of a wide array of complementary data, we found a high false positive rate of computational predictions in biochemical follow-up. Based on a protease-specific definition of true negatives derived from the biochemical classification of proteases and inhibitors, we analyzed prediction accuracy of individual features, thereby we identified feature-specific limitations, which also affected general protein interaction prediction methods. Interestingly, proteases were often not coexpressed with most of their functional inhibitors, contrary to what is commonly assumed and extrapolated predominantly from cell culture experiments. Predictions of inhibitory interactions were indeed more challenging than predictions of nonproteolytic and noninhibitory interactions. In summary, we describe a novel and well-defined but difficult protein interaction prediction task and thereby highlight limitations of computational interaction prediction methods.
Collapse
Affiliation(s)
- Nikolaus Fortelny
- From the ‡Department of Biochemistry and Molecular Biology
- §Michael Smith Laboratories
- ¶Centre for Blood Research
| | - Georgina S Butler
- ¶Centre for Blood Research
- ‖Department of Oral Biological and Medical Sciences, Faculty of Dentistry
| | - Christopher M Overall
- From the ‡Department of Biochemistry and Molecular Biology
- ¶Centre for Blood Research
- ‖Department of Oral Biological and Medical Sciences, Faculty of Dentistry
| | - Paul Pavlidis
- §Michael Smith Laboratories;
- **Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
45
|
Taggart C, Mall MA, Lalmanach G, Cataldo D, Ludwig A, Janciauskiene S, Heath N, Meiners S, Overall CM, Schultz C, Turk B, Borensztajn KS. Protean proteases: at the cutting edge of lung diseases. Eur Respir J 2017; 49:49/2/1501200. [PMID: 28179435 DOI: 10.1183/13993003.01200-2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/27/2016] [Indexed: 12/14/2022]
Abstract
Proteases were traditionally viewed as mere protein-degrading enzymes with a very restricted spectrum of substrates. A major expansion in protease research has uncovered a variety of novel substrates, and it is now evident that proteases are critical pleiotropic actors orchestrating pathophysiological processes. Recent findings evidenced that the net proteolytic activity also relies upon interconnections between different protease and protease inhibitor families in the protease web.In this review, we provide an overview of these novel concepts with a particular focus on pulmonary pathophysiology. We describe the emerging roles of several protease families including cysteine and serine proteases.The complexity of the protease web is exemplified in the light of multidimensional regulation of serine protease activity by matrix metalloproteases through cognate serine protease inhibitor processing. Finally, we will highlight how deregulated protease activity during pulmonary pathogenesis may be exploited for diagnosis/prognosis purposes, and utilised as a therapeutic tool using nanotechnologies.Considering proteases as part of an integrative biology perspective may pave the way for the development of new therapeutic targets to treat pulmonary diseases related to intrinsic protease deregulation.
Collapse
Affiliation(s)
- Clifford Taggart
- Airway Innate Immunity Research group (AiiR), Centre for Experimental Medicine, Queen's University Belfast, UK
| | - Marcus A Mall
- Dept of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany.,Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, Dept of Pediatrics, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Gilles Lalmanach
- INSERM UMR1100 Centre d'Etude des Pathologies Respiratoires (CEPR), Equipe: Mécanismes Protéolytiques dans l'Inflammation, Université François Rabelais, Tours, France
| | - Didier Cataldo
- Laboratory of Tumors and Development and Dept of Respiratory Diseases, University of Liege, Liege, Belgium
| | - Andreas Ludwig
- Inflammation Pharmacology Research Group, Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Sabina Janciauskiene
- Dept of Respiratory Medicine, a member of The German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Nicole Heath
- Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, Dept of Pediatrics, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Christopher M Overall
- Centre for Blood Research, Dept of Oral Biological and Medical Research University of British Columbia, Vancouver, BC, Canada
| | - Carsten Schultz
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Boris Turk
- Dept of Biochemistry & Molecular & Structural Biology, J. Stefan Institute, Ljubljana, Slovenia
| | - Keren S Borensztajn
- INSERM UMR _S933, Université Pierre et Marie Curie, Paris, France .,INSERM UMR1152 Université Paris Diderot, Faculté de Médecine - site Bichat, Paris, France
| |
Collapse
|
46
|
