1
|
Suda N, Bartolomé A, Liang J, Son J, Yagishita Y, Siebel C, Accili D, Ding H, Pajvani UB. β-cell Jagged1 is sufficient but not necessary for islet Notch activity and insulin secretory defects in obese mice. Mol Metab 2024; 81:101894. [PMID: 38311286 PMCID: PMC10877406 DOI: 10.1016/j.molmet.2024.101894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
OBJECTIVE Notch signaling, re-activated in β cells from obese mice and causal to β cell dysfunction, is determined in part by transmembrane ligand availability in a neighboring cell. We hypothesized that β cell expression of Jagged1 determines the maladaptive Notch response and resultant insulin secretory defects in obese mice. METHODS We assessed expression of Notch pathway components in high-fat diet-fed (HFD) or leptin receptor-deficient (db/db) mice, and performed single-cell RNA sequencing (scRNA-Seq) in islets from patients with and without type 2 diabetes (T2D). We generated and performed glucose tolerance testing in inducible, β cell-specific Jagged1 gain-of- and loss-of-function mice. We also tested effects of monoclonal neutralizing antibodies to Jagged1 in glucose-stimulated insulin secretion (GSIS) assays in isolated islets. RESULTS Jag1 was the only Notch ligand that tracked with increased Notch activity in HFD-fed and db/db mice, as well as in metabolically-inflexible β cells enriched in patients with T2D. Neutralizing antibodies to block Jagged1 in islets isolated from HFD-fed and db/db mice potentiated GSIS ex vivo. To demonstrate if β cell Jagged1 is sufficient to cause glucose tolerance in vivo, we generated inducible β cell-specific Jag1 transgenic (β-Jag1TG) and loss-of-function (iβ-Jag1KO) mice. While forced Jagged1 impaired glucose intolerance due to reduced GSIS, loss of β cell Jagged1 did not protect against HFD-induced insulin secretory defects. CONCLUSIONS Jagged1 is increased in islets from obese mice and in patients with T2D, and neutralizing Jagged1 antibodies lead to improved GSIS, suggesting that inhibition of Jagged1-Notch signaling may have therapeutic benefit. However, genetic loss-of-function experiments suggest that β cells are not a likely source of the Jagged1 signal.
Collapse
Affiliation(s)
- Nina Suda
- Department of Medicine, Columbia University, New York, NY, USA
| | | | - Jiani Liang
- Department of Medicine, Columbia University, New York, NY, USA
| | - Jinsook Son
- Department of Medicine, Columbia University, New York, NY, USA
| | - Yoko Yagishita
- Department of Medicine, Columbia University, New York, NY, USA
| | - Christian Siebel
- Department of Discovery Oncology, Genentech, South San Francisco, CA, USA
| | - Domenico Accili
- Department of Medicine, Columbia University, New York, NY, USA
| | - Hongxu Ding
- Department of Pharmacy Practice & Science, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Yoshihara M, Nishino T, Yadav MK, Kuno A, Nagata T, Ando H, Takahashi S. Mathematical analysis of the effect of portal vein cells on biliary epithelial cell differentiation through the Delta-Notch signaling pathway. BMC Res Notes 2021; 14:243. [PMID: 34187572 PMCID: PMC8243745 DOI: 10.1186/s13104-021-05656-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/15/2021] [Indexed: 12/01/2022] Open
Abstract
Objective The Delta-Notch signaling pathway induces fine-grained patterns of differentiation from initially homogeneous progenitor cells in many biological contexts, including Drosophila bristle formation, where mathematical modeling reportedly suggests the importance of production rate of the components of this signaling pathway. In contrast, the epithelial differentiation of bile ducts in the developing liver is unique in that it occurs around the portal vein cells, which express extremely high amounts of Delta ligands and act as a disturbance for the amount of Delta ligands in the field by affecting the expression levels of downstream target genes in the cells nearby. In the present study, we mathematically examined the dynamics of the Delta-Notch signaling pathway components in disturbance-driven biliary differentiation, using the model for fine-grained patterns of differentiation. Results A portal vein cell induced a high Notch signal in its neighboring cells, which corresponded to epithelial differentiation, depending on the production rates of Delta ligands and Notch receptors. In addition, this epithelial differentiation tended to occur in conditions where fine-grained patterning was reported to be lacking. These results highlighted the potential importance of the stability towards homogeneity determined by the production rates in Delta ligands and Notch receptors, in a disturbance-dependent epithelial differentiation. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05656-y.
Collapse
Affiliation(s)
- Masaharu Yoshihara
- Ph.D. Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan. .,Laboratory Animal Resource Center, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Teppei Nishino
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Tsukuba, Japan
| | - Manoj Kumar Yadav
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akihiro Kuno
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takeshi Nagata
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Hiroyasu Ando
- Division of Policy and Planning Science, Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
3
|
Identification of Genes Involved in the Differentiation of R7y and R7p Photoreceptor Cells in Drosophila. G3-GENES GENOMES GENETICS 2020; 10:3949-3958. [PMID: 32972998 PMCID: PMC7642934 DOI: 10.1534/g3.120.401370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The R7 and R8 photoreceptor cells of the Drosophila compound eye mediate color vision. Throughout the majority of the eye, these cells occur in two principal types of ommatidia. Approximately 35% of ommatidia are of the pale type and express Rh3 in R7 cells and Rh5 in R8 cells. The remaining 65% are of the yellow type and express Rh4 in R7 cells and Rh6 in R8 cells. The specification of an R8 cell in a pale or yellow ommatidium depends on the fate of the adjacent R7 cell. However, pale and yellow R7 cells are specified by a stochastic process that requires the genes spineless, tango and klumpfuss. To identify additional genes involved in this process we performed genetic screens using a collection of 480 P{EP} transposon insertion strains. We identified genes in gain of function and loss of function screens that significantly altered the percentage of Rh3 expressing R7 cells (Rh3%) from wild-type. 36 strains resulted in altered Rh3% in the gain of function screen where the P{EP} insertion strains were crossed to a sevEP-GAL4 driver line. 53 strains resulted in altered Rh3% in the heterozygous loss of function screen. 4 strains showed effects that differed between the two screens, suggesting that the effect found in the gain of function screen was either larger than, or potentially masked by, the P{EP} insertion alone. Analyses of homozygotes validated many of the candidates identified. These results suggest that R7 cell fate specification is sensitive to perturbations in mRNA transcription, splicing and localization, growth inhibition, post-translational protein modification, cleavage and secretion, hedgehog signaling, ubiquitin protease activity, GTPase activation, actin and cytoskeletal regulation, and Ser/Thr kinase activity, among other diverse signaling and cell biological processes.
