1
|
Lindfors S, Schmotz C, Lewandowski D, Hau A, Saikko L, Lehtonen E, Majaniemi V, Karhe M, Naams JB, Nisen H, Tienari J, Saleem MA, Pfeil K, Bugger H, Pietiläinen KH, Mirtti T, Palczewski K, Lehtonen S. Integrin Trafficking, Fibronectin Architecture, and Glomerular Injury upon Adiponectin Receptor 1 Depletion. J Am Soc Nephrol 2025; 36:825-844. [PMID: 39874092 PMCID: PMC12059104 DOI: 10.1681/asn.0000000611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
Key Points Glomerular expression of adiponectin receptor 1 (AdipoR1) was lower in people with type 2 diabetes and correlates with podocyte loss. AdipoR1 knockout induced glomerular injury and fibrosis in mice, predominantly in males. AdipoR1 knockdown podocytes showed impaired trafficking of active integrin β 1, fibronectin accumulation, impaired adhesion, and increased apoptosis. Background Deficiency of adiponectin and its downstream signaling may contribute to the pathogenesis of kidney injury in type 2 diabetes. Adiponectin activates intracellular signaling using adiponectin receptor 1 (AdipoR1) and adiponectin receptor 2, but the role of adiponectin receptor–mediated signaling in glomerular injury in type 2 diabetes remains unknown. Methods The expression of AdipoR1 in the kidneys of people with type 2 diabetes and the expression of podocyte proteins or injury markers in the kidneys of AdipoR1 knockout (AdipoR1-KO) mice and immortalized AdipoR1-deficient human podocytes were investigated by immunohistochemistry and immunoblotting. The functional role of AdipoR1 was studied in AdipoR1-deficient podocytes by performing assays for apoptosis, cytokine secretion, mechanical stress, adhesion, and endocytic trafficking. Results Glomerular AdipoR1 expression was lower in type 2 diabetes and associated kidney disease, correlating with higher body mass index and podocyte loss. Male AdipoR1-KO mice showed typical signs of early diabetic kidney disease, including albuminuria, glomerular structural abnormalities, and lower expression of central podocyte proteins; females were less affected. Podocyte apoptosis increased in female and male AdipoR1-KO mice, and excessive podocyte loss, potentially due to detachment, was detected in males. AdipoR1 deficiency impaired the yes-associated protein–mediated mechanoresponse and induced accumulation of the extracellular matrix (ECM) protein fibronectin in the glomeruli in vivo and podocytes in vitro . Functionally, AdipoR1 deficiency impaired endocytosis of the ECM receptor active integrin β 1, disturbed focal adhesion turnover, and remodulated podocyte-derived ECM, thereby reducing podocyte adhesion. Conclusions AdipoR1 deficiency in mice resulted in the development of kidney injury predominantly in males. Mechanistically, AdipoR1 loss in podocytes impaired endocytosis of active integrin β 1, which plausibly compromised focal adhesion dynamics, disturbed fibronectin matrix turnover, and hindered podocyte adhesion.
Collapse
Affiliation(s)
- Sonja Lindfors
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Constanze Schmotz
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Dominik Lewandowski
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, Irvine, California
| | - Annika Hau
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Leena Saikko
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eero Lehtonen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Ville Majaniemi
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Minna Karhe
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jette-Britt Naams
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Harry Nisen
- Abdominal Center, Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jukka Tienari
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Moin A. Saleem
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Katharina Pfeil
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Heiko Bugger
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Kirsi H. Pietiläinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Obesity Research Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Healthy Weight Hub, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tuomas Mirtti
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, Irvine, California
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California
- Department of Chemistry, University of California, Irvine, Irvine, California
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California
| | - Sanna Lehtonen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pathology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Huynh-Cong E, Driscoll V, Ettou S, Keller K, Atakilit A, Taglienti ME, Kumar S, Weins A, Schumacher VA, Kreidberg JA. The integrin repertoire drives YAP-dependent epithelial:stromal interactions during injury of the kidney glomerulus. Nat Commun 2025; 16:3322. [PMID: 40199893 PMCID: PMC11978898 DOI: 10.1038/s41467-025-58567-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
The kidney glomerulus is a filtration barrier in which capillary loop architecture depends on epithelial-stromal interactions between podocytes and mesangial cells. Podocytes are terminally differentiated cells within the glomerulus that express YAP and TAZ. Here we test the hypotheses that YAP and TAZ are required in podocytes to maintain capillary loop architecture and that shifts in the integrin repertoire during podocyte injury affect transcriptional activity of YAP and TAZ. Loss of YAP in podocytes of adult mice renders them more sensitive to injury, whereas loss of both YAP and TAZ in podocytes rapidly compromises the filtration barrier. α3β1 and αvβ5 are two prominent integrins on murine podocytes. Podocyte injury or loss of α3β1 leads to increased abundance of αvβ5 and nuclear localization of YAP. In vitro, blockade of αvβ5 decreases nuclear YAP. Increased αv integrins are found in human kidney disease. Thus, our studies demonstrate the crucial regulatory interplay between cell adhesion and transcriptional regulation as an important determinant of human disease.
Collapse
Affiliation(s)
- Evelyne Huynh-Cong
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- for EHC: Evotec, Gottinggen, Germany
| | - Victoria Driscoll
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sandrine Ettou
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Keith Keller
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Amha Atakilit
- Lung Biology Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Mary E Taglienti
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
| | - Saurabh Kumar
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- for SK: University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Astrid Weins
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Valerie A Schumacher
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- for VAS and JAK: Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.
| | - Jordan A Kreidberg
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- for VAS and JAK: Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.
| |
Collapse
|
3
|
Sun Y, Kronenberg NM, Sethi SK, Dash SN, Kovalik ME, Sempowski B, Strickland S, Raina R, Sperati CJ, Tian X, Ishibe S, Hall G, Gather MC. CRB2 depletion induces YAP signaling and disrupts mechanosensing in podocytes. Am J Physiol Renal Physiol 2025; 328:F578-F595. [PMID: 40062402 PMCID: PMC12076484 DOI: 10.1152/ajprenal.00318.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/23/2024] [Accepted: 03/02/2025] [Indexed: 03/19/2025] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a histologic lesion caused by a variety of injurious stimuli that lead to dysfunction/loss of glomerular visceral epithelial cells (i.e., podocytes). Pathogenic mutations in crumbs homolog-2 (CRB2), encoding the type 1 transmembrane protein crumbs homolog-2, have been shown to cause early-onset corticosteroid-resistant nephrotic syndrome (SRNS)/FSGS. Here, we identified a two-generation Indian kindred (DUK40595) with biopsy-proven SRNS/FSGS caused by a compound heterozygous mutation in CRB2 comprised of the previously described truncating mutation p.Gly1036_Alafs*43 and a rare 9-bp deletion mutation p.Leu1074_Asp1076del. Because compound heterozygous mutations involving the truncating p.Gly1036_Alafs*43 variant have been associated with reduced CRB2 expression in podocytes and autosomal recessive SRNS/FSGS, we sought to define the pathogenic effects of CRB2 deficiency in podocytes. We show that CRB2 knockdown induces yes-associated protein (YAP) activity and target gene expression in podocytes. It upregulates YAP-mediated mechanosignaling and increases the density of focal adhesion and F-actin. Using elastic resonator interference stress microscopy (ERISM), we demonstrate that CRB2 knockdown also enhances podocyte contractility in a substrate stiffness-dependent manner. The knockdown effect decreases with increasing substrate stiffness, indicating impaired mechanosensing in CRB2 knockdown cells at low substrate stiffness. Although the mechanical activation of CRB2 knockdown cells is associated with increased YAP activity, the enhanced cell contractility is not significantly reduced by the selective YAP inhibitors K-975 and verteporfin, suggesting that multiple pathways may be involved in mechanosignaling downstream of CRB2. Taken together, these studies provide the first evidence that CRB2 deficiency may impair podocyte mechanotransduction via disruption of YAP signaling in podocytes.NEW & NOTEWORTHY We identified a rare compound heterozygous CRB2 mutation as the cause of familial SRNS/FSGS in a two-generation East Asian kindred. Modeling the effect of the mutation, we show that CRB2 knockdown in podocytes induces YAP transcriptional activity and upregulates YAP-mediated mechanosignaling. Using elastic resonator interference stress microscopy (ERISM), we demonstrate that CRB2 knockdown enhances podocyte contractility in a substrate stiffness-dependent manner. The knockdown effect decreases with increasing substrate stiffness, indicating impaired mechanosensing in CRB2-deficient podocytes.
Collapse
Affiliation(s)
- Yingyu Sun
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Nils M. Kronenberg
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Sidharth K. Sethi
- Pediatric Nephrology and Pediatric Kidney Transplantation, Medanta Kidney and Urology Institute, The Medicity Hospital, Gurgaon, Haryana, India
| | - Surjya N. Dash
- Division of Nephrology, Department of Medicine, Duke University, Durham, North Carolina, U.S.A
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, U.S.A
| | - Maria E. Kovalik
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, U.S.A
| | - Benjamin Sempowski
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, U.S.A
| | - Shelby Strickland
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, U.S.A
| | - Rupesh Raina
- Cleveland Clinic Akron General Medical Center, Akron Nephrology Associates, Akron, Ohio, USA
| | - C. John Sperati
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, U.S.A
| | - Xuefei Tian
- Division of Nephrology, Department of Medicine, Yale University, New Haven, Connecticut, U.S.A
| | - Shuta Ishibe
- Division of Nephrology, Department of Medicine, Yale University, New Haven, Connecticut, U.S.A
| | - Gentzon Hall
- Division of Nephrology, Department of Medicine, Duke University, Durham, North Carolina, U.S.A
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, U.S.A
| | - Malte C. Gather
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
- Centre of Biophotonics, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, U.K
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Disease (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Ester L, Wiesner E, Chen H, Ventzke M, Diefenhardt P, Mandel AM, Fabretti F, Brinkkoetter PT, Benzing T, Habbig S, Kann M, Cabrita I, Schermer B. Transcriptional Regulators YAP and TAZ Have Distinct Abilities to Compensate for One Another in Podocytes. J Am Soc Nephrol 2025:00001751-990000000-00598. [PMID: 40137583 DOI: 10.1681/asn.0000000689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/20/2025] [Indexed: 03/29/2025] Open
Abstract
Key Points
Podocyte-specific knockout of YAP but not TAZ led to proteinuria.Knockout of more than two alleles of YAP and TAZ resulted in neonatal death, revealing compensation between the two cotranscription factors.Although YAP fully compensated for the loss of TAZ, TAZ did not entirely compensate for YAP functions related to Rho-GTPase and ERBB4 signaling.
Background
Kidney function depends on the filtration of enormous volumes of plasma, exposing the filtration barrier to mechanical forces. Podocytes must adapt to these forces for the lifetime of an organism as they cannot self-renew. The molecular mechanisms of podocyte adaptation to mechanical stress remain unclear. YAP and TAZ are key mechanotransducers that relay mechanical stimuli to control transcription.
Methods
We made use of podocyte-specific knockout mouse models for Yap (YAPpKO), Taz (TAZpKO), or both (YAPpKO/TAZpKO) and analyzed single-nucleus RNA sequencing data of isolated glomeruli to delineate the distinct and shared roles of YAP and TAZ in podocyte homeostasis.
Results
Here, we found that YAP and TAZ have only partially overlapping functions and compensatory potential in podocytes in vivo. YAPpKO mice displayed podocyte damage and progressive kidney failure. By contrast, TAZpKO animals did not develop any overt disease, while the combined deletion of Yap and Taz caused a neonatal lethal phenotype. Single-nucleus RNA sequencing analysis revealed that in both YAPpKO and TAZpKO mice, a subpopulation of podocytes showed a similar stress response driven by activator protein 1, revealing a protective compensatory mechanism. However, TAZ failed to compensate sufficiently for the loss of YAP, resulting in dysregulation of Rho-GTPases and subsequently the actin cytoskeleton in diseased YAPpKO. Furthermore, we observed loss of ERBB4 expression exclusively in YAPpKO, underscoring the role of ERBB4 signaling as additional layer of YAP-specific regulation in maintaining podocyte survival.
Conclusions
In summary, we identified common and distinct roles for the two transcriptional regulators in podocyte homeostasis. YAP and TAZ can compensate for the loss of the other in podocytes to preserve viability. Still, although YAP can entirely compensate for the loss of TAZ securing podocyte health, TAZ fails to maintain all the YAP-specific functions leading to podocyte injury.
