1
|
Chen X, Peng Y, Liu XS. DNA Methylation in Long-Term Memory. Physiology (Bethesda) 2025; 40:0. [PMID: 39907057 DOI: 10.1152/physiol.00032.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/06/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025] Open
Abstract
Understanding the neural mechanisms of memory has been one of the key questions in biology. Long-term memory, specifically, allows one to travel mentally without constraints of time and space. A long-term memory must have gone through a series of temporal processes: encoding, consolidation, storage, and retrieval. Decades of studies have revealed cellular and molecular mechanisms underlying each process. In this article, we first review the emerging concept of memory engrams and technologies of engram labeling, as these methods provide a new avenue to study the molecular mechanisms for memory. Then, we focus on DNA methylation and its role in long-term memory. Finally, we discuss some key remaining questions in this field and their implications in memory-related disease.
Collapse
Affiliation(s)
- Xinyue Chen
- Department of Neuroscience, Columbia University, New York, New York, United States
- Department of Pathology and Cell Biology, Columbia University Medical Center, Columbia University, New York, New York, United States
- Department of Neurology, Columbia University Medical Center, Columbia University, New York, New York, United States
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, Columbia University, New York, New York, United States
| | - Yueqing Peng
- Department of Pathology and Cell Biology, Columbia University Medical Center, Columbia University, New York, New York, United States
- Department of Neurology, Columbia University Medical Center, Columbia University, New York, New York, United States
| | - X Shawn Liu
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, Columbia University, New York, New York, United States
| |
Collapse
|
2
|
Zheng X, Ma R, He E, Peng X, Ma W, Zhang X, Li Y, Li H, Li Y, Gong Z. Study on the Role of Dnmt3a Expression in the Dentate Gyrus of the Hippocampus in Reward Memory. ALPHA PSYCHIATRY 2024; 25:641-647. [PMID: 39553491 PMCID: PMC11562246 DOI: 10.5152/alphapsychiatry.2024.241602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/15/2024] [Indexed: 11/19/2024]
Abstract
Objective Emotional memory has been associated with many psychiatric diseases. Understanding emotional memory could be beneficial in comprehending and discovering new therapies for diseases related to emotional memory, such as depression and post-traumatic stress disorder (PTSD). Our previous study revealed that Dnmt3a expression in the dentate gyrus (DG) contributes to fear memory. However, is there a correlation between Dnmt3a expression in the DG and reward memory? This study aims to explore the relationship between Dnmt3a expression and reward memory. Methods We induced fear memory (Fear group) or reward memory (Reward group) using fear conditioning and social interaction in females, respectively. We then measured the expression levels of Dnmt3a and c-fos after the retrieval of different types of memory. Additionally, we used a recombinant Adeno-Associated Virus (rAAV) to overexpress Dnmt3a in the DG and conducted conditioned place preference (CPP) tests to assess changes in reward memory. Results We observed a significant increase in Dnmt3a and c-fos expression in the Fear group compared with the Reward group. Overexpression of Dnmt3a in the DG led to an increase in time spent in the white box during CPP tests. Conclusion Dnmt3a expression levels varied after the retrieval of fear or reward memory, and overexpression of Dnmt3a in the DG enhanced reward memory. These findings suggest that Dnmt3a expression in the DG plays a role in reward memory.
Collapse
Affiliation(s)
- Xiaoye Zheng
- Department of Human Anatomy, Dali University School of Medicine, Dali, China
| | - Ruixue Ma
- Department of Human Anatomy, Dali University School of Medicine, Dali, China
| | - Ershu He
- Department of Human Anatomy, Dali University School of Medicine, Dali, China
| | - Xin Peng
- Department of Human Anatomy, Dali University School of Medicine, Dali, China
| | - Wenhao Ma
- Department of Human Anatomy, Dali University School of Medicine, Dali, China
| | - Xueyan Zhang
- Department of Human Anatomy, Dali University School of Medicine, Dali, China
| | - Ying Li
- Department of Human Anatomy, Dali University School of Medicine, Dali, China
| | - Hanwei Li
- Department of Human Anatomy, Dali University School of Medicine, Dali, China
| | - Yanjiao Li
- Department of Human Anatomy, Dali University School of Medicine, Dali, China
| | - Zhiting Gong
- Department of Human Anatomy, Dali University School of Medicine, Dali, China
| |
Collapse
|
3
|
Wei X, Li J, Cheng Z, Wei S, Yu G, Olsen ML. Decoding the Epigenetic Landscape: Insights into 5mC and 5hmC Patterns in Mouse Cortical Cell Types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602342. [PMID: 39026756 PMCID: PMC11257419 DOI: 10.1101/2024.07.06.602342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The DNA modifications, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), represent powerful epigenetic regulators of temporal and spatial gene expression. Yet, how the cooperation of these genome-wide, epigenetic marks determine unique transcriptional signatures across different brain cell populations is unclear. Here we applied Nanopore sequencing of native DNA to obtain a complete, genome-wide, single-base resolution atlas of 5mC and 5hmC modifications in neurons, astrocytes and microglia in the mouse cortex (99% genome coverage, 40 million CpG sites). In tandem with RNA sequencing, analysis of 5mC and 5hmC patterns across cell types reveals astrocytes drive uniquely high brain 5hmC levels and support two decades of research regarding methylation patterns, gene expression and alternative splicing, benchmarking this resource. As such, we provide the most comprehensive DNA methylation data in mouse brain as an interactive, online tool (NAM-Me, https://olsenlab.shinyapps.io/NAMME/) to serve as a resource dataset for those interested in the methylome landscape.
Collapse
Affiliation(s)
- Xiaoran Wei
- Biomedical and Veterinary Sciences Graduate Program, Virginia Tech, Blacksburg, VA, the United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, the United States
| | - Jiangtao Li
- School of Neuroscience, Virginia Tech, Blacksburg, VA, the United States
- Genetics, Bioinformatics and Computational Biology Graduate Program, Virginia Tech, Blacksburg, VA, the United States
| | - Zuolin Cheng
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, the United States
| | - Songtao Wei
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, the United States
| | - Guoqiang Yu
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, the United States
| | - Michelle L Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, VA, the United States
| |
Collapse
|
4
|
Martinez-Feduchi P, Jin P, Yao B. Epigenetic modifications of DNA and RNA in Alzheimer's disease. Front Mol Neurosci 2024; 17:1398026. [PMID: 38726308 PMCID: PMC11079283 DOI: 10.3389/fnmol.2024.1398026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder and the most common form of dementia. There are two main types of AD: familial and sporadic. Familial AD is linked to mutations in amyloid precursor protein (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2). On the other hand, sporadic AD is the more common form of the disease and has genetic, epigenetic, and environmental components that influence disease onset and progression. Investigating the epigenetic mechanisms associated with AD is essential for increasing understanding of pathology and identifying biomarkers for diagnosis and treatment. Chemical covalent modifications on DNA and RNA can epigenetically regulate gene expression at transcriptional and post-transcriptional levels and play protective or pathological roles in AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
5
|
Koesters AG, Rich MM, Engisch KL. Diverging from the Norm: Reevaluating What Miniature Excitatory Postsynaptic Currents Tell Us about Homeostatic Synaptic Plasticity. Neuroscientist 2024; 30:49-70. [PMID: 35904350 DOI: 10.1177/10738584221112336] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The idea that the nervous system maintains a set point of network activity and homeostatically returns to that set point in the face of dramatic disruption-during development, after injury, in pathologic states, and during sleep/wake cycles-is rapidly becoming accepted as a key plasticity behavior, placing it alongside long-term potentiation and depression. The dramatic growth in studies of homeostatic synaptic plasticity of miniature excitatory synaptic currents (mEPSCs) is attributable, in part, to the simple yet elegant mechanism of uniform multiplicative scaling proposed by Turrigiano and colleagues: that neurons sense their own activity and globally multiply the strength of every synapse by a single factor to return activity to the set point without altering established differences in synaptic weights. We have recently shown that for mEPSCs recorded from control and activity-blocked cultures of mouse cortical neurons, the synaptic scaling factor is not uniform but is close to 1 for the smallest mEPSC amplitudes and progressively increases as mEPSC amplitudes increase, which we term divergent scaling. Using insights gained from simulating uniform multiplicative scaling, we review evidence from published studies and conclude that divergent synaptic scaling is the norm rather than the exception. This conclusion has implications for hypotheses about the molecular mechanisms underlying synaptic scaling.
Collapse
Affiliation(s)
- Andrew G Koesters
- Department of Behavior, Cognition, and Neurophysiology, Environmental Health Effects Laboratory, Naval Medical Research Unit-Dayton, Wright-Patterson AFB, OH, USA
| | - Mark M Rich
- Department of Neuroscience, Cell Biology, and Physiology, College of Science and Mathematics, and Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Kathrin L Engisch
- Department of Neuroscience, Cell Biology, and Physiology, College of Science and Mathematics, and Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
6
|
Gebicke-Haerter PJ. The computational power of the human brain. Front Cell Neurosci 2023; 17:1220030. [PMID: 37608987 PMCID: PMC10441807 DOI: 10.3389/fncel.2023.1220030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 08/24/2023] Open
Abstract
At the end of the 20th century, analog systems in computer science have been widely replaced by digital systems due to their higher computing power. Nevertheless, the question keeps being intriguing until now: is the brain analog or digital? Initially, the latter has been favored, considering it as a Turing machine that works like a digital computer. However, more recently, digital and analog processes have been combined to implant human behavior in robots, endowing them with artificial intelligence (AI). Therefore, we think it is timely to compare mathematical models with the biology of computation in the brain. To this end, digital and analog processes clearly identified in cellular and molecular interactions in the Central Nervous System are highlighted. But above that, we try to pinpoint reasons distinguishing in silico computation from salient features of biological computation. First, genuinely analog information processing has been observed in electrical synapses and through gap junctions, the latter both in neurons and astrocytes. Apparently opposed to that, neuronal action potentials (APs) or spikes represent clearly digital events, like the yes/no or 1/0 of a Turing machine. However, spikes are rarely uniform, but can vary in amplitude and widths, which has significant, differential effects on transmitter release at the presynaptic terminal, where notwithstanding the quantal (vesicular) release itself is digital. Conversely, at the dendritic site of the postsynaptic neuron, there are numerous analog events of computation. Moreover, synaptic transmission of information is not only neuronal, but heavily influenced by astrocytes tightly ensheathing the majority of synapses in brain (tripartite synapse). At least at this point, LTP and LTD modifying synaptic plasticity and believed to induce short and long-term memory processes including consolidation (equivalent to RAM and ROM in electronic devices) have to be discussed. The present knowledge of how the brain stores and retrieves memories includes a variety of options (e.g., neuronal network oscillations, engram cells, astrocytic syncytium). Also epigenetic features play crucial roles in memory formation and its consolidation, which necessarily guides to molecular events like gene transcription and translation. In conclusion, brain computation is not only digital or analog, or a combination of both, but encompasses features in parallel, and of higher orders of complexity.
Collapse
Affiliation(s)
- Peter J. Gebicke-Haerter
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
7
|
Wu T, Cai W, Chen X. Epigenetic regulation of neurotransmitter signaling in neurological disorders. Neurobiol Dis 2023; 184:106232. [PMID: 37479091 DOI: 10.1016/j.nbd.2023.106232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023] Open
Abstract
Neurotransmission signaling is a highly conserved system attributed to various regulatory events. The excitatory and inhibitory neurotransmitter systems have been extensively studied, and their role in neuronal cell proliferation, synaptogenesis and dendrite formation in the adult brain is well established. Recent research has shown that epigenetic regulation plays a crucial role in mediating the expression of key genes associated with neurotransmitter pathways, including neurotransmitter receptor and transporter genes. The dysregulation of these genes has been linked to a range of neurological disorders such as attention-deficit/hyperactivity disorder, Parkinson's disease and schizophrenia. This article focuses on epigenetic regulatory mechanisms that control the expression of genes associated with four major chemical carriers in the brain: dopamine (DA), Gamma-aminobutyric acid (GABA), glutamate and serotonin. Additionally, we explore how aberrant epigenetic regulation of these genes can contribute to the pathogenesis of relevant neurological disorders. By targeting the epigenetic mechanisms that control neurotransmitter gene expression, there is a promising opportunity to advance the development of more effective treatments for neurological disorders with the potential to significantly improve the quality of life of individuals impacted by these conditions.