Collapse
|
4
|
Hall ET, Pradhan-Sundd T, Samnani F, Verheyen EM. The protein phosphatase 4 complex promotes the Notch pathway and wingless transcription. Biol Open 2017; 6:1165-1173. [PMID: 28652317 PMCID: PMC5576076 DOI: 10.1242/bio.025221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Wnt/Wingless (Wg) pathway controls cell fate specification, tissue differentiation and organ development across organisms. Using an in vivo RNAi screen to identify novel kinase and phosphatase regulators of the Wg pathway, we identified subunits of the serine threonine phosphatase Protein Phosphatase 4 (PP4). Knockdown of the catalytic and regulatory subunits of PP4 cause reductions in the Wg pathway targets Senseless and Distal-less. We find that PP4 regulates the Wg pathway by controlling Notch-driven wg transcription. Genetic interaction experiments identified that PP4 likely promotes Notch signaling within the nucleus of the Notch-receiving cell. Although the PP4 complex is implicated in various cellular processes, its role in the regulation of Wg and Notch pathways was previously uncharacterized. Our study identifies a novel role of PP4 in regulating Notch pathway, resulting in aberrations in Notch-mediated transcriptional regulation of the Wingless ligand. Furthermore, we show that PP4 regulates proliferation independent of its interaction with Notch. Summary: The protein phosphatase 4 complex promotes Notch signaling and target gene expression during Drosophila wing development.
Collapse
Affiliation(s)
- Eric T Hall
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, British Columbia V5A 1S6, Canada
| | - Tirthadipa Pradhan-Sundd
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, British Columbia V5A 1S6, Canada
| | - Faaria Samnani
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, British Columbia V5A 1S6, Canada
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, British Columbia V5A 1S6, Canada
| |
Collapse
|
5
|
Mall M, Kareta MS, Chanda S, Ahlenius H, Perotti N, Zhou B, Grieder SD, Ge X, Drake S, Ang CE, Walker BM, Vierbuchen T, Fuentes DR, Brennecke P, Nitta KR, Jolma A, Steinmetz LM, Taipale J, Südhof TC, Wernig M. Myt1l safeguards neuronal identity by actively repressing many non-neuronal fates. Nature 2017; 544:245-249. [PMID: 28379941 PMCID: PMC11348803 DOI: 10.1038/nature21722] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 02/23/2017] [Indexed: 12/18/2022]
Abstract
Normal differentiation and induced reprogramming require the activation of target cell programs and silencing of donor cell programs. In reprogramming, the same factors are often used to reprogram many different donor cell types. As most developmental repressors, such as RE1-silencing transcription factor (REST) and Groucho (also known as TLE), are considered lineage-specific repressors, it remains unclear how identical combinations of transcription factors can silence so many different donor programs. Distinct lineage repressors would have to be induced in different donor cell types. Here, by studying the reprogramming of mouse fibroblasts to neurons, we found that the pan neuron-specific transcription factor Myt1-like (Myt1l) exerts its pro-neuronal function by direct repression of many different somatic lineage programs except the neuronal program. The repressive function of Myt1l is mediated via recruitment of a complex containing Sin3b by binding to a previously uncharacterized N-terminal domain. In agreement with its repressive function, the genomic binding sites of Myt1l are similar in neurons and fibroblasts and are preferentially in an open chromatin configuration. The Notch signalling pathway is repressed by Myt1l through silencing of several members, including Hes1. Acute knockdown of Myt1l in the developing mouse brain mimicked a Notch gain-of-function phenotype, suggesting that Myt1l allows newborn neurons to escape Notch activation during normal development. Depletion of Myt1l in primary postmitotic neurons de-repressed non-neuronal programs and impaired neuronal gene expression and function, indicating that many somatic lineage programs are actively and persistently repressed by Myt1l to maintain neuronal identity. It is now tempting to speculate that similar 'many-but-one' lineage repressors exist for other cell fates; such repressors, in combination with lineage-specific activators, would be prime candidates for use in reprogramming additional cell types.
Collapse
Affiliation(s)
- Moritz Mall
- Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine
| | - Michael S. Kareta
- Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine
- Current Address: Children’s Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Soham Chanda
- Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute
| | | | - Nicholas Perotti
- Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine
| | - Bo Zhou
- Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute
| | - Sarah D. Grieder
- Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine
| | - Xuecai Ge
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
- Current Address: Molecular and Cellular Biology, University of California Merced, Merced, CA 95343, USA
| | - Sienna Drake
- Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Cheen Euong Ang
- Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine
| | - Brandon M. Walker
- Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine
| | - Thomas Vierbuchen
- Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine
| | - Daniel R. Fuentes
- Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine
| | - Philip Brennecke
- Department of Genetics
- Current Address: Leibniz-Institute for Molecular Pharmacology, 13125 Berlin, Germany
| | - Kazuhiro R. Nitta
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
- Current Address: Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Arttu Jolma
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Lars M. Steinmetz
- Department of Genetics
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Jussi Taipale
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
- Genome Scale Biology Program, University of Helsinki, 00014 Helsinki, Finland
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute
| | - Marius Wernig
- Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine
| |
Collapse
|
6
|
Bandyopadhyay M, Arbet S, Bishop CP, Bidwai AP. Drosophila Protein Kinase CK2: Genetics, Regulatory Complexity and Emerging Roles during Development. Pharmaceuticals (Basel) 2016; 10:E4. [PMID: 28036067 PMCID: PMC5374408 DOI: 10.3390/ph10010004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 01/06/2023] Open
Abstract
CK2 is a Ser/Thr protein kinase that is highly conserved amongst all eukaryotes. It is a well-known oncogenic kinase that regulates vital cell autonomous functions and animal development. Genetic studies in the fruit fly Drosophila are providing unique insights into the roles of CK2 in cell signaling, embryogenesis, organogenesis, neurogenesis, and the circadian clock, and are revealing hitherto unknown complexities in CK2 functions and regulation. Here, we review Drosophila CK2 with respect to its structure, subunit diversity, potential mechanisms of regulation, developmental abnormalities linked to mutations in the gene encoding CK2 subunits, and emerging roles in multiple aspects of eye development. We examine the Drosophila CK2 "interaction map" and the eye-specific "transcriptome" databases, which raise the prospect that this protein kinase has many additional targets in the developing eye. We discuss the possibility that CK2 functions during early retinal neurogenesis in Drosophila and mammals bear greater similarity than has been recognized, and that this conservation may extend to other developmental programs. Together, these studies underscore the immense power of the Drosophila model organism to provide new insights and avenues to further investigate developmentally relevant targets of this protein kinase.
