1
|
Shirodkar D, Smithson SF, Keen R, Lester T, Banos-Pinero B, Burren CP. Congenital hallux valgus occurs in Fibrodysplasia Ossificans Progressiva and BMPR1B-associated dysplasia: an important distinction. BMC Med Genomics 2024; 17:160. [PMID: 38879467 PMCID: PMC11179364 DOI: 10.1186/s12920-024-01931-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/12/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Fibrodysplasia Ossificans Progressiva (FOP; OMIM #135100) is an ultrarare genetic disorder characterised by congenital bilateral hallux valgus (CBHV), intermittent soft tissue swellings and progressive heterotopic ossification. We report a three-month-old girl with great toe abnormalities similar to FOP, in whom comprehensive clinical workup and genetic investigations illustrates an alternative diagnosis. CASE PRESENTATION A three-month-old girl presented with CBHV. The antenatal period was unremarkable, she was born by spontaneous vaginal delivery with an uneventful subsequent course, except for maternal concern of her bent toes which received reassurance from several health professionals. Her mother's persisting concerns were explored via the internet and social media leading her to request referral to an expert bone centre for consideration of FOP. On examination, she was thriving, there was no dysmorphism, subcutaneous lumps, skeletal or extra-skeletal deformity except for shortened great toes with lateral deviation of the proximal and distal phalanges. FOP was a feasible diagnosis, for which CBHV is highlighted as an early sign. A cautionary potential diagnosis of FOP was counselled, including advice to defer intramuscular immunisations until genetic results available. Genetic investigation was undertaken through rapid whole genomic sequencing (WGS), with analysis of data from a skeletal dysplasia gene panel, which demonstrated no ACVR1variants. The only finding was a heterozygous variant of unknown significance in BMPR1B (c1460T>A, p.(Val487Asp)), which encodes a bone morphogenic receptor involved in brachydactyly syndromes A1, A2 and D and acromesomelic dysplasia 3 (only the latter being an autosomal recessive condition). CONCLUSION This report highlights that CBHV serves as a vital diagnostic indicator of FOP and affected infants should be considered and investigated for FOP, including precautionary management whilst awaiting genetic studies. The second educational aspect is that CBHV may not represent a generalised skeletal disorder, or one much less significant than FOP. Receptor-ligand BMP and Activins mediated interactions are instrumental in the intricate embryology of the great toe. Recognition of non-FOP conditions caused by alterations in different genes are likely to increase with new genomic technology and large gene panels, enhancing understanding of bone signaling pathways.
Collapse
Affiliation(s)
- Diksha Shirodkar
- Department of Paediatric Endocrinology and Diabetes, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Maudlin Street, Bristol, BS2 8BJ, UK.
| | - Sarah Francesca Smithson
- Department of Clinical Genetics, St Michael's Hospital, University Hospitals Bristol and Weston NHS Foundation Trust, Southwell Street, Bristol, BS2 8EG, UK
| | - Richard Keen
- Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex, HA7 4LP, UK
| | - Tracy Lester
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Headington, Oxford, Oxfordshire, OX3 9DU, UK
| | - Benito Banos-Pinero
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, The Churchill Hospital, Oxford, OX3 7LE, UK
| | - Christine Pamela Burren
- Department of Paediatric Endocrinology and Diabetes, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Maudlin Street, Bristol, BS2 8BJ, UK
| |
Collapse
|
2
|
Riege D, Herschel S, Fenkl T, Schade D. Small-Molecule Probes as Pharmacological Tools for the Bone Morphogenetic Protein Signaling Pathway. ACS Pharmacol Transl Sci 2023; 6:1574-1599. [PMID: 37974621 PMCID: PMC10644459 DOI: 10.1021/acsptsci.3c00170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 11/19/2023]
Abstract
The bone morphogenetic protein (BMP) pathway is highly conserved and plays central roles in health and disease. The quality and quantity of its signaling outputs are regulated at multiple levels, offering pharmacological options for targeted modulation. Both target-centric and phenotypic drug discovery (PDD) approaches were applied to identify small-molecule BMP inhibitors and stimulators. In this Review, we accumulated and systematically classified the different reported chemotypes based on their targets as well as modes-of-action, and herein we illustrate the discovery history of selected candidates. A comprehensive summary of available biochemical, cellular, and in vivo activities is provided for the most relevant BMP modulators, along with recommendations on their preferred use as chemical probes to study BMP-related (patho)physiological processes. There are a number of high-quality probes used as BMP inhibitors that potently and selectively interrogate the kinase activities of distinct type I (16 chemotypes available) and type II receptors (3 chemotypes available). In contrast, only a few high-quality BMP stimulator modalities have been introduced to the field due to a lack of profound target knowledge. FK506-derived macrolides such as calcineurin-sparing FKBP12 inhibitors currently represent the best-characterized chemical tools for direct activation of BMP-SMAD signaling at the receptor level. However, several PDD campaigns succeeded in expanding the druggable space of BMP stimulators. Albeit the majority of them do not entirely fulfill the strict chemical probe criteria, many chemotypes exhibit unique and unrecognized mechanisms as pathway potentiators or synergizers, serving as valuable pharmacological tools for BMP perturbation.
Collapse
Affiliation(s)
- Daniel Riege
- Department
of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Sven Herschel
- Department
of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Teresa Fenkl
- Department
of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Dennis Schade
- Department
of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
- Partner
Site Kiel, DZHK, German Center for Cardiovascular
Research, 24105 Kiel, Germany
| |
Collapse
|
3
|
Riege D, Herschel S, Heintze L, Fenkl T, Wesseler F, Sievers S, Peifer C, Schade D. Identification of Maleimide-Fused Carbazoles as Novel Noncanonical Bone Morphogenetic Protein Synergizers. ACS Pharmacol Transl Sci 2023; 6:1207-1220. [PMID: 37588754 PMCID: PMC10426274 DOI: 10.1021/acsptsci.3c00103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Indexed: 08/18/2023]
Abstract
Morphogenic signaling pathways govern embryonic development and tissue homeostasis on the cellular level. Precise control of such signaling events paves the way for innovative therapeutic approaches in the field of regenerative medicine. In line with these notions, bone morphogenic protein (BMP) is a major osteogenic driver and pharmacological stimulation of BMP signaling holds supreme potential for diseases and defects of the skeleton. Efforts to identify small-molecule modalities that activate or potentiate the BMP pathway have primarily been focused on the canonical signaling cascade. Here, we describe the phenotypic identification and development of specific carbazolomaleimides 2 as novel noncanonical BMP synergizers with submicromolar osteogenic cellular potency. The devised chemical tools are characterized to specifically regulate Id gene expression in a SMAD-independent, yet highly BMP-dependent fashion. Mechanistic studies revealed that GSK3 inhibition and increased β-catenin levels are partly responsible for this activity. The utility of the new BMP synergizer profile was further exemplified by showing how the synergistic action of canonical and noncanonical BMP enhancers additively amplifies BMP-dependent osteogenic outputs. Carbazolomaleimide 2b serves as a new and unique pharmacological tool for the modulation and study of the BMP pathway.
Collapse
Affiliation(s)
- Daniel Riege
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Sven Herschel
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Linda Heintze
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Teresa Fenkl
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Fabian Wesseler
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
- Compound Management and
Screening Center, Otto-Hahn-Strasse 11, 44227
Dortmund, Germany
| | - Sonja Sievers
- Compound Management and
Screening Center, Otto-Hahn-Strasse 11, 44227
Dortmund, Germany
| | - Christian Peifer
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Dennis Schade
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
- Partner Site Kiel, DZHK,
German Center for Cardiovascular Research, 24105
Kiel, Germany
| |
Collapse
|
4
|
Tang J, Tan M, Liao S, Pang M, Li J. Recent progress in the biology and physiology of BMP-8a. Connect Tissue Res 2023; 64:219-228. [PMID: 36594156 DOI: 10.1080/03008207.2022.2160326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE BMP-8a is a member of bone morphogenetic proteins (BMPs) and plays a regulatory role in human growth and development as a transcription regulator. This review aims to summarize the current research on the impact and mechanism of BMP-8a in female and male reproduction, formation and eruption of teeth, bone and cartilage development, tissue differentiation, disease occurrence, progression and prognosis. METHODS The phrases "BMP-8a," "BMPs," "regulator," "mechanism," "osteoblast," "cartilage," "cancer," "disease," and "inflammation" were searched in the PubMed database. The abstracts were evaluated, and a series of original publications and reviews were examined. RESULTS According to the search, BMP-8a affects the development of the uterus by inhibiting luteinization and plays an important role in late spermatogenesis. It is highly expressed in osteogenesis and differentially expressed in chondrogenesis. Furthermore, BMP-8a has a significant impact on the occurrence, development and prognosis of various diseases. CONCLUSIONS BMP-8a regulates important factors and pathways, such as SMAD2/3 and SMAD1/5/8, to promote or inhibit the developmental processes of human reproductive organs. BMP-8a is also a member of the BMP family of proteins that regulates chondrogenesis and osteogenesis. In addition to its osteoinductive capabilities, BMP-8a is involved in the progression of diverse cancers.
Collapse
Affiliation(s)
- Jiawei Tang
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Miao Tan
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Siqi Liao
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Mengwei Pang
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Jie Li
- College of Stomatology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Wesseler F, Lohmann S, Riege D, Halver J, Roth A, Pichlo C, Weber S, Takamiya M, Müller E, Ketzel J, Flegel J, Gihring A, Rastegar S, Bertrand J, Baumann U, Knippschild U, Peifer C, Sievers S, Waldmann H, Schade D. Phenotypic Discovery of Triazolo[1,5- c]quinazolines as a First-In-Class Bone Morphogenetic Protein Amplifier Chemotype. J Med Chem 2022; 65:15263-15281. [DOI: 10.1021/acs.jmedchem.2c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fabian Wesseler
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
- Compound Management and Screening Center COMAS, Max Planck Institute of Molecular Physiology (MPI), 44227 Dortmund, Germany
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Christian-Albrechts University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Stefan Lohmann
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Christian-Albrechts University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Daniel Riege
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Christian-Albrechts University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Jonas Halver
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Aileen Roth
- Department of General and Visceral Surgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Christian Pichlo
- Department of Chemistry, University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| | - Sabrina Weber
- Institute of Biological and Chemical Systems - Biological Information Processing at Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Masanari Takamiya
- Institute of Biological and Chemical Systems - Biological Information Processing at Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Eva Müller
- Department of Orthopedic Surgery, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Jana Ketzel
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Christian-Albrechts University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Jana Flegel
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Adrian Gihring
- Department of General and Visceral Surgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems - Biological Information Processing at Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Jessica Bertrand
- Department of Orthopedic Surgery, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Ulrich Baumann
- Department of Chemistry, University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Christian Peifer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Christian-Albrechts University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Sonja Sievers
- Compound Management and Screening Center COMAS, Max Planck Institute of Molecular Physiology (MPI), 44227 Dortmund, Germany
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227Dortmund, Germany
| | - Herbert Waldmann
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227Dortmund, Germany
| | - Dennis Schade
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Christian-Albrechts University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
- Partner Site Kiel, DZHK, German Center for Cardiovascular Research, 24105 Kiel, Germany
| |
Collapse
|
6
|
Ganjoo S, Puebla-Osorio N, Nanez S, Hsu E, Voss T, Barsoumian H, Duong LK, Welsh JW, Cortez MA. Bone morphogenetic proteins, activins, and growth and differentiation factors in tumor immunology and immunotherapy resistance. Front Immunol 2022; 13:1033642. [PMID: 36353620 PMCID: PMC9638036 DOI: 10.3389/fimmu.2022.1033642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2024] Open
Abstract
The TGF-β superfamily is a group of secreted polypeptides with key roles in exerting and regulating a variety of physiologic effects, especially those related to cell signaling, growth, development, and differentiation. Although its central member, TGF-β, has been extensively reviewed, other members of the family-namely bone morphogenetic proteins (BMPs), activins, and growth and differentiation factors (GDFs)-have not been as thoroughly investigated. Moreover, although the specific roles of TGF-β signaling in cancer immunology and immunotherapy resistance have been extensively reported, little is known of the roles of BMPs, activins, and GDFs in these domains. This review focuses on how these superfamily members influence key immune cells in cancer progression and resistance to treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
7
|
Discovery of a novel class of benzimidazoles as highly effective agonists of bone morphogenetic protein (BMP) receptor signaling. Sci Rep 2022; 12:12146. [PMID: 35840622 PMCID: PMC9287337 DOI: 10.1038/s41598-022-16394-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
Increasing or restoring Bone Morphogenetic Protein receptor signaling is an effective therapy for conditions such as bone fracture and pulmonary arterial hypertension. However, direct use of recombinant BMPs has encountered significant obstacles. Moreover, synthetic, full agonists of BMP receptor signaling have yet to be identified. Here, we report the discovery of a novel class of indolyl-benzimidazoles, synthesized using a one-pot synthetic methodology, which appear to mimic the biochemical and functional activity of BMPs. The first-in-series compounds, SY-LB-35 and SY-LB-57, stimulated significant increases in cell number and cell viability in the C2C12 myoblast cell line. Cell cycle analysis revealed that these compounds induced a shift toward proliferative phases. SY-LB-35 and SY-LB-57 stimulated canonical Smad and non-canonical PI3K/Akt, ERK, p38 and JNK intracellular signaling pathways, similar to BMP2-stimulated responses. Importantly, increases in Smad phosphorylation and cell viability were dependent on type I BMP receptor activity. Thus, these compounds robustly activate intracellular signaling in a BMP receptor-dependent manner and may signify the first known, full agonists of BMP receptor signaling. Moreover, discovery of small molecule activators of BMP pathways, which can be efficiently formulated and targeted to diseased or damaged areas, could potentially substitute recombinant BMPs for treatment of BMP-related pathologies.