Collapse
Affiliation(s)
- Lioba Ester
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Research Center On Rare Kidney Diseases (RECORD), University Hospital Erlangen, Erlangen, Germany
| | - Eva Wiesner
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - He Chen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michel Ventzke
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Paul Diefenhardt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Amrei M Mandel
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Research Center On Rare Kidney Diseases (RECORD), University Hospital Erlangen, Erlangen, Germany
| | - Francesca Fabretti
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Paul T Brinkkoetter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sandra Habbig
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Kann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Inês Cabrita
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Zhong B, Du J, Liu F, Sun S. The Role of Yes-Associated Protein in Inflammatory Diseases and Cancer. MedComm (Beijing) 2025; 6:e70128. [PMID: 40066231 PMCID: PMC11892025 DOI: 10.1002/mco2.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 02/02/2025] [Accepted: 02/11/2025] [Indexed: 03/17/2025] Open
Abstract
Yes-associated protein (YAP) plays a central role in the Hippo pathway, primarily governing cell proliferation, differentiation, and apoptosis. Its significance extends to tumorigenesis and inflammatory conditions, impacting disease initiation and progression. Given the increasing relevance of YAP in inflammatory disorders and cancer, this study aims to elucidate its pathological regulatory functions in these contexts. Specifically, we aim to investigate the involvement and molecular mechanisms of YAP in various inflammatory diseases and cancers. We particularly focus on how YAP activation, whether through Hippo-dependent or independent pathways, triggers the release of inflammation and inflammatory mediators in respiratory, cardiovascular, and digestive inflammatory conditions. In cancer, YAP not only promotes tumor cell proliferation and differentiation but also modulates the tumor immune microenvironment, thereby fostering tumor metastasis and progression. Additionally, we provide an overview of current YAP-targeted therapies. By emphasizing YAP's role in inflammatory diseases and cancer, this study aims to enhance our understanding of the protein's pivotal involvement in disease processes, elucidate the intricate pathological mechanisms of related diseases, and contribute to future drug development strategies targeting YAP.
Collapse
Affiliation(s)
- Bing Zhong
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jintao Du
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Feng Liu
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Silu Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| |
Collapse
|
6
|
Zhao Z, Wu W, Zhang Q, Xing T, Bai Y, Li S, Zhang D, Che H, Guo X. Mechanism and therapeutic potential of hippo signaling pathway in type 2 diabetes and its complications. Biomed Pharmacother 2025; 183:117817. [PMID: 39842269 DOI: 10.1016/j.biopha.2025.117817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/22/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
Loss of pancreatic islet cell mass and function is one of the most important factors in the development of type 2 diabetes mellitus, and hyperglycemia-induced lesions in other organs are also associated with apoptosis or hyperproliferation of the corresponding tissue cells. The Hippo signaling pathway is a key signal in the regulation of cell growth, proliferation and apoptosis, which has been shown to play an important role in the regulation of diabetes mellitus and its complications. Excessive activation of the Hippo signaling pathway under high glucose conditions triggered apoptosis and decreased insulin secretion in pancreatic islet cells, while dysregulation of the Hippo signaling pathway in the cells of other organ tissues led to proliferation or apoptosis and promoted tissue fibrosis, which aggravated the progression of diabetes mellitus and its complications. This article reviews the mechanisms of Hippo signaling, its individual and reciprocal regulation in diabetic pancreatic pathology, and its emerging role in the pathophysiology of diabetic complications. Potential therapeutics for diabetes mellitus that have been shown to target the Hippo signaling pathway are also summarized to provide information for the clinical management of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Ziqi Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Weijie Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qianyi Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Tiancheng Xing
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yiling Bai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shuoqi Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Dandan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Huilian Che
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Xiaohui Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
7
|
Shao G, Xu J, Hu C, Jia W, Xu X, Gu Y, Zhang L, Zheng Z, Zhong J, Zhu S, Meng S, Zhao Z, Zhang Z, Liu J, Xu Y, Wu H. Podocyte YAP ablation decreases podocyte adhesion and exacerbates FSGS progression through α3β1 integrin. J Pathol 2025; 265:84-98. [PMID: 39668547 DOI: 10.1002/path.6370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/04/2024] [Accepted: 10/15/2024] [Indexed: 12/14/2024]
Abstract
Severe proteinuria in focal segmental glomerulosclerosis (FSGS) is closely associated with decreased adhesion, and subsequent loss, of podocytes. Yes-associated protein (YAP) is a key transcriptional coactivator that plays a significant role in maintaining cellular homeostasis. However, its role in podocyte adhesion and its specific mechanism in FSGS progression remain unclear. In this study, an adriamycin (ADR)-induced FSGS model was established using podocyte-specific Yap knockout (KO) mice and control mice. These mice were further treated with Pyrintegrin, an agonist of α3β1 integrin, or a vehicle. Additionally, an ADR-induced FSGS model was constructed using podocyte-specific Itga3 KO mice, which were subsequently treated with 1-oleoyl lysophosphatidic acid (LPA), a YAP activator, or a vehicle. Our findings demonstrated that YAP was positively correlated with podocyte adhesion. Podocyte-specific Yap KO mice exhibited reduced levels of α3β1 integrin and podocyte adhesion. Yap KO aggravated the ADR-induced reduction in α3β1 integrin and podocyte adhesion, resulting in significantly increased segmental or global glomerulosclerosis and proteinuria. Notably, treatment with a β1 integrin agonist partially ameliorated the decrease of podocyte adhesion and the worsening FSGS progression caused by Yap KO. Mechanistically, YAP was found to transcriptionally regulate α3- and β1 integrin via transcriptional enhanced associate domain 3 (TEAD3), with TEAD3 binding to the promoter region of Itga3. Furthermore, Itga3 KO or knockdown abolished the beneficial effects of YAP activation on podocyte adhesion and FSGS progression. In conclusion, our results demonstrate that YAP regulates podocyte adhesion and FSGS progression through its transcriptional regulation of α3β1 integrin via TEAD3. This suggests that the YAP-TEAD3-α3β1 integrin axis may serve as a promising therapeutic target for FSGS. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Guangze Shao
- Department of Pathology of School of Basic Medical Sciences, Fudan University, Kidney and Dialysis Institute of Shanghai, Shanghai, PR China
| | - Jitu Xu
- Department of Pathology of School of Basic Medical Sciences, Fudan University, Kidney and Dialysis Institute of Shanghai, Shanghai, PR China
| | - Chencheng Hu
- Department of Pathology of School of Basic Medical Sciences, Fudan University, Kidney and Dialysis Institute of Shanghai, Shanghai, PR China
| | - Wenyao Jia
- Department of Pathology of School of Basic Medical Sciences, Fudan University, Kidney and Dialysis Institute of Shanghai, Shanghai, PR China
| | - Xitong Xu
- Department of Pathology of School of Basic Medical Sciences, Fudan University, Kidney and Dialysis Institute of Shanghai, Shanghai, PR China
| | - Yue Gu
- Department of Pathology of School of Basic Medical Sciences, Fudan University, Kidney and Dialysis Institute of Shanghai, Shanghai, PR China
| | - Luming Zhang
- School of Biological Sciences, College of Life Science, Northwest A&F University, Xianyang, PR China
| | - Zhihuang Zheng
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Jiayan Zhong
- Department of Pathology of School of Basic Medical Sciences, Fudan University, Kidney and Dialysis Institute of Shanghai, Shanghai, PR China
| | - Siqi Zhu
- Department of Pathology of School of Basic Medical Sciences, Fudan University, Kidney and Dialysis Institute of Shanghai, Shanghai, PR China
| | - Shenghao Meng
- Department of Pathology of School of Basic Medical Sciences, Fudan University, Kidney and Dialysis Institute of Shanghai, Shanghai, PR China
| | - Zhonghua Zhao
- Department of Pathology of School of Basic Medical Sciences, Fudan University, Kidney and Dialysis Institute of Shanghai, Shanghai, PR China
| | - Zhigang Zhang
- Department of Pathology of School of Basic Medical Sciences, Fudan University, Kidney and Dialysis Institute of Shanghai, Shanghai, PR China
| | - Jun Liu
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Yanyong Xu
- Frontier Innovation Center of School of Basic Medical Sciences, Fudan University, Shanghai, PR China
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Pathology of School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Huijuan Wu
- Department of Pathology of School of Basic Medical Sciences, Fudan University, Kidney and Dialysis Institute of Shanghai, Shanghai, PR China
| |
Collapse
|
8
|
Yoon J, Liu Z, Alaba M, Bruggeman LA, Janmey PA, Arana CA, Ayenuyo O, Medeiros I, Eddy S, Kretzler M, Henderson JM, Nair V, Naik AS, Chang AN, Miller RT. Glomerular Elasticity and Gene Expression Patterns Define Two Phases of Alport Nephropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582201. [PMID: 38948788 PMCID: PMC11212921 DOI: 10.1101/2024.02.26.582201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Objectives To understand the early stages if Alport nephropathy, we characterize the structural, functional, and biophysical properties of glomerular capillaries and podocytes in Col4α3 -/- mice, analyze kidney cortex transcriptional profiles at three time points, and investigate the effects of the ER stress mitigation by TUDCA on these parameters. We use human FSGS associated genes to identify molecular pathways rescued by TUDCA. Findings We define a disease progression timeline in Col4α3 -/- mice. Podocyte injury is evident by 3 months, with glomeruli reaching maximum deformability at 4 months, associated with 40% podocytes loss, followed by progressive capillary stiffening, increasing proteinuria, reduced renal function, inflammatory infiltrates, and fibrosis from months 4 to 7. RNA sequencing at 2, 4, and 7 months reveals increased cytokine and chemokine signaling, matrix and cell injury, and activation of the TNF pathway genes by 7 months, similar to NEPTUNE FSGS cohorts. These features are suppressed by TUDCA. Conclusions We define two phases of Col4α3 -/- nephropathy. The first is characterized by podocytopathy, increased glomerular capillary deformability and accelerated podocyte loss, and the second by increased capillary wall stiffening and renal inflammatory and profibrotic pathway activation. Disease suppression by TUDCA treatment identifies potential therapeutic targets for treating Alport and related nephropathies.
Collapse
|
9
|
Ye S, Zhang M, Zheng X, Li S, Fan Y, Wang Y, Peng H, Chen S, Yang J, Tan L, Zhang M, Xie P, Li X, Luo N, Wang Z, Jin L, Wu X, Pan Y, Fan J, Zhou Y, Tang SCW, Li B, Chen W. YAP1 preserves tubular mitochondrial quality control to mitigate diabetic kidney disease. Redox Biol 2024; 78:103435. [PMID: 39608245 PMCID: PMC11629574 DOI: 10.1016/j.redox.2024.103435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/23/2024] [Accepted: 11/16/2024] [Indexed: 11/30/2024] Open
Abstract
Renal tubule cells act as a primary site of injury in diabetic kidney disease (DKD), with dysfunctional mitochondrial quality control (MQC) closely associated with progressive kidney dysfunction in this context. Our investigation delves into the observed inactivation of yes-associated protein 1 (YAP1) and consequential dysregulation of MQC within renal tubule cells among DKD subjects through bioinformatic analysis of transcriptomics data from the Gene Expression Omnibus (GEO) dataset. Receiver operating characteristic curve analysis unequivocally underscores the robust diagnostic accuracy of YAP1 and MQC-related genes for DKD. Furthermore, we observed YAP1 inactivation, accompanied by perturbed MQC, within cultured tubule cells exposed to high glucose (HG) and palmitic acid (PA). This pattern was also evident in the tubulointerstitial compartment of kidney sections from biopsy-approved DKD patients. Additionally, renal tubule cell-specific Yap1 deletion exacerbated kidney injury in diabetic mice. Mechanistically, Yap1 deletion disrupted MQC, leading to mitochondrial aberrations in mitobiogenesis and mitophagy within tubule cells, ultimately culminating in histologic tubular injury. Notably, Yap1 deletion-induced renal tubule injury promoted the secretion of C-X-C motif chemokine ligand 1 (CXCL1), potentially augmenting M1 macrophage infiltration within the renal microenvironment. These multifaceted events were significantly ameliorated by administrating the YAP1 activator XMU-MP-1 in DKD mice. Consistently, bioinformatic analysis of transcriptomics data from the GEO dataset revealed a noteworthy upregulation of tubule cells-derived chemokine CXCL1 associated with macrophage infiltration among DKD patients. Crucially, overexpression of YAP1 via adenovirus transfection sustained mitochondrial membrane potential, mtDNA copy number, oxygen consumption rate, and activity of mitochondrial respiratory chain complex, but attenuated mitochondrial ROS production, thereby maintaining MQC and subsequently suppressing CXCL1 generation within cultured tubule cells exposed to HG and PA. Collectively, our study establishes a pivotal role of tubule YAP1 inactivation-mediated MQC dysfunction in driving DKD progression, at least in part, facilitated by promoting M1 macrophage polarization through a paracrine-dependent mechanism.