Collapse
Affiliation(s)
| | - Scott Arbet
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA.
| | - Clifton P Bishop
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA.
| | - Ashok P Bidwai
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
7
|
Bandyopadhyay M, Bishop CP, Bidwai AP. The Conserved MAPK Site in E(spl)-M8, an Effector of Drosophila Notch Signaling, Controls Repressor Activity during Eye Development. PLoS One 2016; 11:e0159508. [PMID: 27428327 PMCID: PMC4948772 DOI: 10.1371/journal.pone.0159508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/05/2016] [Indexed: 12/12/2022] Open
Abstract
The specification of patterned R8 photoreceptors at the onset of eye development depends on timely inhibition of Atonal (Ato) by the Enhancer of split (E(spl) repressors. Repression of Ato by E(spl)-M8 requires the kinase CK2 and is inhibited by the phosphatase PP2A. The region targeted by CK2 harbors additional conserved Ser residues, raising the prospect of regulation via multi-site phosphorylation. Here we investigate one such motif that meets the consensus for modification by MAPK, a well-known effector of Epidermal Growth Factor Receptor (EGFR) signaling. Our studies reveal an important role for the predicted MAPK site of M8 during R8 birth. Ala/Asp mutations reveal that the CK2 and MAPK sites ensure that M8 repression of Ato and the R8 fate occurs in a timely manner and at a specific stage (stage-2/3) of the morphogenetic furrow (MF). M8 repression of Ato is mitigated by halved EGFR dosage, and this effect requires an intact MAPK site. Accordingly, variants with a phosphomimetic Asp at the MAPK site exhibit earlier (inappropriate) activity against Ato even at stage-1 of the MF, where a positive feedback-loop is necessary to raise Ato levels to a threshold sufficient for the R8 fate. Analysis of deletion variants reveals that both kinase sites (CK2 and MAPK) contribute to ‘cis’-inhibition of M8. This key regulation by CK2 and MAPK is bypassed by the E(spl)D mutation encoding the truncated protein M8*, which potently inhibits Ato at stage-1 of R8 birth. We also provide evidence that PP2A likely targets the MAPK site. Thus multi-site phosphorylation controls timely onset of M8 repressor activity in the eye, a regulation that appears to be dispensable in the bristle. The high conservation of the CK2 and MAPK sites in the insect E(spl) proteins M7, M5 and Mγ, and their mammalian homologue HES6, suggest that this mode of regulation may enable E(spl)/HES proteins to orchestrate repression by distinct tissue-specific mechanisms, and is likely to have broader applicability than has been previously recognized.
Collapse
Affiliation(s)
- Mohna Bandyopadhyay
- Department of Biology, West Virginia University, Morgantown, West Virginia, United States of America
| | - Clifton P. Bishop
- Department of Biology, West Virginia University, Morgantown, West Virginia, United States of America
| | - Ashok P. Bidwai
- Department of Biology, West Virginia University, Morgantown, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
8
|
Glass DS, Jin X, Riedel-Kruse IH. Signaling Delays Preclude Defects in Lateral Inhibition Patterning. PHYSICAL REVIEW LETTERS 2016; 116:128102. [PMID: 27058104 DOI: 10.1103/physrevlett.116.128102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 06/05/2023]
Abstract
Lateral inhibition represents a well-studied example of biology's ability to self-organize multicellular spatial patterns with single-cell precision. Despite established biochemical mechanisms for lateral inhibition (e.g., Delta-Notch), it remains unclear how cell-cell signaling delays inherent to these mechanisms affect patterning outcomes. We investigate a compact model of lateral inhibition highlighting these delays and find, remarkably, that long delays can ensure defect-free patterning. This effect is underscored by an interplay with synchronous oscillations, cis interactions, and signaling strength. Our results suggest that signaling delays, though previously posited as a source of developmental defects, may in fact be a general regulatory knob for tuning developmental robustness.
Collapse
Affiliation(s)
- David S Glass
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Xiaofan Jin
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
9
|
Sparling DP, Yu J, Kim K, Zhu C, Brachs S, Birkenfeld AL, Pajvani UB. Adipocyte-specific blockade of gamma-secretase, but not inhibition of Notch activity, reduces adipose insulin sensitivity. Mol Metab 2015; 5:113-121. [PMID: 26909319 PMCID: PMC4735659 DOI: 10.1016/j.molmet.2015.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 11/18/2015] [Accepted: 11/25/2015] [Indexed: 01/12/2023] Open
Abstract
Objective As the obesity pandemic continues to expand, novel molecular targets to reduce obesity-related insulin resistance and Type 2 Diabetes (T2D) continue to be needed. We have recently shown that obesity is associated with reactivated liver Notch signaling, which, in turn, increases hepatic insulin resistance, opening up therapeutic avenues for Notch inhibitors to be repurposed for T2D. Herein, we tested the systemic effects of γ-secretase inhibitors (GSIs), which prevent endogenous Notch activation, and confirmed these effects through creation and characterization of two different adipocyte-specific Notch loss-of-function mouse models through genetic ablation of the Notch transcriptional effector Rbp-Jk (A-Rbpj) and the obligate γ-secretase component Nicastrin (A-Nicastrin). Methods Glucose homeostasis and both local adipose and systemic insulin sensitivity were examined in GSI-treated, A-Rbpj and A-Nicastrin mice, as well as vehicle-treated or control littermates, with complementary in vitro studies in primary hepatocytes and 3T3-L1 adipocytes. Results GSI-treatment increases hepatic insulin sensitivity in obese mice but leads to reciprocal lowering of adipose glucose disposal. While A-Rbpj mice show normal body weight, adipose development and mass and unchanged adipose insulin sensitivity as control littermates, A-Nicastrin mice are relatively insulin-resistant, mirroring the GSI effect on adipose insulin action. Conclusions Notch signaling is dispensable for normal adipocyte function, but adipocyte-specific γ-secretase blockade reduces adipose insulin sensitivity, suggesting that specific Notch inhibitors would be preferable to GSIs for application in T2D. γ-secretase inhibitors (GSIs) are non-specific inhibitors of Notch signaling. GSI-treatment of obese mice increases hepatic, but lowers adipose insulin sensitivity. Adipocyte-specific Notch inhibition does not affect adipose mass or glucose homeostasis. Adipocyte-specific γ-secretase blockade reduces adipose insulin sensitivity. Specific Notch inhibitors may be preferable to GSIs for treatment of Type 2 Diabetes.