Collapse
|
8
|
Wesseler F, Riege D, Puthanveedu M, Halver J, Müller E, Bertrand J, Antonchick AP, Sievers S, Waldmann H, Schade D. Probing Embryonic Development Enables the Discovery of Unique Small-Molecule Bone Morphogenetic Protein Potentiators. J Med Chem 2022; 65:3978-3990. [PMID: 35108017 DOI: 10.1021/acs.jmedchem.1c01800] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report on the feasibility to harness embryonic development in vitro for the identification of small-molecule cytokine mimetics and signaling activators. Here, a phenotypic, target-agnostic, high-throughput assay is presented that probes bone morphogenetic protein (BMP) signaling during mesodermal patterning of embryonic stem cells. The temporal discrimination of BMP- and transforming growth factor-β (TGFβ)-driven stages of cardiomyogenesis underpins a selective, authentic orchestration of BMP cues that can be recapitulated for the discovery of BMP activator chemotypes. Proof of concept is shown from a chemical screen of 7000 compounds, provides a robust hit validation workflow, and afforded 2,3-disubstituted 4H-chromen-4-ones as potent BMP potentiators with osteogenic efficacy. Mechanistic studies suggest that Chromenone 1 enhances canonical BMP outputs at the expense of TGFβ-Smads in an unprecedented manner. Pharmacophoric features were defined, providing a set of novel chemical probes for various applications in (stem) cell biology, regenerative medicine, and basic research on the BMP pathway.
Collapse
Affiliation(s)
- Fabian Wesseler
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany.,Compound Management and Screening Center, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.,Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Daniel Riege
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Mahesh Puthanveedu
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany.,Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Jonas Halver
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Eva Müller
- Department of Orthopedic Surgery, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Jessica Bertrand
- Department of Orthopedic Surgery, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Andrey P Antonchick
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany.,Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.,Department of Chemistry and Forensics, College of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, United Kingdom
| | - Sonja Sievers
- Compound Management and Screening Center, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.,Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Herbert Waldmann
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany.,Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Dennis Schade
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany.,Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.,Partner Site Kiel, DZHK, German Center for Cardiovascular Research, 24105 Kiel, Germany
| |
Collapse
|
9
|
Wu Z, Lin T, Kang P, Zhuang Z, Wang H, He W, Wei Q, Li Z. Overexpression of fucosyltransferase 8 reverses the inhibitory effect of high-dose dexamethasone on osteogenic response of MC3T3-E1 preosteoblasts. PeerJ 2021; 9:e12380. [PMID: 34966572 PMCID: PMC8667747 DOI: 10.7717/peerj.12380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Background Core fucosylation catalyzed by FUT8 is essential for TGF-β binding to TGF-β receptors. Methods Indirect TGF-β1 binding assay was used to evaluate the ability of TGF-β1 to bind to TGFBRs, Alizarin red and alkaline phosphatase staining were used to detect osteogenic differentiation and mineralization ability , western blot and quantitative RT-PCR were used to measure the differential expression of osteogenesis-related proteins and genes. Plasmid-mediated gain-of-function study. The scale of core fucosylation modification was detected by Lectin-blot and LCA laser confocal. Results Our results showed that compared with vehicle treatment, high-dose (10−6 and 10−5 M) dexamethasone significantly inhibited cell proliferation, osteogenic differentiation, and FUT8 mRNA expression while promoting mRNA expression of adipogenesis-related genes in MC3T3-E1 cells, suggesting that downregulation of FUT8 is involved in the inhibitory effect of high-dose dexamethasone on osteogenesis. Overexpression of FUT8 significantly promoted osteogenic differentiation and activated TGF-β/Smad signaling in MC3T3-E1 cells in the presence of high-dose dexamethasone, suggesting that FUT8 reverses the inhibitory effect of high-dose dexamethasone on osteogenesis. In addition, lectin fluorescent staining and blotting showed that overexpression of FUT8 significantly reversed the inhibitory effects of high-dose dexamethasone on core fucosylation of TGFBR1 and TGFBR2. Furthermore, indirect TGF-β1 binding assay showed that overexpression of FUT8 remarkably promoted TGF-β1 binding to TGFBRs in MC3T3-E1 cells in the presence of high-dose dexamethasone. Conclusions Taken together, these results suggest that overexpression of FUT8 facilitates counteracting the inhibitory effect of dexamethasone on TGF-β signaling and osteogenesis.
Collapse
Affiliation(s)
- Zhiming Wu
- Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Joint Orthopaedic, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China.,Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen City, Guangdong Province, China
| | - Tianye Lin
- Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Joint Orthopaedic, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pan Kang
- Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Joint Orthopaedic, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhikun Zhuang
- Department of Joint Orthopaedic, Quanzhou Orthopedic-Traumatological Hospital of Fujian Traditional Chinese Medicine University, Quanzhou, China
| | - Haibin Wang
- Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Joint Orthopaedic, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei He
- Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Joint Orthopaedic, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiushi Wei
- Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Joint Orthopaedic, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziqi Li
- Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Joint Orthopaedic, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
10
|
Khodr V, Machillot P, Migliorini E, Reiser JB, Picart C. High-throughput measurements of bone morphogenetic protein/bone morphogenetic protein receptor interactions using biolayer interferometry. Biointerphases 2021; 16:031001. [PMID: 34241280 PMCID: PMC7614001 DOI: 10.1116/6.0000926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/11/2021] [Indexed: 01/03/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are an important family of growth factors playing a role in a large number of physiological and pathological processes, including bone homeostasis, tissue regeneration, and cancers. In vivo, BMPs bind successively to both BMP receptors (BMPRs) of type I and type II, and a promiscuity has been reported. In this study, we used biolayer interferometry to perform parallel real-time biosensing and to deduce the kinetic parameters (ka, kd) and the equilibrium constant (KD) for a large range of BMP/BMPR combinations in similar experimental conditions. We selected four members of the BMP family (BMP-2, 4, 7, 9) known for their physiological relevance and studied their interactions with five type-I BMP receptors (ALK1, 2, 3, 5, 6) and three type-II BMP receptors (BMPR-II, ACTR-IIA, ACTR-IIB). We reveal that BMP-2 and BMP-4 behave differently, especially regarding their kinetic interactions and affinities with the type-II BMPR. We found that BMP-7 has a higher affinity for the type-II BMPR receptor ACTR-IIA and a tenfold lower affinity with the type-I receptors. While BMP-9 has a high and similar affinity for all type-II receptors, it can interact with ALK5 and ALK2, in addition to ALK1. Interestingly, we also found that all BMPs can interact with ALK5. The interaction between BMPs and both type-I and type-II receptors in a ternary complex did not reveal further cooperativity. Our work provides a synthetic view of the interactions of these BMPs with their receptors and paves the way for future studies on their cell-type and receptor specific signaling pathways.
Collapse
Affiliation(s)
- Valia Khodr
- Interdisciplinary Research Institute of Grenoble (IRIG), ERL BRM 5000 (CNRS/UGA/CEA), CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex, France
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble
| | - Paul Machillot
- Interdisciplinary Research Institute of Grenoble (IRIG), ERL BRM 5000 (CNRS/UGA/CEA), CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex, France
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble
| | - Elisa Migliorini
- Interdisciplinary Research Institute of Grenoble (IRIG), ERL BRM 5000 (CNRS/UGA/CEA), CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex, France
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble
| | - Jean-Baptiste Reiser
- Institut de Biologie Structurale, UMR 5075, Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Catherine Picart
- Interdisciplinary Research Institute of Grenoble (IRIG), ERL BRM 5000 (CNRS/UGA/CEA), CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex, France
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble
| |
Collapse
|
11
|
Gascon S, Jann J, Langlois-Blais C, Plourde M, Lavoie C, Faucheux N. Peptides Derived from Growth Factors to Treat Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22116071. [PMID: 34199883 PMCID: PMC8200100 DOI: 10.3390/ijms22116071] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by progressive neuron losses in memory-related brain structures. The classical features of AD are a dysregulation of the cholinergic system, the accumulation of amyloid plaques, and neurofibrillary tangles. Unfortunately, current treatments are unable to cure or even delay the progression of the disease. Therefore, new therapeutic strategies have emerged, such as the exogenous administration of neurotrophic factors (e.g., NGF and BDNF) that are deficient or dysregulated in AD. However, their low capacity to cross the blood-brain barrier and their exorbitant cost currently limit their use. To overcome these limitations, short peptides mimicking the binding receptor sites of these growth factors have been developed. Such peptides can target selective signaling pathways involved in neuron survival, differentiation, and/or maintenance. This review focuses on growth factors and their derived peptides as potential treatment for AD. It describes (1) the physiological functions of growth factors in the brain, their neuronal signaling pathways, and alteration in AD; (2) the strategies to develop peptides derived from growth factor and their capacity to mimic the role of native proteins; and (3) new advancements and potential in using these molecules as therapeutic treatments for AD, as well as their limitations.
Collapse
Affiliation(s)
- Suzanne Gascon
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, 2500 Boulevard Université, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (J.J.)
| | - Jessica Jann
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, 2500 Boulevard Université, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (J.J.)
| | - Chloé Langlois-Blais
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Mélanie Plourde
- Centre de Recherche sur le Vieillissement, Centre Intégré Universitaire de Santé et Services Sociaux de l’Estrie–Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1G 1B1, Canada;
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Christine Lavoie
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
- Institut de Pharmacologie de Sherbrooke, 3001 12th Avenue, N., Sherbrooke, QC J1H 5N4, Canada
- Correspondence: (C.L.); (N.F.); Tel.: +1-819-821-8000 (ext. 72732) (C.L.); +1-819-821-8000 (ext. 61343) (N.F.)
| | - Nathalie Faucheux
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, 2500 Boulevard Université, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (J.J.)
- Institut de Pharmacologie de Sherbrooke, 3001 12th Avenue, N., Sherbrooke, QC J1H 5N4, Canada
- Correspondence: (C.L.); (N.F.); Tel.: +1-819-821-8000 (ext. 72732) (C.L.); +1-819-821-8000 (ext. 61343) (N.F.)
| |
Collapse
|
12
|
Karoulias SZ, Pitou M, Papi R, Lamprou P, Choli-Papadopoulou T. Specific amino acids from the broad C-terminal region of BMP-2 are crucial for osteogenesis. Bone Rep 2021; 14:101092. [PMID: 34026953 PMCID: PMC8134029 DOI: 10.1016/j.bonr.2021.101092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/17/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022] Open
Abstract
The shortest functional domains of growth factor Bone Morphogenetic Protein 2 (BMP-2) that are dynamical implicated in osteogenesis have been investigated and well characterized. In particular, the broad C-terminal region expanding from Val63 to Arg114 as well as its shorter sequence 86-AISMLYLDEN-95 exhibited the highest osteogenic ability for regeneration and reconstruction of bone tissue. In addition, the amino acids Ser88 and Leu90 have been identified as crucial for receptor binding and osteogenic efficacy. Furthermore, the above-mentioned domains in contrary to full length BMP-2 protein signal mainly through the Smad pathway as it is evidenced by phosphorylation decrease of Extracellular-signal-Regulated Kinase (ERK1/2). Taking together, our results are significant for clinical applications regarding the generation of biomaterials and healing of orthopedic fractures. The C-terminal BMP-2 is crucial for protein's function regarding osteogenesis. Two amino acids of the short AISMLYLDEN sequence are crucial for osteogenesis. The short peptide and the entire protein signal through different pathways
Collapse
Affiliation(s)
- Stylianos-Zafeirios Karoulias
- Laboratory of Biochemistry, School of Chemistry, Faculty of Natural Sciences, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece
| | - Maria Pitou
- Laboratory of Biochemistry, School of Chemistry, Faculty of Natural Sciences, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece
| | - Rigini Papi
- Laboratory of Biochemistry, School of Chemistry, Faculty of Natural Sciences, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece
| | - Paraskevas Lamprou
- Laboratory of Biochemistry, School of Chemistry, Faculty of Natural Sciences, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece
| | - Theodora Choli-Papadopoulou
- Laboratory of Biochemistry, School of Chemistry, Faculty of Natural Sciences, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece
| |
Collapse
|
13
|
Guasto A, Cormier-Daire V. Signaling Pathways in Bone Development and Their Related Skeletal Dysplasia. Int J Mol Sci 2021; 22:4321. [PMID: 33919228 PMCID: PMC8122623 DOI: 10.3390/ijms22094321] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Bone development is a tightly regulated process. Several integrated signaling pathways including HH, PTHrP, WNT, NOTCH, TGF-β, BMP, FGF and the transcription factors SOX9, RUNX2 and OSX are essential for proper skeletal development. Misregulation of these signaling pathways can cause a large spectrum of congenital conditions categorized as skeletal dysplasia. Since the signaling pathways involved in skeletal dysplasia interact at multiple levels and have a different role depending on the time of action (early or late in chondrogenesis and osteoblastogenesis), it is still difficult to precisely explain the physiopathological mechanisms of skeletal disorders. However, in recent years, significant progress has been made in elucidating the mechanisms of these signaling pathways and genotype-phenotype correlations have helped to elucidate their role in skeletogenesis. Here, we review the principal signaling pathways involved in bone development and their associated skeletal dysplasia.