Collapse
Affiliation(s)
- Siyang Ye
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Meng Zhang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Xunhua Zheng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Suchun Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Yuting Fan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Yiqin Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Huajing Peng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Sixiu Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Jiayi Yang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Li Tan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Manhuai Zhang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Peichen Xie
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Xiaoyan Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Ning Luo
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Zhipeng Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaoping Wu
- State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yong Pan
- Department of Pathophysiology, School of Basic Medical Science, Shenzhen University Medical School, Shenzhen, 518000, China
| | - Jinjin Fan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Yi Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Sydney C W Tang
- Division of Nephrology, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Bin Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China.
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China.
| |
Collapse
|
10
|
Schulz K, Hazelton-Cavill P, Alornyo KK, Edenhofer I, Lindenmeyer M, Lohr C, Huber TB, Denholm B, Koehler S. Piezo activity levels need to be tightly regulated to maintain normal morphology and function in pericardial nephrocytes. Sci Rep 2024; 14:28254. [PMID: 39548228 PMCID: PMC11568303 DOI: 10.1038/s41598-024-79352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024] Open
Abstract
Due to their position on glomerular capillaries, podocytes are continuously counteracting biomechanical filtration forces. Most therapeutic interventions known to generally slow or prevent the progression of chronic kidney disease appear to lower these biomechanical forces on podocytes, highlighting the critical need to better understand podocyte mechano-signalling pathways. Here we investigated whether the mechanotransducer Piezo is involved in a mechanosensation pathway in Drosophila nephrocytes, the podocyte homologue in the fly. Loss of function analysis in Piezo depleted nephrocytes reveal a severe morphological and functional phenotype. Further, pharmacological activation of endogenous Piezo with Yoda1 causes a significant increase of intracellular Ca++ upon exposure to a mechanical stimulus in nephrocytes, as well as filtration disturbances. Elevated Piezo expression levels also result in a severe nephrocyte phenotype. Interestingly, expression of Piezo which lacks mechanosensitive channel activity, does not result in a severe nephrocyte phenotype, suggesting the observed changes in Piezo wildtype overexpressing cells are caused by the mechanosensitive channel activity. Moreover, blocking Piezo activity using the tarantula toxin GsMTx4 reverses the phenotypes observed in nephrocytes overexpressing Piezo. Taken together, here we provide evidence that Piezo activity levels need to be tightly regulated to maintain normal pericardial nephrocyte morphology and function.
Collapse
Affiliation(s)
- Kristina Schulz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paris Hazelton-Cavill
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karl K Alornyo
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ilka Edenhofer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Lohr
- Division of Neurophysiology, Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Barry Denholm
- Biomedical Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Sybille Koehler
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany.
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Biomedical Sciences, University of Edinburgh, Edinburgh, Scotland, UK.
| |
Collapse
|
11
|
Sun Y, Kronenberg NM, Sethi SK, Dash SN, Kovalik ME, Sempowski B, Strickland S, Raina R, Sperati CJ, Tian X, Ishibe S, Hall G, Gather MC. CRB2 Depletion Induces YAP Signaling and Disrupts Mechanosensing in Podocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619513. [PMID: 39484460 PMCID: PMC11527017 DOI: 10.1101/2024.10.22.619513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Focal Segmental Glomerulosclerosis (FSGS) is a histologic lesion caused by a variety of injurious stimuli that lead to dysfunction/loss of glomerular visceral epithelial cells (i.e. podocytes). Pathogenic mutations in CRB2, encoding the type 1 transmembrane protein Crumb 2 Homolog Protein, have been shown to cause early-onset corticosteroid-resistant nephrotic syndrome (SRNS)/FSGS. Here, we identified a 2-generation East Asian kindred (DUK40595) with biopsy-proven SRNS/FSGS caused by a compound heterozygous mutation in CRB2 comprised of the previously described truncating mutation p.Gly1036_Alafs*43 and a rare 9-bp deletion mutation p.Leu1074_Asp1076del. Because compound heterozygous mutations involving the truncating p.Gly1036_Alafs*43 variant have been associated with reduced CRB2 expression in podocytes and autosomal recessive SRNS/FSGS, we sought to define the pathogenic effects of CRB2 deficiency in podocytes. We show that CRB2 knockdown induces YAP activity and target gene expression in podocytes. It upregulates YAP-mediated mechanosignaling and increases the density of focal adhesion and F-actin. Using Elastic Resonator Interference Stress Microscopy (ERISM), we demonstrate that CRB2 knockdown also enhances podocyte contractility in a substrate stiffness-dependent manner. The knockdown effect decreases with increasing substrate stiffness, indicating impaired mechanosensing in CRB2 knockdown cells at low substrate stiffness. While the mechanical activation of CRB2 knockdown cells is associated with increased YAP activity, the enhanced cell contractility is not significantly reduced by the selective YAP inhibitors K-975 and verteporfin, suggesting that multiple pathways may be involved in mechanosignaling downstream of CRB2. Taken together, these studies provide the first evidence that CRB2 deficiency may impair podocyte mechanotransduction via disruption of YAP signaling in podocytes.
Collapse
Affiliation(s)
- Yingyu Sun
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Nils M. Kronenberg
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Sidharth K. Sethi
- Pediatric Nephrology and Pediatric Kidney Transplantation, Medanta Kidney and Urology Institute, The Medicity Hospital, Gurgaon, Haryana, India
| | - Surjya N. Dash
- Division of Nephrology, Department of Medicine, Duke University, Durham, North Carolina, U.S.A
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, U.S.A
| | - Maria E. Kovalik
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, U.S.A
| | - Benjamin Sempowski
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, U.S.A
| | - Shelby Strickland
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, U.S.A
| | - Rupresh Raina
- Division of Nephrology, Department of Medicine, Yale University, New Haven, Connecticut, U.S.A
- Cleveland Clinic Akron General Medical Center, Akron Nephrology Associates, Akron, Ohio, USA
| | - C. John Sperati
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, U.S.A
| | - Xuefei Tian
- Cleveland Clinic Akron General Medical Center, Akron Nephrology Associates, Akron, Ohio, USA
| | - Shuta Ishibe
- Cleveland Clinic Akron General Medical Center, Akron Nephrology Associates, Akron, Ohio, USA
| | - Gentzon Hall
- Division of Nephrology, Department of Medicine, Duke University, Durham, North Carolina, U.S.A
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, U.S.A
| | - Malte C. Gather
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
- Centre of Biophotonics, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, U.K
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Disease (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
12
|
Zhang Y, Musah S. Mechanosensitive Differentiation of Human iPS Cell-Derived Podocytes. Bioengineering (Basel) 2024; 11:1038. [PMID: 39451413 PMCID: PMC11504473 DOI: 10.3390/bioengineering11101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Stem cell fate decisions, including proliferation, differentiation, morphological changes, and viability, are impacted by microenvironmental cues such as physical and biochemical signals. However, the specific impact of matrix elasticity on kidney cell development and function remains less understood due to the lack of models that can closely recapitulate human kidney biology. An established protocol to differentiate podocytes from human-induced pluripotent stem (iPS) cells provides a promising avenue to elucidate the role of matrix elasticity in kidney tissue development and lineage determination. In this study, we synthesized polyacrylamide hydrogels with different stiffnesses and investigated their ability to promote podocyte differentiation and biomolecular characteristics. We found that 3 kPa and 10 kPa hydrogels significantly support the adhesion, differentiation, and viability of podocytes. Differentiating podocytes on a more compliant (0.7 kPa) hydrogel resulted in significant cell loss and detachment. Further investigation of the mechanosensitive proteins yes-associated protein (YAP) and synaptopodin revealed nuanced molecular distinctions in cellular responses to matrix elasticity that may otherwise be overlooked if morphology and cell spreading alone were used as the primary metric for selecting matrices for podocyte differentiation. Specifically, hydrogels with kidney-like rigidities outperformed traditional tissue culture plates at modulating the molecular-level expression of active mechanosensitive proteins critical for podocyte health and function. These findings could guide the development of physiologically relevant platforms for kidney tissue engineering, disease modeling, and mechanistic studies of organ physiology and pathophysiology. Such advances are critical for realizing the full potential of in vitro platforms in accurately predicting human biological responses.
Collapse
Affiliation(s)
- Yize Zhang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Samira Musah
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC 27708, USA
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
- Affiliate Faculty of the Developmental and Stem Cell Biology Program, Duke Regeneration Center, Duke MEDx Initiative, Duke University, Durham, NC 27710, USA
| |
Collapse
|
13
|
Haydak J, Azeloglu EU. Role of biophysics and mechanobiology in podocyte physiology. Nat Rev Nephrol 2024; 20:371-385. [PMID: 38443711 PMCID: PMC12103212 DOI: 10.1038/s41581-024-00815-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 03/07/2024]
Abstract
Podocytes form the backbone of the glomerular filtration barrier and are exposed to various mechanical forces throughout the lifetime of an individual. The highly dynamic biomechanical environment of the glomerular capillaries greatly influences the cell biology of podocytes and their pathophysiology. Throughout the past two decades, a holistic picture of podocyte cell biology has emerged, highlighting mechanobiological signalling pathways, cytoskeletal dynamics and cellular adhesion as key determinants of biomechanical resilience in podocytes. This biomechanical resilience is essential for the physiological function of podocytes, including the formation and maintenance of the glomerular filtration barrier. Podocytes integrate diverse biomechanical stimuli from their environment and adapt their biophysical properties accordingly. However, perturbations in biomechanical cues or the underlying podocyte mechanobiology can lead to glomerular dysfunction with severe clinical consequences, including proteinuria and glomerulosclerosis. As our mechanistic understanding of podocyte mechanobiology and its role in the pathogenesis of glomerular disease increases, new targets for podocyte-specific therapeutics will emerge. Treating glomerular diseases by targeting podocyte mechanobiology might improve therapeutic precision and efficacy, with potential to reduce the burden of chronic kidney disease on individuals and health-care systems alike.
Collapse
Affiliation(s)
- Jonathan Haydak
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evren U Azeloglu
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
14
|
Chen J, Wang X, He Q, Yang HC, Fogo AB, Harris RC. Inhibition of transcriptional coactivator YAP Impairs the expression and function of transcription factor WT1 in diabetic podocyte injury. Kidney Int 2024; 105:1200-1211. [PMID: 38423183 DOI: 10.1016/j.kint.2024.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Podocyte injury and loss are hallmarks of diabetic nephropathy (DN). However, the molecular mechanisms underlying these phenomena remain poorly understood. YAP (Yes-associated protein) is an important transcriptional coactivator that binds with various other transcription factors, including the TEAD family members (nuclear effectors of the Hippo pathway), that regulate cell proliferation, differentiation, and apoptosis. The present study found an increase in YAP phosphorylation at S127 of YAP and a reduction of nuclear YAP localization in podocytes of diabetic mouse and human kidneys, suggesting dysregulation of YAP may play a role in diabetic podocyte injury. Tamoxifen-inducible podocyte-specific Yap gene knockout mice (YappodKO) exhibited accelerated and worsened diabetic kidney injury. YAP inactivation decreased transcription factor WT1 expression with subsequent reduction of Tead1 and other well-known targets of WT1 in diabetic podocytes. Thus, our study not only sheds light on the pathophysiological roles of the Hippo pathway in diabetic podocyte injury but may also lead to the development of new therapeutic strategies to prevent and/or treat DN by targeting the Hippo signaling pathway.
Collapse
Affiliation(s)
- Jianchun Chen
- Department of Veterans Affairs, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease, Nashville, Tennessee, USA.
| | - Xiaoyong Wang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Qian He
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hai-Chun Yang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Agnes B Fogo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Raymond C Harris
- Department of Veterans Affairs, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease, Nashville, Tennessee, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
15
|
McEvoy CM, Yuen DA. Not too much, not too little-just the right amount: the story of YAP in the podocyte. Kidney Int 2024; 105:1157-1159. [PMID: 38777398 DOI: 10.1016/j.kint.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 05/25/2024]
Abstract
Chen et al. identify dysregulation of the transcriptional activator Yes-associated protein in the podocytes of diabetic mouse and human kidneys. Podocyte Yes-associated protein deficiency led to downregulation of the key transcription factor Wilms' tumor 1, and worsened podocyte injury in a mouse model of diabetic kidney injury. Yes-associated protein may therefore play a critical role in diabetic podocyte injury via regulation of Wilms' tumor 1 expression.