Collapse
Affiliation(s)
- David P Sparling
- Departments of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Junjie Yu
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - KyeongJin Kim
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Changyu Zhu
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Sebastian Brachs
- Department of Endocrinology, Diabetes and Nutrition, Center for Cardiovascular Research, Charité - University School of Medicine, Berlin, Germany
| | - Andreas L Birkenfeld
- Section of Metabolic Vascular Medicine, Medical Clinic III and Paul Langerhans Institute Dresden (PLID), a member of the German Center for Diabetes Research (DZD), Technische Universität Dresden, Germany; Section of Diabetes and Nutritional Sciences, Rayne Institute, Denmark Hill Campus, King's College London, UK
| | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
10
|
Pin CL, Ryan JF, Mehmood R. Acinar cell reprogramming: a clinically important target in pancreatic disease. Epigenomics 2015; 7:267-81. [PMID: 25942535 DOI: 10.2217/epi.14.83] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acinar cells of the pancreas produce the majority of enzymes required for digestion and make up >90% of the cells within the pancreas. Due to a common developmental origin and the plastic nature of the acinar cell phenotype, these cells have been identified as a possible source of β cells as a therapeutic option for Type I diabetes. However, recent evidence indicates that acinar cells are the main source of pancreatic intraepithelial neoplasias (PanINs), the predecessor of pancreatic ductal adenocarcinoma (PDAC). The conversion of acinar cells to either β cells or precursors to PDAC is dependent on reprogramming of the cells to a more primitive, progenitor-like phenotype, which involves changes in transcription factor expression and activity, and changes in their epigenetic program. This review will focus on the mechanisms that promote acinar cell reprogramming, as well as the factors that may affect these mechanisms.
Collapse
Affiliation(s)
- Christopher L Pin
- Department of Paediatrics, Physiology & Pharmacology, & Oncology, University of Western Ontario, London, ON N6C 2V5, Canada
| | | | | |
Collapse
|
11
|
The drosophila T-box transcription factor midline functions within Insulin/Akt and c-Jun-N terminal kinase stress-reactive signaling pathways to regulate interommatial bristle formation and cell survival. Mech Dev 2015; 136:8-29. [PMID: 25748605 DOI: 10.1016/j.mod.2015.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 02/04/2023]
Abstract
We recently reported that the T-box transcription factor midline (mid) functions within the Notch-Delta signaling pathway to specify sensory organ precursor (SOP) cell fates in early-staged pupal eye imaginal discs and to suppress apoptosis (Das et al.). From genetic and allelic modifier screens, we now report that mid interacts with genes downstream of the insulin receptor(InR)/Akt, c-Jun-N-terminal kinase (JNK) and Notch signaling pathways to regulate interommatidial bristle (IOB) formation and cell survival. One of the most significant mid-interacting genes identified from the modifier screen is dFOXO, a transcription factor exhibiting a nucleocytoplasmic subcellular distribution pattern. In common with dFOXO, we show that Mid exhibits a nucleocytoplasmic distribution pattern within WT third-instar larval (3(o)L) tissue homogenates. Because dFOXO is a stress-responsive factor, we assayed the effects of either oxidative or metabolic stress responses on modifying the mid mutant phenotype which is characterized by a 50% loss of IOBs within the adult compound eye. While metabolic starvation stress does not affect the mid mutant phenotype, either 1 mM paraquat or 20% coconut oil, oxidative stress inducers, partially suppresses the mid mutant phenotype resulting in a significant recovery of IOBs. Another significant mid-interacting gene we identified is groucho (gro). Mid and Gro are predicted to act as corepressors of the enhancer-of-split gene complex downstream of Notch. Immunolabeling WT and dFOXO null 3(o)L eye-antennal imaginal discs with anti-Mid and anti-Engrailed (En) antibodies indicate that dFOXO is required to activate Mid and En expression within photoreceptor neurons of the eye disc. Taken together, these studies show that Mid and dFOXO serve as critical effectors of cell fate specification and survival within integrated Notch, InR/dAkt, and JNK signaling pathways during 3(o)L and pupal eye imaginal disc development.
Collapse
|
12
|
Abstract
This review will focus on the use of the chicken and quail as model systems to analyze myogenesis and as such will emphasize the experimental approaches that are strongest in these systems-the amenability of the avian embryo to manipulation and in ovo observation. During somite differentiation, a wide spectrum of developmental processes occur such as cellular differentiation, migration, and fusion. Cell lineage studies combined with recent advancements in cell imaging allow these biological phenomena to be readily observed and hypotheses tested extremely rapidly-a strength that is restricted to the avian system. A clear weakness of the chicken in the past has been genetic approaches to modulate gene function. Recent advances in the electroporation of expression vectors, siRNA constructs, and use of tissue specific reporters have opened the door to increasingly sophisticated experiments that address questions of interest not only to the somite/muscle field in particular but also fundamental to biology in general. Importantly, an ever-growing body of evidence indicates that somite differentiation in birds is indistinguishable to that of mammals; therefore, these avian studies complement the complex genetic models of the mouse.
Collapse
Affiliation(s)
- Claire E Hirst
- EMBL Australia, Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, VIC, 3800, Australia,
| | | |
Collapse
|
13
|
The Ser/Thr phosphatase PP2A regulatory subunit widerborst inhibits notch signaling. PLoS One 2014; 9:e101884. [PMID: 25006677 PMCID: PMC4090204 DOI: 10.1371/journal.pone.0101884] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/12/2014] [Indexed: 01/23/2023] Open
Abstract
Drosophila Enhancer of split M8, an effector of Notch signaling, is regulated by protein kinase CK2. The phosphatase PP2A is thought to play an opposing (inhibitory) role, but the identity of the regulatory subunit was unknown. The studies described here reveal a role for the PP2A regulatory subunit widerborst (wdb) in three developmental contexts; the bristle, wing and the R8 photoreceptors of the eye. wdb overexpression elicits bristle and wing defects akin to reduced Notch signaling, whereas hypomorphic mutations in this PP2A subunit elicit opposite effects. We have also evaluated wdb functions using mutations in Notch and E(spl) that affect the eye. We find that the eye and R8 defects of the well-known Nspl mutation are enhanced by a hypomorphic allele of wdb, whereas they are strongly rescued by wdb overexpression. Similarly, ectopic wdb rescues the eye and R8 defects of the E(spl)D mutation, which affects the m8 gene. In addition, wdb overexpression also rescues the bristle defects of ectopically expressed M8, or the eye and R8 defects of its CK2 phosphomimetic variant M8-S159D. The latter finding suggests that PP2A may target M8 at highly conserved residues in the vicinity of the CK2 site, whose phosphorylation controls repression of Atonal and the R8 fate. Together, the studies identify PP2A-Wdb as a participant in Notch signaling, and suggest that M8 activity is controlled by phosphorylation and dephosphorylation. The conservation of the phosphorylation sites between Drosophila E(spl) and the HES/HER proteins from mammals, reptiles, amphibians, birds and fish raises the prospect that this mode of regulation is widespread.