Collapse
Affiliation(s)
- Alessandra Guasto
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France;
| | - Valérie Cormier-Daire
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France;
- Centre de Référence Pour Les Maladies Osseuses Constitutionnelles, Service de Génétique Clinique, AP-HP, Hôpital Necker-Enfants Malades, 75015 Paris, France
| |
Collapse
|
14
|
Pauk M, Kufner V, Rumenovic V, Dumic-Cule I, Farkas V, Milosevic M, Bordukalo-Niksic T, Vukicevic S. Iron overload in aging Bmp6‑/‑ mice induces exocrine pancreatic injury and fibrosis due to acinar cell loss. Int J Mol Med 2021; 47:60. [PMID: 33649802 PMCID: PMC7910010 DOI: 10.3892/ijmm.2021.4893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/19/2021] [Indexed: 11/27/2022] Open
Abstract
The relationship between hemochromatosis and diabetes has been well established, as excessive iron deposition has been reported to result in impaired function of the endocrine and exocrine pancreas. Therefore, the objective of the present study was to analyze the effects of iron accumulation on the pancreata and glucose homeostasis in a bone morphogenetic protein 6-knockout (Bmp6−/−) mouse model of hemochromatosis. The sera and pancreatic tissues of wild-type (WT) and Bmp6−/− mice (age, 3 and 10 months) were subjected to biochemical and histological analyses. In addition, 18F-fluorodeoxyglucose biodistribution was evaluated in the liver, muscle, heart, kidney and adipose tissue of both animal groups. The results demonstrated that 3-month-old Bmp6−/− mice exhibited iron accumulation preferentially in the exocrine pancreas, with no signs of pancreatic injury or fibrosis. No changes were observed in the glucose metabolism, as pancreatic islet diameter, insulin and glucagon secretion, blood glucose levels and glucose uptake in the liver, muscle and adipose tissue remained comparable with those in the WT mice. Aging Bmp6−/− mice presented with progressive iron deposits in the exocrine pancreas, leading to pancreatic degeneration and injury that was characterized by acinar atrophy, fibrosis and the infiltration of inflammatory cells. However, the aging mice exhibited unaltered blood glucose levels and islet structure, normal insulin secretion and moderately increased α-cell mass compared with those in the age-matched WT mice. Additionally, iron overload and pancreatic damage were not observed in the aging WT mice. These results supported a pathogenic role of iron overload in aging Bmp6−/− mice leading to iron-induced exocrine pancreatic deficiency, whereas the endocrine pancreas retained normal function.
Collapse
Affiliation(s)
- Martina Pauk
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, HR‑10000 Zagreb, Croatia
| | - Vera Kufner
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, HR‑10000 Zagreb, Croatia
| | - Viktorija Rumenovic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, HR‑10000 Zagreb, Croatia
| | - Ivo Dumic-Cule
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, HR‑10000 Zagreb, Croatia
| | - Vladimir Farkas
- Molecular Biology Department, Rudjer Boskovic Institute, HR‑10000 Zagreb, Croatia
| | - Milan Milosevic
- Andrija Stampar School of Public Health, School of Medicine, University of Zagreb, HR‑10000 Zagreb, Croatia
| | - Tatjana Bordukalo-Niksic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, HR‑10000 Zagreb, Croatia
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, HR‑10000 Zagreb, Croatia
| |
Collapse
|
15
|
Roth DM, Bayona F, Baddam P, Graf D. Craniofacial Development: Neural Crest in Molecular Embryology. Head Neck Pathol 2021; 15:1-15. [PMID: 33723764 PMCID: PMC8010074 DOI: 10.1007/s12105-021-01301-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/02/2021] [Indexed: 12/22/2022]
Abstract
Craniofacial development, one of the most complex sequences of developmental events in embryology, features a uniquely transient, pluripotent stem cell-like population known as the neural crest (NC). Neural crest cells (NCCs) originate from the dorsal aspect of the neural tube and migrate along pre-determined routes into the developing branchial arches and frontonasal plate. The exceptional rates of proliferation and migration of NCCs enable their diverse contribution to a wide variety of craniofacial structures. Subsequent differentiation of these cells gives rise to cartilage, bones, and a number of mesenchymally-derived tissues. Deficiencies in any stage of differentiation can result in facial clefts and abnormalities associated with craniofacial syndromes. A small number of conserved signaling pathways are involved in controlling NC differentiation and craniofacial development. They are used in a reiterated fashion to help define precise temporospatial cell and tissue formation. Although many aspects of their cellular and molecular control have yet to be described, it is clear that together they form intricately integrated signaling networks required for spatial orientation and developmental stability and plasticity, which are hallmarks of craniofacial development. Mutations that affect the functions of these signaling pathways are often directly or indirectly identified in congenital syndromes. Clinical applications of NC-derived mesenchymal stem/progenitor cells, persistent into adulthood, hold great promise for tissue repair and regeneration. Realization of NCC potential for regenerative therapies motivates understanding of the intricacies of cell communication and differentiation that underlie the complexities of NC-derived tissues.
Collapse
Affiliation(s)
- Daniela Marta Roth
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, 7020N Katz Group Centre for Pharmacy & Health Research, 11361-87 Avenue, Edmonton, Alberta, AB T6G 2E1 Canada
| | - Francy Bayona
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, 7020N Katz Group Centre for Pharmacy & Health Research, 11361-87 Avenue, Edmonton, Alberta, AB T6G 2E1 Canada
| | - Pranidhi Baddam
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, 7020N Katz Group Centre for Pharmacy & Health Research, 11361-87 Avenue, Edmonton, Alberta, AB T6G 2E1 Canada
| | - Daniel Graf
- Alberta Dental Association & College Chair for Oral Health Research, School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, 7020N Katz Group Centre for Pharmacy & Health Research, 11361-87 Avenue, Edmonton, Alberta, AB T6G 2E1 Canada
| |
Collapse
|
16
|
Stegemiller MR, Murdoch GK, Rowan TN, Davenport KM, Becker GM, Hall JB, Murdoch BM. Genome-Wide Association Analyses of Fertility Traits in Beef Heifers. Genes (Basel) 2021; 12:genes12020217. [PMID: 33540904 PMCID: PMC7913221 DOI: 10.3390/genes12020217] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
The ability of livestock to reproduce efficiently is critical to the sustainability of animal agriculture. Antral follicle count (AFC) and reproductive tract scores (RTS) can be used to estimate fertility in beef heifers, but the genetic mechanisms influencing variation in these measures are not well understood. Two genome-wide association studies (GWAS) were conducted to identify the significant loci associated with these traits. In total, 293 crossbred beef heifers were genotyped on the Bovine GGP 50K chip and genotypes were imputed to 836,121 markers. A GWAS was performed with the AFC phenotype for 217 heifers with a multi-locus mixed model, conducted using the year, age at time of sampling and principal component analysis groupings as the covariates. The RTS GWAS was performed with 289 heifers using an additive correlation/trend test comparing prepubertal to pubertal heifers. The loci on chromosomes 2, 3 and 23 were significant in the AFC GWAS and the loci on chromosomes 2, 8, 10 and 11 were significant in the RTS GWAS. The significant region on chromosome 2 was similar between both analyses. These regions contained genes associated with cell proliferation, transcription, apoptosis and development. This study proposes candidate genes for beef cattle fertility, although future research is needed to elucidate the precise mechanisms.
Collapse
Affiliation(s)
- Morgan R. Stegemiller
- Department of Animal, Veterinary & Food Sciences, University of Idaho, Moscow, ID 83843, USA; (M.R.S.); (G.K.M.); (K.M.D.); (G.M.B.)
| | - Gordon K. Murdoch
- Department of Animal, Veterinary & Food Sciences, University of Idaho, Moscow, ID 83843, USA; (M.R.S.); (G.K.M.); (K.M.D.); (G.M.B.)
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Troy N. Rowan
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA;
| | - Kimberly M. Davenport
- Department of Animal, Veterinary & Food Sciences, University of Idaho, Moscow, ID 83843, USA; (M.R.S.); (G.K.M.); (K.M.D.); (G.M.B.)
| | - Gabrielle M. Becker
- Department of Animal, Veterinary & Food Sciences, University of Idaho, Moscow, ID 83843, USA; (M.R.S.); (G.K.M.); (K.M.D.); (G.M.B.)
| | - John B. Hall
- Department of Animal, Veterinary & Food Sciences, University of Idaho, Moscow, ID 83843, USA; (M.R.S.); (G.K.M.); (K.M.D.); (G.M.B.)
- Nancy M. Cummings Research, Education, and Extension Center, University of Idaho, Carmen, ID 83462, USA
- Correspondence: (J.B.H.); (B.M.M.); Tel.: +1-208-756-2749 (J.B.H.); +1-208-885-2088 (B.M.M.)
| | - Brenda M. Murdoch
- Department of Animal, Veterinary & Food Sciences, University of Idaho, Moscow, ID 83843, USA; (M.R.S.); (G.K.M.); (K.M.D.); (G.M.B.)
- Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
- Correspondence: (J.B.H.); (B.M.M.); Tel.: +1-208-756-2749 (J.B.H.); +1-208-885-2088 (B.M.M.)
| |
Collapse
|
17
|
Jiang N, Liu HX, Liang HY, Feng XH, Liu BY, Zhou YY. Osteogenic differentiation characteristics of hip joint capsule fibroblasts obtained from patients with ankylosing spondylitis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:331. [PMID: 33708958 PMCID: PMC7944275 DOI: 10.21037/atm-20-7817] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Autoimmune disease are fairly common and one that has an excessive degree of disability is Ankylosing spondylitis (AS). As the main cells in connective tissues, fibroblasts may play important roles in AS ossification. The conducted research aims to establish the osteogenic disparity characteristics of fibroblasts cultured in vitro, obtained via AS patients hip joint capsule, as well as investigating the pathological osteogenic molecular workings of AS. Methods AS patients hip joint capsules were acquired and fracture patients as the control with the finite fibroblast line were established by using tissue culture method. AS fibroblast proliferation, cycle and apoptosis, expression of osteogenic marker genes, osteogenic phenotypes, and the activation degree of the bone morphogenetic protein (BMP)/Smads signalling pathway were detected by flow cytometry, western blotting and real-time fluorescent quantitative polymerase chain reaction. Results Proliferative activity in AS fibroblasts were abnormally high, and the apoptotic rate decreased. Compared with normal fibroblasts, the mRNA expression of osteogenic marker genes, expression of osteogenic phenotypes, protein expression of core-binding factor a1 (Cbfa1), Smad1, Smad4, Smad5, phosphorylated (p) Smad1, and pSmad5 in AS fibroblasts were higher; however, the expression of Smad6 was lower. Moreover, recombinant human bone morphogenetic protein-2(rhBMP-2) stimulated Cbfa1 expression by normal and AS fibroblasts through the BMP/Smads signalling pathway. Conclusions The fibroblasts of hip joint capsules in patients with AS cultured in vitro have biologic characteristics of osteogenic differentiation and may be important target cells of AS ossification. The Activated BMP/Smads signalling pathway could potentially be a mechanism relating to fibroblasts differentiating into osteoblasts and an ossification mechanism for AS.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Nephrology and Rheumatology, Second Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| | - Hong-Xiao Liu
- Department of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui-Ying Liang
- Department of Traditional Chinese Medicine, Zhongshan City People's Hospital, Zhongshan, China
| | - Xing-Hua Feng
- Department of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ben-Yong Liu
- Department of TCM internal medicine, Beijing Massage Hospital, Beijing, China
| | - Ying-Yan Zhou
- Department of Rheumatology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
18
|
Bednarek M, Trybus M, Kolanowska M, Koziej M, Kiec-Wilk B, Dobosz A, Kotlarek-Łysakowska M, Kubiak-Dydo A, Użarowska-Gąska E, Staręga-Rosłan J, Gaj P, Górzyńska I, Serwan K, Świerniak M, Kot A, Jażdżewski K, Wójcicka A. BMPR1B gene in brachydactyly type 2-A family with de novo R486W mutation and a disease phenotype. Mol Genet Genomic Med 2021; 9:e1594. [PMID: 33486847 PMCID: PMC8104157 DOI: 10.1002/mgg3.1594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/02/2020] [Accepted: 12/15/2020] [Indexed: 12/29/2022] Open
Abstract
Background Brachydactylies are a group of inherited conditions, characterized mainly by the presence of shortened fingers and toes. Based on the patients’ phenotypes, brachydactylies have been subdivided into 10 subtypes. In this study, we have identified a family with two members affected by brachydactyly type A2 (BDA2). BDA2 is caused by mutations in three genes: BMPR1B, BMP2 or GDF5. So far only two studies have reported the BDA2 cases caused by mutations in the BMPR1B gene. Methods We employed next‐generation sequencing to identify mutations in culpable genes. Results and Conclusion In this paper, we report a case of BDA2 resulting from the presence of a heterozygous c.1456C>T, p.Arg486Trp variant in BMPR1B, which was previously associated with BDA2. The next generation sequencing analysis of the patients’ family revealed that the mutation occurred de novo in the proband and was transmitted to his 26‐month‐old son. Although the same variant was confirmed in both patients, their phenotypes were different with more severe manifestation of the disease in the adult.