Collapse
Affiliation(s)
- Caitríona M McEvoy
- Trinity Health Kidney Centre, Tallaght University Hospital, Dublin, Ireland; Trinity Kidney Centre, Trinity College Dublin, Dublin, Ireland
| | - Darren A Yuen
- Division of Nephrology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital (Unity Health Toronto), University of Toronto, Toronto, Ontario, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital (Unity Health Toronto), University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Ester L, Cabrita I, Ventzke M, Kieckhöfer E, Christodoulou M, Mandel AM, Diefenhardt P, Fabretti F, Benzing T, Habbig S, Schermer B. The role of the FSGS disease gene product and nuclear pore protein NUP205 in regulating nuclear localization and activity of transcriptional regulators YAP and TAZ. Hum Mol Genet 2023; 32:3153-3165. [PMID: 37565816 PMCID: PMC10630254 DOI: 10.1093/hmg/ddad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/12/2023] Open
Abstract
Mutations in genes encoding nuclear pore proteins (NUPs) lead to the development of steroid-resistant nephrotic syndrome and focal segmental glomerulosclerosis (FSGS). However, the precise molecular mechanisms by which NUP dysfunction contributes to podocyte injury preceding FSGS remain unclear. The tightly regulated activity of Yes-associated protein (YAP) and WW-domain-containing transcription regulator 1 (TAZ), the transcriptional effectors of the Hippo pathway, is crucial for podocytes and the maintenance of the glomerular filter. In this study, we investigate the impact of NUPs on the regulation of YAP/TAZ nuclear import and activity in podocytes. In unbiased interactome studies using quantitative label-free mass spectrometry, we identify the FSGS disease gene products NUP107, NUP133, NUP205, and Exportin-5 (XPO5) as components of YAP and TAZ protein complexes in podocytes. Moreover, we demonstrate that NUP205 is essential for YAP/TAZ nuclear import. Consistently, both the nuclear interaction of YAP/TAZ with TEA domain transcription factor 1 and their transcriptional activity were dependent on NUP205 expression. Additionally, we elucidate a regulatory feedback mechanism whereby YAP activity is modulated in response to TAZ-mediated NUP205 expression. In conclusion, this study establishes a connection between the FSGS disease protein NUP205 and the activity of the transcriptional regulators and Hippo effectors YAP and TAZ and it proposes a potential pathological role of YAP/TAZ dysregulation in podocytes of patients with pathogenic NUP205 variants.
Collapse
Affiliation(s)
- Lioba Ester
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Inês Cabrita
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Michel Ventzke
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Emilia Kieckhöfer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Marita Christodoulou
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Amrei M Mandel
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Paul Diefenhardt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Francesca Fabretti
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Sandra Habbig
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| |
Collapse
|
17
|
Kang L, Yi J, Lau CW, He L, Chen Q, Xu S, Li J, Xia Y, Zhang Y, Huang Y, Wang L. AMPK-Dependent YAP Inhibition Mediates the Protective Effect of Metformin against Obesity-Associated Endothelial Dysfunction and Inflammation. Antioxidants (Basel) 2023; 12:1681. [PMID: 37759984 PMCID: PMC10525300 DOI: 10.3390/antiox12091681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Hyperglycemia is a crucial risk factor for cardiovascular diseases. Chronic inflammation is a central characteristic of obesity, leading to many of its complications. Recent studies have shown that high glucose activates Yes-associated protein 1 (YAP) by suppressing AMPK activity in breast cancer cells. Metformin is a commonly prescribed anti-diabetic drug best known for its AMPK-activating effect. However, the role of YAP in the vasoprotective effect of metformin in diabetic endothelial cell dysfunction is still unknown. The present study aimed to investigate whether YAP activation plays a role in obesity-associated endothelial dysfunction and inflammation and examine whether the vasoprotective effect of metformin is related to YAP inhibition. Reanalysis of the clinical sequencing data revealed YAP signaling, and the YAP target genes CTGF and CYR61 were upregulated in aortic endothelial cells and retinal fibrovascular membranes from diabetic patients. YAP overexpression impaired endothelium-dependent relaxations (EDRs) in isolated mouse aortas and increased the expression of YAP target genes and inflammatory markers in human umbilical vein endothelial cells (HUVECs). High glucose-activated YAP in HUVECs and aortas was accompanied by increased production of oxygen-reactive species. AMPK inhibition was found to induce YAP activation, resulting in increased JNK activity. Metformin activated AMPK and promoted YAP phosphorylation, ultimately improving EDRs and suppressing the JNK activity. Targeting the AMPK-YAP-JNK axis could become a therapeutic strategy for alleviating vascular dysfunction in obesity and diabetes.
Collapse
Affiliation(s)
- Lijing Kang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (L.K.); (L.H.); (Q.C.)
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (C.-W.L.); (Y.X.)
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong 999077, China
| | - Juanjuan Yi
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong 999077, China; (J.Y.); (J.L.)
| | - Chi-Wai Lau
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (C.-W.L.); (Y.X.)
| | - Lei He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (L.K.); (L.H.); (Q.C.)
| | - Qinghua Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (L.K.); (L.H.); (Q.C.)
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui 230027, China;
| | - Jun Li
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong 999077, China; (J.Y.); (J.L.)
| | - Yin Xia
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (C.-W.L.); (Y.X.)
| | - Yuanting Zhang
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (L.K.); (L.H.); (Q.C.)
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong 999077, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (L.K.); (L.H.); (Q.C.)
| |
Collapse
|
18
|
Rogg M, Maier JI, Helmstädter M, Sammarco A, Kliewe F, Kretz O, Weißer L, Van Wymersch C, Findeisen K, Koessinger AL, Tsoy O, Baumbach J, Grabbert M, Werner M, Huber TB, Endlich N, Schilling O, Schell C. A YAP/TAZ-ARHGAP29-RhoA Signaling Axis Regulates Podocyte Protrusions and Integrin Adhesions. Cells 2023; 12:1795. [PMID: 37443829 PMCID: PMC10340513 DOI: 10.3390/cells12131795] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Glomerular disease due to podocyte malfunction is a major factor in the pathogenesis of chronic kidney disease. Identification of podocyte-specific signaling pathways is therefore a prerequisite to characterizing relevant disease pathways and developing novel treatment approaches. Here, we employed loss of function studies for EPB41L5 (Yurt) as a central podocyte gene to generate a cell type-specific disease model. Loss of Yurt in fly nephrocytes caused protein uptake and slit diaphragm defects. Transcriptomic and proteomic analysis of human EPB41L5 knockout podocytes demonstrated impaired mechanotransduction via the YAP/TAZ signaling pathway. Further analysis of specific inhibition of the YAP/TAZ-TEAD transcription factor complex by TEADi led to the identification of ARGHAP29 as an EPB41L5 and YAP/TAZ-dependently expressed podocyte RhoGAP. Knockdown of ARHGAP29 caused increased RhoA activation, defective lamellipodia formation, and increased maturation of integrin adhesion complexes, explaining similar phenotypes caused by loss of EPB41L5 and TEADi expression in podocytes. Detection of increased levels of ARHGAP29 in early disease stages of human glomerular disease implies a novel negative feedback loop for mechanotransductive RhoA-YAP/TAZ signaling in podocyte physiology and disease.
Collapse
Affiliation(s)
- Manuel Rogg
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Jasmin I. Maier
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Martin Helmstädter
- Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Alena Sammarco
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Felix Kliewe
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489 Greifswald, Germany (N.E.)
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Lisa Weißer
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Clara Van Wymersch
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Karla Findeisen
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Anna L. Koessinger
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Olga Tsoy
- Institute for Computational Systems Biology, University of Hamburg, 22607 Hamburg, Germany; (O.T.)
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, 22607 Hamburg, Germany; (O.T.)
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark
| | - Markus Grabbert
- Department of Urology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Martin Werner
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489 Greifswald, Germany (N.E.)
| | - Oliver Schilling
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79106 Freiburg, Germany
| | - Christoph Schell
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
19
|
Tian F, Huang S, Xu W, Xie G, Gan Y, Huang F, Fan Y, Bao J. Fasudil compensates podocyte injury via CaMK4/Rho GTPases signal and actin cytoskeleton-dependent activation of YAP in MRL/lpr mice. Int Immunopharmacol 2023; 119:110199. [PMID: 37094544 DOI: 10.1016/j.intimp.2023.110199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/15/2023] [Accepted: 04/11/2023] [Indexed: 04/26/2023]
Abstract
Deposition of immune complexes in the glomerulus leads to irreversible renal damage in lupus nephritis (LN), of which podocyte malfunction arises earlier. Fasudil, the only Rho GTPases inhibitor approved in clinical settings, possesses well-established renoprotective actions; yet, no studies addressed the amelioration derived from fasudil in LN. To clarify, we investigated whether fasudil exerted renal remission in lupus-prone mice. In this study, fasudil (20 mg/kg) was intraperitoneally administered to female MRL/lpr mice for 10 weeks. We report that fasudil administration swept antibodies (anti-dsDNA) and attenuated systemic inflammatory response in MRL/lpr mice, accompanied by preserving podocyte ultrastructure and averting immune complex deposition. Mechanistically, it repressed the expression of CaMK4 in glomerulopathy by preserving nephrin and synaptopodin expression. And fasudil further blocked cytoskeletal breakage in the Rho GTPases-dependent action. Further analyses showed that beneficial actions of fasudil on the podocytes required intra-nuclear YAP activation underlying actin dynamics. In addition, in vitro assays revealed that fasudil normalized the motile imbalance by suppressing intracellular calcium enrichment, thereby contributing to the resistance of apoptosis in podocytes. Altogether, our findings suggest that the precise manners of crosstalks between cytoskeletal assembly and YAP activation underlying the upstream CaMK4/Rho GTPases signal in podocytes is a reliable target for podocytopathies treatment, and fasudil might serve as a promising therapeutic agent to compensate for the podocyte injury in LN.
Collapse
Affiliation(s)
- Fengyuan Tian
- General Practice, The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, PR China
| | - Shuo Huang
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Wangda Xu
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Guanqun Xie
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Yihong Gan
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Fugang Huang
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Yongsheng Fan
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China.
| | - Jie Bao
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China.
| |
Collapse
|
20
|
Meliambro K, Yang Y, de Cos M, Rodriguez Ballestas E, Malkin C, Haydak J, Lee JR, Salem F, Mariani LH, Gordon RE, Basgen JM, Wen HH, Fu J, Azeloglu EU, He JC, Wong JS, Campbell KN. KIBRA upregulation increases susceptibility to podocyte injury and glomerular disease progression. JCI Insight 2023; 8:e165002. [PMID: 36853804 PMCID: PMC10132156 DOI: 10.1172/jci.insight.165002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/21/2023] [Indexed: 03/01/2023] Open
Abstract
Despite recent progress in the identification of mediators of podocyte injury, mechanisms underlying podocyte loss remain poorly understood, and cell-specific therapy is lacking. We previously reported that kidney and brain expressed protein (KIBRA), encoded by WWC1, promotes podocyte injury in vitro through activation of the Hippo signaling pathway. KIBRA expression is increased in the glomeruli of patients with focal segmental glomerulosclerosis, and KIBRA depletion in vivo is protective against acute podocyte injury. Here, we tested the consequences of transgenic podocyte-specific WWC1 expression in immortalized human podocytes and in mice, and we explored the association between glomerular WWC1 expression and glomerular disease progression. We found that KIBRA overexpression in immortalized human podocytes promoted cytoplasmic localization of Yes-associated protein (YAP), induced actin cytoskeletal reorganization, and altered focal adhesion expression and morphology. WWC1-transgenic (KIBRA-overexpressing) mice were more susceptible to acute and chronic glomerular injury, with evidence of YAP inhibition in vivo. Of clinical relevance, glomerular WWC1 expression negatively correlated with renal survival among patients with primary glomerular diseases. These findings highlight the importance of KIBRA/YAP signaling to the regulation of podocyte structural integrity and identify KIBRA-mediated injury as a potential target for podocyte-specific therapy in glomerular disease.