Collapse
|
14
|
Kornberg TB, Roy S. Communicating by touch--neurons are not alone. Trends Cell Biol 2014; 24:370-6. [PMID: 24560610 PMCID: PMC4037336 DOI: 10.1016/j.tcb.2014.01.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 01/02/2014] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
Abstract
Long-distance cell-cell communication is essential for organ development and function. Whereas neurons communicate at long distances by transferring signals at sites of direct contact (i.e., at synapses), it has been presumed that the only way other cell types signal is by dispersing signals through extracellular fluid--indirectly. Recent evidence from Drosophila suggests that non-neuronal cells also exchange signaling proteins at sites of direct contact, even when long distances separate the cells. We review here contact-mediated signaling in neurons and discuss how this signaling mechanism is shared by other cell types.
Collapse
Affiliation(s)
- Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.
| | - Sougata Roy
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
15
|
Formosa-Jordan P, Ibañes M. Competition in notch signaling with cis enriches cell fate decisions. PLoS One 2014; 9:e95744. [PMID: 24781918 PMCID: PMC4004554 DOI: 10.1371/journal.pone.0095744] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/31/2014] [Indexed: 12/05/2022] Open
Abstract
Notch signaling is involved in cell fate choices during the embryonic development of Metazoa. Commonly, Notch signaling arises from the binding of the Notch receptor to its ligands in adjacent cells driving cell-to-cell communication. Yet, cell-autonomous control of Notch signaling through both ligand-dependent and ligand-independent mechanisms is known to occur as well. Examples include Notch signaling arising in the absence of ligand binding, and cis-inhibition of Notch signaling by titration of the Notch receptor upon binding to its ligands within a single cell. Increasing experimental evidences support that the binding of the Notch receptor with its ligands within a cell (cis-interactions) can also trigger a cell-autonomous Notch signal (cis-signaling), whose potential effects on cell fate decisions and patterning remain poorly understood. To address this question, herein we mathematically and computationally investigate the cell states arising from the combination of cis-signaling with additional Notch signaling sources, which are either cell-autonomous or involve cell-to-cell communication. Our study shows that cis-signaling can switch from driving cis-activation to effectively perform cis-inhibition and identifies under which conditions this switch occurs. This switch relies on the competition between Notch signaling sources, which share the same receptor but differ in their signaling efficiency. We propose that the role of cis-interactions and their signaling on fine-grained patterning and cell fate decisions is dependent on whether they drive cis-inhibition or cis-activation, which could be controlled during development. Specifically, cis-inhibition and not cis-activation facilitates patterning and enriches it by modulating the ratio of cells in the high-ligand expression state, by enabling additional periodic patterns like stripes and by allowing localized patterning highly sensitive to the precursor state and cell-autonomous bistability. Our study exemplifies the complexity of regulations when multiple signaling sources share the same receptor and provides the tools for their characterization.
Collapse
Affiliation(s)
- Pau Formosa-Jordan
- Dept. Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, Barcelona, Spain
| | - Marta Ibañes
- Dept. Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
16
|
Tian A, Jiang J. Intestinal epithelium-derived BMP controls stem cell self-renewal in Drosophila adult midgut. eLife 2014; 3:e01857. [PMID: 24618900 PMCID: PMC3948108 DOI: 10.7554/elife.01857] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stem cells are maintained in a specialized microenvironment called niche but the nature of stem cell niche remains poorly defined in many systems. Here we demonstrate that intestinal epithelium-derived BMP serves as a niche signal for intestinal stem cell (ISC) self-renewal in Drosophila adult midgut. We find that BMP signaling is asymmetric between ISC and its differentiated daughter cell. Two BMP ligands, Dpp and Gbb, are produced by enterocytes and act in conjunction to promote ISC self-renewal by antagonizing Notch signaling. Furthermore, the basement membrane-associated type IV collagens regulate ISC self-renewal by confining higher BMP signaling to ISCs. The employment of gut epithelia as a niche for stem cell self-renewal may provide a mechanism for direct communication between the niche and the environment, allowing niche signal production and stem cell number to be fine-tuned in response to various physiological and pathological stimuli. DOI:http://dx.doi.org/10.7554/eLife.01857.001 Keeping an organ in top condition requires a steady supply of fresh cells to replace those that are dead or damaged. This is particularly critical for the epithelial cells lining the intestines, which only live for a few days, but are necessary for digesting food. These cells cannot simply reproduce by cell division, so they must be replenished by adult stem cells—adaptable cells that can produce any of the cell types found in a given organ. When an adult stem cell divides, two daughter cells are produced. Normally, one of these remains in the stem state, and the other becomes a particular type of cell for use in the organ. Exactly how each daughter cell knows what to become is unclear. However, it is known that in addition to communicating with each other, stem cells also communicate with their immediate surroundings, which is known as a niche. For many processes, the molecules and mechanisms used in niche signaling remain to be discovered. The midgut of fruit flies presents a relatively simple stem cell system for study, and has the added advantage that its cells behave in ways that are similar to the cells that make up the intestines of mammals. By developing a method of tracking the two daughter cells of a single stem cell simultaneously, Tian and Jiang have been able to uncover new details about how this niche operates. Epithelial cells in the gut produce molecules called bone morphogenetic proteins (BMPs) that influence how bone and many other types of body tissues form. Tian and Jiang have found that two types of BMP are the signals responsible for keeping daughter cells in the stem state. When released from the base of the epithelial cells, BMPs can only travel a very short distance before other proteins trap them. As a result, one of a pair of daughter cells receives a higher level of the signal and remains as a stem cell. This cell then sends a signal to the other daughter cell, telling it to form a specialized cell. DOI:http://dx.doi.org/10.7554/eLife.01857.002
Collapse
Affiliation(s)
- Aiguo Tian
- Department of Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | | |
Collapse
|
17
|
Cheng CW, Niu B, Warren M, Pevny LH, Lovell-Badge R, Hwa T, Cheah KSE. Predicting the spatiotemporal dynamics of hair follicle patterns in the developing mouse. Proc Natl Acad Sci U S A 2014; 111:2596-601. [PMID: 24550288 PMCID: PMC3932898 DOI: 10.1073/pnas.1313083111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Reaction-diffusion models have been used as a paradigm for describing the de novo emergence of biological patterns such as stripes and spots. In many organisms, these initial patterns are typically refined and elaborated over the subsequent course of development. Here we study the formation of secondary hair follicle patterns in the skin of developing mouse embryos. We used the expression of sex-determining region Y box 2 to identify and distinguish the primary and secondary hair follicles and to infer the spatiotemporal dynamics of the follicle formation process. Quantitative analysis of the specific follicle patterns observed reveals a simple geometrical rule governing the formation of secondary follicles, and motivates an expansion-induction (EI) model in which new follicle formation is driven by the physical growth of the embryo. The EI model requires only one diffusible morphogen and provides quantitative, accurate predictions on the relative positions and timing of secondary follicle formation, using only the observed configuration of primary follicles as input. The same model accurately describes the positions of additional follicles that emerge from skin explants treated with an activator. Thus, the EI model provides a simple and robust mechanism for predicting secondary space-filling patterns in growing embryos.