Collapse
Affiliation(s)
- Marcin Bednarek
- 2nd Department of General Surgery, Jagiellonian University Medical College, Krakow, Poland.,University Hospital, Krakow, Poland
| | - Marek Trybus
- 2nd Department of General Surgery, Jagiellonian University Medical College, Krakow, Poland.,University Hospital, Krakow, Poland
| | | | - Mateusz Koziej
- Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
| | - Beata Kiec-Wilk
- 2nd Department of General Surgery, Jagiellonian University Medical College, Krakow, Poland.,Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
| | - Artur Dobosz
- Department of Medical Genetics, Jagiellonian University Medical College, Krakow, Poland
| | | | | | | | | | - Paweł Gaj
- Warsaw Genomics INC., Warszawa, Poland
| | | | | | | | - Adam Kot
- Warsaw Genomics INC., Warszawa, Poland
| | - Krystian Jażdżewski
- Warsaw Genomics INC., Warszawa, Poland.,Laboratory of Human Cancer Genetics, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
19
|
Migliorini E, Guevara-Garcia A, Albiges-Rizo C, Picart C. Learning from BMPs and their biophysical extracellular matrix microenvironment for biomaterial design. Bone 2020; 141:115540. [PMID: 32730925 PMCID: PMC7614069 DOI: 10.1016/j.bone.2020.115540] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 01/19/2023]
Abstract
It is nowadays well-accepted that the extracellular matrix (ECM) is not a simple reservoir for growth factors but is an organization center of their biological activity. In this review, we focus on the ability of the ECM to regulate the biological activity of BMPs. In particular, we survey the role of the ECM components, notably the glycosaminoglycans and fibrillary ECM proteins, which can be promoters or repressors of the biological activities mediated by the BMPs. We examine how a process called mechano-transduction induced by the ECM can affect BMP signaling, including BMP internalization by the cells. We also focus on the spatio-temporal regulation of the BMPs, including their release from the ECM, which enables to modulate their spatial localization as well as their local concentration. We highlight how biomaterials can recapitulate some aspects of the BMPs/ECM interactions and help to answer fundamental questions to reveal previously unknown molecular mechanisms. Finally, the design of new biomaterials inspired by the ECM to better present BMPs is discussed, and their use for a more efficient bone regeneration in vivo is also highlighted.
Collapse
Affiliation(s)
- Elisa Migliorini
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble, France; CEA, Institute of Interdisciplinary Research of Grenoble (IRIG), Biomimetism and Regenerative Medicine Lab, ERL 5000, Université Grenoble-Alpes (UGA)/CEA/CNRS, Grenoble France.
| | - Amaris Guevara-Garcia
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble, France; CEA, Institute of Interdisciplinary Research of Grenoble (IRIG), Biomimetism and Regenerative Medicine Lab, ERL 5000, Université Grenoble-Alpes (UGA)/CEA/CNRS, Grenoble France; Université Grenoble Alpes, Institut for Advances Biosciences, Institute Albert Bonniot, INSERM U1209, CNRS 5309, La Tronche, France
| | - Corinne Albiges-Rizo
- Université Grenoble Alpes, Institut for Advances Biosciences, Institute Albert Bonniot, INSERM U1209, CNRS 5309, La Tronche, France
| | - Catherine Picart
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble, France; CEA, Institute of Interdisciplinary Research of Grenoble (IRIG), Biomimetism and Regenerative Medicine Lab, ERL 5000, Université Grenoble-Alpes (UGA)/CEA/CNRS, Grenoble France.
| |
Collapse
|
20
|
Frohlich J, Vinciguerra M. Candidate rejuvenating factor GDF11 and tissue fibrosis: friend or foe? GeroScience 2020; 42:1475-1498. [PMID: 33025411 PMCID: PMC7732895 DOI: 10.1007/s11357-020-00279-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Growth differentiation factor 11 (GDF11 or bone morphogenetic protein 11, BMP11) belongs to the transforming growth factor-β superfamily and is closely related to other family member-myostatin (also known as GDF8). GDF11 was firstly identified in 2004 due to its ability to rejuvenate the function of multiple organs in old mice. However, in the past few years, the heralded rejuvenating effects of GDF11 have been seriously questioned by many studies that do not support the idea that restoring levels of GDF11 in aging improves overall organ structure and function. Moreover, with increasing controversies, several other studies described the involvement of GDF11 in fibrotic processes in various organ setups. This review paper focuses on the GDF11 and its pro- or anti-fibrotic actions in major organs and tissues, with the goal to summarize our knowledge on its emerging role in regulating the progression of fibrosis in different pathological conditions, and to guide upcoming research efforts.
Collapse
Affiliation(s)
- Jan Frohlich
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
- Institute for Liver and Digestive Health, Division of Medicine, University College London (UCL), London, UK.
| |
Collapse
|
21
|
Ouahoud S, Hardwick JC, Hawinkels LJ. Extracellular BMP Antagonists, Multifaceted Orchestrators in the Tumor and Its Microenvironment. Int J Mol Sci 2020; 21:ijms21113888. [PMID: 32486027 PMCID: PMC7313454 DOI: 10.3390/ijms21113888] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 02/08/2023] Open
Abstract
The bone morphogenetic proteins (BMPs), a subgroup of the transforming growth factor-β (TGF-β) superfamily, are involved in multiple biological processes such as embryonic development and maintenance of adult tissue homeostasis. The importance of a functional BMP pathway is underlined by various diseases, including cancer, which can arise as a consequence of dysregulated BMP signaling. Mutations in crucial elements of this signaling pathway, such as receptors, have been reported to disrupt BMP signaling. Next to that, aberrant expression of BMP antagonists could also contribute to abrogated signaling. In this review we set out to highlight how BMP antagonists affect not only the cancer cells, but also the other cells present in the microenvironment to influence cancer progression.
Collapse
|
22
|
Bone marrow niche crosses paths with BMPs: a road to protection and persistence in CML. Biochem Soc Trans 2020; 47:1307-1325. [PMID: 31551354 DOI: 10.1042/bst20190221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/23/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022]
Abstract
Chronic myeloid leukaemia (CML) is a paradigm of precision medicine, being one of the first cancers to be treated with targeted therapy. This has revolutionised CML therapy and patient outcome, with high survival rates. However, this now means an ever-increasing number of patients are living with the disease on life-long tyrosine kinase inhibitor (TKI) therapy, with most patients anticipated to have near normal life expectancy. Unfortunately, in a significant number of patients, TKIs are not curative. This low-level disease persistence suggests that despite a molecularly targeted therapeutic approach, there are BCR-ABL1-independent mechanisms exploited to sustain the survival of a small cell population of leukaemic stem cells (LSCs). In CML, LSCs display many features akin to haemopoietic stem cells, namely quiescence, self-renewal and the ability to produce mature progeny, this all occurs through intrinsic and extrinsic signals within the specialised microenvironment of the bone marrow (BM) niche. One important avenue of investigation in CML is how the disease highjacks the BM, thereby remodelling this microenvironment to create a niche, which enables LSC persistence and resistance to TKI treatment. In this review, we explore how changes in growth factor levels, in particular, the bone morphogenetic proteins (BMPs) and pro-inflammatory cytokines, impact on cell behaviour, extracellular matrix deposition and bone remodelling in CML. We also discuss the challenges in targeting LSCs and the potential of dual targeting using combination therapies against BMP receptors and BCR-ABL1.
Collapse
|
23
|
Fan Y, Guo L, Zheng H, Ji C, Wang W, Sun H. BMP-9 is a novel marker for colorectal tumorigenesis undergoing the normal mucosa-adenoma-adenocarcinoma sequence and is associated with colorectal cancer prognosis. Oncol Lett 2020; 19:271-282. [PMID: 31897139 PMCID: PMC6923933 DOI: 10.3892/ol.2019.11125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 10/10/2019] [Indexed: 01/29/2023] Open
Abstract
Depending on the type of cancer, bone morphogenetic protein-9 (BMP-9) can promote or inhibit tumorigenesis; however, the function of BMP-9 in colorectal cancer remains unclear. The aim of the present study was to evaluate the clinicopathological importance of BMP-9 expression in the tumorigenesis of normal colorectal epithelial tissue, and subsequent transformation into adenoma and carcinoma. In addition, the present study aimed to determine the prognostic value of BMP-9 on the survival of patients with colorectal cancer (CRC). A total of 65 patients with pathologically confirmed colorectal adenocarcinoma and a history of adenoma were enrolled. BMP-9 and Ki-67 expression was assessed retrospectively using paraffin-embedded samples of normal colorectal mucosa, colorectal adenoma and CRC obtained from each patient. The prognostic value of BMP-9 expression was analyzed in a group comprising 48 patients with CRC and a mean follow-up duration of 39.1 months. Bioinformatics analyses were performed in order to validate the results of the present study using published CRC datasets. The results from the present study suggested that the expression of BMP-9 gradually increased during the transition from normal mucosa to adenoma and subsequent adenocarcinoma (P<0.05); however, no significant association between the expression levels of BMP-9 and the clinicopathological parameters of patients was reported. Kaplan-Meier analysis revealed that patients with high expression levels of BMP-9 exhibited shorter overall survival rate than those with low levels of expression (54.7 vs. 41.3 months; log-rank test, P<0.05). Furthermore, regardless of tumor location and the presence of blood vessel tumor emboli, the univariate and multivariate analyses indicated that BMP-9 expression may be an independent prognostic factor for the overall survival rate of patients with CRC. The results of the present study suggested that BMP-9 may serve an oncogenic role and possess prognostic value in CRC.
Collapse
Affiliation(s)
- Yinjie Fan
- Department of General Surgery, The Affiliated Zhengzhou Central Hospital of Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Lingxiang Guo
- Department of General Surgery, The Affiliated Zhengzhou Central Hospital of Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Huachuan Zheng
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Chunyong Ji
- Department of General Surgery, The Affiliated Zhengzhou Central Hospital of Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Wenbin Wang
- Department of Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hongzhi Sun
- Department of Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China.,Key Laboratory of Tumor Clinical Metabolomics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
24
|
Robles-Murguia M, Rao D, Finkelstein D, Xu B, Fan Y, Demontis F. Muscle-derived Dpp regulates feeding initiation via endocrine modulation of brain dopamine biosynthesis. Genes Dev 2020; 34:37-52. [PMID: 31831628 PMCID: PMC6938663 DOI: 10.1101/gad.329110.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/08/2019] [Indexed: 12/26/2022]
Abstract
In animals, the brain regulates feeding behavior in response to local energy demands of peripheral tissues, which secrete orexigenic and anorexigenic hormones. Although skeletal muscle is a key peripheral tissue, it remains unknown whether muscle-secreted hormones regulate feeding. In Drosophila, we found that decapentaplegic (dpp), the homolog of human bone morphogenetic proteins BMP2 and BMP4, is a muscle-secreted factor (a myokine) that is induced by nutrient sensing and that circulates and signals to the brain. Muscle-restricted dpp RNAi promotes foraging and feeding initiation, whereas dpp overexpression reduces it. This regulation of feeding by muscle-derived Dpp stems from modulation of brain tyrosine hydroxylase (TH) expression and dopamine biosynthesis. Consistently, Dpp receptor signaling in dopaminergic neurons regulates TH expression and feeding initiation via the downstream transcriptional repressor Schnurri. Moreover, pharmacologic modulation of TH activity rescues the changes in feeding initiation due to modulation of dpp expression in muscle. These findings indicate that muscle-to-brain endocrine signaling mediated by the myokine Dpp regulates feeding behavior.