Collapse
Affiliation(s)
- Kristin Meliambro
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yanfeng Yang
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marina de Cos
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Caroline Malkin
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jonathan Haydak
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John R. Lee
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Fadi Salem
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| | - Laura H. Mariani
- Division of Nephrology, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ronald E. Gordon
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John M. Basgen
- Stereology and Morphometry Laboratory, Charles R. Drew University of Medicine and Science, Los Angeles, California, USA
| | - Huei Hsun Wen
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jia Fu
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Evren U. Azeloglu
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John Cijiang He
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jenny S. Wong
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kirk N. Campbell
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
21
|
Mohandes S, Doke T, Hu H, Mukhi D, Dhillon P, Susztak K. Molecular pathways that drive diabetic kidney disease. J Clin Invest 2023; 133:165654. [PMID: 36787250 PMCID: PMC9927939 DOI: 10.1172/jci165654] [Citation(s) in RCA: 163] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Kidney disease is a major driver of mortality among patients with diabetes and diabetic kidney disease (DKD) is responsible for close to half of all chronic kidney disease cases. DKD usually develops in a genetically susceptible individual as a result of poor metabolic (glycemic) control. Molecular and genetic studies indicate the key role of podocytes and endothelial cells in driving albuminuria and early kidney disease in diabetes. Proximal tubule changes show a strong association with the glomerular filtration rate. Hyperglycemia represents a key cellular stress in the kidney by altering cellular metabolism in endothelial cells and podocytes and by imposing an excess workload requiring energy and oxygen for proximal tubule cells. Changes in metabolism induce early adaptive cellular hypertrophy and reorganization of the actin cytoskeleton. Later, mitochondrial defects contribute to increased oxidative stress and activation of inflammatory pathways, causing progressive kidney function decline and fibrosis. Blockade of the renin-angiotensin system or the sodium-glucose cotransporter is associated with cellular protection and slowing kidney function decline. Newly identified molecular pathways could provide the basis for the development of much-needed novel therapeutics.
Collapse
Affiliation(s)
- Samer Mohandes
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tomohito Doke
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hailong Hu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dhanunjay Mukhi
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Poonam Dhillon
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Burt MA, Kalejaiye TD, Bhattacharya R, Dimitrakakis N, Musah S. Adriamycin-Induced Podocyte Injury Disrupts the YAP-TEAD1 Axis and Downregulates Cyr61 and CTGF Expression. ACS Chem Biol 2022; 17:3341-3351. [PMID: 34890187 DOI: 10.1021/acschembio.1c00678] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The most severe forms of kidney diseases are often associated with irreversible damage to the glomerular podocytes, the highly specialized epithelial cells that encase glomerular capillaries and regulate the removal of toxins and waste from the blood. Several studies revealed significant changes to podocyte cytoskeletal structure during disease onset, suggesting possible roles of cellular mechanosensing in podocyte responses to injury. Still, this topic remains underexplored partly due to the lack of appropriate in vitro models that closely recapitulate human podocyte biology. Here, we leveraged our previously established method for the derivation of mature podocytes from human induced pluripotent stem cells (hiPSCs) to help uncover the roles of yes-associated protein (YAP), a transcriptional coactivator and mechanosensor, in podocyte injury response. We found that while the total expression levels of YAP remain relatively unchanged during Adriamycin (ADR)-induced podocyte injury, the YAP target genes connective tissue growth factor (CTGF) and cysteine-rich angiogenic inducer 61 (Cyr61) are significantly downregulated. Intriguingly, TEAD1 is significantly downregulated in podocytes injured with ADR. By examining multiple independent modes of cellular injury, we found that CTGF and Cyr61 expression are downregulated only when podocytes were exposed to molecules known to disrupt the cell's mechanical integrity or cytoskeletal structure. To our knowledge, this is the first report that the YAP-TEAD1 signaling axis is disrupted when stem cell-derived human podocytes experience biomechanical injury. Together, these results could help improve the understanding of kidney disease mechanisms and highlight CTGF and Cyr61 as potential therapeutic targets or biomarkers for patient stratification.
Collapse
Affiliation(s)
- Morgan A Burt
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Titilola D Kalejaiye
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Rohan Bhattacharya
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Nikolaos Dimitrakakis
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Samira Musah
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, North Carolina 27708, United States
- Department of Medicine, Division of Nephrology, Duke University School of Medicine, Durham, North Carolina 27710, United States
- Department of Cell Biology, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
23
|
Targeted Disruption of Lats1 and Lats2 in Mice Impairs Testis Development and Alters Somatic Cell Fate. Int J Mol Sci 2022; 23:ijms232113585. [DOI: 10.3390/ijms232113585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
Hippo signaling plays an essential role in the development of numerous tissues. Although it was previously shown that the transcriptional effectors of Hippo signaling Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) can fine-tune the regulation of sex differentiation genes in the testes, the role of Hippo signaling in testis development remains largely unknown. To further explore the role of Hippo signaling in the testes, we conditionally deleted the key Hippo kinases large tumor suppressor homolog kinases 1 and -2 (Lats1 and Lats2, two kinases that antagonize YAP and TAZ transcriptional co-regulatory activity) in the somatic cells of the testes using an Nr5a1-cre strain (Lats1flox/flox;Lats2flox/flox;Nr5a1-cre). We report here that early stages of testis somatic cell differentiation were not affected in this model but progressive testis cord dysgenesis was observed starting at gestational day e14.5. Testis cord dysgenesis was further associated with the loss of polarity of the Sertoli cells and the loss of SOX9 expression but not WT1. In parallel with testis cord dysgenesis, a loss of steroidogenic gene expression associated with the appearance of myofibroblast-like cells in the interstitial space was also observed in mutant animals. Furthermore, the loss of YAP phosphorylation, the accumulation of nuclear TAZ (and YAP) in both the Sertoli and interstitial cell populations, and an increase in their transcriptional co-regulatory activity in the testes suggest that the observed phenotype could be attributed at least in part to YAP and TAZ. Taken together, our results suggest that Hippo signaling is required to maintain proper differentiation of testis somatic cells.
Collapse
|
24
|
He M, Feng L, Chen Y, Gao B, Du Y, Zhou L, Li F, Liu H. Polydatin attenuates tubulointerstitial fibrosis in diabetic kidney disease by inhibiting YAP expression and nuclear translocation. Front Physiol 2022; 13:927794. [PMID: 36277194 PMCID: PMC9585250 DOI: 10.3389/fphys.2022.927794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
The activation of Yes-associated protein (YAP) pathway is mutually causal with the increase of extracellular matrix (ECM) stiffness. Polydatin (PD) has been proved to have anti-fibrosis effect in diabetic kidney disease (DKD), but it is still a mystery whether PD participates in YAP-related mechano-transduction. Therefore, this study intends to solve the following two problems: 1) To construct an in vitro system of polyacrylamide hydrogels (PA gels) based on the true stiffness of kidneys in healthy and DKD rats, and observe the effect of PD on pathological matrix stiffness-induced YAP expression in renal fibroblasts; 2) Compared with verteporfin (VP), a pharmacological inhibitor of YAP, to explore whether the therapeutic effect of PD on DKD in vivo model is related to the regulation of YAP. In this study, the in vitro system of PA gels with 3 kPa, 12 kPa and 30 kPa stiffness was constructed and determined for the first time to simulate the kidney stiffness of healthy rats, rats with DKD for 8 weeks and 16 weeks, respectively. Compared with the PA gels with 3 kPa stiffness, the PA gels with 12 kPa and 30 kPa stiffness significantly increased the expression of YAP, α-smooth muscle actin (α-SMA) and collagen I, and the production of reactive oxygen species (ROS) in renal fibroblasts, and the PA gels with 30 kPa stiffness were the highest. PD significantly inhibited the above-mentioned changes of fibroblasts induced by pathological matrix stiffness, suggesting that the inhibition of PD on fibroblast-to-myofibroblast transformation and ECM production was at least partially associated with regulating YAP-related mechano-transduction pathway. Importantly, the inhibitory effect of PD on YAP expression and nuclear translocation in kidneys of DKD rats is similar to that of VP, but PD is superior to VP in reducing urinary protein, blood glucose, blood urea nitrogen and serum creatinine, as well as decreasing the expression of α-SMA and collagen I, ROS overproduction and renal fibrosis. Our results prove for the first time from the biomechanical point of view that PD is a potential therapeutic strategy for delaying the progression of renal fibrosis by inhibiting YAP expression and nuclear translocation.
Collapse
Affiliation(s)
- Manlin He
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Lan Feng
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Yang Chen
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Bin Gao
- Department of Endocrinology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Yiwei Du
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Lu Zhou
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Hongbao Liu, ; Fei Li,
| | - Hongbao Liu
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
- *Correspondence: Hongbao Liu, ; Fei Li,
| |
Collapse
|
25
|
Jiang S, Alisafaei F, Huang YY, Hong Y, Peng X, Qu C, Puapatanakul P, Jain S, Miner JH, Genin GM, Suleiman HY. An ex vivo culture model of kidney podocyte injury reveals mechanosensitive, synaptopodin-templating, sarcomere-like structures. SCIENCE ADVANCES 2022; 8:eabn6027. [PMID: 36044576 PMCID: PMC9432837 DOI: 10.1126/sciadv.abn6027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Chronic kidney diseases are widespread and incurable. The biophysical mechanisms underlying them are unclear, in part because material systems for reconstituting the microenvironment of relevant kidney cells are limited. A critical question is how kidney podocytes (glomerular epithelial cells) regenerate foot processes of the filtration apparatus following injury. Recently identified sarcomere-like structures (SLSs) with periodically spaced myosin IIA and synaptopodin appear in injured podocytes in vivo. We hypothesized that SLSs template synaptopodin in the initial stages of recovery in response to microenvironmental stimuli and tested this hypothesis by developing an ex vivo culture system that allows control of the podocyte microenvironment. Results supported our hypothesis. SLSs in podocytes that migrated from isolated kidney glomeruli presented periodic synaptopodin-positive clusters that nucleated peripheral, foot process-like extensions. SLSs were mechanoresponsive to actomyosin inhibitors and substrate stiffness. Results suggest SLSs as mechanobiological mediators of podocyte recovery and as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Shumeng Jiang
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Farid Alisafaei
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Yin-Yuan Huang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Yuan Hong
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Xiangjun Peng
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Chengqing Qu
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Pongpratch Puapatanakul
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Sanjay Jain
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeffrey H. Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Guy M. Genin
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Hani Y. Suleiman
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
26
|
Lausecker F, Koehler S, Fresquet M, Naylor RW, Tian P, Wanner N, Braun F, Butt L, Huber TB, Lennon R. Integrating basic science with translational research: the 13th International Podocyte Conference 2021. Kidney Int 2022; 102:708-719. [PMID: 35964799 PMCID: PMC9386279 DOI: 10.1016/j.kint.2022.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
The 13th International Podocyte Conference was held in Manchester, UK, and online from July 28 to 30, 2021. Originally planned for 2020, this biannual meeting was postponed by a year because of the coronavirus disease 2019 (COVID-19) pandemic and proceeded as an innovative hybrid meeting. In addition to in-person attendance, online registration was offered, and this attracted 490 conference registrations in total. As a Podocyte Conference first, a day for early-career researchers was introduced. This premeeting included talks from graduate students and postdoctoral researchers. It gave early career researchers the opportunity to ask a panel, comprising academic leaders and journal editors, about career pathways and the future for podocyte research. The main meeting over 3 days included a keynote talk and 4 focused sessions each day incorporating invited talks, followed by selected abstract presentations, and an open panel discussion. The conference concluded with a Patient Day, which brought together patients, clinicians, researchers, and industry representatives. The Patient Day was an interactive and diverse day. As well as updates on improving diagnosis and potential new therapies, the Patient Day included a PodoArt competition, exercise and cooking classes with practical nutrition advice, and inspirational stories from patients and family members. This review summarizes the exciting science presented during the 13th International Podocyte Conference and demonstrates the resilience of researchers during a global pandemic.