Collapse
Affiliation(s)
- Tingyan Wu
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Weili Cai
- School of Medical Technology, Jiangsu College of Nursing, Huai'an 22305, China.
| | - Xi Chen
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| |
Collapse
|
8
|
Fodder K, Murthy M, Rizzu P, Toomey CE, Hasan R, Humphrey J, Raj T, Lunnon K, Mill J, Heutink P, Lashley T, Bettencourt C. Brain DNA methylomic analysis of frontotemporal lobar degeneration reveals OTUD4 in shared dysregulated signatures across pathological subtypes. Acta Neuropathol 2023; 146:77-95. [PMID: 37149835 PMCID: PMC10261190 DOI: 10.1007/s00401-023-02583-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Frontotemporal lobar degeneration (FTLD) is an umbrella term describing the neuropathology of a clinically, genetically and pathologically heterogeneous group of diseases, including frontotemporal dementia (FTD) and progressive supranuclear palsy (PSP). Among the major FTLD pathological subgroups, FTLD with TDP-43 positive inclusions (FTLD-TDP) and FTLD with tau-positive inclusions (FTLD-tau) are the most common, representing about 90% of the cases. Although alterations in DNA methylation have been consistently associated with neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease, little is known for FTLD and its heterogeneous subgroups and subtypes. The main goal of this study was to investigate DNA methylation variation in FTLD-TDP and FTLD-tau. We used frontal cortex genome-wide DNA methylation profiles from three FTLD cohorts (142 FTLD cases and 92 controls), generated using the Illumina 450K or EPIC microarrays. We performed epigenome-wide association studies (EWAS) for each cohort followed by meta-analysis to identify shared differentially methylated loci across FTLD subgroups/subtypes. In addition, we used weighted gene correlation network analysis to identify co-methylation signatures associated with FTLD and other disease-related traits. Wherever possible, we also incorporated relevant gene/protein expression data. After accounting for a conservative Bonferroni multiple testing correction, the EWAS meta-analysis revealed two differentially methylated loci in FTLD, one annotated to OTUD4 (5'UTR-shore) and the other to NFATC1 (gene body-island). Of these loci, OTUD4 showed consistent upregulation of mRNA and protein expression in FTLD. In addition, in the three independent co-methylation networks, OTUD4-containing modules were enriched for EWAS meta-analysis top loci and were strongly associated with the FTLD status. These co-methylation modules were enriched for genes implicated in the ubiquitin system, RNA/stress granule formation and glutamatergic synaptic signalling. Altogether, our findings identified novel FTLD-associated loci, and support a role for DNA methylation as a mechanism involved in the dysregulation of biological processes relevant to FTLD, highlighting novel potential avenues for therapeutic development.
Collapse
Affiliation(s)
- Katherine Fodder
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Megha Murthy
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Patrizia Rizzu
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Christina E Toomey
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Rahat Hasan
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jack Humphrey
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Towfique Raj
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katie Lunnon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Jonathan Mill
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Alector, Inc., South San Francisco, CA, USA
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Conceição Bettencourt
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
9
|
Sapozhnikov DM, Szyf M. Increasing Specificity of Targeted DNA Methylation Editing by Non-Enzymatic CRISPR/dCas9-Based Steric Hindrance. Biomedicines 2023; 11:biomedicines11051238. [PMID: 37238909 DOI: 10.3390/biomedicines11051238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
As advances in genome engineering inch the technology towards wider clinical use-slowed by technical and ethical hurdles-a newer offshoot, termed "epigenome engineering", offers the ability to correct disease-causing changes in the DNA without changing its sequence and, thus, without some of the unfavorable correlates of doing so. In this review, we note some of the shortcomings of epigenetic editing technology-specifically the risks involved in the introduction of epigenetic enzymes-and highlight an alternative epigenetic editing strategy using physical occlusion to modify epigenetic marks at target sites without a requirement for any epigenetic enzyme. This may prove to be a safer alternative for more specific epigenetic editing.
Collapse
Affiliation(s)
- Daniel M Sapozhnikov
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
10
|
Wang Y, Lin J, Li J, Yan L, Li W, He X, Ma H. Chronic Neuronal Inactivity Utilizes the mTOR-TFEB Pathway to Drive Transcription-Dependent Autophagy for Homeostatic Up-Scaling. J Neurosci 2023; 43:2631-2652. [PMID: 36868861 PMCID: PMC10089247 DOI: 10.1523/jneurosci.0146-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Activity-dependent changes in protein expression are critical for neuronal plasticity, a fundamental process for the processing and storage of information in the brain. Among the various forms of plasticity, homeostatic synaptic up-scaling is unique in that it is induced primarily by neuronal inactivity. However, precisely how the turnover of synaptic proteins occurs in this homeostatic process remains unclear. Here, we report that chronically inhibiting neuronal activity in primary cortical neurons prepared from embryonic day (E)18 Sprague Dawley rats (both sexes) induces autophagy, thereby regulating key synaptic proteins for up-scaling. Mechanistically, chronic neuronal inactivity causes dephosphorylation of ERK and mTOR, which induces transcription factor EB (TFEB)-mediated cytonuclear signaling and drives transcription-dependent autophagy to regulate αCaMKII and PSD95 during synaptic up-scaling. Together, these findings suggest that mTOR-dependent autophagy, which is often triggered by metabolic stressors such as starvation, is recruited and sustained during neuronal inactivity to maintain synaptic homeostasis, a process that ensures proper brain function and if impaired can cause neuropsychiatric disorders such as autism.SIGNIFICANCE STATEMENT In the mammalian brain, protein turnover is tightly controlled by neuronal activation to ensure key neuronal functions during long-lasting synaptic plasticity. However, a long-standing question is how this process occurs during synaptic up-scaling, a process that requires protein turnover but is induced by neuronal inactivation. Here, we report that mTOR-dependent signaling, which is often triggered by metabolic stressors such as starvation, is "hijacked" by chronic neuronal inactivation, which then serves as a nucleation point for transcription factor EB (TFEB) cytonuclear signaling that drives transcription-dependent autophagy for up-scaling. These results provide the first evidence of a physiological role of mTOR-dependent autophagy in enduing neuronal plasticity, thereby connecting major themes in cell biology and neuroscience via a servo loop that mediates autoregulation in the brain.
Collapse
Affiliation(s)
- Yang Wang
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China
- National Health Commission of the PRC (NHC) and Chinese Academy of Medical Sciences (CAMS) Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Jingran Lin
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China
- National Health Commission of the PRC (NHC) and Chinese Academy of Medical Sciences (CAMS) Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Jiarui Li
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China
- National Health Commission of the PRC (NHC) and Chinese Academy of Medical Sciences (CAMS) Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Lu Yan
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China
- National Health Commission of the PRC (NHC) and Chinese Academy of Medical Sciences (CAMS) Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Wenwen Li
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China
- National Health Commission of the PRC (NHC) and Chinese Academy of Medical Sciences (CAMS) Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Xingzhi He
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China
- National Health Commission of the PRC (NHC) and Chinese Academy of Medical Sciences (CAMS) Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Huan Ma
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China
- National Health Commission of the PRC (NHC) and Chinese Academy of Medical Sciences (CAMS) Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
- Research Units for Emotion and Emotion disorders, Chinese Academy of Medical Sciences, Beijing 100050, China
| |
Collapse
|
11
|
Zhao T, Piao LH, Li DP, Xu SH, Wang SY, Yuan HB, Zhang CX. BDNF gene hydroxymethylation in hippocampus related to neuroinflammation-induced depression-like behaviors in mice. J Affect Disord 2023; 323:723-730. [PMID: 36529411 DOI: 10.1016/j.jad.2022.12.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/31/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Neuroinflammation is a multifactorial condition related to glial cells and neurons activation, and it is implicated in CNS disorders including depression. BDNF is a crucial molecule that related to the pathology of depression, and it is the target of DNA methylation. DNA hydroxymethylation, an active demethylation process can convert 5-mC to 5-hmC by Tets catalyzation to regulate gene transcription. The regulatory function for BDNF gene in response to neuroinflammation remains poorly understood. METHODS Neuroinflammation and depressive-like behaviors were induced by lipopolysaccharide (LPS) administration in mice. The microglial activation and cellular 5-hmC localization in the hippocampus were confirmed by immunostaining. The transcripts of Tets and BDNF were examined by qPCR method. The global 5-hmC levels and enrichment of 5-hmC in BDNF gene in the hippocampus were analyzed using dot bolt and hMeDIP-sequencing analysis. RESULTS LPS administration induced a spectrum of depression-like behaviors (including behavioral despair and anhedonia) and increased expression of Iba-1, a marker for microglia activation, in hippocampus, demonstrating that LPS treatment cloud provide stable model of neuroinflammation with depressive-like behaviors as expected. Our results showed that Tet1, Tet2 and Tet3 mRNA expressions and consequent global 5-hmC levels were significantly decreased in the hippocampus of LPS group compared to saline group. We also demonstrated that 5-hmC fluorescence in the hippocampus located in excitatory neurons identified by CaMK II immunostaining. Furthermore, we demonstrated that the enrichment of 5-hmC in BDNF gene was decreased and corresponding BDNF mRNA was down-regulated in the hippocampus in LPS group compared to saline group. CONCLUSION Neuroinflammation-triggered aberrant BDNF gene hydroxymethylation in the hippocampus is an important epigenetic element that relates with depression-like behaviors.
Collapse
Affiliation(s)
- Te Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Lian-Hua Piao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Dan-Ping Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Shi-Han Xu
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Shu-Yi Wang
- The Second Bethune Clinical Medical College of Jilin University, Changchun, Jilin 130021, China
| | - Hai-Bo Yuan
- Department of Respiratory Medicine & Sleep Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Chun-Xiao Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
12
|
Solntseva SV, Nikitin VP, Kozyrev SA, Nikitin PV. DNA methylation inhibition participates in the anterograde amnesia key mechanism through the suppression of the transcription of genes involved in memory formation in grape snails. Behav Brain Res 2023; 437:114118. [PMID: 36116736 DOI: 10.1016/j.bbr.2022.114118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
The study of the amnesia mechanisms is of both theoretical and practical importance. The mechanisms of anterograde amnesia are the least studied, due to the lack of an experimental model that allows studying this amnesia type molecular and cellular mechanisms. Previously, we found that conditional food aversion memory reconsolidation impairment in snails by NMDA glutamate receptor antagonists led to the amnesia induction, in the late stages of which (>10 days) repeated training did not cause long-term memory formation. In the same animals, long-term memory aversion to a new food type was formed. We characterized this amnesia as specific anterograde amnesia. In the present work we studied the role of epigenetic DNA methylation processes as well as protein and mRNA synthesis in the mechanisms of anterograde amnesia and memory recovery. DNMT methyltransferase inhibitors (iDNMT: zebularine, RG108 (N-Phthalyl-1-tryptophan), and 5-AZA (5-Aza-2'-deoxycytidine)) were used to alter DNA methylation. It was found that in amnesic animals the iDNMT administration before or after shortened repeated training led to the rapid long-term conditional food aversion formation (Ebbinghaus saving effect). This result suggests that amnestic animals retain a latent memory, which is the basis for accelerated memory formation during repeated training. Protein synthesis inhibitors administration (cycloheximide) before or immediately after repeated training or administration of RNA synthesis inhibitor (actinomycin D) after repeated training prevented memory formation under iDNMT action. The earlier protein synthesis inhibitor effect suggests that the proteins required for memory formation are translated from the pre-existing, translationally repressed mRNAs. Thus, we have shown for the first time that the anterograde amnesia key mechanism is DNMT-dependent suppression of the transcription of genes involved in memory mechanisms. Inhibition of DNMT during repeated training reversed these genes expression blockade, opening access to them by transcription factors synthesized during training from the pre-existing mRNAs.
Collapse
Affiliation(s)
- S V Solntseva
- Laboratory of Functional Neurochemistry, P.K. Anokhin Institute of Normal Physiology, Moscow 125315, Russia.
| | - V P Nikitin
- Laboratory of Functional Neurochemistry, P.K. Anokhin Institute of Normal Physiology, Moscow 125315, Russia.
| | - S A Kozyrev
- Laboratory of Functional Neurochemistry, P.K. Anokhin Institute of Normal Physiology, Moscow 125315, Russia.
| | - P V Nikitin
- Laboratory of Functional Neurochemistry, P.K. Anokhin Institute of Normal Physiology, Moscow 125315, Russia.
| |
Collapse
|
13
|
Poon CH, Liu Y, Pak S, Zhao RC, Aquili L, Tipoe GL, Leung GKK, Chan YS, Yang S, Fung ML, Wu EX, Lim LW. Prelimbic Cortical Stimulation with L-methionine Enhances Cognition through Hippocampal DNA Methylation and Neuroplasticity Mechanisms. Aging Dis 2023; 14:112-135. [PMID: 36818556 PMCID: PMC9937711 DOI: 10.14336/ad.2022.0706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
Declining global DNA methylation and cognitive impairment are reported to occur in the normal aging process. It is not known if DNA methylation plays a role in the efficacy of memory-enhancing therapies. In this study, aged animals were administered prelimbic cortical deep brain stimulation (PrL DBS) and/or L-methionine (MET) treatment. We found that PrL DBS and MET (MET-PrL DBS) co-administration resulted in hippocampal-dependent spatial memory enhancements in aged animals. Molecular data suggested MET-PrL DBS induced DNA methyltransferase DNMT3a-dependent methylation, robust synergistic upregulation of neuroplasticity-related genes, and simultaneous inhibition of the memory-suppressing gene calcineurin in the hippocampus. We further found that MET-PrL DBS also activated the PKA-CaMKIIα-BDNF pathway, increased hippocampal neurogenesis, and enhanced dopaminergic and serotonergic neurotransmission. We next inhibited the activity of DNA methyltransferase (DNMT) by RG108 infusion in the hippocampus of young animals to establish a causal relationship between DNMT activity and the effects of PrL DBS. Hippocampal DNMT inhibition in young animals was sufficient to recapitulate the behavioral deficits observed in aged animals and abolished the memory-enhancing and molecular effects of PrL DBS. Our findings implicate hippocampal DNMT as a therapeutic target for PrL DBS and pave way for the potential use of non-invasive neuromodulation modalities against dementia.