Collapse
Affiliation(s)
- Chi Wa Cheng
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ben Niu
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Mya Warren
- Department of Physics and Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, CA 92093-0374
| | - Larysa Halyna Pevny
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599; and
| | - Robin Lovell-Badge
- Division of Stem Cell Biology and Developmental Genetics, MRC National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Terence Hwa
- Department of Physics and Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, CA 92093-0374
| | - Kathryn S. E. Cheah
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
18
|
Nelson BR, Hodge RD, Bedogni F, Hevner RF. Dynamic interactions between intermediate neurogenic progenitors and radial glia in embryonic mouse neocortex: potential role in Dll1-Notch signaling. J Neurosci 2013; 33:9122-39. [PMID: 23699523 PMCID: PMC3716275 DOI: 10.1523/jneurosci.0791-13.2013] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/08/2013] [Accepted: 04/11/2013] [Indexed: 11/21/2022] Open
Abstract
The mammalian neocortical progenitor cell niche is composed of a diverse repertoire of neuroepithelial cells, radial glia (RG), and intermediate neurogenic progenitors (INPs). Previously, live-cell imaging experiments have proved crucial in identifying these distinct progenitor populations, especially INPs, which amplify neural output by undergoing additional rounds of proliferation before differentiating into new neurons. INPs also provide feedback to the RG pool by serving as a source of Delta-like 1 (Dll1), a key ligand for activating Notch signaling in neighboring cells, a well-known mechanism for maintaining RG identity. While much is known about Dll1-Notch signaling at the molecular level, little is known about how this cell-cell contact dependent feedback is transmitted at the cellular level. To investigate how RG and INPs might interact to convey Notch signals, we used high-resolution live-cell multiphoton microscopy (MPM) to directly observe cellular interactions and dynamics, in conjunction with Notch-pathway specific reporters in the neocortical neural stem cell niche in organotypic brain slices from embryonic mice. We found that INPs and RG interact via dynamic and transient elongate processes, some apparently long-range (extending from the subventricular zone to the ventricular zone), and some short-range (filopodia-like). Gene expression profiling of RG and INPs revealed further progenitor cell diversification, including different subpopulations of Hes1+ and/or Hes5+ RG, and Dll1+ and/or Dll3+ INPs. Thus, the embryonic progenitor niche includes a network of dynamic cell-cell interactions, using different combinations of Notch signaling molecules to maintain and likely diversify progenitor pools.
Collapse
Affiliation(s)
- Branden R. Nelson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101, and
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98101
| | - Rebecca D. Hodge
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98101
| | - Francesco Bedogni
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98101
| | - Robert F. Hevner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101, and
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98101
| |
Collapse
|
19
|
Mizumoto K, Shen K. Interaxonal interaction defines tiled presynaptic innervation in C. elegans. Neuron 2013; 77:655-66. [PMID: 23439119 DOI: 10.1016/j.neuron.2012.12.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2012] [Indexed: 10/27/2022]
Abstract
VIDEO ABSTRACT Cellular interactions between neighboring axons are essential for global topographic map formation. Here we show that axonal interactions also precisely instruct the location of synapses. Motoneurons form en passant synapses in Caenorhabditis elegans. Although axons from the same neuron class significantly overlap, each neuron innervates a unique and tiled segment of the muscle field by restricting its synapses to a distinct subaxonal domain-a phenomenon we term synaptic tiling. Using DA8 and DA9 motoneurons, we found that the synaptic tiling requires the PlexinA4 homolog, PLX-1, and two transmembrane semaphorins. In the plexin or semaphorin mutants, synaptic domains from both neurons expand and overlap with each other without guidance defects. In a semaphorin-dependent manner, PLX-1 is concentrated at the synapse-free axonal segment, delineating the tiling border. Furthermore, plexin inhibits presynapse formation by suppressing synaptic F-actin through its cytoplasmic GTPase-activating protein (GAP) domain. Hence, contact-dependent, intra-axonal plexin signaling specifies synaptic circuits by inhibiting synapse formation at the subcellular loci.
Collapse
Affiliation(s)
- Kota Mizumoto
- Department of Biology, Howard Hughes Medical Institute, Stanford University, 385 Serra Mall, Stanford, CA 94305, USA
| | | |
Collapse
|
20
|
Afelik S, Jensen J. Notch signaling in the pancreas: patterning and cell fate specification. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:531-44. [DOI: 10.1002/wdev.99] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
van Es JH, Sato T, van de Wetering M, Lyubimova A, Yee Nee AN, Gregorieff A, Sasaki N, Zeinstra L, van den Born M, Korving J, Martens ACM, Barker N, van Oudenaarden A, Clevers H. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat Cell Biol 2012; 14:1099-1104. [PMID: 23000963 DOI: 10.1038/ncb2581] [Citation(s) in RCA: 606] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/16/2012] [Indexed: 12/22/2022]
Abstract
Lgr5+ intestinal stem cells generate enterocytes and secretory cells. Secretory lineage commitment requires Notch silencing. The Notch ligand Dll1 is expressed by a subset of immediate stem cell daughters. Lineage tracing in Dll1(GFP-ires-CreERT2) knock-in mice reveals that single Dll1(high) cells generate small, short-lived clones containing all four secretory cell types. Lineage specification thus occurs in immediate stem cell daughters through Notch lateral inhibition. Cultured Dll1(high) cells form long-lived organoids (mini-guts) on brief Wnt3A exposure. When Dll1(high) cells are genetically marked before tissue damage, stem cell tracing events occur. Thus, secretory progenitors exhibit plasticity by regaining stemness on damage.