Collapse
Affiliation(s)
- Maricela Robles-Murguia
- Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Deepti Rao
- Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Fabio Demontis
- Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
25
|
Li L, Wang X, Mullins MC, Umulis DM. Evaluation of BMP-mediated patterning in a 3D mathematical model of the zebrafish blastula embryo. J Math Biol 2020; 80:505-520. [PMID: 31773243 PMCID: PMC7203969 DOI: 10.1007/s00285-019-01449-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/28/2019] [Indexed: 02/03/2023]
Abstract
Bone Morphogenetic Proteins (BMPs) play an important role in dorsal-ventral (DV) patterning of the early zebrafish embryo. BMP signaling is regulated by a network of extracellular and intracellular factors that impact the range and signaling of BMP ligands. Recent advances in understanding the mechanism of pattern formation support a source-sink mechanism, however it is not clear how the source-sink mechanism shapes patterns in 3D, nor how sensitive the pattern is to biophysical rates and boundary conditions along both the anteroposterior (AP) and DV axes of the embryo. We propose a new three-dimensional growing Partial Differential Equation (PDE)-based model to simulate the BMP patterning process during the blastula stage. This model provides a starting point to elucidate how different mechanisms and components work together in 3D to create and maintain the BMP gradient in the embryo. We also show how the 3D model fits the BMP signaling gradient data at multiple time points along both axes. Furthermore, sensitivity analysis of the model suggests that the spatiotemporal patterns of Chordin and BMP ligand gene expression are dominant drivers of shape in 3D and more work is needed to quantify the spatiotemporal profiles of gene and protein expression to further refine the models.
Collapse
Affiliation(s)
- Linlin Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, USA
| | - Xu Wang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, USA
| | - Mary C Mullins
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - David M Umulis
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, USA.
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, USA.
| |
Collapse
|
26
|
Posa F, Grab AL, Martin V, Hose D, Seckinger A, Mori G, Vukicevic S, Cavalcanti-Adam EA. Copresentation of BMP-6 and RGD Ligands Enhances Cell Adhesion and BMP-Mediated Signaling. Cells 2019; 8:E1646. [PMID: 31847477 PMCID: PMC6953040 DOI: 10.3390/cells8121646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 12/16/2022] Open
Abstract
We report on the covalent immobilization of bone morphogenetic protein 6 (BMP-6) and its co-presentation with integrin ligands on a nanopatterned platform to study cell adhesion and signaling responses which regulate the transdifferentiation of myoblasts into osteogenic cells. To immobilize BMP-6, the heterobifunctional linker MU-NHS is coupled to amine residues of the growth factor; this prevents its internalization while ensuring that its biological activity is maintained. Additionally, to allow cells to adhere to such platform and study signaling events arising from the contact to the surface, we used click-chemistry to immobilize cyclic-RGD carrying an azido group reacting with PEG-alkyne spacers via copper-catalyzed 1,3-dipolar cycloaddition. We show that the copresentation of BMP-6 and RGD favors focal adhesion formation and promotes Smad 1/5/8 phosphorylation. When presented in low amounts, BMP-6 added to culture media of cells adhering to the RGD ligands is less effective than BMP-6 immobilized on the surfaces in inducing Smad complex activation and in inhibiting myotube formation. Our results suggest that a local control of ligand density and cell signaling is crucial for modulating cell response.
Collapse
Affiliation(s)
- Francesca Posa
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
- Department of Clinical and Experimental Medicine, University of Foggia, via L. Pinto, 71122 Foggia, Italy
| | - Anna Luise Grab
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
- Genome Biology Unit, EMBL, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Volker Martin
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Dirk Hose
- Laboratory for Myeloma Research and Medical Clinic V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Anja Seckinger
- Laboratory for Myeloma Research and Medical Clinic V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, via L. Pinto, 71122 Foggia, Italy
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Šalata 11, 10000 Zagreb, Croatia
| | - Elisabetta Ada Cavalcanti-Adam
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| |
Collapse
|
27
|
Lu X, Lu J, Zhang L, Xu Y. Effect of ANGPTL7 on Proliferation and Differentiation of MC3T3-E1 Cells. Med Sci Monit 2019; 25:9524-9530. [PMID: 31835268 PMCID: PMC6929564 DOI: 10.12659/msm.918333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Angiopoietin-like proteins (ANGPTL) are a family of secretory glycoproteins that are involved in many pathophysiological processes. ANGPTL7 is a newly-discovered member of the ANGPTL family and plays a role in corneal morphogenesis, angiogenesis, glaucoma, and cancer. To date, whether ANGPTL7 is involved in osteoporosis is unknown. Therefore, to discover the effects of ANGPTL7 on osteoporosis, we explored the expression of ANGPTL7 in preosteoblasts and assessed the mechanism underlying its effects on proliferation and differentiation abilities of preosteoblasts. MATERIAL AND METHODS Mouse MC3T3-E1 cells were cultured in osteogenic medium for osteogenic differentiation. The expression levels of ANGPTL7 were detected by RT-qPCR and Western blot assays. Moreover, the overexpressed plasmid of ANGPTL7 pMSCV-ANGPTL7 was transfected into MC3T3-E1 cells. CCK-8 was used to evaluate cell proliferation. ALP activity detection and alizarin red staining were performed to measure the effect of ANGPTL7 on osteogenic differentiation. The expression levels bone morphogenetic proteins (BMPs) and osteogenic markers ALP, runt-related transcription factor 2 (Runx2), osteocalcin (OCN), and collagen I (Col I) were analyzed by Western blot. RESULTS When MC3T3-E1 cells were exposed to osteogenic medium, there was a significant increase in ANGPTL7, and overexpression of ANGPTL7 markedly promoted cell proliferation, ALP activity, and mineralization. Moreover, ANGPTL7 upregulated the levels of BMPs, especially BMP2/7, and the osteogenic markers ALP, Runx2, OCN, and Col I. CONCLUSIONS The results suggest that by regulating the expression of BMPs, ANGPTL7 directly promotes proliferation, differentiation, and mineralization of osteoblasts.
Collapse
Affiliation(s)
- XiaoQing Lu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiang'su, China (mainland).,Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiang'su, China (mainland)
| | - JunHui Lu
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiang'su, China (mainland)
| | - Lin Zhang
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiang'su, China (mainland)
| | - YouJia Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiang'su, China (mainland)
| |
Collapse
|
28
|
Abstract
Bone Morphogenetic Proteins (BMPs) together with the Growth and Differentiation Factors (GDFs) form the largest subgroup of the Transforming Growth Factor (TGF)β family and represent secreted growth factors, which play an essential role in many aspects of cell communication in higher organisms. As morphogens they exert crucial functions during embryonal development, but are also involved in tissue homeostasis and regeneration in the adult organism. Their involvement in maintenance and repair processes of various tissues and organs made these growth factors highly interesting targets for novel pharmaceutical applications in regenerative medicine. A hallmark of the TGFβ protein family is that all of the more than 30 growth factors identified to date signal by binding and hetero-oligomerization of a very limited set of transmembrane serine-threonine kinase receptors, which can be classified into two subgroups termed type I and type II. Only seven type I and five type II receptors exist for all 30plus TGFβ members suggesting a pronounced ligand-receptor promiscuity. Indeed, many TGFβ ligands can bind the same type I or type II receptor and a particular receptor of either subtype can usually interact with and bind various TGFβ ligands. The possible consequence of this ligand-receptor promiscuity is further aggravated by the finding that canonical TGFβ signaling of all family members seemingly results in the activation of just two distinct signaling pathways, that is either SMAD2/3 or SMAD1/5/8 activation. While this would implicate that different ligands can assemble seemingly identical receptor complexes that activate just either one of two distinct pathways, in vitro and in vivo analyses show that the different TGFβ members exert quite distinct biological functions with high specificity. This discrepancy indicates that our current view of TGFβ signaling initiation just by hetero-oligomerization of two receptor subtypes and transduction via two main pathways in an on-off switch manner is too simplified. Hence, the signals generated by the various TGFβ members are either quantitatively interpreted using the subtle differences in their receptor-binding properties leading to ligand-specific modulation of the downstream signaling cascade or additional components participating in the signaling activation complex allow diversification of the encoded signal in a ligand-dependent manner at all cellular levels. In this review we focus on signal specification of TGFβ members, particularly of BMPs and GDFs addressing the role of binding affinities, specificities, and kinetics of individual ligand-receptor interactions for the assembly of specific receptor complexes with potentially distinct signaling properties.
Collapse
|
29
|
Guan H, Li J, Sun R, Liu W, Feng M, Ma H, Li C. Expression Of BMP7 In Ovarian Cancer And Biological Effect Of BMP7 Knockdown On Ovarian Cancer Cells. Onco Targets Ther 2019; 12:7897-7909. [PMID: 31576147 PMCID: PMC6769165 DOI: 10.2147/ott.s217975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/06/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose The aim of our research was to investigate the expression of BMP7 in ovarian cancer (OC) and the biological effect of knocking down BMP7 on ovarian cancer A2780 cells. Methods We detected BMP7 expression in ovarian cancer and normal ovarian tissue by immunohistochemistry (IHC). We downregulated BMP7 expression using lentivirus-mediated RNAi and then examined the effects of knocking down BMP7 on the cell growth and invasion, cell cycle and paclitaxel sensitivity of A2780 cells. The mRNA and protein levels were detected by total RNA extraction and quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting, respectively. Cell proliferation was measured by CCK-8 and colony formation assays. The number of cells in each cell cycle stage and those undergoing apoptosis were measured by flow cytometry. Results BMP7 expression was significantly higher in the ovarian cancer tissues than it was in the normal ovarian tissues. Knocking down BMP7 in ovarian cancer A2780 cells inhibited cell proliferation, migration and invasion; led to G1 cell cycle arrest; and reversed the epithelial-mesenchymal transformation (EMT) process. In addition, downregulating BMP7 increased the sensitivity of the A2780 cells to paclitaxel. Moreover, BMP7 downregulation resulted in decreased expression of Smad1/5/9, p-Smad1/5/9, ID2 and cyclin D1 protein. Conclusion The results presented here are expected to contribute to the development of possible therapeutic targets for patients with ovarian cancer.
Collapse
Affiliation(s)
- Hongwei Guan
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, People's Republic of China
| | - Juan Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, People's Republic of China
| | - Rui Sun
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, People's Republic of China
| | - Wei Liu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, People's Republic of China
| | - Mei Feng
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Hui Ma
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Changzhong Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, People's Republic of China
| |
Collapse
|
30
|
The wonders of BMP9: From mesenchymal stem cell differentiation, angiogenesis, neurogenesis, tumorigenesis, and metabolism to regenerative medicine. Genes Dis 2019; 6:201-223. [PMID: 32042861 PMCID: PMC6997590 DOI: 10.1016/j.gendis.2019.07.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/07/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
Although bone morphogenetic proteins (BMPs) initially showed effective induction of ectopic bone growth in muscle, it has since been determined that these proteins, as members of the TGF-β superfamily, play a diverse and critical array of biological roles. These roles include regulating skeletal and bone formation, angiogenesis, and development and homeostasis of multiple organ systems. Disruptions of the members of the TGF-β/BMP superfamily result in severe skeletal and extra-skeletal irregularities, suggesting high therapeutic potential from understanding this family of BMP proteins. Although it was once one of the least characterized BMPs, BMP9 has revealed itself to have the highest osteogenic potential across numerous experiments both in vitro and in vivo, with recent studies suggesting that the exceptional potency of BMP9 may result from unique signaling pathways that differentiate it from other BMPs. The effectiveness of BMP9 in inducing bone formation was recently revealed in promising experiments that demonstrated efficacy in the repair of critical sized cranial defects as well as compatibility with bone-inducing bio-implants, revealing the great translational promise of BMP9. Furthermore, emerging evidence indicates that, besides its osteogenic activity, BMP9 exerts a broad range of biological functions, including stem cell differentiation, angiogenesis, neurogenesis, tumorigenesis, and metabolism. This review aims to summarize our current understanding of BMP9 across biology and the body.
Collapse
|
31
|
Huang M, Zhang X, Li J, Li Y, Wang Q, Teng W. Comparison of osteogenic differentiation induced by siNoggin and pBMP-2 delivered by lipopolysaccharide-amine nanopolymersomes and underlying molecular mechanisms. Int J Nanomedicine 2019; 14:4229-4245. [PMID: 31239677 PMCID: PMC6559258 DOI: 10.2147/ijn.s203540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/26/2019] [Indexed: 01/08/2023] Open
Abstract
Purpose: Gene therapies via Noggin small interfering (si)RNA (siNoggin) and bone morphogenetic protein (BMP)-2 plasmid DNA (pBMP-2) may be promising strategies for bone repair/regeneration, but their ideal delivery vectors, efficacy difference, and underlying mechanisms have not been explored, so these issues were probed here. Methods: This study used lipopolysaccharide-amine nanopolymersomes (LNPs), an efficient cytosolic delivery vector developed by the research team, to mediate siNoggin and pBMP-2 to transfect MC3T3-E1 cells, respectively. The cytotoxicity, cell uptake, and gene knockdown efficiency of siNoggin-loaded LNPs (LNPs/siNoggin) were studied, then the osteogenic-differentiation efficacy of MC3T3-E1 cells treated by LNPs/pBMP-2 and LNPs/siNoggin, respectively, were compared by measuring the expression of osteogenesis-related genes and proteins, alkaline phosphatase (ALP) activity, and mineralization of the extracellular matrix at all osteogenic stages. Finally, the possible signaling pathways of the two treatments were explored. Results: LNPs delivered siNoggin into cells efficiently to silence 50% of Noggin expression without obvious cytotoxicity. LNPs/siNoggin and LNPs/pBMP-2 enhanced the osteogenic differentiation of MC3T3 E1 cells, but LNPs/siNoggin was better than LNPs/pBMP-2. BMP/Mothers against decapentaplegic homolog (Smad) and glycogen synthase kinase (GSK)-3β/β-catenin signaling pathways appeared to be involved in osteogenic differentiation induced by LNPs/siNoggin, but GSK-3β/β-catenin was not stimulated upon LNPs/pBMP-2 treatment. Conclusion: LNPs are safe and efficient delivery vectors for DNA and RNA, which may find wide applications in gene therapy. siNoggin treatment may be a more efficient strategy to enhance osteogenic differentiation than pBMP-2 treatment. LNPs loaded with siNoggin and/or pBMP-2 may provide new opportunities for the repair and regeneration of bone.