Collapse
Affiliation(s)
- Chi Him Poon
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Yanzhi Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Sojeong Pak
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong, China.
| | | | - Luca Aquili
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,College of Science, Health, Engineering and Education, Discipline of Psychology, Murdoch University, Perth, Australia.
| | - George Lim Tipoe
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Gilberto Ka-Kit Leung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Sungchil Yang
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong, China.
| | - Man-Lung Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Ed Xuekui Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China.
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Correspondence should be addressed to: Dr. Lee Wei LIM, Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China. .
| |
Collapse
|
14
|
Wang X, Jiang L, Ma W, Zheng X, He E, Zhang B, Vashisth MK, Gong Z. Maternal separation affects Anxiety like behavior begin in adolescence continue through adulthood and related to Dnmt3a expression. J Neurophysiol 2022; 128:611-618. [PMID: 35946792 DOI: 10.1152/jn.00247.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Early life stress, including maternal separation, is among one of the main causes of anxiety in adolescents. DNA methyltransferase 3A (Dnmt3a) is a key molecule that regulates DNA methylation and is found to be associated with anxiety-like behavior. It is not clear whether maternal separation affects anxiety levels in mice at different developmental stages, or whether Dnmt3a plays a role in this process. Here, by using open field test to exploring the effect of maternal separation on anxiety-like behavior in mice of different age, it was found that maternal separation could successfully induce anxiety-like behavior in adolescent mice, and which continued through adulthood. By using western blot, we found the levels of Dnmt3a in the hippocampus and cortex have shown different trends in maternal separation mice on P17. Further, by using immunostaining, we have found that the expression levels of Dnmt3a in the cortex and hippocampus were significantly different, and decreased to varying degrees with the age of mice, which being the reason for different trends. Our results provide an experimental basis for further development of anxiety/depression treatment programs more suitable for adolescence.
Collapse
Affiliation(s)
- Xiaobing Wang
- Department of Anatomy, College of Preclinical Medicine, Dali University, Dali, China
| | - Le Jiang
- Department of Anatomy, College of Preclinical Medicine, Dali University, Dali, China
| | - Wenhao Ma
- Department of Anatomy, College of Preclinical Medicine, Dali University, Dali, China
| | - Xiaoye Zheng
- Department of Anatomy, College of Preclinical Medicine, Dali University, Dali, China
| | - Ershu He
- Department of Anatomy, College of Preclinical Medicine, Dali University, Dali, China
| | - Bensi Zhang
- Department of Anatomy, College of Preclinical Medicine, Dali University, Dali, China
| | - Manoj Kumar Vashisth
- Department of Anatomy, College of Preclinical Medicine, Dali University, Dali, China
| | - Zhiting Gong
- Department of Anatomy, College of Preclinical Medicine, Dali University, Dali, China
| |
Collapse
|
15
|
Lv Y, Zhang C, Jian H, Lou Y, Kang Y, Deng W, Wang C, Wang W, Shang S, Hou M, Shen W, Xie J, Li X, Zhou H, Feng S. Regulating DNA methylation could reduce neuronal ischemia response and apoptosis after ischemia-reperfusion injury. Gene 2022; 837:146689. [PMID: 35750086 DOI: 10.1016/j.gene.2022.146689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/05/2022] [Accepted: 06/17/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is an important pathophysiological condition that can cause cell injury and large-scale tissue injury in the nervous system. Previous studies have shown that epigenetic regulation may play a role in the pathogenesis of IRI. METHODS In this study, we isolated mouse cortical neurons and constructed an oxygen-glucose deprivation/reoxygenation (OGD) model to explore the change in DNA methylation and its effect on the expression of corresponding genes. RESULTS We found that DNA methylation in neurons increased with hypoxia duration and that hypermethylation of numerous promoters and 3'-untranslated regions increased. We performed Gene Ontology enrichment analysis to study gene function and Kyoto Encyclopedia of Genes and Genomes pathway analysis to identify the pathways associated with gene regulation. The results showed that hypermethylation-related genes expressed after OGD were related to physiological pathways such as neuronal projection, ion transport, growth and development, while hypomethylation-related genes were related to pathological pathways such as the external apoptosis signaling pathway, neuronal death regulation, and regulation of oxidative stress. However, the changes in DNA methylation were specific for certain genes and may have been related to OGD-induced neuronal damage. Importantly, we integrated transcription and DNA methylation data to identify several candidate target genes, including hypomethylated Apoe, Pax6, Bmp4, and Ptch1 and hypermethylated Adora2a, Crhr1, Stxbp1, and Tac1. This study further indicated the effect of DNA methylation on gene function in brain IRI from the perspective of epigenetics, and the identified genes may become new targets for achieving neuroprotection in the brain after IRI.
Collapse
Affiliation(s)
- Yigang Lv
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Chi Zhang
- Department of Orthopaedics, Shandong University Centre for Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Huan Jian
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Yongfu Lou
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Yi Kang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Weimin Deng
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Chaoyu Wang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Wei Wang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Shenghui Shang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Mengfan Hou
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Wenyuan Shen
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Jing Xie
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Xueying Li
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, Tianjin 300070, P.R. China; Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.
| | - Hengxing Zhou
- Department of Orthopaedics, Shandong University Centre for Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China; Department of Orthopaedics, Shandong University Centre for Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.
| |
Collapse
|
16
|
Asada M, Hayashi H, Takagi N. Possible Involvement of DNA Methylation and Protective Effect of Zebularine on Neuronal Cell Death after Glutamate Excitotoxity. Biol Pharm Bull 2022; 45:770-779. [PMID: 35650104 DOI: 10.1248/bpb.b22-00147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neuronal cell death after cerebral ischemia consists various steps including glutamate excitotoxity. Excessive Ca2+ influx through the N-methyl-D-aspartate (NMDA) receptor, which is one of the ionotropic glutamate receptors, plays a central role in neuronal cell death after cerebral ischemia. We previously reported that DNA methylation is transiently increased in neurons during ischemic injury and that this aberrant DNA methylation is accompanied by neuronal cell death. Therefore, we performed the present experiments on glutamate excitotoxicity to gain further insight into DNA methylation involvement in the neuronal cell death. We demonstrated that knockdown of DNA methyltransferase (DNMT)1, DNMT3a, or DNMT3b gene in Neuro2a cells was performed to examine which DNMTs were more important for neuronal cell death after glutamate excitotoxicity. Although we confirmed a decrease in the levels of the target DNMT protein after small interfering RNA (siRNA) transfection, the Neuro2a cells were not protected from injury by transfection with siRNA for each DNMT. We next revealed that the pharmacological inhibitor of DNMTs protected against glutamate excitotoxicity in Neuro2a cells and also in primary cultured cortical neurons. This protective effect was associated with a decrease in the number of 5-methylcytosine (5 mC)-positive cells under glutamate excitotoxicity. In addition, the increased level of cleaved caspase-3 was also reduced by a DNMT inhibitor. Our results suggest the possibility that at least 2 or all DNMTs functionally would cooperate to activate DNA methylation after glutamate excitotoxicity and that inhibition of DNA methylation in neurons after cerebral ischemia might become a strategy to reduce the neuronal injury.
Collapse
Affiliation(s)
- Mayumi Asada
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences
| | - Hideki Hayashi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences
| | - Norio Takagi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
17
|
Inhibitors of DNA Methylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:471-513. [DOI: 10.1007/978-3-031-11454-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Kameda T, Nakashima H, Takizawa T, Miura F, Ito T, Nakashima K, Imamura T. Neuronal activation modulates enhancer activity of genes for excitatory synaptogenesis through de novo DNA methylation. J Reprod Dev 2021; 67:369-379. [PMID: 34615840 PMCID: PMC8668374 DOI: 10.1262/jrd.2021-106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Post-mitotic neurons do exhibit DNA methylation changes, contrary to the longstanding belief that the epigenetic pattern in terminally differentiated cells is essentially unchanged. While
the mechanism and physiological significance of DNA demethylation in neurons have been extensively elucidated, the occurrence of de novo DNA methylation and its impacts have
been much less investigated. In the present study, we showed that neuronal activation induces de novo DNA methylation at enhancer regions, which can repress target genes in
primary cultured hippocampal neurons. The functional significance of this de novo DNA methylation was underpinned by the demonstration that inhibition of DNA
methyltransferase (DNMT) activity decreased neuronal activity-induced excitatory synaptogenesis. Overexpression of WW and C2 domain-containing 1 (Wwc1), a representative
target gene of de novo DNA methylation, could phenocopy this DNMT inhibition-induced decrease in synaptogenesis. We found that both DNMT1 and DNMT3a were required for
neuronal activity-induced de novo DNA methylation of the Wwc1 enhancer. Taken together, we concluded that neuronal activity-induced de novo
DNA methylation that affects gene expression has an impact on neuronal physiology that is comparable to that of DNA demethylation. Since the different requirements of DNMTs for germ cell and
embryonic development are known, our findings also have considerable implications for future studies on epigenomics in the field of reproductive biology.
Collapse
Affiliation(s)
- Tomonori Kameda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
| | - Hideyuki Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takumi Takizawa
- Department of Pediatrics, Graduate School of Medicine, Gunma University, Gunma 371-8511, Japan
| | - Fumihito Miura
- Department of Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Ito
- Department of Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takuya Imamura
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
| |
Collapse
|
19
|
Dick A, Chen A. The role of TET proteins in stress-induced neuroepigenetic and behavioural adaptations. Neurobiol Stress 2021; 15:100352. [PMID: 34189192 PMCID: PMC8220100 DOI: 10.1016/j.ynstr.2021.100352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/21/2021] [Accepted: 06/05/2021] [Indexed: 12/27/2022] Open
Abstract
Over the past decade, critical, non-redundant roles of the ten-eleven translocation (TET) family of dioxygenase enzymes have been identified in the brain during developmental and postnatal stages. Specifically, TET-mediated active demethylation, involving the iterative oxidation of 5-methylcytosine to 5-hydroxymethylcytosine and subsequent oxidative derivatives, is dynamically regulated in response to environmental stimuli such as neuronal activity, learning and memory processes, and stressor exposure. Such changes may therefore perpetuate stable and dynamic transcriptional patterns within neuronal populations required for neuroplasticity and behavioural adaptation. In this review, we will highlight recent evidence supporting a role of TET protein function and active demethylation in stress-induced neuroepigenetic and behavioural adaptations. We further explore potential mechanisms by which TET proteins may mediate both the basal and pathological embedding of stressful life experiences within the brain of relevance to stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Alec Dick
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
- Corresponding author.
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
- The Ruhman Family Laboratory for Research on the Neurobiology of Stress, Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
20
|
DNA Methyltransferase 1 (DNMT1) Shapes Neuronal Activity of Human iPSC-Derived Glutamatergic Cortical Neurons. Int J Mol Sci 2021; 22:ijms22042034. [PMID: 33670788 PMCID: PMC7922860 DOI: 10.3390/ijms22042034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 12/20/2022] Open
Abstract
Epigenetic mechanisms are emerging key players for the regulation of brain function, synaptic activity, and the formation of neuronal engrams in health and disease. As one important epigenetic mechanism of transcriptional control, DNA methylation was reported to distinctively modulate synaptic activity in excitatory and inhibitory cortical neurons in mice. Since DNA methylation signatures are responsive to neuronal activity, DNA methylation seems to contribute to the neuron's capacity to adapt to and integrate changing activity patterns, being crucial for the plasticity and functionality of neuronal circuits. Since most studies addressing the role of DNA methylation in the regulation of synaptic function were conducted in mice or murine neurons, we here asked whether this functional implication applies to human neurons as well. To this end, we performed calcium imaging in human induced pluripotent stem cell (iPSC)-derived excitatory cortical neurons forming synaptic contacts and neuronal networks in vitro. Treatment with DNMT1 siRNA that diminishs the expression of the DNA (cytosine-5)-methyltransferase 1 (DNMT1) was conducted to investigate the functional relevance of DNMT1 as one of the main enzymes executing DNA methylations in the context of neuronal activity modulation. We observed a lowered proportion of actively firing neurons upon DNMT1-knockdown in these iPSC-derived excitatory neurons, pointing to a correlation of DNMT1-activity and synaptic transmission. Thus, our experiments suggest that DNMT1 decreases synaptic activity of human glutamatergic neurons and underline the relevance of epigenetic regulation of synaptic function also in human excitatory neurons.