Collapse
Affiliation(s)
- Franziska Lausecker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Sybille Koehler
- Biomedical Sciences, University of Edinburgh, Edinburgh, UK; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maryline Fresquet
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Richard W Naylor
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Pinyuan Tian
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linus Butt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
27
|
Caloric restriction reduces the pro-inflammatory eicosanoid 20- hydroxyeicosatetraenoic acid to protect from acute kidney injury. Kidney Int 2022; 102:560-576. [PMID: 35654224 DOI: 10.1016/j.kint.2022.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 11/22/2022]
Abstract
Acute kidney injury is a frequent complication in the clinical setting and associated with significant morbidity and mortality. Preconditioning with short-term caloric restriction is highly protective against kidney injury in rodent ischemia reperfusion injury models. However, the underlying mechanisms are unknown hampering clinical translation. Here, we examined the molecular basis of caloric restriction-mediated protection to elucidate the principles of kidney stress resistance. Analysis of an RNAseq dataset after caloric restriction identified Cyp4a12a, a cytochrome exclusively expressed in male mice, to be strongly downregulated after caloric restriction. Kidney ischemia reperfusion injury robustly induced acute kidney injury in male mice and this damage could be markedly attenuated by pretreatment with caloric restriction. In females, damage was significantly less pronounced and preconditioning with caloric restriction had only little effect. Tissue concentrations of the metabolic product of Cyp4a12a, 20-hydroxyeicosatetraenoic acid (20-HETE), were found to be significantly reduced by caloric restriction. Conversely, intraperitoneal supplementation of 20-HETE in preconditioned males partly abrogated the protective potential of caloric restriction. Interestingly, this effect was accompanied by a partial reversal of caloric restriction-induced changes in protein but not RNA expression pointing towards inflammation, endoplasmic reticulum stress and lipid metabolism. Thus, our findings provide an insight into the mechanisms underlying kidney protection by caloric restriction. Hence, understanding the mediators of preconditioning is an important pre-requisite for moving towards translation to the clinical setting.
Collapse
|
28
|
Jansen J, van den Berge BT, van den Broek M, Maas RJ, Daviran D, Willemsen B, Roverts R, van der Kruit M, Kuppe C, Reimer KC, Di Giovanni G, Mooren F, Nlandu Q, Mudde H, Wetzels R, den Braanker D, Parr N, Nagai JS, Drenic V, Costa IG, Steenbergen E, Nijenhuis T, Dijkman H, Endlich N, van de Kar NCAJ, Schneider RK, Wetzels JFM, Akiva A, van der Vlag J, Kramann R, Schreuder MF, Smeets B. Human pluripotent stem cell-derived kidney organoids for personalized congenital and idiopathic nephrotic syndrome modeling. Development 2022; 149:275031. [PMID: 35417019 PMCID: PMC9148570 DOI: 10.1242/dev.200198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/28/2022] [Indexed: 12/21/2022]
Abstract
Nephrotic syndrome (NS) is characterized by severe proteinuria as a consequence of kidney glomerular injury due to podocyte damage. In vitro models mimicking in vivo podocyte characteristics are a prerequisite to resolve NS pathogenesis. The detailed characterization of organoid podocytes resulting from a hybrid culture protocol showed a podocyte population that resembles adult podocytes and was superior compared with 2D counterparts, based on single-cell RNA sequencing, super-resolution imaging and electron microscopy. In this study, these next-generation podocytes in kidney organoids enabled personalized idiopathic nephrotic syndrome modeling, as shown by activated slit diaphragm signaling and podocyte injury following protamine sulfate, puromycin aminonucleoside treatment and exposure to NS plasma containing pathogenic permeability factors. Organoids cultured from cells of a patient with heterozygous NPHS2 mutations showed poor NPHS2 expression and aberrant NPHS1 localization, which was reversible after genetic correction. Repaired organoids displayed increased VEGFA pathway activity and transcription factor activity known to be essential for podocyte physiology, as shown by RNA sequencing. This study shows that organoids are the preferred model of choice to study idiopathic and congenital podocytopathies. Summary: Kidney organoid podocytes generated from human pluripotent stem cells using a hybrid differentiation protocol allow podocyte pathophysiology modeling that leads to congenital as well as idiopathic nephrotic syndrome in patients.
Collapse
Affiliation(s)
- Jitske Jansen
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children's Hospital, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,Division of Nephrology and Clinical Immunology, Institute of Experimental Medicine and Systems Biology, Medical Faculty RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Bartholomeus T van den Berge
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Martijn van den Broek
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children's Hospital, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Rutger J Maas
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Deniz Daviran
- Department of Biochemistry, Electron Microscopy Center, Radboudumc Technology Center Microscopy, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 29, 6525 GA Nijmegen, The Netherlands
| | - Brigith Willemsen
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Rona Roverts
- Department of Biochemistry, Electron Microscopy Center, Radboudumc Technology Center Microscopy, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 29, 6525 GA Nijmegen, The Netherlands
| | - Marit van der Kruit
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Christoph Kuppe
- Division of Nephrology and Clinical Immunology, Institute of Experimental Medicine and Systems Biology, Medical Faculty RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany.,Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen 52062, Germany
| | - Katharina C Reimer
- Division of Nephrology and Clinical Immunology, Institute of Experimental Medicine and Systems Biology, Medical Faculty RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany.,Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen 52062, Germany.,Institute for Biomedical Technologies, Department of Cell Biology, RWTH Aachen University, Aachen 52062, Germany
| | - Gianluca Di Giovanni
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children's Hospital, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Fieke Mooren
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Quincy Nlandu
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Helmer Mudde
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Roy Wetzels
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Dirk den Braanker
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Naomi Parr
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - James S Nagai
- Institute for Computational Genomics, University Hospital RWTH Aachen, Achen 52062, Germany.,Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen 52062, Germany
| | | | - Ivan G Costa
- Institute for Computational Genomics, University Hospital RWTH Aachen, Achen 52062, Germany.,Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen 52062, Germany
| | - Eric Steenbergen
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Tom Nijenhuis
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Henry Dijkman
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Nicole Endlich
- NIPOKA, 17489 Greifswald, Germany.,Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Nicole C A J van de Kar
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children's Hospital, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Rebekka K Schneider
- Institute for Biomedical Technologies, Department of Cell Biology, RWTH Aachen University, Aachen 52062, Germany.,Department of Developmental Biology, Erasmus Medical Center, Rotterdam 3015 GD, The Netherlands.,Oncode Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jack F M Wetzels
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Anat Akiva
- Department of Biochemistry, Electron Microscopy Center, Radboudumc Technology Center Microscopy, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 29, 6525 GA Nijmegen, The Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Rafael Kramann
- Division of Nephrology and Clinical Immunology, Institute of Experimental Medicine and Systems Biology, Medical Faculty RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany.,Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen 52062, Germany.,Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children's Hospital, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Bart Smeets
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
29
|
Wang Y, Xu J, Cheng Z. YAP1 promotes high glucose-induced inflammation and extracellular matrix deposition in glomerular mesangial cells by modulating NF-κB/JMJD3 pathway. Exp Ther Med 2021; 22:1349. [PMID: 34659495 PMCID: PMC8515513 DOI: 10.3892/etm.2021.10784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most serious microvascular complications of late-stage diabetes. Glomerular mesangial cell (GMC) proliferation and excessive extracellular matrix (ECM) deposition are the main pathological characteristics associated with the occurrence and development of DN. Yes-associated protein 1 (YAP1) can bind to several transcription factors and is associated with the development of various diseases. However, the effects of YAP1 on DN remain unclear. The aim of the present study was to explore the regulatory effect and potential mechanism of YAP1 in glucose-induced inflammation and ECM deposition in high-glucose-treated GMCs. In the present study, HBZY-1 cell models treated with high glucose were constructed, and the effects of YAP1 on the proliferation, inflammation, ECM deposition and fibrosis of HBZY-1 cells were detected. The results showed that YAP1 was highly expressed in HBZY-1 cells treated with high glucose and that YAP1 silencing decreased cell viability, the levels of inflammatory cytokines, ECM deposition and the degree of fibrosis in cells. Further experiments revealed that NF-κB/Jumonji domain-containing protein D3 (JMJD3) signaling pathway inhibitors alleviated the promoting effect of YAP1 overexpression on inflammatory response and ECM deposition in HBZY-1 cells treated with high glucose. In conclusion, it was demonstrated that YAP1 can promote high glucose-induced inflammation and ECM deposition by activating the NF-κB/JMJD3 signaling pathway in GMCs.
Collapse
Affiliation(s)
- Yan Wang
- Department of Endocrinology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jinmei Xu
- Department of Endocrinology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhifeng Cheng
- Department of Endocrinology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
30
|
Nucleocytoplasmic Shuttling of the Mechanosensitive Transcription Factors MRTF and YAP /TAZ. Methods Mol Biol 2021; 2299:197-216. [PMID: 34028745 DOI: 10.1007/978-1-0716-1382-5_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Myocardin-related transcription factor (MRTF) and the paralogous Hippo pathway effectors Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) are transcriptional co-activators that play pivotal roles in myofibroblast generation and activation, and thus the pathogenesis of organ fibrosis. They are regulated by a variety of chemical and mechanical fibrogenic stimuli, primarily at the level of their nucleocytoplasmic shuttling. In this chapter we describe the tools and protocols that allow for exact, quantitative, and automated determination and analysis of the nucleocytoplasmic distribution of endogenous or heterologously expressed MRTF and YAP/TAZ, measured in large cell populations. Dynamic monitoring of nucleocytoplasmic ratios of transcription factors is a novel and important approach, suitable to address both the structural requirements and the regulatory mechanisms underlying transcription factor traffic and the consequent reprogramming of gene expression during fibrogenesis.
Collapse
|
31
|
Höhfeld J, Benzing T, Bloch W, Fürst DO, Gehlert S, Hesse M, Hoffmann B, Hoppe T, Huesgen PF, Köhn M, Kolanus W, Merkel R, Niessen CM, Pokrzywa W, Rinschen MM, Wachten D, Warscheid B. Maintaining proteostasis under mechanical stress. EMBO Rep 2021; 22:e52507. [PMID: 34309183 PMCID: PMC8339670 DOI: 10.15252/embr.202152507] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Cell survival, tissue integrity and organismal health depend on the ability to maintain functional protein networks even under conditions that threaten protein integrity. Protection against such stress conditions involves the adaptation of folding and degradation machineries, which help to preserve the protein network by facilitating the refolding or disposal of damaged proteins. In multicellular organisms, cells are permanently exposed to stress resulting from mechanical forces. Yet, for long time mechanical stress was not recognized as a primary stressor that perturbs protein structure and threatens proteome integrity. The identification and characterization of protein folding and degradation systems, which handle force-unfolded proteins, marks a turning point in this regard. It has become apparent that mechanical stress protection operates during cell differentiation, adhesion and migration and is essential for maintaining tissues such as skeletal muscle, heart and kidney as well as the immune system. Here, we provide an overview of recent advances in our understanding of mechanical stress protection.
Collapse
Affiliation(s)
- Jörg Höhfeld
- Institute for Cell BiologyRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sports MedicineGerman Sport UniversityCologneGermany
| | - Dieter O Fürst
- Institute for Cell BiologyRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Sebastian Gehlert
- Institute of Cardiovascular Research and Sports MedicineGerman Sport UniversityCologneGermany
- Department for the Biosciences of SportsInstitute of Sports ScienceUniversity of HildesheimHildesheimGermany
| | - Michael Hesse
- Institute of Physiology I, Life & Brain CenterMedical FacultyRheinische Friedrich‐Wilhelms UniversityBonnGermany
| | - Bernd Hoffmann
- Institute of Biological Information Processing, IBI‐2: MechanobiologyForschungszentrum JülichJülichGermany
| | - Thorsten Hoppe
- Institute for GeneticsCologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) and CMMCUniversity of CologneCologneGermany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA3Forschungszentrum JülichJülichGermany
- CECADUniversity of CologneCologneGermany
| | - Maja Köhn
- Institute of Biology IIIFaculty of Biology, and Signalling Research Centres BIOSS and CIBSSAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | - Waldemar Kolanus
- LIMES‐InstituteRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Rudolf Merkel
- Institute of Biological Information Processing, IBI‐2: MechanobiologyForschungszentrum JülichJülichGermany
| | - Carien M Niessen
- Department of Dermatology and CECADUniversity of CologneCologneGermany
| | | | - Markus M Rinschen
- Department of Biomedicine and Aarhus Institute of Advanced StudiesAarhus UniversityAarhusDenmark
- Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Dagmar Wachten
- Institute of Innate ImmunityUniversity Hospital BonnBonnGermany
| | - Bettina Warscheid
- Institute of Biology IIFaculty of Biology, and Signalling Research Centres BIOSS and CIBSSAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| |
Collapse
|
32
|
Haley KE, Elshani M, Um IH, Bell C, Caie PD, Harrison DJ, Reynolds PA. YAP Translocation Precedes Cytoskeletal Rearrangement in Podocyte Stress Response: A Podometric Investigation of Diabetic Nephropathy. Front Physiol 2021; 12:625762. [PMID: 34335284 PMCID: PMC8320019 DOI: 10.3389/fphys.2021.625762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Podocyte loss plays a pivotal role in the pathogenesis of glomerular disease. However, the mechanisms underlying podocyte damage and loss remain poorly understood. Although detachment of viable cells has been documented in experimental Diabetic Nephropathy, correlations between reduced podocyte density and disease severity have not yet been established. YAP, a mechanosensing protein, has recently been shown to correlate with glomerular disease progression, however, the underlying mechanism has yet to be fully elucidated. In this study, we sought to document podocyte density in Diabetic Nephropathy using an amended podometric methodology, and to investigate the interplay between YAP and cytoskeletal integrity during podocyte injury. Podocyte density was quantified using TLE4 and GLEPP1 multiplexed immunofluorescence. Fourteen Diabetic Nephropathy cases were analyzed for both podocyte density and cytoplasmic translocation of YAP via automated image analysis. We demonstrate a significant decrease in podocyte density in Grade III/IV cases (124.5 per 106 μm3) relative to Grade I/II cases (226 per 106 μm3) (Student's t-test, p < 0.001), and further show that YAP translocation precedes cytoskeletal rearrangement following injury. Based on these findings we hypothesize that a significant decrease in podocyte density in late grade Diabetic Nephropathy may be explained by early cytoplasmic translocation of YAP.