Collapse
Affiliation(s)
- Mingdi Huang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xinchun Zhang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jing Li
- Laboratory of Biomaterials, Key Laboratory on Assisted Circulation, Ministry of Health, Cardiovascular Division, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yanshan Li
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Qinmei Wang
- Laboratory of Biomaterials, Key Laboratory on Assisted Circulation, Ministry of Health, Cardiovascular Division, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wei Teng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
32
|
Sebo ZL, Rodeheffer MS. Assembling the adipose organ: adipocyte lineage segregation and adipogenesis in vivo. Development 2019; 146:dev172098. [PMID: 30948523 PMCID: PMC6467474 DOI: 10.1242/dev.172098] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adipose tissue is composed of anatomically distinct depots that mediate several important aspects of energy homeostasis. The past two decades have witnessed increased research effort to elucidate the ontogenetic basis of adipose form and function. In this Review, we discuss advances in our understanding of adipose tissue development with particular emphasis on the embryonic patterning of depot-specific adipocyte lineages and adipocyte differentiation in vivo Micro-environmental cues and other factors that influence cell identity and cell behavior at various junctures in the adipocyte lineage hierarchy are also considered.
Collapse
Affiliation(s)
- Zachary L Sebo
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | - Matthew S Rodeheffer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520-8016, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520-8073, USA
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
33
|
Bone morphogenetic protein 6 (BMP-6) modulates lung function, pulmonary iron levels and cigarette smoke-induced inflammation. Mucosal Immunol 2019; 12:340-351. [PMID: 30542109 DOI: 10.1038/s41385-018-0116-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 10/16/2018] [Accepted: 11/20/2018] [Indexed: 02/04/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with abnormal inflammatory responses and airway wall remodeling, leading to reduced lung function. An association between the bone morphogenetic protein (BMP-6) locus and forced vital capacity has been found in a genome-wide association study. However, the role of BMP-6 in the pathogenesis of COPD remains unknown. The pulmonary expression of BMP-6 was analyzed in patients with COPD and in cigarette smoke (CS)-exposed mice. We evaluated lung function and histology in BMP-6 KO mice at baseline. We exposed BMP-6 KO mice to CS for 4 weeks and measured pulmonary inflammation and iron levels. Pulmonary mRNA levels of BMP-6 were decreased in smokers with and without COPD and in CS-exposed mice. Importantly, BMP-6 expression was lowest in severe COPD. Accordingly, protein levels of BMP-6 were decreased in patients with COPD. Lung function measurements demonstrated a decreased compliance and total lung capacity in BMP-6 KO mice, whereas lung histology was normal. Furthermore, BMP-6 KO mice displayed elevated iron levels and an aggravated CS-induced inflammatory response. These results suggest that BMP-6 is important for normal lung function and that downregulation of BMP-6-as observed in patients with COPD-contributes to pulmonary inflammation after CS exposure.
Collapse
|
34
|
Raje MM, Ashma R. Epigenetic regulation of BMP2 gene in osteoporosis: a DNA methylation study. Mol Biol Rep 2019; 46:1667-1674. [PMID: 30788762 DOI: 10.1007/s11033-019-04615-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/18/2019] [Indexed: 12/27/2022]
Abstract
Osteoporosis is a multifactorial disease in which genetic factors and epigenetic modifications play a major role. DNA methylation is known for gene silencing and its effect on BMP2 promoter has been studied here to understand its regulatory activity in osteoporosis pathogenicity. CpG methylation in the BMP2 promoter was analyzed by performing bisulfite specific PCR on the gDNA samples extracted from whole blood of osteoporotic (n = 24) and healthy (n = 24) individuals. Disproportionate allele frequency of CpG sites was calculated statistically. Differential BMP2 expression was estimated using quantitative RT-PCR technique. Luciferase reporter assay was performed to determine and confirm differential transcriptional activity of BMP2 promoter due to methylation. Total of 14 CpG sites were reporter in the BMP2 promoter of which, CpG site at - 267th position upstream to TSS was found to have disproportionate allele frequency among osteoporotic and healthy individuals and was found to be significantly associated with osteoporosis condition. Functional and gene expression analysis of this methylated site using luciferase reporter vector and Real Time PCR approach, suggested reduced transcriptional activity of BMP2 promoter as well as decreased gene expression in disease condition. BMP2 is being a central signaling molecule, aberrant methylation in the promoter region may result into down regulation of osteoblast markers involved in bone formation.
Collapse
Affiliation(s)
- Mehrunnisa M Raje
- Center for Advanced Studies, Department of Zoology, Savitribai Phule Pune University, Pune, 411007, India
| | - Richa Ashma
- Center for Advanced Studies, Department of Zoology, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
35
|
Helbing T, Arnold L, Wiltgen G, Hirschbihl E, Gabelmann V, Hornstein A, Esser JS, Diehl P, Grundmann S, Busch HJ, Fink K, Bode C, Moser M. Endothelial BMP4 Regulates Leukocyte Diapedesis and Promotes Inflammation. Inflammation 2018; 40:1862-1874. [PMID: 28755278 DOI: 10.1007/s10753-017-0627-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Leukocyte recruitment is a fundamental event in the response of the innate immune system to injury. This process is promoted in part by the opening of endothelial cell adherens junctions that allows leukocyte extravasation through gaps between adjacent endothelial cells. VE-cadherin is a key component of endothelial cell adherens junctions and a negative regulator of leukocyte emigration. Accumulating evidence implicates bone morphogenetic protein (BMP) 4 as a critical regulator in vascular biology, but its role in leukocyte extravasation in vitro and in vivo has not been investigated so far. To assess the impact of BMP4 on leukocyte emigration in vivo, we used the thioglycollate-induced peritonitis model. C57BL/6 mice were intraperitoneally (i.p.) injected with recombinant BMP4 in addition to thioglycollate. Compared to solvent-treated controls, we observed higher accumulation of leukocytes in the peritoneal lavage of BMP4-treated mice indicating that BMP4 promotes leukocyte diapedesis into the inflamed peritoneal cavity. Endothelial cell-specific deletion of BMP4 in mice markedly diminished leukocyte diapedesis following thioglycollate administration suggesting that endothelial BMP4 is required for leukocyte recruitment. Consistent with these in vivo results, transwell migration assays with human umbilical vein endothelial cells (HUVECs) in vitro revealed that recombinant BMP4 enhanced leukocyte transmigration through the endothelial monolayer. Conversely, silencing of endothelial BMP4 by siRNA dampened leukocyte diapedesis in vitro. Mechanistic studies showed that loss of BMP4 improved endothelial junction stability by upregulation of VE-cadherin expression in vitro and in vivo. Vice versa, treatment of HUVECs with recombinant BMP4 decreased expression of VE-cadherin and impaired endothelial junction stability shown by Western blotting and immunocytochemistry. Finally, severe endothelial damage in HUVECs in response to serum of patients collected 24 h after survived cardiac arrest was accompanied by increase in leukocyte migration in transwell assays and activation of the BMP pathway most probably by upregulation of endothelial BMP4 RNA and protein expression. Collectively, the present study provides novel evidence that endothelial BMP4 controls leukocyte recruitment through a VE-cadherin-dependent mechanism and that BMP4-induced inflammation might be involved in the pathogenesis of endothelial cell damage following successful resuscitation after cardiac arrest.
Collapse
Affiliation(s)
- Thomas Helbing
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg im Breisgau, Germany.
| | - Linus Arnold
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg im Breisgau, Germany
| | - Gwendoline Wiltgen
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg im Breisgau, Germany
| | - Eva Hirschbihl
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg im Breisgau, Germany
| | - Valentin Gabelmann
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg im Breisgau, Germany
| | - Alexandra Hornstein
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg im Breisgau, Germany
| | - Jennifer S Esser
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg im Breisgau, Germany
| | - Philipp Diehl
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg im Breisgau, Germany
| | - Sebastian Grundmann
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg im Breisgau, Germany
| | - Hans-Jörg Busch
- Department of Emergency Medicine, University Hospital of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katrin Fink
- Department of Emergency Medicine, University Hospital of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg im Breisgau, Germany
| | - Martin Moser
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg im Breisgau, Germany
| |
Collapse
|
36
|
Petersen MA, Ryu JK, Akassoglou K. Fibrinogen in neurological diseases: mechanisms, imaging and therapeutics. Nat Rev Neurosci 2018; 19:283-301. [PMID: 29618808 PMCID: PMC6743980 DOI: 10.1038/nrn.2018.13] [Citation(s) in RCA: 339] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The blood coagulation protein fibrinogen is deposited in the brain in a wide range of neurological diseases and traumatic injuries with blood-brain barrier (BBB) disruption. Recent research has uncovered pleiotropic roles for fibrinogen in the activation of CNS inflammation, induction of scar formation in the brain, promotion of cognitive decline and inhibition of repair. Such diverse roles are possible in part because of the unique structure of fibrinogen, which contains multiple binding sites for cellular receptors and proteins expressed in the nervous system. The cellular and molecular mechanisms underlying the actions of fibrinogen are beginning to be elucidated, providing insight into its involvement in neurological diseases, such as multiple sclerosis, Alzheimer disease and traumatic CNS injury. Selective drug targeting to suppress the damaging functions of fibrinogen in the nervous system without affecting its beneficial effects in haemostasis opens a new fibrinogen therapeutics pipeline for neurological disease.
Collapse
Affiliation(s)
- Mark A. Petersen
- Gladstone Institutes, San Francisco, CA USA
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco, CA, USA
| | | | - Katerina Akassoglou
- Gladstone Institutes, San Francisco, CA USA
- Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
37
|
Increased Nuclear Localization of β - catenin by rhBMP - 2 in the Induced Oral Squamous Cell Carcinoma in the Syrian Hamster Cheek Pouch. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2018. [DOI: 10.5812/ijcm.9850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Zhang Z, Wang J, Zeng X, Li D, Ding M, Guan R, Yuan L, Zhou Q, Guo M, Xiong M, Dong L, Lu W. Two-stage study of lung cancer risk modification by a functional variant in the 3'-untranslated region of SMAD5 based on the bone morphogenetic protein pathway. Mol Clin Oncol 2018; 8:38-46. [PMID: 29387395 PMCID: PMC5769268 DOI: 10.3892/mco.2017.1490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 05/26/2017] [Indexed: 01/08/2023] Open
Abstract
Increasing evidence supports a key role for the bone morphogenetic protein (BMP) signaling pathway in lung vasculogenesis and angiogenesis. Genetic variations in BMP genes have been found to be correlated with cancer risk. In particular, the mutation in the 3′-untranslated region of BMPs may significantly affect gene function, leading to cancer susceptibility. The aim of the present study was to determine whether genetic variations in the components of the BMP family are associated with lung cancer risk. A total of 314 tag single-nucleotide polymorphisms were identified in 18 genes, which are considered to either compose or regulate BMPs, and their association with lung cancer risk was evaluated in a two-stage case-control study with 4,680 cases and controls. A consistently significant association of SMAD5 rs12719482 with elevated lung cancer risk was observed in the three types of sources of populations (adjusted additive model in the combined population: Odds ratio=1.32, 95% confidence interval: 1.16–1.51). The lung cancer risk statistically significantly increased with the increasing number of variant alleles of SMAD5 rs12719482 in a dose-dependent pattern (P for trend=4.9×10−5). Consistent evidence was identified for a significant interaction between the rs12719482 and cigarette smoking, performed as either a continuous or discrete variable. These findings indicated that SMAD5 rs12719482 may be a possible candidate marker for susceptibility to lung cancer in the Chinese population.