Collapse
|
21
|
Powers B, Joyce C, Kleinman JE, Hyde TM, Ajilore O, Leow A, Sodhi MS. Sex differences in the transcription of glutamate transporters in major depression and suicide. J Affect Disord 2020; 277:244-252. [PMID: 32836031 DOI: 10.1016/j.jad.2020.07.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 05/29/2020] [Accepted: 07/05/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Accumulating evidence indicates that the glutamate system contributes to the pathophysiology of major depressive disorder (MDD) and suicide. We previously reported higher mRNA expression of glutamate receptors in the dorsolateral prefrontal cortex (DLPFC) of females with MDD. METHODS In the current study, we measured the expression of mRNAs encoding glutamate transporters in the DLPFC of MDD subjects who died by suicide (MDD-S, n = 51), MDD non-suicide subjects (MDD-NS, n = 28), and individuals who did not have a history of neurological illness (CTRL, n = 32). RESULTS Females but not males with MDD showed higher expression of EAATs and VGLUTs relative to CTRLs. VGLUT expression was significantly higher in the female MDD-S group, relative to the other groups. EAAT expression was lower in the male violent suicides. LIMITATIONS This study has limitations common to most human studies, including medication history and demographic differences between the diagnostic groups. We mitigated the effects of confounders by including them as covariates in our analyses. CONCLUSIONS We report sex differences in the expression of glutamate transporter genes in the DLPFC in MDD. Increased neuronal glutamate transporter expression may increase synaptic glutamate, leading to neuronal and glial loss in the DLPFC in MDD. These deficits may lower DLPFC activity, impair problem solving and impair executive function in depression, perhaps increasing vulnerability to suicidal behavior. These data add to accumulating support for the hypothesis that glutamatergic transmission is dysregulated in MDD and suicide. Glutamate transporters may be novel targets for the development of rapidly acting antidepressant therapies.
Collapse
Affiliation(s)
- Brian Powers
- Department of Molecular Pharmacology & Neuroscience, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, United States
| | - Cara Joyce
- Biostatistics Collaborative Core, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Joel E Kleinman
- Lieber Institute for Brain Development and Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Thomas M Hyde
- Lieber Institute for Brain Development and Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, United States
| | - Olusola Ajilore
- Dept. Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Alex Leow
- Dept. Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Monsheel S Sodhi
- Department of Molecular Pharmacology & Neuroscience, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, United States; Dept. Psychiatry, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
22
|
Asada M, Hayashi H, Murakami K, Kikuiri K, Kaneko R, Yuan B, Takagi N. Investigating the Relationship Between Neuronal Cell Death and Early DNA Methylation After Ischemic Injury. Front Neurosci 2020; 14:581915. [PMID: 33177984 PMCID: PMC7591788 DOI: 10.3389/fnins.2020.581915] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/11/2020] [Indexed: 12/18/2022] Open
Abstract
Cerebral ischemia induces neuronal cell death and causes various kinds of brain dysfunction. Therefore, prevention of neuronal cell death is most essential for protection of the brain. On the other hand, it has been reported that epigenetics including DNA methylation plays a pivotal role in pathogenesis of some diseases such as cancer. Accumulating evidences indicate that aberrant DNA methylation is related to cell death. However, DNA methylation after cerebral ischemia has not been fully understood yet. The aim of this present study was to investigate the relationships between DNA methylation and neuronal cell death after cerebral ischemia. We examined DNA methylation under the ischemic condition by using transient middle cerebral artery occlusion and reperfusion (MCAO/R) model rats and N-methyl-D-aspartate (NMDA)–treated cortical neurons in primary culture. In this study, we demonstrated that DNA methylation increased in these neurons 24 h after MCAO/R and that DNA methylation, possibly through activation of DNA methyltransferases (DNMT) 3a, increased in such neurons immediately after NMDA treatment. Furthermore, NMDA-treated neurons were protected by treatment with a DNMT inhibitor that were accompanied by inhibition of DNA methylation. Our results showed that DNA methylation would be an initiation factor of neuronal cell death and that inhibition of such methylation could become an effective therapeutic strategy for stroke.
Collapse
Affiliation(s)
- Mayumi Asada
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Hideki Hayashi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Kenjiro Murakami
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Kento Kikuiri
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Ryotaro Kaneko
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Bo Yuan
- Laboratory of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, School of Pharmacy, Josai University, Sakado, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| |
Collapse
|
23
|
Creighton SD, Stefanelli G, Reda A, Zovkic IB. Epigenetic Mechanisms of Learning and Memory: Implications for Aging. Int J Mol Sci 2020; 21:E6918. [PMID: 32967185 PMCID: PMC7554829 DOI: 10.3390/ijms21186918] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
The neuronal epigenome is highly sensitive to external events and its function is vital for producing stable behavioral outcomes, such as the formation of long-lasting memories. The importance of epigenetic regulation in memory is now well established and growing evidence points to altered epigenome function in the aging brain as a contributing factor to age-related memory decline. In this review, we first summarize the typical role of epigenetic factors in memory processing in a healthy young brain, then discuss the aspects of this system that are altered with aging. There is general agreement that many epigenetic marks are modified with aging, but there are still substantial inconsistencies in the precise nature of these changes and their link with memory decline. Here, we discuss the potential source of age-related changes in the epigenome and their implications for therapeutic intervention in age-related cognitive decline.
Collapse
Affiliation(s)
- Samantha D. Creighton
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; (S.D.C.); (G.S.)
| | - Gilda Stefanelli
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; (S.D.C.); (G.S.)
| | - Anas Reda
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S, Canada;
| | - Iva B. Zovkic
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; (S.D.C.); (G.S.)
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S, Canada;
| |
Collapse
|
24
|
Linde J, Zimmer-Bensch G. DNA Methylation-Dependent Dysregulation of GABAergic Interneuron Functionality in Neuropsychiatric Diseases. Front Neurosci 2020; 14:586133. [PMID: 33041771 PMCID: PMC7525021 DOI: 10.3389/fnins.2020.586133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/25/2020] [Indexed: 12/30/2022] Open
Abstract
Neuropsychiatric diseases, such as mood disorders, schizophrenia, and autism, represent multifactorial disorders, differing in causes, disease onset, severity, and symptoms. A common feature of numerous neuropsychiatric conditions are defects in the cortical inhibitory GABAergic system. The balance of excitation and inhibition is fundamental for proper and efficient information processing in the cerebral cortex. Thus, altered inhibition is suggested to account for pathological symptoms like cognitive impairments and dysfunctional multisensory integration. While it became apparent that most of these diseases have a clear genetic component, environmental influences emerged as an impact of disease manifestation, onset, and severity. Epigenetic mechanisms of transcriptional control, such as DNA methylation, are known to be responsive to external stimuli, and are suspected to be implicated in the functional impairments of GABAergic interneurons, and hence, the pathophysiology of neuropsychiatric diseases. Here, we provide an overview about the multifaceted functional implications of DNA methylation and DNA methyltransferases in cortical interneuron development and function in health and disease. Apart from the regulation of gamma-aminobutyric acid-related genes and genes relevant for interneuron development, we discuss the role of DNA methylation-dependent regulation of synaptic transmission by the modulation of endocytosis-related genes as potential pathophysiological mechanisms underlying neuropsychiatric conditions. Deciphering the hierarchy and mechanisms of changes in epigenetic signatures is crucial to develop effective strategies for treatment and prevention.
Collapse
Affiliation(s)
- Jenice Linde
- Division of Functional Epigenetics in the Animal Model, Institute for Biology II, RWTH Aachen University, Aachen, Germany.,Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, Aachen, Germany
| | - Geraldine Zimmer-Bensch
- Division of Functional Epigenetics in the Animal Model, Institute for Biology II, RWTH Aachen University, Aachen, Germany.,Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
25
|
Schwartz BA, Wang W, Bao S. Pharmacological DNA Demethylation Weakens Inhibitory Synapses in the Auditory Cortex and Re-opens the Critical Period for Frequency Map Plasticity. Neuroscience 2020; 440:239-248. [PMID: 32512139 DOI: 10.1016/j.neuroscience.2020.05.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 10/24/2022]
Abstract
The critical period is a time of maximal plasticity within the cortex. The progression of the critical period is marked by experience-dependent transcriptional alterations in cortical neurons, which in turn shifts the excitatory-inhibitory balance in the brain, and accordingly reduces plasticity. Epigenetic mechanisms, such as DNA methylation, control the transcriptional state of neurons, and have been shown to be dynamically regulated during the critical period. Here we show that adult animals have a significantly higher concentration of DNA methylation than critical period animals. Pharmacological reduction of DNA methylation in adult animals re-establishes critical period auditory map plasticity. Furthermore, the reduction of DNA methylation in adult animals, reverted intrinsic characteristics of inhibitory synapses to an immature state. Our data suggest that accumulation of DNA methylation during the critical period confers a mature phenotype to cortical neurons, which in turn, facilitates the reduction in plasticity seen after the critical period.
Collapse
Affiliation(s)
- Benjamin A Schwartz
- Neuroscience Program, University of Arizona, Tucson, AZ 85724, United States
| | - Weihua Wang
- Departments of Physiology, University of Arizona, Tucson, AZ 85724, United States
| | - Shaowen Bao
- Neuroscience Program, University of Arizona, Tucson, AZ 85724, United States; Departments of Physiology, University of Arizona, Tucson, AZ 85724, United States.
| |
Collapse
|
26
|
Epigenomic Remodeling in Huntington's Disease-Master or Servant? EPIGENOMES 2020; 4:epigenomes4030015. [PMID: 34968288 PMCID: PMC8594700 DOI: 10.3390/epigenomes4030015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/03/2022] Open
Abstract
In light of our aging population, neurodegenerative disorders are becoming a tremendous challenge, that modern societies have to face. They represent incurable, progressive conditions with diverse and complex pathological features, followed by catastrophic occurrences of massive neuronal loss at the later stages of the diseases. Some of these disorders, like Huntington’s disease (HD), rely on defined genetic factors. HD, as an incurable, fatal hereditary neurodegenerative disorder characterized by its mid-life onset, is caused by the expansion of CAG trinucleotide repeats coding for glutamine (Q) in exon 1 of the huntingtin gene. Apart from the genetic defect, environmental factors are thought to influence the risk, onset and progression of HD. As epigenetic mechanisms are known to readily respond to environmental stimuli, they are proposed to play a key role in HD pathogenesis. Indeed, dynamic epigenomic remodeling is observed in HD patients and in brains of HD animal models. Epigenetic signatures, such as DNA methylation, histone variants and modifications, are known to influence gene expression and to orchestrate various aspects of neuronal physiology. Hence, deciphering their implication in HD pathogenesis might open up new paths for novel therapeutic concepts, which are discussed in this review.
Collapse
|
27
|
Hahn A, Pensold D, Bayer C, Tittelmeier J, González-Bermúdez L, Marx-Blümel L, Linde J, Groß J, Salinas-Riester G, Lingner T, von Maltzahn J, Spehr M, Pieler T, Urbach A, Zimmer-Bensch G. DNA Methyltransferase 1 (DNMT1) Function Is Implicated in the Age-Related Loss of Cortical Interneurons. Front Cell Dev Biol 2020; 8:639. [PMID: 32793592 PMCID: PMC7387673 DOI: 10.3389/fcell.2020.00639] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/25/2020] [Indexed: 01/19/2023] Open
Abstract
Increased life expectancy in modern society comes at the cost of age-associated disabilities and diseases. Aged brains not only show reduced excitability and plasticity, but also a decline in inhibition. Age-associated defects in inhibitory circuits likely contribute to cognitive decline and age-related disorders. Molecular mechanisms that exert epigenetic control of gene expression contribute to age-associated neuronal impairments. Both DNA methylation, mediated by DNA methyltransferases (DNMTs), and histone modifications maintain neuronal function throughout lifespan. Here we provide evidence that DNMT1 function is implicated in the age-related loss of cortical inhibitory interneurons. Dnmt1 deletion in parvalbumin-positive interneurons attenuates their age-related decline in the cerebral cortex. Moreover, conditional Dnmt1-deficient mice show improved somatomotor performance and reduced aging-associated transcriptional changes. A decline in the proteostasis network, responsible for the proper degradation and removal of defective proteins, is implicated in age- and disease-related neurodegeneration. Our data suggest that DNMT1 acts indirectly on interneuron survival in aged mice by modulating the proteostasis network during life-time.