Marshall NC, Finlay BB, Overall CM. Sharpening Host Defenses during Infection: Proteases Cut to the Chase. Mol Cell Proteomics 2017; 16:S161-S171. [PMID: 28179412 PMCID: PMC5393396 DOI: 10.1074/mcp.o116.066456] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/03/2017] [Indexed: 01/14/2023] Open
Abstract
The human immune system consists of an intricate network of tightly controlled pathways, where proteases are essential instigators and executioners at multiple levels. Invading microbial pathogens also encode proteases that have evolved to manipulate and dysregulate host proteins, including host proteases during the course of disease. The identification of pathogen proteases as well as their substrates and mechanisms of action have empowered significant developments in therapeutics for infectious diseases. Yet for many pathogens, there remains a great deal to be discovered. Recently, proteomic techniques have been developed that can identify proteolytically processed proteins across the proteome. These “degradomics” approaches can identify human substrates of microbial proteases during infection in vivo and expose the molecular-level changes that occur in the human proteome during infection as an operational network to develop hypotheses for further research as well as new therapeutics. This Perspective Article reviews how proteases are utilized during infection by both the human host and invading bacterial pathogens, including archetypal virulence-associated microbial proteases, such as the Clostridia spp. botulinum and tetanus neurotoxins. We highlight the potential knowledge that degradomics studies of host–pathogen interactions would uncover, as well as how degradomics has been successfully applied in similar contexts, including use with a viral protease. We review how microbial proteases have been targeted in current therapeutic approaches and how microbial proteases have shaped and even contributed to human therapeutics beyond infectious disease. Finally, we discuss how, moving forward, degradomics research can greatly contribute to our understanding of how microbial pathogens cause disease in vivo and lead to the identification of novel substrates in vivo, and the development of improved therapeutics to counter these pathogens.
Collapse
Affiliation(s)
- Natalie C Marshall
- From the ‡Department of Microbiology & Immunology.,§Michael Smith Laboratories
| | - B Brett Finlay
- From the ‡Department of Microbiology & Immunology.,§Michael Smith Laboratories.,¶Department of Biochemistry & Molecular Biology
| | - Christopher M Overall
- ¶Department of Biochemistry & Molecular Biology, .,**Department of Oral Biological & Medical Sciences, Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
47
|
Honda-Ogawa M, Sumitomo T, Mori Y, Hamd DT, Ogawa T, Yamaguchi M, Nakata M, Kawabata S. Streptococcus pyogenes Endopeptidase O Contributes to Evasion from Complement-mediated Bacteriolysis via Binding to Human Complement Factor C1q. J Biol Chem 2017; 292:4244-4254. [PMID: 28154192 DOI: 10.1074/jbc.m116.749275] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 01/18/2017] [Indexed: 01/14/2023] Open
Abstract
Streptococcus pyogenes secretes various virulence factors for evasion from complement-mediated bacteriolysis. However, full understanding of the molecules possessed by this organism that interact with complement C1q, an initiator of the classical complement pathway, remains elusive. In this study, we identified an endopeptidase of S. pyogenes, PepO, as an interacting molecule, and investigated its effects on complement immunity and pathogenesis. Enzyme-linked immunosorbent assay and surface plasmon resonance analysis findings revealed that S. pyogenes recombinant PepO bound to human C1q in a concentration-dependent manner under physiological conditions. Sites of inflammation are known to have decreased pH levels, thus the effects of PepO on bacterial evasion from complement immunity was analyzed in a low pH condition. Notably, under low pH conditions, PepO exhibited a higher affinity for C1q as compared with IgG, and PepO inhibited the binding of IgG to C1q. In addition, pepO deletion rendered S. pyogenes more susceptible to the bacteriocidal activity of human serum. Also, observations of the morphological features of the pepO mutant strain (ΔpepO) showed damaged irregular surfaces as compared with the wild-type strain (WT). WT-infected tissues exhibited greater severity and lower complement activity as compared with those infected by ΔpepO in a mouse skin infection model. Furthermore, WT infection resulted in a larger accumulation of C1q than that with ΔpepO. Our results suggest that interaction of S. pyogenes PepO with C1q interferes with the complement pathway, which enables S. pyogenes to evade complement-mediated bacteriolysis under acidic conditions, such as seen in inflammatory sites.