Collapse
Affiliation(s)
- Kathryn E Haley
- School of Medicine, University of St Andrews, St Andrews, United Kingdom.,Biomedical Sciences Research Complex (BSRC), University of St Andrews, St Andrews, United Kingdom
| | - Mustafa Elshani
- School of Medicine, University of St Andrews, St Andrews, United Kingdom.,Directorate of Laboratory Medicine, Lothian University Hospitals Trust, Royal Infirmary, Edinburgh, United Kingdom
| | - In Hwa Um
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Cameron Bell
- School of Medicine, University of St Andrews, St Andrews, United Kingdom.,Acute Internal Medicine, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Peter D Caie
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - David J Harrison
- School of Medicine, University of St Andrews, St Andrews, United Kingdom.,Directorate of Laboratory Medicine, Lothian University Hospitals Trust, Royal Infirmary, Edinburgh, United Kingdom
| | - Paul A Reynolds
- School of Medicine, University of St Andrews, St Andrews, United Kingdom.,Biomedical Sciences Research Complex (BSRC), University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
33
|
Brito MDF, Torre C, Silva-Lima B. Scientific Advances in Diabetes: The Impact of the Innovative Medicines Initiative. Front Med (Lausanne) 2021; 8:688438. [PMID: 34295913 PMCID: PMC8290522 DOI: 10.3389/fmed.2021.688438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/02/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetes Mellitus is one of the World Health Organization's priority diseases under research by the first and second programmes of Innovative Medicines Initiative, with the acronyms IMI1 and IMI2, respectively. Up to October of 2019, 13 projects were funded by IMI for Diabetes & Metabolic disorders, namely SUMMIT, IMIDIA, DIRECT, StemBANCC, EMIF, EBiSC, INNODIA, RHAPSODY, BEAT-DKD, LITMUS, Hypo-RESOLVE, IM2PACT, and CARDIATEAM. In general, a total of €447 249 438 was spent by IMI in the area of Diabetes. In order to prompt a better integration of achievements between the different projects, we perform a literature review and used three data sources, namely the official project's websites, the contact with the project's coordinators and co-coordinator, and the CORDIS database. From the 662 citations identified, 185 were included. The data collected were integrated into the objectives proposed for the four IMI2 program research axes: (1) target and biomarker identification, (2) innovative clinical trials paradigms, (3) innovative medicines, and (4) patient-tailored adherence programmes. The IMI funded projects identified new biomarkers, medical and research tools, determinants of inter-individual variability, relevant pathways, clinical trial designs, clinical endpoints, therapeutic targets and concepts, pharmacologic agents, large-scale production strategies, and patient-centered predictive models for diabetes and its complications. Taking into account the scientific data produced, we provided a joint vision with strategies for integrating personalized medicine into healthcare practice. The major limitations of this article were the large gap of data in the libraries on the official project websites and even the Cordis database was not complete and up to date.
Collapse
Affiliation(s)
| | - Carla Torre
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.,Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science-Research Institute for Medicines (iMED.ULisboa), Lisbon, Portugal
| | - Beatriz Silva-Lima
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.,Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science-Research Institute for Medicines (iMED.ULisboa), Lisbon, Portugal
| |
Collapse
|
34
|
Zhang J, Xu Q, Ren F, Liu Y, Cai R, Yao Y, Zhou MS. Inhibition of YAP activation attenuates renal injury and fibrosis in angiotensin II hypertensive mice. Can J Physiol Pharmacol 2021; 99:1000-1006. [PMID: 33852804 DOI: 10.1139/cjpp-2021-0033] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Hippo/YAP (yes-associated protein) pathway is an important signaling pathway to control organ development and tissue homeostasis. YAP is a downstream effector of the Hippo pathway and a critical mediator of mechanic stress. Hypertensive nephropathy is characterized with glomerular sclerosis stiffness and renal fibrosis. The present study investigated the role of YAP pathway in angiotensin (Ang) II hypertensive renal injury by using YAP activation inhibitor verteporfin. Ang II increased the protein expression of YAP in renal nucleus fraction, decreased phospho-YAP, and phospho-LATS1/2 (large tumor suppressors 1 and 2) expressions in renal cytoplasmic fraction, suggesting Ang II activation of renal YAP. Ang II significantly increased systolic blood pressure (SBP), proteinuria, glomerular sclerosis, and fibrosis; treatment with verteporfin attenuated Ang II-induced proteinuria and renal injury with a mild reduction in SBP. Moreover, Ang II increased the protein expressions of inflammatory factors including tumor necrosis factor α, interleukin 1β, and monocyte chemoattractant protein-1, and profibrotic factors including transforming growth factor β, phospho-Smad3 and fibronectin. Verteporfin reversed abovementioned Ang II-induced molecule expressions. Our results for the first time demonstrate that the activation of the YAP pathway promotes hypertensive renal inflammation and fibrosis, which may promote hypertensive renal injury. YAP may be a new target for prevention and treatment of hypertensive renal diseases.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Physiology, Shenyang Medical College
| | - Qian Xu
- Department of Physiology, Shenyang Medical College
| | - Fu Ren
- Department of Anatomy, Shenyang Medical College, Shenyang, China, 110034
| | - Yueyang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Ruiping Cai
- Department of Physiology, Shenyang Medical College
| | - Yang Yao
- Department of Physiology, Shenyang Medical College
| | | |
Collapse
|
35
|
Raza S, Jokl E, Pritchett J, Martin K, Su K, Simpson K, Birchall L, Mullan AF, Athwal VS, Doherty DT, Zeef L, Henderson NC, Kalra PA, Hanley NA, Piper Hanley K. SOX9 is required for kidney fibrosis and activates NAV3 to drive renal myofibroblast function. Sci Signal 2021; 14:14/672/eabb4282. [PMID: 33653921 DOI: 10.1126/scisignal.abb4282] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Renal fibrosis is a common end point for kidney injury and many chronic kidney diseases. Fibrogenesis depends on the sustained activation of myofibroblasts, which deposit the extracellular matrix that causes progressive scarring and organ failure. Here, we showed that the transcription factor SOX9 was associated with kidney fibrosis in humans and required for experimentally induced kidney fibrosis in mice. From genome-wide analysis, we identified Neuron navigator 3 (NAV3) as acting downstream of SOX9 in kidney fibrosis. NAV3 increased in abundance and colocalized with SOX9 after renal injury in mice, and both SOX9 and NAV3 were present in diseased human kidneys. In an in vitro model of renal pericyte transdifferentiation into myofibroblasts, we demonstrated that NAV3 was required for multiple aspects of fibrogenesis, including actin polymerization linked to cell migration and sustained activation of the mechanosensitive transcription factor YAP1. In summary, our work identifies a SOX9-NAV3-YAP1 axis involved in the progression of kidney fibrosis and points to NAV3 as a potential target for pharmacological intervention.
Collapse
Affiliation(s)
- Sayyid Raza
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK.,Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - Elliot Jokl
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK.,Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - James Pritchett
- School of Healthcare Science, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Katherine Martin
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK.,Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - Kim Su
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK.,Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - Kara Simpson
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK.,Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - Lindsay Birchall
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK.,Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - Aoibheann F Mullan
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK.,Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - Varinder S Athwal
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK.,Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK.,Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9PT, UK
| | - Daniel T Doherty
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK.,Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - Leo Zeef
- Bioinformatics Core Facility, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Neil C Henderson
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Philip A Kalra
- Salford Royal NHS Foundation Trust, Stott Lane, Salford, UK
| | - Neil A Hanley
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK.,Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK.,Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9PT, UK
| | - Karen Piper Hanley
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK. .,Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| |
Collapse
|
36
|
Fabretti F, Tschernoster N, Erger F, Hedergott A, Buescher AK, Dafinger C, Reusch B, Köntges VK, Kohl S, Bartram MP, Weber LT, Thiele H, Altmueller J, Schermer B, Beck BB, Habbig S. Expanding the Spectrum of FAT1 Nephropathies by Novel Mutations That Affect Hippo Signaling. Kidney Int Rep 2021; 6:1368-1378. [PMID: 34013115 PMCID: PMC8116753 DOI: 10.1016/j.ekir.2021.01.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 01/19/2023] Open
Abstract
Introduction Disease-causing mutations in the protocadherin FAT1 have been recently described both in patients with a glomerulotubular nephropathy and in patients with a syndromic nephropathy. Methods We identified 4 patients with FAT1-associated disease, performed clinical and genetic characterization, and compared our findings to the previously published patients. Patient-derived primary urinary epithelial cells were analyzed by quantitative polymerase chain reaction (qPCR) and immunoblotting to identify possible alterations in Hippo signaling. Results Here we expand the spectrum of FAT1-associated disease with the identification of novel FAT1 mutations in 4 patients from 3 families (homozygous truncating variants in 3, compound heterozygous missense variants in 1 patient). All patients show an ophthalmologic phenotype together with heterogeneous renal phenotypes ranging from normal renal function to early-onset end-stage kidney failure. Molecular analysis of primary urine-derived urinary renal epithelial cells revealed alterations in the Hippo signaling cascade with a decreased phosphorylation of both the core kinase MST and the downstream effector YAP. Consistently, we found a transcriptional upregulation of bona fide YAP target genes. Conclusion A comprehensive review of the here identified patients and those previously published indicates a highly diverse phenotype in patients with missense mutations but a more uniform and better recognizable phenotype in the patients with truncating mutations. Altered Hippo signaling and de-repressed YAP activity might be novel contributing factors to the pathomechanism in FAT1-associated renal disease.
Collapse
Affiliation(s)
- Francesca Fabretti
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Nikolai Tschernoster
- Institute of Human Genetics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Florian Erger
- Institute of Human Genetics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Andrea Hedergott
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Anja K Buescher
- Children's Hospital, Pediatrics II, University of Duisburg-Essen, Essen, Germany
| | - Claudia Dafinger
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Bjoern Reusch
- Institute of Human Genetics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Vincent K Köntges
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Stefan Kohl
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Malte P Bartram
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Lutz Thorsten Weber
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Janine Altmueller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Bodo B Beck
- Institute of Human Genetics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Sandra Habbig
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
37
|
The mechanobiology of kidney podocytes in health and disease. Clin Sci (Lond) 2020; 134:1245-1253. [PMID: 32501496 DOI: 10.1042/cs20190764] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 01/01/2023]
Abstract
Chronic kidney disease (CKD) substantially reduces quality of life and leads to premature death for thousands of people each year. Dialysis and kidney organ transplants remain prevalent therapeutic avenues but carry significant medical, economic and social burden. Podocytes are responsible for blood filtration selectivity in the kidney, where they extend a network of foot processes (FPs) from their cell bodies which surround endothelial cells and interdigitate with those on neighbouring podocytes to form narrow slit diaphragms (SDs). During aging, some podocytes are lost naturally but accelerated podocyte loss is a hallmark of CKD. Insights into the origin of degenerative podocyte loss will help answer important questions about kidney function and lead to substantial health benefits. Here, approaches that uncover insights into podocyte mechanobiology are reviewed, both those that interrogate the biophysical properties of podocytes and how the external physical environment affects podocyte behaviour, and also those that interrogate the biophysical effects that podocytes exert on their surroundings.