Collapse
Affiliation(s)
- Anne Hahn
- Department of Functional Epigenetics, Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Daniel Pensold
- Department of Functional Epigenetics, Institute of Human Genetics, University Hospital Jena, Jena, Germany.,Department of Functional Epigenetics in the Animal Model, Institute of Biology II, RWTH Aachen University, Aachen, Germany
| | - Cathrin Bayer
- Department of Functional Epigenetics, Institute of Human Genetics, University Hospital Jena, Jena, Germany.,Department of Functional Epigenetics in the Animal Model, Institute of Biology II, RWTH Aachen University, Aachen, Germany
| | - Jessica Tittelmeier
- Department of Functional Epigenetics, Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Lourdes González-Bermúdez
- Department of Functional Epigenetics, Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Lisa Marx-Blümel
- Department of Functional Epigenetics, Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Jenice Linde
- Department of Functional Epigenetics in the Animal Model, Institute of Biology II, RWTH Aachen University, Aachen, Germany.,Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, Aachen, Germany
| | - Jonas Groß
- Department of Functional Epigenetics, Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Gabriela Salinas-Riester
- Transcriptome and Genome Analysis Laboratory (TAL), Department of Developmental Biochemistry, University of Göttingen, Göttingen, Germany
| | - Thomas Lingner
- Transcriptome and Genome Analysis Laboratory (TAL), Department of Developmental Biochemistry, University of Göttingen, Göttingen, Germany
| | - Julia von Maltzahn
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Marc Spehr
- Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, Aachen, Germany.,Department of Chemosensation, Institute of Biology II, RWTH Aachen University, Aachen, Germany
| | - Tomas Pieler
- Centre for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Department of Developmental Biochemistry, University of Göttingen, Göttingen, Germany
| | - Anja Urbach
- Institute of Neurology, University Hospital Jena, Jena, Germany
| | - Geraldine Zimmer-Bensch
- Department of Functional Epigenetics, Institute of Human Genetics, University Hospital Jena, Jena, Germany.,Department of Functional Epigenetics in the Animal Model, Institute of Biology II, RWTH Aachen University, Aachen, Germany.,Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
28
|
Park CI, Kim HW, Jeon S, Kang JI, Kim SJ. Reduced DNA methylation of the oxytocin receptor gene is associated with obsessive-compulsive disorder. Clin Epigenetics 2020; 12:101. [PMID: 32631409 PMCID: PMC7336407 DOI: 10.1186/s13148-020-00890-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/23/2020] [Indexed: 11/10/2022] Open
Abstract
Background Oxytocin is an important neuromodulator involved in cognition and socio-emotional processing that exerts its central activities via oxytocin receptors. Epigenetic alterations in the oxytocin receptor gene (OXTR) may be a molecular mechanism in the pathogenesis of obsessive-compulsive disorder (OCD). This study investigated the association between OXTR DNA methylation and the OCD status of a Korean population. Results Quantitative leukocyte DNA methylation levels of three cytosine-phosphate-guanine (CpG) sites in the 5′ untranslated region (UTR) of OXTR exon 2 and eight CpG sites within OXTR exon 3 were analyzed using the pyrosequencing method in 151 patients with OCD (including 45 drug-naïve patients) and 108 healthy controls. DNA methylation levels were compared between the groups using multiple analyses of covariance separately by sex after controlling for age and educational level. Patients with OCD showed significantly lower methylation levels at CpG1 and CpG2 sites on the UTR of OXTR exon 2 than those of healthy controls for both sexes. In a subset of 45 drug-naïve patients with OCD, the DNA methylation levels also remained significantly lower than those in the controls and their CpG1 methylation levels were significantly negatively associated with the ordering symptom dimension. Conclusions Our findings suggest that epigenetic OXTR alterations may affect the pathophysiology of OCD. The potential role of the oxytocin system in OCD development and treatment warrants further investigation.
Collapse
Affiliation(s)
- Chun Il Park
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea.,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hae Won Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Medical Education, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sumoa Jeon
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jee In Kang
- Department of Psychiatry, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul, 03722, Republic of Korea. .,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Se Joo Kim
- Department of Psychiatry, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul, 03722, Republic of Korea. .,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
29
|
Chen J, Zang Z, Braun U, Schwarz K, Harneit A, Kremer T, Ma R, Schweiger J, Moessnang C, Geiger L, Cao H, Degenhardt F, Nöthen MM, Tost H, Meyer-Lindenberg A, Schwarz E. Association of a Reproducible Epigenetic Risk Profile for Schizophrenia With Brain Methylation and Function. JAMA Psychiatry 2020; 77:628-636. [PMID: 32049268 PMCID: PMC7042900 DOI: 10.1001/jamapsychiatry.2019.4792] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
IMPORTANCE Schizophrenia is a severe mental disorder in which epigenetic mechanisms may contribute to illness risk. Epigenetic profiles can be derived from blood cells, but to our knowledge, it is unknown whether these predict established brain alterations associated with schizophrenia. OBJECTIVE To identify an epigenetic signature (quantified as polymethylation score [PMS]) of schizophrenia using machine learning applied to genome-wide blood DNA-methylation data; evaluate whether differences in blood-derived PMS are mirrored in data from postmortem brain samples; test whether the PMS is associated with alterations of dorsolateral prefrontal cortex hippocampal (DLPFC-HC) connectivity during working memory in healthy controls (HC); explore the association between interactions between polygenic and epigenetic risk with DLPFC-HC connectivity; and test the specificity of the signature compared with other serious psychiatric disorders. DESIGN, SETTING, AND PARTICIPANTS In this case-control study conducted from 2008 to 2018 in sites in Germany, the United Kingdom, the United States, and Australia, blood DNA-methylation data from 2230 whole-blood samples from 6 independent cohorts comprising HC (1238 [55.5%]) and participants with schizophrenia (803 [36.0%]), bipolar disorder (39 [1.7%]), major depressive disorder 35 [1.6%]), and autism (27 [1.2%]), and first-degree relatives of all patient groups (88 [3.9%]) were analyzed. DNA-methylation data were further explored from 244 postmortem DLPFC samples from 136 HC and 108 patients with schizophrenia. Neuroimaging and genome-wide association data were available for 393 HC. The latter data was used to calculate a polygenic risk score (PRS) for schizophrenia. The data were analyzed in 2019. MAIN OUTCOMES AND MEASURES The accuracy of schizophrenia control classification based on machine learning using epigenetic data; association of schizophrenia PMS scores with DLPFC-HC connectivity; and association of the interaction between PRS and PMS with DLPFC-HC connectivity. RESULTS This study included 7488 participants (4395 men [58.7%]), of whom 3158 (2230 men [70.6%]) received a diagnosis of schizophrenia. The PMS signature was associated with schizophrenia across 3 independent data sets (area under the curve [AUC] from 0.69 to 0.78; P value from 0.049 to 1.24 × 10-7) and data from postmortem DLPFC samples (AUC = 0.63; P = 1.42 × 10-4), but not with major depressive disorder (AUC = 0.51; P = .16), autism (AUC = 0.53; P = .66), or bipolar disorder (AUC = 0.58; P = .21). Pathways contributing most to the classification included synaptic processes. Healthy controls with schizophrenia-like PMS showed significantly altered DLPFC-HC connectivity (validation methylation/magnetic resonance imaging, t < -3.81; P for familywise error, <.04; validation magnetic resonance imaging, t < -3.54; P for familywise error, <.02), mirroring the lack of functional decoupling in schizophrenia. There was no significant association of the interaction between PMS and PRS with DLPFC-HC connectivity (P > .19). CONCLUSIONS AND RELEVANCE We identified a reproducible blood DNA-methylation signature specific for schizophrenia that was correlated with altered functional DLPFC-HC coupling during working memory and mapped to methylation differences found in DLPFC postmortem samples. This indicates a possible epigenetic contribution to a schizophrenia intermediate phenotype and suggests that PMS could be of interest to be studied in the context of multimodal biomarkers for disease stratification and treatment personalization.
Collapse
Affiliation(s)
- Junfang Chen
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Zhenxiang Zang
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Urs Braun
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kristina Schwarz
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anais Harneit
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Kremer
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ren Ma
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Janina Schweiger
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolin Moessnang
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lena Geiger
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Han Cao
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Franziska Degenhardt
- School of Medicine & University Hospital Bonn, Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Markus M. Nöthen
- School of Medicine & University Hospital Bonn, Institute of Human Genetics, University of Bonn, Bonn, Germany,Life & Brain Center, Department of Genomics, University of Bonn, Bonn, Germany
| | - Heike Tost
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Emanuel Schwarz
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
30
|
Thalhammer A, Jaudon F, Cingolani LA. Emerging Roles of Activity-Dependent Alternative Splicing in Homeostatic Plasticity. Front Cell Neurosci 2020; 14:104. [PMID: 32477067 PMCID: PMC7235277 DOI: 10.3389/fncel.2020.00104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/06/2020] [Indexed: 12/25/2022] Open
Abstract
Homeostatic plasticity refers to the ability of neuronal networks to stabilize their activity in the face of external perturbations. Most forms of homeostatic plasticity ultimately depend on changes in the expression or activity of ion channels and synaptic proteins, which may occur at the gene, transcript, or protein level. The most extensively investigated homeostatic mechanisms entail adaptations in protein function or localization following activity-dependent posttranslational modifications. Numerous studies have also highlighted how homeostatic plasticity can be achieved by adjusting local protein translation at synapses or transcription of specific genes in the nucleus. In comparison, little attention has been devoted to whether and how alternative splicing (AS) of pre-mRNAs underlies some forms of homeostatic plasticity. AS not only expands proteome diversity but also contributes to the spatiotemporal dynamics of mRNA transcripts. Prominent in the brain where it can be regulated by neuronal activity, it is a flexible process, tightly controlled by a multitude of factors. Given its extensive use and versatility in optimizing the function of ion channels and synaptic proteins, we argue that AS is ideally suited to achieve homeostatic control of neuronal output. We support this thesis by reviewing emerging evidence linking AS to various forms of homeostatic plasticity: homeostatic intrinsic plasticity, synaptic scaling, and presynaptic homeostatic plasticity. Further, we highlight the relevance of this connection for brain pathologies.
Collapse
Affiliation(s)
- Agnes Thalhammer
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Fanny Jaudon
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lorenzo A Cingolani
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
31
|
Taylor RM, Smith R, Collins CE, Mossman D, Wong-Brown MW, Chan EC, Evans TJ, Attia JR, Buckley N, Drysdale K, Smith T, Butler T, Hure AJ. Global DNA methylation and cognitive and behavioral outcomes at 4 years of age: A cross-sectional study. Brain Behav 2020; 10:e01579. [PMID: 32109009 PMCID: PMC7177573 DOI: 10.1002/brb3.1579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/27/2020] [Accepted: 02/09/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Accumulating evidence suggests that breastfeeding exclusivity and duration are positively associated with child cognition. This study investigated whether DNA methylation, an epigenetic mechanism modified by nutrient intake, may contribute to the link between breastfeeding and child cognition. The aim was to quantify the relationship between global DNA methylation and cognition and behavior at 4 years of age. METHODS Child behavior and cognition were measured at age 4 years using the Wechsler Preschool and Primary Scale of Intelligence, third version (WPPSI-III), and Child Behavior Checklist (CBC). Global DNA methylation (%5-methylcytosines (%5mC)) was measured in buccal cells at age 4 years, using an enzyme-linked immunosorbent assay (ELISA) commercial kit. Linear regression models were used to quantify the statistical relationships. RESULTS Data were collected from 73 children recruited from the Women and Their Children's Health (WATCH) study. No statistically significant associations were found between global DNA methylation levels and child cognition or behavior (p > .05), though the estimates of effect were consistently negative. Global DNA methylation levels in males were significantly higher than in females (median %5mC: 1.82 vs. 1.03, males and females, respectively, (p < .05)). CONCLUSION No association was found between global DNA methylation and child cognition and behavior; however given the small sample, this study should be pooled with other cohorts in future meta-analyses.