Collapse
Affiliation(s)
- Zili Zhang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China.,Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona, Tucson, AZ 85721-0202, USA
| | - Xiansheng Zeng
- Department of Respiratory Medicine, Xiangyang Central Hospital, Xiangyang, Hubei 441021, P.R. China
| | - Defu Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Mingjing Ding
- Department of Respiratory Medicine, Inner Mongolia Autonomous Region People's Hospital, Hohhot 010017, Inner Mongolia Autonomous Region, P.R. China
| | - Ruijuan Guan
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Liang Yuan
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Qipeng Zhou
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Meihua Guo
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Mingmei Xiong
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Lian Dong
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China.,Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona, Tucson, AZ 85721-0202, USA.,Department of Laboratory Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
39
|
Herrera B, Addante A, Sánchez A. BMP Signalling at the Crossroad of Liver Fibrosis and Regeneration. Int J Mol Sci 2017; 19:ijms19010039. [PMID: 29295498 PMCID: PMC5795989 DOI: 10.3390/ijms19010039] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022] Open
Abstract
Bone Morphogenetic Proteins (BMPs) belong to the Transforming Growth Factor-β (TGF-β) family. Initially identified due to their ability to induce bone formation, they are now known to have multiple functions in a variety of tissues, being critical not only during development for tissue morphogenesis and organogenesis but also during adult tissue homeostasis. This review focus on the liver as a target tissue for BMPs actions, devoting most efforts to summarize our knowledge on their recently recognized and/or emerging roles on regulation of the liver regenerative response to various insults, either acute or chronic and their effects on development and progression of liver fibrosis in different pathological conditions. In an attempt to provide the basis for guiding research efforts in this field both the more solid and more controversial areas of research were highlighted.
Collapse
Affiliation(s)
- Blanca Herrera
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| | - Annalisa Addante
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| | - Aránzazu Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| |
Collapse
|
40
|
Peptides derived from the knuckle epitope of BMP-9 induce the cholinergic differentiation and inactivate GSk3beta in human SH-SY5Y neuroblastoma cells. Sci Rep 2017; 7:4695. [PMID: 28680159 PMCID: PMC5498665 DOI: 10.1038/s41598-017-04835-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/22/2017] [Indexed: 01/24/2023] Open
Abstract
The incidence of brain degenerative disorders like Alzheimer's disease (AD) will increase as the world population ages. While there is presently no known cure for AD and current treatments having only a transient effect, an increasing number of publications indicate that growth factors (GF) may be used to treat AD. GFs like the bone morphogenetic proteins (BMPs), especially BMP-9, affect many aspects of AD. However, BMP-9 is a big protein that cannot readily cross the blood-brain barrier. We have therefore studied the effects of two small peptides derived from BMP-9 (pBMP-9 and SpBMP-9). We investigated their capacity to differentiate SH-SY5Y human neuroblastoma cells into neurons with or without retinoic acid (RA). Both peptides induced Smad 1/5 phosphorylation and their nuclear translocation. They increased the number and length of neurites and the expression of neuronal markers MAP-2, NeuN and NSE better than did BMP-9. They also promoted differentiation to the cholinergic phenotype more actively than BMP-9, SpBMP-9 being the most effective as shown by increases in intracellular acetylcholine, ChAT and VAchT. Finally, both peptides activated the PI3K/Akt pathway and inhibited GSK3beta, a current AD therapeutic target. BMP-9-derived peptides, especially SpBMP-9, with or without RA, are promising molecules that warrant further investigation.
Collapse
|
41
|
Hyzy SL, Olivares-Navarrete R, Ortman S, Boyan BD, Schwartz Z. Bone Morphogenetic Protein 2 Alters Osteogenesis and Anti-Inflammatory Profiles of Mesenchymal Stem Cells Induced by Microtextured Titanium In Vitro<sup/>. Tissue Eng Part A 2017; 23:1132-1141. [PMID: 28351289 DOI: 10.1089/ten.tea.2017.0003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Microtextured titanium (Ti) induces osteoblast differentiation of mesenchymal stem cells (MSCs) in the absence of exogenous osteogenic factors; and high-energy surface modifications speed healing of microrough Ti implants. Bone morphogenetic protein 2 (BMP2) is used clinically to improve peri-implant bone formation and osseointegration but can cause inflammation and bone-related complications. In this study, we determined whether BMP2 alters human MSC differentiation, apoptosis, and inflammatory factor production when grown on Ti implants with different surface properties. MATERIALS AND METHODS Human MSCs were cultured on Ti substrates (smooth [PT], sandblasted acid-etched [SLA], hydrophilic-SLA [modSLA]), or tissue culture polystyrene (TCPS). After 7 days, inflammatory mRNAs were measured by polymerase chain reaction array. In addition, 7-day cultures were treated with exogenous BMP2 and osteogenic differentiation and production of local factors, proinflammatory interleukins, and anti-inflammatory interleukins assessed. Finally, osteogenic markers and interleukins were measured in MSCs cultured for 48 h on BMP2 dip-coated SLA and modSLA surfaces. RESULTS Expression of interleukins, chemokines, cytokines, and growth factors was affected by surface properties, particularly on modSLA. MSCs on Ti produced fewer resorptive and more osteogenic/anti-inflammatory factors than cells on TCPS. Addition of 100 ng/mL BMP2 not only increased differentiation but also increased proinflammatory and decreased anti-inflammatory/antiresorptive factors. Two hundred nanograms per milliliter BMP2 abolished osteogenesis and dramatically increased pro-osteoclastogenic factors. MSCs cultured on BMP2-dip-coated disks produced similar proinflammatory profiles with inhibited osteogenic differentiation and had increased apoptotic markers at the highest doses. CONCLUSIONS MSCs underwent osteogenesis and regulated inflammatory cytokines on microtextured Ti. Exogenous BMP2 inhibited MSC differentiation and stimulated a dose-dependent proinflammatory and apoptotic response. Use of BMP2 with microtextured metal implants may increase inflammation and possibly delay bone formation dependent on dose, suggesting that application of BMP2 clinically during implant insertion may need to be reevaluated.
Collapse
Affiliation(s)
- Sharon L Hyzy
- 1 Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, Virginia
| | - Rene Olivares-Navarrete
- 1 Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, Virginia
| | - Sarah Ortman
- 2 Department of Biomedical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | - Barbara D Boyan
- 1 Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, Virginia.,2 Department of Biomedical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | - Zvi Schwartz
- 1 Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, Virginia.,3 Department of Periodontics, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| |
Collapse
|
42
|
Hwangbo C, Lee HW, Kang H, Ju H, Wiley DS, Papangeli I, Han J, Kim JD, Dunworth WP, Hu X, Lee S, El-Hely O, Sofer A, Pak B, Peterson L, Comhair S, Hwang EM, Park JY, Thomas JL, Bautch VL, Erzurum SC, Chun HJ, Jin SW. Modulation of Endothelial Bone Morphogenetic Protein Receptor Type 2 Activity by Vascular Endothelial Growth Factor Receptor 3 in Pulmonary Arterial Hypertension. Circulation 2017; 135:2288-2298. [PMID: 28356442 DOI: 10.1161/circulationaha.116.025390] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/17/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Bone morphogenetic protein (BMP) signaling has multiple roles in the development and function of the blood vessels. In humans, mutations in BMP receptor type 2 (BMPR2), a key component of BMP signaling, have been identified in the majority of patients with familial pulmonary arterial hypertension (PAH). However, only a small subset of individuals with BMPR2 mutation develops PAH, suggesting that additional modifiers of BMPR2 function play an important role in the onset and progression of PAH. METHODS We used a combination of studies in zebrafish embryos and genetically engineered mice lacking endothelial expression of Vegfr3 to determine the interaction between vascular endothelial growth factor receptor 3 (VEGFR3) and BMPR2. Additional in vitro studies were performed by using human endothelial cells, including primary lung endothelial cells from subjects with PAH. RESULTS Attenuation of Vegfr3 in zebrafish embryos abrogated Bmp2b-induced ectopic angiogenesis. Endothelial cells with disrupted VEGFR3 expression failed to respond to exogenous BMP stimulation. Mechanistically, VEGFR3 is physically associated with BMPR2 and facilitates ligand-induced endocytosis of BMPR2 to promote phosphorylation of SMADs and transcription of ID genes. Conditional, endothelial-specific deletion of Vegfr3 in mice resulted in impaired BMP signaling responses, and significantly worsened hypoxia-induced pulmonary hypertension. Consistent with these data, we found significant decrease in VEGFR3 expression in pulmonary arterial endothelial cells from human PAH subjects, and reconstitution of VEGFR3 expression in PAH pulmonary arterial endothelial cells restored BMP signaling responses. CONCLUSIONS Our findings identify VEGFR3 as a key regulator of endothelial BMPR2 signaling and a potential determinant of PAH penetrance in humans.
Collapse
Affiliation(s)
- Cheol Hwangbo
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Heon-Woo Lee
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Hyeseon Kang
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Hyekyung Ju
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - David S Wiley
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Irinna Papangeli
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Jinah Han
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Jun-Dae Kim
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - William P Dunworth
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Xiaoyue Hu
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Seyoung Lee
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Omar El-Hely
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Avraham Sofer
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Boryeong Pak
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Laura Peterson
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Suzy Comhair
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Eun Mi Hwang
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Jae-Yong Park
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Jean-Leon Thomas
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Victoria L Bautch
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Serpil C Erzurum
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Hyung J Chun
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.).
| | - Suk-Won Jin
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.).
| |
Collapse
|
43
|
Mouchref Hamasni F, El Hajj F. Expression of Bone Morphogenetic Protein-2 and Histological Differentiation of Oral Squamous Cell Carcinomas. Asian Pac J Cancer Prev 2016; 17:5243-5245. [PMID: 28125868 PMCID: PMC5454665 DOI: 10.22034/apjcp.2016.17.12.5243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background and Objective : Bone morphogenic protein-2 (BMP-2) plays an essential role in mesenchymal cell
differentiation into osteoblasts، through many intracellular pathways which may also be active in tumors. Invasive
oral squamous cell carcinomas account for more than 90% of head and neck malignancies in many cancer registries.
They are classified into three types according to epithelial cell differentiation. The present study aimed to identify any
relation between BMP-2 expression and tumor histology. Materials and methods: BMP-2 expression was compared
immunohistochemically among 30 cases (19 male and 11 female, mean age 48 years) of oral squamous cell carcinoma,
Division was into 3 groups (each containing 10 cases) according to the histological grade. Results: No significant
correlation between BMP-2 expression and histological grade was observed. Changes in localization and cytoplasmic
staining were also not apparent. Conclusion: From the results of this study BMP-2 does not appear to have any
application as a prognostic marker for oral squamous cell carcinomas.
Collapse
|
44
|
Stiel N, Hissnauer TN, Rupprecht M, Babin K, Schlickewei CW, Rueger JM, Stuecker R, Spiro AS. Evaluation of complications associated with off-label use of recombinant human bone morphogenetic protein-2 (rhBMP-2) in pediatric orthopaedics. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:184. [PMID: 27787808 DOI: 10.1007/s10856-016-5800-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/14/2016] [Indexed: 06/06/2023]
Abstract
The off-label use of recombinant human bone morphogenetic protein-2 to promote bone healing in adults has significantly increased in recent years, while reports of recombinant human bone morphogenetic protein-2 application in children and adolescents are very rare. The aim of this study was to evaluate the safety of single and repetitive recombinant human bone morphogenetic protein-2 use in pediatric orthoapedics. Therefore we reviewed the medical records of 39 patients who had been treated with recombinant human bone morphogenetic protein-2 at our institution. Their mean age was 10.9 years. Recombinant human bone morphogenetic protein-2 was used in 17 patients for spine fusion, in 11 patients for the treatment of congenital pseudarthrosis of the tibia or tibial nonunion, in 5 patients for the management of femoral nonunion, in 5 patients for nonunions at other locations, and in 1 case for tibial shortening. Special attention was paid to identify all adverse events that may be attributed to recombinant human bone morphogenetic protein-2 use, including local inflammatory reactions, allergic reactions, systemic toxicity, excessive wound swelling, hematoma, compartment syndrome, infection, heterotopic ossification, excessive bone growth, carcinogenicity, and the consequences of repeated applications of recombinant human bone morphogenetic protein-2. Follow-up was a mean of 39 months. Forty-six operations with application of rhBMP-2 were performed. Complications that may be due to application of recombinant human bone morphogenetic protein-2 were seen after 18 operations including swelling, increase in temperature, wound secretion, redness and hyperthermia. We consider the three cases of necessary revisions, one due to hematoma, one due to development of a compartment syndrome, and one due to deep infection, to be the only complications related to the use of recombinant human bone morphogenetic protein-2. In conclusion, we found few complications attributable to application of recombinant human bone morphogenetic protein-2 in pediatric patients.