Collapse
Affiliation(s)
- Johan H van Es
- Hubrecht Institute for Developmental Biology and Stem Cell Research & University Medical Centre Utrecht, Uppsalalaan 8, 3584CT Utrecht, Netherlands
| | - Toshiro Sato
- Hubrecht Institute for Developmental Biology and Stem Cell Research & University Medical Centre Utrecht, Uppsalalaan 8, 3584CT Utrecht, Netherlands
| | - Marc van de Wetering
- Hubrecht Institute for Developmental Biology and Stem Cell Research & University Medical Centre Utrecht, Uppsalalaan 8, 3584CT Utrecht, Netherlands
| | - Anna Lyubimova
- Dept. of Physics & Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | - Alex Gregorieff
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Nobuo Sasaki
- Hubrecht Institute for Developmental Biology and Stem Cell Research & University Medical Centre Utrecht, Uppsalalaan 8, 3584CT Utrecht, Netherlands
| | - Laura Zeinstra
- Hubrecht Institute for Developmental Biology and Stem Cell Research & University Medical Centre Utrecht, Uppsalalaan 8, 3584CT Utrecht, Netherlands
| | - Maaike van den Born
- Hubrecht Institute for Developmental Biology and Stem Cell Research & University Medical Centre Utrecht, Uppsalalaan 8, 3584CT Utrecht, Netherlands
| | - Jeroen Korving
- Hubrecht Institute for Developmental Biology and Stem Cell Research & University Medical Centre Utrecht, Uppsalalaan 8, 3584CT Utrecht, Netherlands
| | - Anton C M Martens
- UMC Utrecht, Dept. of Immunology and Cell Biology, PO BOX 85090, 3508AB Utrecht, Netherlands
| | - Nick Barker
- Institute of Medical Biology, 06-06 Immunos, Singapore
| | - Alexander van Oudenaarden
- Dept. of Physics & Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research & University Medical Centre Utrecht, Uppsalalaan 8, 3584CT Utrecht, Netherlands
| |
Collapse
|
22
|
Miller M, Hafner M, Sontag E, Davidsohn N, Subramanian S, Purnick PEM, Lauffenburger D, Weiss R. Modular design of artificial tissue homeostasis: robust control through synthetic cellular heterogeneity. PLoS Comput Biol 2012; 8:e1002579. [PMID: 22829755 PMCID: PMC3400602 DOI: 10.1371/journal.pcbi.1002579] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 04/25/2012] [Indexed: 11/18/2022] Open
Abstract
Synthetic biology efforts have largely focused on small engineered gene networks, yet understanding how to integrate multiple synthetic modules and interface them with endogenous pathways remains a challenge. Here we present the design, system integration, and analysis of several large scale synthetic gene circuits for artificial tissue homeostasis. Diabetes therapy represents a possible application for engineered homeostasis, where genetically programmed stem cells maintain a steady population of β-cells despite continuous turnover. We develop a new iterative process that incorporates modular design principles with hierarchical performance optimization targeted for environments with uncertainty and incomplete information. We employ theoretical analysis and computational simulations of multicellular reaction/diffusion models to design and understand system behavior, and find that certain features often associated with robustness (e.g., multicellular synchronization and noise attenuation) are actually detrimental for tissue homeostasis. We overcome these problems by engineering a new class of genetic modules for ‘synthetic cellular heterogeneity’ that function to generate beneficial population diversity. We design two such modules (an asynchronous genetic oscillator and a signaling throttle mechanism), demonstrate their capacity for enhancing robust control, and provide guidance for experimental implementation with various computational techniques. We found that designing modules for synthetic heterogeneity can be complex, and in general requires a framework for non-linear and multifactorial analysis. Consequently, we adapt a ‘phenotypic sensitivity analysis’ method to determine how functional module behaviors combine to achieve optimal system performance. We ultimately combine this analysis with Bayesian network inference to extract critical, causal relationships between a module's biochemical rate-constants, its high level functional behavior in isolation, and its impact on overall system performance once integrated. Over the last decade several relatively small synthetic gene networks have been successfully implemented and characterized, including oscillators, toggle switches, and intercellular communication systems. However, the ability to engineer large-scale synthetic gene networks for controlling multicellular systems with predictable and robust behavior remains a challenge. Here we present a novel combination of computational methods to aid the iterative design and optimization of such synthetic biological systems. We apply these methods to the design and analysis of an artificial tissue homeostasis system that exhibits coordinated control of cellular proliferation, differentiation, and cell-death. Achieving artificial tissue homeostasis would be therapeutically relevant for diseases such as Type I diabetes, for instance by transplanting genetically engineered stem cells that stably maintain populations of insulin-producing beta-cells despite normal cell death and autoimmune attacks. To manage complexity in the design process, we employ principles of logic abstraction and modularity and investigate their limits in biological networks. In this work, we find factors often associated with robustness (e.g., multicellular synchronization and noise attenuation) to be actually detrimental, and overcome these problems by engineering genetic modules that generate beneficial population heterogeneity. A combination of computational methods elucidates how these modules function to enhance robust control, and provides guidance for experimental implementation.