Collapse
Affiliation(s)
- Rachael M Taylor
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Roger Smith
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Clare E Collins
- Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Faculty of Health and Medicine, School of Health Sciences, University of Newcastle, Callaghan, NSW, Australia.,Priority Research Centre in Physical Activity and Nutrition, University of Newcastle, Callaghan, NSW, Australia
| | - David Mossman
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Department of Molecular Medicine, NSW Health Pathology, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Michelle W Wong-Brown
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Faculty of Health, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Eng-Cheng Chan
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Tiffany-Jane Evans
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Clinical Research Design IT and Statistical Support (CReDITSS) Unit, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - John R Attia
- Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Clinical Research Design IT and Statistical Support (CReDITSS) Unit, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Nick Buckley
- School of Psychology and Exercise Science, Murdoch University, Murdoch, WA, Australia
| | - Karen Drysdale
- Faculty of Science, School Psychology, University of Newcastle, Callaghan, NSW, Australia
| | - Tenele Smith
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Trent Butler
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Alexis J Hure
- Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Priority Research Centre for Generational, Health and Ageing, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
32
|
Sun W, Kong Q, Zhang M, Mi X, Sun X, Yu M, Yu T, Zhou Y. Virus-mediated Dnmt1 and Dnmt3a deletion disrupts excitatory synaptogenesis and synaptic function in primary cultured hippocampal neurons. Biochem Biophys Res Commun 2020; 526:361-367. [PMID: 32222282 DOI: 10.1016/j.bbrc.2020.03.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/17/2020] [Indexed: 10/24/2022]
Abstract
Dnmt1, Dnmt3a and Dnmt3b are main genes encoding DNA methyltransferases (Dnmts) which catalyze DNA methylation and regulate gene expression without changing DNA sequence. Our previous study disclosed that double knockout of Dnmt1 and Dnmt3a in forebrain excitatory neurons impaired synaptic plasticity and led to hippocampus-dependent learning and memory deficits, however the underlying synaptic mechanisms remain uncertain. In this study, we selectively knocked down the expression of Dnmt1 and Dnmt3a in primary cultured hippocampal neurons derived from embryonic Dnmt1,3a2flox/2flox mice by transfection with Cre-expressing virus, to study the effect of Dnmts and mediated DNA methylation on synaptogenesis and synaptic function. We found that the hippocampal neurons at 15 days in vitro (DIV15) exhibited similar size of cell body, but longer dendrites with reduced number of branches and lower density of excitatory synapses formation after virus-mediated Dnmt1 and Dnmt3a deletion. Supportively, cultured neurons with Dnmt1 and Dnmt3a deficiency displayed reduced frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs), indicating that both pre- and post-synaptic dysfunction are involved. In addition, our Ca2+-image study with Rhod-3AM revealed suppression of glutamate-evoked elevation of cytoplasmic [Ca2+] after Dnmt1 and Dnmt3a deletion. Altogether our findings provide new evidence that normal expression of Dnmt1 and Dnmt3a in hippocampal neurons are essential for excitatory synaptogenesis and synaptic function.
Collapse
Affiliation(s)
- Wei Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Qingnuan Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China; Department of Pathology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, 266071, China
| | - Meng Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Xue Mi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Xiaomin Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Ming Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Tengbo Yu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao Universtiy, Qingdao, Shandong, 266000, China.
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China; Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China.
| |
Collapse
|
33
|
Pensold D, Reichard J, Van Loo KMJ, Ciganok N, Hahn A, Bayer C, Liebmann L, Groß J, Tittelmeier J, Lingner T, Salinas-Riester G, Symmank J, Halfmann C, González-Bermúdez L, Urbach A, Gehrmann J, Costa I, Pieler T, Hübner CA, Vatter H, Kampa B, Becker AJ, Zimmer-Bensch G. DNA Methylation-Mediated Modulation of Endocytosis as Potential Mechanism for Synaptic Function Regulation in Murine Inhibitory Cortical Interneurons. Cereb Cortex 2020; 30:3921-3937. [PMID: 32147726 PMCID: PMC7264686 DOI: 10.1093/cercor/bhaa009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/14/2019] [Accepted: 01/10/2020] [Indexed: 12/25/2022] Open
Abstract
The balance of excitation and inhibition is essential for cortical information processing, relying on the tight orchestration of the underlying subcellular processes. Dynamic transcriptional control by DNA methylation, catalyzed by DNA methyltransferases (DNMTs), and DNA demethylation, achieved by ten–eleven translocation (TET)-dependent mechanisms, is proposed to regulate synaptic function in the adult brain with implications for learning and memory. However, focus so far is laid on excitatory neurons. Given the crucial role of inhibitory cortical interneurons in cortical information processing and in disease, deciphering the cellular and molecular mechanisms of GABAergic transmission is fundamental. The emerging relevance of DNMT and TET-mediated functions for synaptic regulation irrevocably raises the question for the targeted subcellular processes and mechanisms. In this study, we analyzed the role dynamic DNA methylation has in regulating cortical interneuron function. We found that DNMT1 and TET1/TET3 contrarily modulate clathrin-mediated endocytosis. Moreover, we provide evidence that DNMT1 influences synaptic vesicle replenishment and GABAergic transmission, presumably through the DNA methylation-dependent transcriptional control over endocytosis-related genes. The relevance of our findings is supported by human brain sample analysis, pointing to a potential implication of DNA methylation-dependent endocytosis regulation in the pathophysiology of temporal lobe epilepsy, a disease characterized by disturbed synaptic transmission.
Collapse
Affiliation(s)
- Daniel Pensold
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany.,Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, 52074 Aachen, Germany
| | - Julia Reichard
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany.,Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, 52074 Aachen, Germany.,Research Training Group 2416 Multi Senses-Multi Scales, RWTH Aachen University, 52074 Aachen, Germany
| | - Karen M J Van Loo
- Department of Neuropathology, Section for Translational Epilepsy Research, University of Bonn Medical Center, 53105 Bonn, Germany
| | - Natalja Ciganok
- Division of Systems Neurophysiology, Institute of Zoology (Biology 2), RWTH Aachen University, 52074 Aachen, Germany
| | - Anne Hahn
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| | - Cathrin Bayer
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany.,Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, 52074 Aachen, Germany
| | - Lutz Liebmann
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| | - Jonas Groß
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| | | | - Thomas Lingner
- Department of Developmental Biochemistry, Transcriptome and Genome Analysis Laboratory (TAL), University of Goettingen, 37077 Goettingen, Germany
| | - Gabriela Salinas-Riester
- Department of Developmental Biochemistry, Transcriptome and Genome Analysis Laboratory (TAL), University of Goettingen, 37077 Goettingen, Germany
| | - Judit Symmank
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| | - Claas Halfmann
- Division of Systems Neurophysiology, Institute of Zoology (Biology 2), RWTH Aachen University, 52074 Aachen, Germany
| | | | - Anja Urbach
- Clinic for Neurology, University Hospital Jena, 07743 Jena, Germany
| | - Julia Gehrmann
- Institute for Computational Genomics, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Ivan Costa
- Institute for Computational Genomics, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Tomas Pieler
- Department of Developmental Biochemistry, Centre for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Goettingen, 37077 Goettingen, Germany
| | - Christian A Hübner
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| | - Hartmut Vatter
- Clinic for Neurosurgery, University of Bonn Medical Center, 53105 Bonn, Germany
| | - Björn Kampa
- Division of Systems Neurophysiology, Institute of Zoology (Biology 2), RWTH Aachen University, 52074 Aachen, Germany.,JARA BRAIN, Institute for Neuroscience and Medicine, Forschungszentrum Jülich, 52425, Germany
| | - Albert J Becker
- Department of Neuropathology, Section for Translational Epilepsy Research, University of Bonn Medical Center, 53105 Bonn, Germany
| | - Geraldine Zimmer-Bensch
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany.,Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, 52074 Aachen, Germany.,Research Training Group 2416 Multi Senses-Multi Scales, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
34
|
Wang T, Morency DT, Harris N, Davis GW. Epigenetic Signaling in Glia Controls Presynaptic Homeostatic Plasticity. Neuron 2020; 105:491-505.e3. [PMID: 31810838 PMCID: PMC7518042 DOI: 10.1016/j.neuron.2019.10.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/30/2019] [Accepted: 10/29/2019] [Indexed: 01/02/2023]
Abstract
Epigenetic gene regulation shapes neuronal fate in the embryonic nervous system. Post-embryonically, epigenetic signaling within neurons has been associated with impaired learning, autism, ataxia, and schizophrenia. Epigenetic factors are also enriched in glial cells. However, little is known about epigenetic signaling in glia and nothing is known about the intersection of glial epigenetic signaling and presynaptic homeostatic plasticity. During a screen for genes involved in presynaptic homeostatic synaptic plasticity, we identified an essential role for the histone acetyltransferase and deubiquitinase SAGA complex in peripheral glia. We present evidence that the SAGA complex is necessary for homeostatic plasticity, demonstrating involvement of four new genes in homeostatic plasticity. This is also evidence that glia participate in presynaptic homeostatic plasticity, invoking previously unexplored intercellular, homeostatic signaling at a tripartite synapse. We show, mechanistically, SAGA signaling regulates the composition of and signaling from the extracellular matrix during homeostatic plasticity.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Danielle T Morency
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Nathan Harris
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Graeme W Davis
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
35
|
Constantinof A, Boureau L, Moisiadis VG, Kostaki A, Szyf M, Matthews SG. Prenatal Glucocorticoid Exposure Results in Changes in Gene Transcription and DNA Methylation in the Female Juvenile Guinea Pig Hippocampus Across Three Generations. Sci Rep 2019; 9:18211. [PMID: 31796763 PMCID: PMC6890750 DOI: 10.1038/s41598-019-54456-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023] Open
Abstract
Synthetic glucocorticoids (sGC) are administered to women at risk for pre-term delivery, to mature the fetal lung and decrease neonatal morbidity. sGC also profoundly affect the fetal brain. The hippocampus expresses high levels of glucocorticoid (GR) and mineralocorticoid receptor (MR), and its development is affected by elevated fetal glucocorticoid levels. Antenatal sGC results in neuroendocrine and behavioral changes that persist in three generations of female guinea pig offspring of the paternal lineage. We hypothesized that antenatal sGC results in transgenerational changes in gene expression that correlate with changes in DNA methylation. We used RNASeq and capture probe bisulfite sequencing to investigate the transcriptomic and epigenomic effects of antenatal sGC exposure in the hippocampus of three generations of juvenile female offspring from the paternal lineage. Antenatal sGC exposure (F0 pregnancy) resulted in generation-specific changes in hippocampal gene transcription and DNA methylation. Significant changes in individual CpG methylation occurred in RNApol II binding regions of small non-coding RNA (snRNA) genes, which implicates alternative splicing as a mechanism involved in transgenerational transmission of the effects of antenatal sGC. This study provides novel perspectives on the mechanisms involved in transgenerational transmission and highlights the importance of human studies to determine the longer-term effects of antenatal sGC on hippocampal-related function.
Collapse
Affiliation(s)
- Andrea Constantinof
- Department of Physiology, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Lisa Boureau
- Department of Pharmacology & Therapeutics, Sackler Program for Epigenetics & Psychobiology, McGill University, Montreal, QC, H3G1Y6, Canada
| | - Vasilis G Moisiadis
- Department of Physiology, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Alisa Kostaki
- Department of Physiology, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Moshe Szyf
- Department of Pharmacology & Therapeutics, Sackler Program for Epigenetics & Psychobiology, McGill University, Montreal, QC, H3G1Y6, Canada
| | - Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, ON, M5S1A8, Canada.
- Department of Obstetrics and Gynecology, Toronto, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, M5S1A8, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G1X5, Canada.
| |
Collapse
|
36
|
Armstrong MJ, Jin Y, Allen EG, Jin P. Diverse and dynamic DNA modifications in brain and diseases. Hum Mol Genet 2019; 28:R241-R253. [PMID: 31348493 PMCID: PMC6872432 DOI: 10.1093/hmg/ddz179] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022] Open
Abstract
DNA methylation is a class of epigenetic modification essential for coordinating gene expression timing and magnitude throughout normal brain development and for proper brain function following development. Aberrant methylation changes are associated with changes in chromatin architecture, transcriptional alterations and a host of neurological disorders and diseases. This review highlights recent advances in our understanding of the methylome's functionality and covers potential new roles for DNA methylation, their readers, writers, and erasers. Additionally, we examine novel insights into the relationship between the methylome, DNA-protein interactions, and their contribution to neurodegenerative diseases. Lastly, we outline the gaps in our knowledge that will likely be filled through the widespread use of newer technologies that provide greater resolution into how individual cell types are affected by disease and the contribution of each individual modification site to disease pathogenicity.