Collapse
Affiliation(s)
- Mariko Honda-Ogawa
- From the Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry
| | - Tomoko Sumitomo
- From the Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry
| | - Yasushi Mori
- From the Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry.,Division of Special Care Dentistry, Osaka University Dental Hospital, and
| | - Dalia Talat Hamd
- From the Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry
| | - Taiji Ogawa
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masaya Yamaguchi
- From the Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry
| | - Masanobu Nakata
- From the Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry
| | - Shigetada Kawabata
- From the Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry,
| |
Collapse
|
48
|
Abstract
A compelling long-term goal of cancer biology is to understand the crucial players during tumorigenesis in order to develop new interventions. Here, we review how the four non-redundant tissue inhibitors of metalloproteinases (TIMPs) regulate the pericellular proteolysis of a vast range of matrix and cell surface proteins, generating simultaneous effects on tumour architecture and cell signalling. Experimental studies demonstrate the contribution of TIMPs to the majority of cancer hallmarks, and human cancers invariably show TIMP deregulation in the tumour or stroma. Of the four TIMPs, TIMP1 overexpression or TIMP3 silencing is consistently associated with cancer progression or poor patient prognosis. Future efforts will align mouse model systems with changes in TIMPs in patients, will delineate protease-independent TIMP function, will pinpoint therapeutic targets within the TIMP-metalloproteinase-substrate network and will use TIMPs in liquid biopsy samples as biomarkers for cancer prognosis.
Collapse
Affiliation(s)
- Hartland W Jackson
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
- Bodenmiller Laboratory, University of Zürich, Institute for Molecular Life Sciences, Winterthurstrasse 190, 8057 Zürich, Switzerland
| | - Virginie Defamie
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
| | - Paul Waterhouse
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
| | - Rama Khokha
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
| |
Collapse
|
49
|
Klein T, Viner RI, Overall CM. Quantitative proteomics and terminomics to elucidate the role of ubiquitination and proteolysis in adaptive immunity. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2015.0372. [PMID: 27644975 PMCID: PMC5031638 DOI: 10.1098/rsta.2015.0372] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
Adaptive immunity is the specialized defence mechanism in vertebrates that evolved to eliminate pathogens. Specialized lymphocytes recognize specific protein epitopes through antigen receptors to mount potent immune responses, many of which are initiated by nuclear factor-kappa B activation and gene transcription. Most, if not all, pathways in adaptive immunity are further regulated by post-translational modification (PTM) of signalling proteins, e.g. phosphorylation, citrullination, ubiquitination and proteolytic processing. The importance of PTMs is reflected by genetic or acquired defects in these pathways that lead to a dysfunctional immune response. Here we discuss the state of the art in targeted proteomics and systems biology approaches to dissect the PTM landscape specifically regarding ubiquitination and proteolysis in B- and T-cell activation. Recent advances have occurred in methods for specific enrichment and targeted quantitation. Together with improved instrument sensitivity, these advances enable the accurate analysis of often rare PTM events that are opaque to conventional proteomics approaches, now rendering in-depth analysis and pathway dissection possible. We discuss published approaches, including as a case study the profiling of the N-terminome of lymphocytes of a rare patient with a genetic defect in the paracaspase protease MALT1, a key regulator protease in antigen-driven signalling, which was manifested by elevated linear ubiquitination.This article is part of the themed issue 'Quantitative mass spectrometry'.
Collapse
Affiliation(s)
- Theo Klein
- Centre for Blood Research, University of British Columbia, Vancouver, BC Canada V6T 1Z3 Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC Canada V6T 1Z3 Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC Canada V6T 1Z3
| | - Rosa I Viner
- Thermo Fisher Scientific, San Jose, CA 95134, USA
| | - Christopher M Overall
- Centre for Blood Research, University of British Columbia, Vancouver, BC Canada V6T 1Z3 Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC Canada V6T 1Z3 Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC Canada V6T 1Z3
| |
Collapse
|
50
|
Wilson CH, Zhang HE, Gorrell MD, Abbott CA. Dipeptidyl peptidase 9 substrates and their discovery: current progress and the application of mass spectrometry-based approaches. Biol Chem 2016; 397:837-856. [PMID: 27410463 DOI: 10.1515/hsz-2016-0174] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/04/2016] [Indexed: 02/11/2025]
Abstract
The enzyme members of the dipeptidyl peptidase 4 (DPP4) gene family have the very unusual capacity to cleave the post-proline bond to release dipeptides from the N-terminus of peptide/protein substrates. DPP4 and related enzymes are current and potential therapeutic targets in the treatment of type II diabetes, inflammatory conditions and cancer. Despite this, the precise biological function of individual dipeptidyl peptidases (DPPs), other than DPP4, and knowledge of their in vivo substrates remains largely unknown. For many years, identification of physiological DPP substrates has been difficult due to limitations in the available tools. Now, with advances in mass spectrometry based approaches, we can discover DPP substrates on a system wide-scale. Application of these approaches has helped reveal some of the in vivo natural substrates of DPP8 and DPP9 and their unique biological roles. In this review, we provide a general overview of some tools and approaches available for protease substrate discovery and their applicability to the DPPs with a specific focus on DPP9 substrates. This review provides comment upon potential approaches for future substrate elucidation.
Collapse
|