Collapse
Affiliation(s)
- Miles Miller
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Marc Hafner
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Eduardo Sontag
- Department of Mathematics, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Noah Davidsohn
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Sairam Subramanian
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Priscilla E. M. Purnick
- Department of Gene and Cell Medicine, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Douglas Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
23
|
Hainaut M, Sagnier T, Berenger H, Pradel J, Graba Y, Miotto B. The MYST-containing protein Chameau is required for proper sensory organ specification during Drosophila thorax morphogenesis. PLoS One 2012; 7:e32882. [PMID: 22412942 PMCID: PMC3295779 DOI: 10.1371/journal.pone.0032882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 02/04/2012] [Indexed: 12/15/2022] Open
Abstract
The adult thorax of Drosophila melanogaster is covered by a stereotyped pattern of mechanosensory bristles called macrochaetes. Here, we report that the MYST containing protein Chameau (Chm) contributes to the establishment of this pattern in the most dorsal part of the thorax. Chm mutant pupae present extra-dorsocentral (DC) and scutellar (SC) macrochaetes, but a normal number of the other macrochaetes. We provide evidences that chm restricts the singling out of sensory organ precursors from proneural clusters and genetically interacts with transcriptional regulators involved in the regulation of achaete and scute in the DC and SC proneural cluster. This function of chm likely relies on chromatin structure regulation since a protein with a mutation in the conserved catalytic site fails to rescue the formation of supernumerary DC and SC bristles in chm mutant flies. This is further supported by the finding that mutations in genes encoding chromatin modifiers and remodeling factors, including Polycomb group (PcG) and Trithorax group (TrxG) members, dominantly modulate the penetrance of chm extra bristle phenotype. These data support a critical role for chromatin structure modulation in the establishment of the stereotyped sensory bristle pattern in the fly thorax.
Collapse
Affiliation(s)
- Matthieu Hainaut
- Institut de Biologie du Développement de Marseille-Luminy, CNRS UMR6216/Université de la Méditerranée, Marseille, France
| | - Thierry Sagnier
- Institut de Biologie du Développement de Marseille-Luminy, CNRS UMR6216/Université de la Méditerranée, Marseille, France
| | - Hélène Berenger
- Institut de Biologie du Développement de Marseille-Luminy, CNRS UMR6216/Université de la Méditerranée, Marseille, France
| | - Jacques Pradel
- Institut de Biologie du Développement de Marseille-Luminy, CNRS UMR6216/Université de la Méditerranée, Marseille, France
| | - Yacine Graba
- Institut de Biologie du Développement de Marseille-Luminy, CNRS UMR6216/Université de la Méditerranée, Marseille, France
- * E-mail: (YG); (BM)
| | - Benoit Miotto
- Institut de Biologie du Développement de Marseille-Luminy, CNRS UMR6216/Université de la Méditerranée, Marseille, France
- * E-mail: (YG); (BM)
| |
Collapse
|
24
|
Economou AD, Ohazama A, Porntaveetus T, Sharpe PT, Kondo S, Basson MA, Gritli-Linde A, Cobourne MT, Green JBA. Periodic stripe formation by a Turing mechanism operating at growth zones in the mammalian palate. Nat Genet 2012; 44:348-51. [PMID: 22344222 PMCID: PMC3303118 DOI: 10.1038/ng.1090] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 12/29/2011] [Indexed: 01/31/2023]
Abstract
We present direct evidence of an activator-inhibitor system in the generation of the regularly spaced transverse ridges of the palate. We show that new ridges, or rugae, marked by stripes of Sonic hedgehog (Shh) expression, appear at two growth zones where the space between previously laid-down rugae increases. However, inter-rugal growth is not absolutely required: new stripes still appear when growth is inhibited. Furthermore, when a ruga is excised new Shh expression appears, not at the cut edge but as bifurcating stripes branching from the neighbouring Shh stripe, diagnostic of a Turing-type reaction-diffusion mechanism. Genetic and inhibitor experiments identify Fibroblast Growth Factor (FGF) and Shh as an activator-inhibitor pair in this system. These findings demonstrate a reaction-diffusion mechanism likely to be widely relevant in vertebrate development.
Collapse
|
25
|
Hopf C, Viebahn C, Püschel B. BMP signals and the transcriptional repressor BLIMP1 during germline segregation in the mammalian embryo. Dev Genes Evol 2011; 221:209-23. [PMID: 21881976 PMCID: PMC3192270 DOI: 10.1007/s00427-011-0373-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 07/28/2011] [Indexed: 11/26/2022]
Abstract
Molecular factors and tissue compartments involved in the foundation of the mammalian germline have been mainly described in the mouse so far. To find mechanisms applicable to mammals in general, we analyzed temporal and spatial expression patterns of the transcriptional repressor BLIMP1 (also known as PRDM1) and the signaling molecules BMP2 and BMP4 in perigastrulation and early neurulation embryos of the rabbit using whole-mount in situ hybridization and high-resolution light microscopy. Both BMP2 and BMP4 are expressed in annular domains at the boundary of the embryonic disc, which—in contrast to the situation in the mouse—partly belong to intraembryonic tissues. While BMP2 expression begins at (pregastrulation) stage 1 in the hypoblast, BMP4 expression commences—distinctly delayed compared to the mouse—diffusely at (pregastrulation) stage 2; from stage 3 onwards, BMP4 is expressed peripherally in hypoblast and epiblast and in the mesoderm at the posterior pole of the embryonic disc. BLIMP1 expression begins throughout the hypoblast at stage 1 and emerges in single primordial germ cell (PGC) precursors in the posterior epiblast at stage 2 and then in single mesoderm cells at positions identical to those identified by PGC-specific antibodies. These expression patterns suggest that function and chronology of factors involved in germline segregation are similar in mouse and rabbit, but higher temporal and spatial resolution offered by the rabbit demonstrates a variable role of bone morphogenetic proteins and makes “blimping” a candidate case for lateral inhibition without the need for an allantoic germ cell niche.
Collapse
Affiliation(s)
- Clas Hopf
- Department of Anatomy and Embryology, Center of Anatomy, Georg-August-University Göttingen, Kreuzbergring 36, 37075 Göttingen, Germany
| | - Christoph Viebahn
- Department of Anatomy and Embryology, Center of Anatomy, Georg-August-University Göttingen, Kreuzbergring 36, 37075 Göttingen, Germany
| | - Bernd Püschel
- Department of Anatomy and Embryology, Center of Anatomy, Georg-August-University Göttingen, Kreuzbergring 36, 37075 Göttingen, Germany
| |
Collapse
|
26
|
Abstract
Notch is a crucial cell signaling pathway in metazoan development. By means of cell-cell interactions, Notch signaling regulates cellular identity, proliferation, differentiation and apoptosis. Within the last decade, numerous studies have shown an important role for this pathway in the development and homeostasis of mammalian stem cell populations. Hematopoietic stem cells (HSCs) constitute a well-defined population that shows self-renewal and multi-lineage differentiation potential, with the clinically relevant capacity to repopulate the hematopoietic system of an adult organism. Here, we review the emergence, development and maintenance of HSCs during mammalian embryogenesis and adulthood, with respect to the role of Notch signaling in hematopoietic biology.
Collapse
|