Collapse
Affiliation(s)
- Matthew J Armstrong
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Yulin Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Emily G Allen
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW In the quest for understanding the pathophysiological processes underlying degeneration of nervous systems, synapses are emerging as sites of great interest as synaptic dysfunction is thought to play a role in the initiation and progression of neuronal loss. In particular, the synapse is an interesting target for the effects of epigenetic mechanisms in neurodegeneration. Here, we review the recent advances on epigenetic mechanisms driving synaptic compromise in major neurodegenerative disorders. RECENT FINDINGS Major developments in sequencing technologies enabled the mapping of transcriptomic patterns in human postmortem brain tissues in various neurodegenerative diseases, and also in cell and animal models. These studies helped identify changes in classical neurodegeneration pathways and discover novel targets related to synaptic degeneration. Identifying epigenetic patterns indicative of synaptic defects prior to neuronal degeneration may provide the basis for future breakthroughs in the field of neurodegeneration.
Collapse
Affiliation(s)
- Mary Xylaki
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Benedict Atzler
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany.
- Max Planck Institute for Experimental Medicine, 37075, Göttingen, Germany.
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
38
|
Frere S, Slutsky I. Alzheimer's Disease: From Firing Instability to Homeostasis Network Collapse. Neuron 2019; 97:32-58. [PMID: 29301104 DOI: 10.1016/j.neuron.2017.11.028] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) starts from pure cognitive impairments and gradually progresses into degeneration of specific brain circuits. Although numerous factors initiating AD have been extensively studied, the common principles underlying the transition from cognitive deficits to neuronal loss remain unknown. Here we describe an evolutionarily conserved, integrated homeostatic network (IHN) that enables functional stability of central neural circuits and safeguards from neurodegeneration. We identify the critical modules comprising the IHN and propose a central role of neural firing in controlling the complex homeostatic network at different spatial scales. We hypothesize that firing instability and impaired synaptic plasticity at early AD stages trigger a vicious cycle, leading to dysregulation of the whole IHN. According to this hypothesis, the IHN collapse represents the major driving force of the transition from early memory impairments to neurodegeneration. Understanding the core elements of homeostatic control machinery, the reciprocal connections between distinct IHN modules, and the role of firing homeostasis in this hierarchy has important implications for physiology and should offer novel conceptual approaches for AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Samuel Frere
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel.
| |
Collapse
|
39
|
Butler AA, Johnston DR, Kaur S, Lubin FD. Long noncoding RNA NEAT1 mediates neuronal histone methylation and age-related memory impairment. Sci Signal 2019; 12:eaaw9277. [PMID: 31266852 PMCID: PMC7219525 DOI: 10.1126/scisignal.aaw9277] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Histone methylation is critical for the formation and maintenance of long-term memories. Long noncoding RNAs (lncRNAs) are regulators of histone methyltransferases and other chromatin-modifying enzymes (CMEs), thereby epigenetically modifying gene expression. Here, we investigated how the lncRNA NEAT1 may epigenetically contribute to hippocampus-dependent, long-term memory formation using a combination of transcriptomics, RNA-binding protein immunoprecipitation, CRISPR-mediated gene activation (CRISPRa), and behavioral approaches. Knockdown of the lncRNA Neat1 revealed widespread changes in gene transcription, as well as perturbations of histone 3 lysine 9 dimethylation (H3K9me2), a repressive histone modification mark that was increased in the hippocampus of aging rodents. We identified a NEAT1-dependent mechanism of transcriptional repression by H3K9me2 at the c-Fos promoter, corresponding with observed changes in c-Fos mRNA expression. Overexpression of hippocampal NEAT1 using CRISPRa was sufficient to impair memory formation in young adult mice, recapitulating observed memory deficits in old adult mice, whereas knocking down NEAT1 in both young and old adult mice improved behavior test-associated memory. These results suggest that the lncRNA NEAT1 is an epigenetic suppressor of hippocampus-dependent, long-term memory formation.
Collapse
Affiliation(s)
| | | | - Simranjit Kaur
- University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Farah D Lubin
- University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
40
|
Shen XF, Yuan HB, Wang GQ, Xue H, Liu YF, Zhang CX. Role of DNA hypomethylation in lateral habenular nucleus in the development of depressive-like behavior in rats. J Affect Disord 2019; 252:373-381. [PMID: 30999094 DOI: 10.1016/j.jad.2019.03.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/02/2019] [Accepted: 03/19/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Lateral habenula nucleus (LHb) has recently been noted for its role in stress-induced depressive disorder. Yet little is known about the mechanisms by which external stimuli or depression induces pathological alteration in the LHb. METHODS Chronic unpredictable mild stress (CUMS) was employed to model depressive-like behaviors in adult rats. We examined expressions of DNA methyltransferases (Dnmts) mRNA and protein and global DNA methylation levels in LHb of CUMS-induced depressive rats. Then 5-aza-2'-deoxycytidine (5-aza), a Dnmts inhibitor, was infused into the LHb of native rats to test the effects of hypomethylation in the LHb. The gene expressions in the LHb and the levels of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in dorsal raphe nucleus (DRN) were examined in 5-aza infusion rats by quantitative real-time PCR and high performance liquid chromatography, respectively. RESULTS Rats were exposed to CUMS for 21 days and depressive-like behaviors were induced as expected. We observed significant decrease in mRNA and protein expressions of Dnmt1 and DNA hypomethylation in LHb of depressive rats. These phenomenon suggests that CUMS-induced depressive-like behaviors are related with DNA hypomethylation in the LHb. Local 5-aza infusion into LHb of native rat resulted in global DNA hypomethylation in the LHb and induced depressive-like behaviors which are featured with lack of interest and investment in the environment, behavioral despair and anhedonia. Moreover, DNA hypomethylation in the LHb increased transcription of β calcium/calmodulin dependent protein kinase II and glutamate receptor 1 in the LHb and attenuated the levels of 5-HT and 5-HIAA in the DRN. Our data suggested that alteration of DNA methylation in the LHb may control 5-HT neuronal activity in the DRN to regulate emotional state. CONCLUSIONS DNA hypomethylation in the LHb is involved in the development of depressive-like behavior and suitable methylation state contributes to the emotional stabilization.
Collapse
Affiliation(s)
- Xiang-Feng Shen
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Hai-Bo Yuan
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, China
| | - Guo-Qiang Wang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Hui Xue
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yong-Feng Liu
- Department of Molecular Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| | - Chun-Xiao Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
41
|
Smolen P, Baxter DA, Byrne JH. How can memories last for days, years, or a lifetime? Proposed mechanisms for maintaining synaptic potentiation and memory. ACTA ACUST UNITED AC 2019; 26:133-150. [PMID: 30992383 PMCID: PMC6478248 DOI: 10.1101/lm.049395.119] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/12/2019] [Indexed: 01/24/2023]
Abstract
With memory encoding reliant on persistent changes in the properties of synapses, a key question is how can memories be maintained from days to months or a lifetime given molecular turnover? It is likely that positive feedback loops are necessary to persistently maintain the strength of synapses that participate in encoding. Such feedback may occur within signal-transduction cascades and/or the regulation of translation, and it may occur within specific subcellular compartments or within neuronal networks. Not surprisingly, numerous positive feedback loops have been proposed. Some posited loops operate at the level of biochemical signal-transduction cascades, such as persistent activation of Ca2+/calmodulin kinase II (CaMKII) or protein kinase Mζ. Another level consists of feedback loops involving transcriptional, epigenetic and translational pathways, and autocrine actions of growth factors such as BDNF. Finally, at the neuronal network level, recurrent reactivation of cell assemblies encoding memories is likely to be essential for late maintenance of memory. These levels are not isolated, but linked by shared components of feedback loops. Here, we review characteristics of some commonly discussed feedback loops proposed to underlie the maintenance of memory and long-term synaptic plasticity, assess evidence for and against their necessity, and suggest experiments that could further delineate the dynamics of these feedback loops. We also discuss crosstalk between proposed loops, and ways in which such interaction can facilitate the rapidity and robustness of memory formation and storage.
Collapse
Affiliation(s)
- Paul Smolen
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Douglas A Baxter
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - John H Byrne
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
42
|
Urb M, Anier K, Matsalu T, Aonurm-Helm A, Tasa G, Koppel I, Zharkovsky A, Timmusk T, Kalda A. Glucocorticoid Receptor Stimulation Resulting from Early Life Stress Affects Expression of DNA Methyltransferases in Rat Prefrontal Cortex. J Mol Neurosci 2019; 68:99-110. [PMID: 30852742 DOI: 10.1007/s12031-019-01286-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 02/25/2019] [Indexed: 12/14/2022]
Abstract
Early life stress initiates long-term neurobiological changes that affect stress resilience and increased susceptibility to psychopathology. Maternal separation (MS) is used to cause early life stress and it induces profound neurochemical and behavioral changes that last until adulthood. The molecular pathways of how MS affects the regulation of DNA methyltransferases (Dnmt) in brain have not been entirely characterized. We evaluated MS effects on Dnmt1, Dnmt3a and Dnmt3b expression, DNMT enzyme activity and glucocorticoid receptor (GR) recruitment to different Dnmt loci in the prefrontal cortex (PFC) of Wistar rats. We found increased plasma corticosterone levels after MS that were associated with induced Dnmt expression and enzyme activity in rat PFC at post-natal day 15 (PND15). Chromatin immunoprecipitation showed increased binding of GR at the Dnmt3b promoter after MS, suggesting that genomic signaling of GR is an important regulatory mechanism for the induced Dnmt3b expression and DNMT activity. Although GR also binds to Dnmt3a promoter and a putative regulatory region in intron 3 in rat PFC, its expression after maternal separation may be influenced by other mechanisms. Therefore, GR could be a link between early life stress experience and long-term gene expression changes induced by aberrant DNA methylation.
Collapse
Affiliation(s)
- Mari Urb
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Kaili Anier
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Terje Matsalu
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Anu Aonurm-Helm
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Gunnar Tasa
- Department of Human Biology and Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Indrek Koppel
- Institute of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.,Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Zharkovsky
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Tõnis Timmusk
- Institute of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Anti Kalda
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.
| |
Collapse
|
43
|
Abstract
In the past few decades, the field of neuroepigenetics has investigated how the brain encodes information to form long-lasting memories that lead to stable changes in behaviour. Activity-dependent molecular mechanisms, including, but not limited to, histone modification, DNA methylation and nucleosome remodelling, dynamically regulate the gene expression required for memory formation. Recently, the field has begun to examine how a learning experience is integrated at the level of both chromatin structure and synaptic physiology. Here, we provide an overview of key established epigenetic mechanisms that are important for memory formation. We explore how epigenetic mechanisms give rise to stable alterations in neuronal function by modifying synaptic structure and function, and highlight studies that demonstrate how manipulating epigenetic mechanisms may push the boundaries of memory.
Collapse
Affiliation(s)
- Rianne R Campbell
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, Center for Addiction Neuroscience, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, Center for Addiction Neuroscience, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.
| |
Collapse
|
44
|
Cognition-Enhancing Vagus Nerve Stimulation Alters the Epigenetic Landscape. J Neurosci 2019; 39:3454-3469. [PMID: 30804093 DOI: 10.1523/jneurosci.2407-18.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 01/27/2023] Open
Abstract
Vagus nerve stimulation (VNS) has been shown to enhance learning and memory, yet the mechanisms behind these enhancements are unknown. Here, we present evidence that epigenetic modulation underlies VNS-induced improvements in cognition. We show that VNS enhances novelty preference (NP); alters the hippocampal, cortical, and blood epigenetic transcriptomes; and epigenetically modulates neuronal plasticity and stress-response signaling genes in male Sprague Dawley rats. Brain-behavior analysis revealed structure-specific relationships between NP test performance (NPTP) and epigenetic alterations. In the hippocampus, NPTP correlated with decreased histone deacetylase 11 (HDAC11), a transcriptional repressor enriched in CA1 cells important for memory consolidation. In the cortex, the immediate early gene (IEG) ARC was increased in VNS rats and correlated with transcription of plasticity genes and epigenetic regulators, including HDAC3. For rats engaged in NPTP, ARC correlated with performance. Interestingly, blood ARC transcripts decreased in VNS rats performing NPTP, but increased in VNS-only rats. Because DNA double-strand breaks (DSBs) facilitate transcription of IEGs, we investigated phosphorylated H2A.X (γH2A.X), a histone modification known to colocalize with DSBs. In agreement with reduced cortical stress-response transcription factor NF-κB1, chromatin immunoprecipitation revealed reduced γH2A.X in the ARC promoter. Surprisingly, VNS did not significantly reduce transcription of cortical or hippocampal proinflammatory cytokines. However, TNFRSF11B (osteoprotegerin) correlated with NPTP as well as plasticity, stress-response signaling, and epigenetic regulation transcripts in both hippocampus and cortex. Together, our findings provide the first evidence that VNS induces widespread changes in the cognitive epigenetic landscape and specifically affects epigenetic modulators associated with NPTP, stress-response signaling, memory consolidation, and cortical neural remodeling.SIGNIFICANCE STATEMENT Recent studies have implicated vagus nerve stimulation (VNS) in enhanced learning and memory. However, whereas epigenetic modifications are known to play an important role in memory, the particular mechanisms involved in VNS-enhanced cognition are unknown. In this study, we examined brain and behavior changes in VNS and sham rats performing a multiday novelty preference (NP) task. We found that VNS activated specific histone modifications and DNA methylation changes at important stress-response signaling and plasticity genes. Both cortical and hippocampal plasticity changes were predictive of NP test performance. Our results reveal important epigenetic alterations associated with VNS cognitive improvements, as well as new potential pharmacological targets for enhancing cortical and hippocampal plasticity.