Collapse
Affiliation(s)
- Norbert Stiel
- Department of Trauma-, Hand-, and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim N Hissnauer
- Department of Trauma-, Hand-, and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Rupprecht
- Department of Pediatric Orthopaedic Surgery, Children's Hospital, Hamburg-Altona, Germany
- Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kornelia Babin
- Department of Pediatric Orthopaedic Surgery, Children's Hospital, Hamburg-Altona, Germany
- Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten W Schlickewei
- Department of Trauma-, Hand-, and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes M Rueger
- Department of Trauma-, Hand-, and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Stuecker
- Department of Pediatric Orthopaedic Surgery, Children's Hospital, Hamburg-Altona, Germany
- Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander S Spiro
- Department of Trauma-, Hand-, and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Pediatric Orthopaedic Surgery, Children's Hospital, Hamburg-Altona, Germany.
| |
Collapse
|
45
|
Chang HM, Qiao J, Leung PCK. Oocyte-somatic cell interactions in the human ovary-novel role of bone morphogenetic proteins and growth differentiation factors. Hum Reprod Update 2016; 23:1-18. [PMID: 27797914 PMCID: PMC5155571 DOI: 10.1093/humupd/dmw039] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/29/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Initially identified for their capability to induce heterotopic bone formation,
bone morphogenetic proteins (BMPs) are multifunctional growth factors that belong
to the transforming growth factor β superfamily. Using cellular and
molecular genetic approaches, recent studies have implicated intra-ovarian BMPs as
potent regulators of ovarian follicular function. The bi-directional communication
of oocytes and the surrounding somatic cells is mandatory for normal follicle
development and oocyte maturation. This review summarizes the current knowledge on
the physiological role and molecular determinants of these ovarian regulatory
factors within the human germline-somatic regulatory loop. OBJECTIVE AND RATIONALE The regulation of ovarian function remains poorly characterized in humans because,
while the fundamental process of follicular development and oocyte maturation is
highly similar across species, most information on the regulation of ovarian
function is obtained from studies using rodent models. Thus, this review focuses
on the studies that used human biological materials to gain knowledge about human
ovarian biology and disorders and to develop strategies for preventing, diagnosing
and treating these abnormalities. SEARCH METHODS Relevant English-language publications describing the roles of BMPs or growth
differentiation factors (GDFs) in human ovarian biology and phenotypes were
comprehensively searched using PubMed and the Google Scholar database. The
publications included those published since the initial identification of BMPs in
the mammalian ovary in 1999 through July 2016. OUTCOMES Studies using human biological materials have revealed the expression of BMPs,
GDFs and their putative receptors as well as their molecular signaling in the
fundamental cells (oocyte, cumulus/granulosa cells (GCs) and theca/stroma cells)
of the ovarian follicles throughout follicle development. With the availability of
recombinant human BMPs/GDFs and the development of immortalized human cell lines,
functional studies have demonstrated the physiological role of intra-ovarian
BMPs/GDFs in all aspects of ovarian functions, from follicle development to
steroidogenesis, cell–cell communication, oocyte maturation, ovulation and
luteal function. Furthermore, there is crosstalk between these potent ovarian
regulators and the endocrine signaling system. Dysregulation or naturally
occurring mutations within the BMP system may lead to several female reproductive
diseases. The latest development of recombinant BMPs, synthetic BMP inhibitors,
gene therapy and tools for BMP-ligand sequestration has made the BMP pathway a
potential therapeutic target in certain human fertility disorders; however,
further clinical trials are needed. Recent studies have indicated that GDF8 is an
intra-ovarian factor that may play a novel role in regulating ovarian functions in
the human ovary. WIDER IMPLICATIONS Intra-ovarian BMPs/GDFs are critical regulators of folliculogenesis and human
ovarian functions. Any dysregulation or variations in these ligands or their
receptors may affect the related intracellular signaling and influence ovarian
functions, which accounts for several reproductive pathologies and infertility.
Understanding the normal and pathological roles of intra-ovarian BMPs/GDFs,
especially as related to GC functions and follicular fluid levels, will inform
innovative approaches to fertility regulation and improve the diagnosis and
treatment of ovarian disorders.
Collapse
Affiliation(s)
- Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, Center for Reproductive Medicine, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing 100191, P.R. China.,Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Room 317, 950 West 28 Avenue, Vancouver, British Columbia, Canada V5Z 4H4
| | - Jie Qiao
- Department of Obstetrics and Gynaecology, Center for Reproductive Medicine, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing 100191, P.R. China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Room 317, 950 West 28 Avenue, Vancouver, British Columbia, Canada V5Z 4H4
| |
Collapse
|
46
|
Inhibitory Effect of Bone Morphogenetic Protein 4 in Retinal Pigment Epithelial-Mesenchymal Transition. Sci Rep 2016; 6:32182. [PMID: 27586653 PMCID: PMC5009382 DOI: 10.1038/srep32182] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/03/2016] [Indexed: 02/07/2023] Open
Abstract
Proliferative vitreoretinopathy (PVR), a serious vision-threatening complication of retinal detachment (RD), is characterized by the formation of contractile fibrotic membranes, in which epithelial-mesenchymal transition (EMT) of the retinal pigment epithelium (RPE) is a major event. Recent studies suggest an important role of bone morphogenetic protein 4 (BMP4) in the suppression of fibrosis. In this study, we aimed to investigate the role of BMP4 in the pathological process of PVR, particularly in the EMT of RPE cells. We found that BMP4 and its receptors were co-labelled with cytokeratin and α-SMA positive cells within the PVR membrane. Moreover, the mRNA and protein expression levels of BMP4 were decreased whereas BMP4 receptors ALK2, ALK3 and ALK6 were increased during TGF-β-induced EMT in primary RPE cells. Exogenous BMP4 inhibited TGF-β-induced epithelial marker down-regulation, as well as mesenchymal marker up-regulation at both the mRNA and protein levels in RPE cells. In addition, BMP4 treatment attenuated the TGF-β-induced gel contraction, cell migration and Smad2/3 phosphorylation. However, knockdown of endogenous BMP4 stimulated changes in EMT markers. Our results confirm the hypothesis that BMP4 might inhibit TGF-β-mediated EMT in RPE cells via the Smad2/3 pathway and suppress contraction. This might represent a potential treatment for PVR.
Collapse
|
47
|
A Survey of Strategies to Modulate the Bone Morphogenetic Protein Signaling Pathway: Current and Future Perspectives. Stem Cells Int 2016; 2016:7290686. [PMID: 27433166 PMCID: PMC4940573 DOI: 10.1155/2016/7290686] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/24/2016] [Indexed: 12/14/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the TGF-β family of ligands and are unequivocally involved in regulating stem cell behavior. Appropriate regulation of canonical BMP signaling is critical for the development and homeostasis of numerous human organ systems, as aberrations in the BMP pathway or its regulation are increasingly associated with diverse human pathologies. In this review, we provide a wide-perspective on strategies that increase or decrease BMP signaling. We briefly outline the current FDA-approved approaches, highlight emerging next-generation technologies, and postulate prospective avenues for future investigation. We also detail how activating other pathways may indirectly modulate BMP signaling, with a particular emphasis on the relationship between the BMP and Activin/TGF-β pathways.
Collapse
|
48
|
Lee Y, Bae KJ, Chon HJ, Kim SH, Kim SA, Kim J. A Receptor Tyrosine Kinase Inhibitor, Dovitinib (TKI-258), Enhances BMP-2-Induced Osteoblast Differentiation In Vitro. Mol Cells 2016; 39:389-94. [PMID: 27025387 PMCID: PMC4870186 DOI: 10.14348/molcells.2016.2300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/16/2016] [Accepted: 02/25/2016] [Indexed: 02/07/2023] Open
Abstract
Dovitinib (TKI258) is a small molecule multi-kinase inhibitor currently in clinical phase I/II/III development for the treatment of various types of cancers. This drug has a safe and effective pharmacokinetic/pharmacodynamic profile. Although dovitinib can bind several kinases at nanomolar concentrations, there are no reports relating to osteoporosis or osteoblast differentiation. Herein, we investigated the effect of dovitinib on human recombinant bone morphogenetic protein (BMP)-2-induced osteoblast differentiation in a cell culture model. Dovitinib enhanced the BMP-2-induced alkaline phosphatase (ALP) induction, which is a representative marker of osteoblast differentiation. Dovitinib also stimulated the translocation of phosphorylated Smad1/5/8 into the nucleus and phosphorylation of mitogen-activated protein kinases, including ERK1/2 and p38. In addition, the mRNA expression of BMP-4, BMP-7, ALP, and OCN increased with dovitinib treatment. Our results suggest that dovitinib has a potent stimulating effect on BMP-2-induced osteoblast differentiation and this existing drug has potential for repositioning in the treatment of bone-related disorders.
Collapse
Affiliation(s)
- Yura Lee
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 34824,
Korea
| | - Kyoung Jun Bae
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 34824,
Korea
| | - Hae Jung Chon
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 34824,
Korea
| | - Seong Hwan Kim
- Laboratory of Translational Therapeutics, Korea Research Institute of Chemical Technology, Eulji University, Daejeon 34824,
Korea
| | - Soon Ae Kim
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon 34824,
Korea
| | - Jiyeon Kim
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 34824,
Korea
| |
Collapse
|
49
|
Fan J, Im CS, Guo M, Cui ZK, Fartash A, Kim S, Patel N, Bezouglaia O, Wu BM, Wang CY, Aghaloo TL, Lee M. Enhanced Osteogenesis of Adipose-Derived Stem Cells by Regulating Bone Morphogenetic Protein Signaling Antagonists and Agonists. Stem Cells Transl Med 2016; 5:539-51. [PMID: 26956209 PMCID: PMC4798741 DOI: 10.5966/sctm.2015-0249] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Although adipose-derived stem cells (ASCs) are an attractive cell source for bone tissue engineering, direct use of ASCs alone has had limited success in the treatment of large bone defects. Although bone morphogenetic proteins (BMPs) are believed to be the most potent osteoinductive factors to promote osteogenic differentiation of ASCs, their clinical applications require supraphysiological dosage, leading to high medical burden and adverse side effects. In the present study, we demonstrated an alternative approach that can effectively complement the BMP activity to maximize the osteogenesis of ASCs without exogenous application of BMPs by regulating levels of antagonists and agonists to BMP signaling. Treatment of ASCs with the amiloride derivative phenamil, a positive regulator of BMP signaling, combined with gene manipulation to suppress the BMP antagonist noggin, significantly enhanced osteogenic differentiation of ASCs through increased BMP-Smad signaling in vitro. Furthermore, the combination approach of noggin suppression and phenamil stimulation enhanced the BMP signaling and bone repair in a mouse calvarial defect model by adding noggin knockdown ASCs to apatite-coated poly(lactic-coglycolic acid) scaffolds loaded with phenamil. These results suggest novel complementary osteoinductive strategies that could maximize activity of the BMP pathway in ASC bone repair while reducing potential adverse effects of current BMP-based therapeutics. SIGNIFICANCE Although stem cell-based tissue engineering strategy offers a promising alternative to repair damaged bone, direct use of stem cells alone is not adequate for challenging healing environments such as in large bone defects. This study demonstrates a novel strategy to maximize bone formation pathways in osteogenic differentiation of mesenchymal stem cells and functional bone formation by combining gene manipulation with a small molecule activator toward osteogenesis. The findings indicate promising stem cell-based therapy for treating bone defects that can effectively complement or replace current osteoinductive therapeutics.
Collapse
Affiliation(s)
- Jiabing Fan
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Choong Sung Im
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Mian Guo
- Department of Neurosurgery, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilonjiang, People's Republic of China
| | - Zhong-Kai Cui
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Armita Fartash
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Soyon Kim
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Nikhil Patel
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Olga Bezouglaia
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Benjamin M Wu
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, USA Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Cun-Yu Wang
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Tara L Aghaloo
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Min Lee
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, USA Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
50
|
Scarfì S. Use of bone morphogenetic proteins in mesenchymal stem cell stimulation of cartilage and bone repair. World J Stem Cells 2016; 8:1-12. [PMID: 26839636 PMCID: PMC4723717 DOI: 10.4252/wjsc.v8.i1.1] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/04/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix-associated bone morphogenetic proteins (BMPs) govern a plethora of biological processes. The BMPs are members of the transforming growth factor-β protein superfamily, and they actively participate to kidney development, digit and limb formation, angiogenesis, tissue fibrosis and tumor development. Since their discovery, they have attracted attention for their fascinating perspectives in the regenerative medicine and tissue engineering fields. BMPs have been employed in many preclinical and clinical studies exploring their chondrogenic or osteoinductive potential in several animal model defects and in human diseases. During years of research in particular two BMPs, BMP2 and BMP7 have gained the podium for their use in the treatment of various cartilage and bone defects. In particular they have been recently approved for employment in non-union fractures as adjunct therapies. On the other hand, thanks to their potentialities in biomedical applications, there is a growing interest in studying the biology of mesenchymal stem cell (MSC), the rules underneath their differentiation abilities, and to test their true abilities in tissue engineering. In fact, the specific differentiation of MSCs into targeted cell-type lineages for transplantation is a primary goal of the regenerative medicine. This review provides an overview on the current knowledge of BMP roles and signaling in MSC biology and differentiation capacities. In particular the article focuses on the potential clinical use of BMPs and MSCs concomitantly, in cartilage and bone tissue repair.
Collapse
Affiliation(s)
- Sonia Scarfì
- Sonia Scarfì, Department of Earth, Environment and Life Sciences, University of Genova, 16132 Genova, Italy
| |
Collapse
|