Collapse
|
45
|
Abstract
Recent findings indicate that glutamate receptors are regulated at the epigenetic level through the posttranslational modification of histones and through DNA methylation. Furthermore, dysregulation of these marks in the context of neurological disease has been shown to influence glutamate receptor function. Over the past two decades, an appreciation for the essential role epigenetic mechanisms play in nervous system function has led to the development of many methods and tools to map, quantitate, and manipulate these chromatin marks. Here we describe two popular methods used to quantitate DNA methylation levels at the gene or nucleotide level. The first, cloning-based bisulfite sequencing involves modification of DNA samples using the chemical sodium bisulfite (BS) , which deaminates all unmethylated cytosines to form uracil. Subsequent PCR amplification converts the uracils to thymine, leaving any cytosines in the PCR product representative of methylation. Fragments are then cloned and sequenced to quantitate the percentage of methylation at each cytosine. The second technique, methyl-binding domain capture (MBDCap), involves shearing the genomic DNA into fragments via sonication. Samples are then incubated with magnetic beads conjugated to methyl-binding domain (MBD) peptides to bind and enrich fragments containing methylated CpGs. Quantitation of DNA methylation levels are then measured indirectly using qRT-PCR with primers specific to the region of interest. Because these methods do not require advanced technical knowledge and can be performed with common laboratory equipment, they are great options for interrogating DNA methylation patterns at the level of the gene, the regulatory region, or in the case of bisulfite sequencing, the nucleotide.
Collapse
|
46
|
Taylor RM, Smith R, Collins CE, Evans TJ, Hure AJ. Dietary intake and food sources of one-carbon metabolism nutrients in preschool aged children. Eur J Clin Nutr 2018; 73:1179-1193. [PMID: 30538300 PMCID: PMC6760623 DOI: 10.1038/s41430-018-0376-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/14/2018] [Accepted: 11/19/2018] [Indexed: 11/09/2022]
Abstract
BACKGROUND It is hypothesised that epigenetic mechanisms including DNA methylation may underlie the relationship between early-life nutrition and child cognitive outcomes. This study aimed to identify dietary patterns associated with the intake of one-carbon metabolism nutrients in children aged 2-3 years. METHODS A validated 120-item semi-quantitative food frequency questionnaires at 2-3 years of age were used to estimate the intake of one-carbon metabolism nutrients (methionine, folate, choline and vitamins B2, B6, B12) and to quantify mean number of serves consumed of the food groups specified by the Australian Guide to Healthy Eating (AGHE). Descriptive statistics were used to analyse the contribution of each food group and food items to the total intake of one-carbon metabolism nutrients. Linear regression was used to test for linear trends in food group servings by nutrient intake quintiles. RESULTS No child (n = 60) from the Women And Their Children's Health (WATCH) study consumed the recommended number of serves for all AGHE food groups. Dairy and alternatives (18-44%), discretionary foods (6-33%) and meat and alternatives (6-31%) were the main sources of most one-carbon metabolism nutrients. Most child intakes of one-carbon metabolism nutrients exceeded the nutrient reference values (NRVs), except for the intake of choline, for which the mean intake was 9% below the adequate intake (AI). CONCLUSION Dairy and alternatives, discretionary foods and meat and alternatives food groups contributed significantly to the children's intake of one-carbon metabolism nutrients. The children generally had low intakes of meat and alternative foods, which may explain their inadequate intake of choline.
Collapse
Affiliation(s)
- Rachael M Taylor
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, 2308, Australia. .,Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia. .,Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia.
| | - Roger Smith
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, 2308, Australia.,Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia.,Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Clare E Collins
- Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia.,Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia.,Faculty of Health and Medicine, School of Health Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia.,Priority Research Centre in Physical Activity and Nutrition, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Tiffany-Jane Evans
- Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia.,Clinical Research Design IT and Statistical Support (CReDITSS) Unit, Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Alexis J Hure
- Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia.,Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia.,Priority Research Centre for Generational, Health and Ageing, University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
47
|
Towers AJ, Tremblay MW, Chung L, Li XL, Bey AL, Zhang W, Cao X, Wang X, Wang P, Duffney LJ, Siecinski SK, Xu S, Kim Y, Kong X, Gregory S, Xie W, Jiang YH. Epigenetic dysregulation of Oxtr in Tet1-deficient mice has implications for neuropsychiatric disorders. JCI Insight 2018; 3:120592. [PMID: 30518695 DOI: 10.1172/jci.insight.120592] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 10/31/2018] [Indexed: 01/24/2023] Open
Abstract
OXTR modulates a variety of behaviors in mammals, including social memory and recognition. Genetic and epigenetic dysregulation of OXTR has been suggested to be implicated in neuropsychiatric disorders, including autism spectrum disorder (ASD). While the involvement of DNA methylation is suggested, the mechanism underlying epigenetic regulation of OXTR is largely unknown. This has hampered the experimental design and interpretation of the results of epigenetic studies of OXTR in neuropsychiatric disorders. From the generation and characterization of a new line of Tet1 mutant mice - by deleting the largest coding exon 4 (Tet1Δe4) - we discovered for the first time to our knowledge that Oxtr has an array of mRNA isoforms and a complex transcriptional regulation. Select isoforms of Oxtr are significantly reduced in the brain of Tet1Δe4-/- mice. Accordingly, CpG islands of Oxtr are hypermethylated during early development and persist into adulthood. Consistent with the reduced express of OXTR, Tet1Δe4-/- mice display impaired maternal care, social behavior, and synaptic responses to oxytocin stimulation. Our findings elucidate a mechanism mediated by TET1 protein in regulating Oxtr expression by preventing DNA hypermethylation of Oxtr. The discovery of epigenetic dysregulation of Oxtr in TET1-deficient mouse brain supports the necessity of a reassessment of existing findings and a value of future studies of OXTR in neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | - Leeyup Chung
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Xin-Lei Li
- Department of Pediatrics, Duke University, Durham, North Carolina, USA.,Laboratory of Molecular Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Alexandra L Bey
- Department of Neurobiology, Duke University, Durham, North Carolina, USA
| | - Wenhao Zhang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xinyu Cao
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Xiaoming Wang
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Ping Wang
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Lara J Duffney
- Department of Pediatrics, Duke University, Durham, North Carolina, USA.,Department of Neurobiology, Duke University, Durham, North Carolina, USA
| | | | - Sonia Xu
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Yuna Kim
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Xiangyin Kong
- Laboratory of Molecular Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Simon Gregory
- University Program in Genetics and Genomics and.,Department of Neurology and Duke Molecular Physiology Institute
| | - Wei Xie
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yong-Hui Jiang
- University Program in Genetics and Genomics and.,Department of Pediatrics, Duke University, Durham, North Carolina, USA.,Department of Neurobiology, Duke University, Durham, North Carolina, USA.,Duke Institute for Brain Sciences, and.,Program in Cellular and Molecular Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
48
|
Assis RIF, Wiench M, Silvério KG, da Silva RA, Feltran GDS, Sallum EA, Casati MZ, Nociti FH, Andia DC. RG108 increases NANOG and OCT4 in bone marrow-derived mesenchymal cells through global changes in DNA modifications and epigenetic activation. PLoS One 2018; 13:e0207873. [PMID: 30507955 PMCID: PMC6277091 DOI: 10.1371/journal.pone.0207873] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/06/2018] [Indexed: 01/08/2023] Open
Abstract
Human bone marrow-derived mesenchymal stem cells (hBMSCs) are important for tissue regeneration but their epigenetic regulation is not well understood. Here we investigate the ability of a non-nucleoside DNA methylation inhibitor, RG108 to induce epigenetic changes at both global and gene-specific levels in order to enhance mesenchymal cell markers, in hBMSCs. hBMSCs were treated with complete culture medium, 50 μM RG108 and DMSO for three days and subjected to viability and apoptosis assays, global and gene-specific methylation/hydroxymethylation, transcript levels’ analysis of epigenetic machinery enzymes and multipotency markers, protein activities of DNMTs and TETs, immunofluorescence staining and western blot analysis for NANOG and OCT4 and flow cytometry for CD105. The RG108, when used at 50 μM, did not affect the viability, apoptosis and proliferation rates of hBMSCs or hydroxymethylation global levels while leading to 75% decrease in DNMTs activity and 42% loss of global DNA methylation levels. In addition, DNMT1 was significantly downregulated while TET1 was upregulated, potentially contributing to the substantial loss of methylation observed. Most importantly, the mesenchymal cell markers CD105, NANOG and OCT4 were upregulated being NANOG and OCT4 epigenetically modulated by RG108, at their gene promoters. We propose that RG108 could be used for epigenetic modulation, promoting epigenetic activation of NANOG and OCT4, without affecting the viability of hBMSCs. DMSO can be considered a modulator of epigenetic machinery enzymes, although with milder effect compared to RG108.
Collapse
Affiliation(s)
- Rahyza I. F. Assis
- Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Malgorzata Wiench
- School of Dentistry, School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Karina G. Silvério
- Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Rodrigo A. da Silva
- Department of Chemistry and Biochemistry, Biosciences Institute, São Paulo State University, Botucatu,São Paulo, Brazil
| | - Geórgia da Silva Feltran
- Department of Chemistry and Biochemistry, Biosciences Institute, São Paulo State University, Botucatu,São Paulo, Brazil
| | - Enilson A. Sallum
- Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Marcio Z. Casati
- Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Francisco H. Nociti
- Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Denise C. Andia
- Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
- Division of Epigenetics, School of Dentistry, Health Science Institute, Paulista University, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
49
|
Diverse facets of cortical interneuron migration regulation – Implications of neuronal activity and epigenetics. Brain Res 2018; 1700:160-169. [DOI: 10.1016/j.brainres.2018.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/02/2018] [Accepted: 09/03/2018] [Indexed: 01/21/2023]
|
50
|
Wright KN, Dossat AM, Strong CE, Sailer LL, Pavlock SM, Kabbaj M. Optogenetic inhibition of medial prefrontal cortex projections to the nucleus accumbens core and methyl supplementation via L-Methionine attenuates cocaine-primed reinstatement. Integr Zool 2018; 13:795-803. [PMID: 30318755 DOI: 10.1111/1749-4877.12365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
DNA methylation has been identified as a powerful and activity-dependent regulator of changes in the brain that may underlie neuroadaptations in response to various types of stimuli, including exposure to drugs of abuse. Indeed, the medial prefrontal cortex (mPFC) projections to the nucleus accumbens (NAc) are critically important for reinstated cocaine-seeking in a rodent model of cocaine relapse. This circuitry undergoes several epigenetic modifications following cocaine exposure, including changes in DNA methylation that are associated with drug-seeking behavior. We have previously shown that methyl supplementation via L-Methionine (MET) administration attenuates cocaine-seeking behavior and reverses expression and methylation patterns of the immediate early gene c-fos, suggesting that MET may act by altering the excitability of this circuitry during cocaine reinstatement. In the current study, male rats were microinjected with an adeno-associated virus overexpressing halorhodopsin in the mPFC, optical fibers were surgically implanted into the NAc, and the rats were given injections of MET daily. Rats underwent acquisition of cocaine self-administration (0.75 mg/kg/infusion, 2-h sessions) followed by extinction training in the absence of drug-paired cues. Two reinstatement tests were conducted: cue-induced reinstatement without optogenetic manipulations and cocaine-primed reinstatement with optogenetic inhibition of mPFC-to-NAc projections. There were no group differences before the cocaine-primed reinstatement session, and all groups showed robust cue-induced reinstatement. Both rats treated with MET and rats that received mPFC-to-NAc inhibition showed an abolishment of cocaine-primed reinstatement, suggesting that systemic methyl supplementation may act through this critical circuity.
Collapse
Affiliation(s)
- Katherine N Wright
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Amanda M Dossat
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA.,National Institute on Drug Abuse, Baltimore, Maryland, USA
| | - Caroline E Strong
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Lindsay L Sailer
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Samantha M Pavlock
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Mohamed Kabbaj
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA.,Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|