Collapse
|
38
|
Rinschen MM, Saez-Rodriguez J. The tissue proteome in the multi-omic landscape of kidney disease. Nat Rev Nephrol 2020; 17:205-219. [PMID: 33028957 DOI: 10.1038/s41581-020-00348-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Kidney research is entering an era of 'big data' and molecular omics data can provide comprehensive insights into the molecular footprints of cells. In contrast to transcriptomics, proteomics and metabolomics generate data that relate more directly to the pathological symptoms and clinical parameters observed in patients. Owing to its complexity, the proteome still holds many secrets, but has great potential for the identification of drug targets. Proteomics can provide information about protein synthesis, modification and degradation, as well as insight into the physical interactions between proteins, and between proteins and other biomolecules. Thus far, proteomics in nephrology has largely focused on the discovery and validation of biomarkers, but the systematic analysis of the nephroproteome can offer substantial additional insights, including the discovery of mechanisms that trigger and propagate kidney disease. Moreover, proteome acquisition might provide a diagnostic tool that complements the assessment of a kidney biopsy sample by a pathologist. Such applications are becoming increasingly feasible with the development of high-throughput and high-coverage technologies, such as versatile mass spectrometry-based techniques and protein arrays, and encourage further proteomics research in nephrology.
Collapse
Affiliation(s)
- Markus M Rinschen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark. .,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany. .,Department of Chemistry, Scripps Center for Metabolomics and Mass Spectrometry, Scripps Research, La Jolla, CA, USA.
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University, and Heidelberg University Hospital, Bioquant, Heidelberg, Germany.,Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Heidelberg University, Heidelberg, Germany
| |
Collapse
|
39
|
Ge X, Zhang T, Yu X, Muwonge AN, Anandakrishnan N, Wong NJ, Haydak JC, Reid JM, Fu J, Wong JS, Bhattacharya S, Cuttitta CM, Zhong F, Gordon RE, Salem F, Janssen W, Hone JC, Zhang A, Li H, He JC, Gusella GL, Campbell KN, Azeloglu EU. LIM-Nebulette Reinforces Podocyte Structural Integrity by Linking Actin and Vimentin Filaments. J Am Soc Nephrol 2020; 31:2372-2391. [PMID: 32737144 DOI: 10.1681/asn.2019121261] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/06/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Maintenance of the intricate interdigitating morphology of podocytes is crucial for glomerular filtration. One of the key aspects of specialized podocyte morphology is the segregation and organization of distinct cytoskeletal filaments into different subcellular components, for which the exact mechanisms remain poorly understood. METHODS Cells from rats, mice, and humans were used to describe the cytoskeletal configuration underlying podocyte structure. Screening the time-dependent proteomic changes in the rat puromycin aminonucleoside-induced nephropathy model correlated the actin-binding protein LIM-nebulette strongly with glomerular function. Single-cell RNA sequencing and immunogold labeling were used to determine Nebl expression specificity in podocytes. Automated high-content imaging, super-resolution microscopy, atomic force microscopy (AFM), live-cell imaging of calcium, and measurement of motility and adhesion dynamics characterized the physiologic role of LIM-nebulette in podocytes. RESULTS Nebl knockout mice have increased susceptibility to adriamycin-induced nephropathy and display morphologic, cytoskeletal, and focal adhesion abnormalities with altered calcium dynamics, motility, and Rho GTPase activity. LIM-nebulette expression is decreased in diabetic nephropathy and FSGS patients at both the transcript and protein level. In mice, rats, and humans, LIM-nebulette expression is localized to primary, secondary, and tertiary processes of podocytes, where it colocalizes with focal adhesions as well as with vimentin fibers. LIM-nebulette shRNA knockdown in immortalized human podocytes leads to dysregulation of vimentin filament organization and reduced cellular elasticity as measured by AFM indentation. CONCLUSIONS LIM-nebulette is a multifunctional cytoskeletal protein that is critical in the maintenance of podocyte structural integrity through active reorganization of focal adhesions, the actin cytoskeleton, and intermediate filaments.
Collapse
Affiliation(s)
- Xuhua Ge
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tao Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Xiaoxia Yu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alecia N Muwonge
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nanditha Anandakrishnan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicholas J Wong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jonathan C Haydak
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jordan M Reid
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jenny S Wong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Smiti Bhattacharya
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Mechanical Engineering, Columbia University, New York, New York
| | - Christina M Cuttitta
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Fang Zhong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ronald E Gordon
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Fadi Salem
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - William Janssen
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - James C Hone
- Department of Mechanical Engineering, Columbia University, New York, New York
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hong Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - G Luca Gusella
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kirk N Campbell
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Evren U Azeloglu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York .,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
40
|
Niu L, Jia Y, Wu M, Liu H, Feng Y, Hu Y, Zhang X, Gao D, Xu F, Huang G. Matrix stiffness controls cardiac fibroblast activation through regulating YAP via AT 1 R. J Cell Physiol 2020; 235:8345-8357. [PMID: 32239716 DOI: 10.1002/jcp.29678] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/10/2020] [Indexed: 12/27/2022]
Abstract
Cardiac fibrosis is a common pathway leading to heart failure and involves continued activation of cardiac fibroblasts (CFs) into myofibroblasts during myocardium damage, causing excessive deposition of the extracellular matrix (ECM) and thus increases matrix stiffness. Increasing evidence has shown that stiffened matrix plays an important role in promoting CF activation and cardiac fibrosis, and several signaling factors mediating CF mechanotransduction have been identified. However, the key molecules that perceive matrix stiffness to regulate CF activation remain to be further explored. Here, we detected significantly increased expression and nuclear localization of Yes-associated protein (YAP) in native fibrotic cardiac tissues. By using mechanically regulated in vitro cell culture models, we found that a stiff matrix-induced high expression and nuclear localization of YAP in CFs, accompanied by enhanced cell activation. We also demonstrated that YAP knockdown decreased fibrogenic response of CFs and that YAP overexpression promoted CF activation, indicating that YAP plays an important role in mediating matrix stiffness-induced CF activation. Further mechanistic studies revealed that the YAP pathway is an important signaling branch downstream of angiotensin II type 1 receptor in CF mechanotransduction. The findings help elucidate the mechanism of fibrotic mechanotransduction and may contribute to the development of new approaches for treating fibrotic diseases.
Collapse
Affiliation(s)
- Lele Niu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Yuanbo Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Mian Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Han Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Yanjing Feng
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Xiaohui Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Dengfeng Gao
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Guoyou Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China.,Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, China
| |
Collapse
|
41
|
Koehler S, Kuczkowski A, Kuehne L, Jüngst C, Hoehne M, Grahammer F, Eddy S, Kretzler M, Beck BB, Höhfeld J, Schermer B, Benzing T, Brinkkoetter PT, Rinschen MM. Proteome Analysis of Isolated Podocytes Reveals Stress Responses in Glomerular Sclerosis. J Am Soc Nephrol 2020; 31:544-559. [PMID: 32047005 DOI: 10.1681/asn.2019030312] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Understanding podocyte-specific responses to injury at a systems level is difficult because injury leads to podocyte loss or an increase of extracellular matrix, altering glomerular cellular composition. Finding a window into early podocyte injury might help identify molecular pathways involved in the podocyte stress response. METHODS We developed an approach to apply proteome analysis to very small samples of purified podocyte fractions. To examine podocytes in early disease states in FSGS mouse models, we used podocyte fractions isolated from individual mice after chemical induction of glomerular disease (with Doxorubicin or LPS). We also applied single-glomerular proteome analysis to tissue from patients with FSGS. RESULTS Transcriptome and proteome analysis of glomeruli from patients with FSGS revealed an underrepresentation of podocyte-specific genes and proteins in late-stage disease. Proteome analysis of purified podocyte fractions from FSGS mouse models showed an early stress response that includes perturbations of metabolic, mechanical, and proteostasis proteins. Additional analysis revealed a high correlation between the amount of proteinuria and expression levels of the mechanosensor protein Filamin-B. Increased expression of Filamin-B in podocytes in biopsy samples from patients with FSGS, in single glomeruli from proteinuric rats, and in podocytes undergoing mechanical stress suggests that this protein has a role in detrimental stress responses. In Drosophila, nephrocytes with reduced filamin homolog Cher displayed altered filtration capacity, but exhibited no change in slit diaphragm structure. CONCLUSIONS We identified conserved mechanisms of the podocyte stress response through ultrasensitive proteome analysis of human glomerular FSGS tissue and purified native mouse podocytes during early disease stages. This approach enables systematic comparisons of large-scale proteomics data and phenotype-to-protein correlation.
Collapse
Affiliation(s)
- Sybille Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Biomedical Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Alexander Kuczkowski
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Lucas Kuehne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christian Jüngst
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Martin Hoehne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Florian Grahammer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Eppendorf, Hamburg, Germany
| | - Sean Eddy
- Division of Nephrology, Department of Internal Medicine, and
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, and.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Bodo B Beck
- Department of Human Genetics, University Hospital Cologne, Cologne, Germany
| | - Jörg Höhfeld
- Cell Biology, University of Bonn, Bonn, Germany; and
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Paul T Brinkkoetter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany;
| | - Markus M Rinschen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
42
|
Cobbaut M, Karagil S, Bruno L, Diaz de la Loza MDC, Mackenzie FE, Stolinski M, Elbediwy A. Dysfunctional Mechanotransduction through the YAP/TAZ/Hippo Pathway as a Feature of Chronic Disease. Cells 2020; 9:cells9010151. [PMID: 31936297 PMCID: PMC7016982 DOI: 10.3390/cells9010151] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 02/07/2023] Open
Abstract
In order to ascertain their external environment, cells and tissues have the capability to sense and process a variety of stresses, including stretching and compression forces. These mechanical forces, as experienced by cells and tissues, are then converted into biochemical signals within the cell, leading to a number of cellular mechanisms being activated, including proliferation, differentiation and migration. If the conversion of mechanical cues into biochemical signals is perturbed in any way, then this can be potentially implicated in chronic disease development and processes such as neurological disorders, cancer and obesity. This review will focus on how the interplay between mechanotransduction, cellular structure, metabolism and signalling cascades led by the Hippo-YAP/TAZ axis can lead to a number of chronic diseases and suggest how we can target various pathways in order to design therapeutic targets for these debilitating diseases and conditions.
Collapse
Affiliation(s)
- Mathias Cobbaut
- Protein Phosphorylation Lab, Francis Crick Institute, London NW1 1AT, UK;
| | - Simge Karagil
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; (S.K.); (L.B.); (M.S.)
| | - Lucrezia Bruno
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; (S.K.); (L.B.); (M.S.)
- Department of Chemical and Pharmaceutical Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK;
| | | | - Francesca E Mackenzie
- Department of Chemical and Pharmaceutical Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK;
| | - Michael Stolinski
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; (S.K.); (L.B.); (M.S.)
| | - Ahmed Elbediwy
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; (S.K.); (L.B.); (M.S.)
- Correspondence:
| |
Collapse
|
43
|
Rinschen MM, Palygin O, Guijas C, Palermo A, Palacio-Escat N, Domingo-Almenara X, Montenegro-Burke R, Saez-Rodriguez J, Staruschenko A, Siuzdak G. Metabolic rewiring of the hypertensive kidney. Sci Signal 2019; 12:12/611/eaax9760. [PMID: 31822592 DOI: 10.1126/scisignal.aax9760] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypertension is a persistent epidemic across the developed world that is closely associated with kidney disease. Here, we applied a metabolomic, phosphoproteomic, and proteomic strategy to analyze the effect of hypertensive insults on kidneys. Our data revealed the metabolic aspects of hypertension-induced glomerular sclerosis, including lipid breakdown at early disease stages and activation of anaplerotic pathways to regenerate energy equivalents to counter stress. For example, branched-chain amino acids and proline, required for collagen synthesis, were depleted in glomeruli at early time points. Furthermore, indicators of metabolic stress were reflected by low amounts of ATP and NADH and an increased abundance of oxidized lipids derived from lipid breakdown. These processes were specific to kidney glomeruli where metabolic signaling occurred through mTOR and AMPK signaling. Quantitative phosphoproteomics combined with computational modeling suggested that these processes controlled key molecules in glomeruli and specifically podocytes, including cytoskeletal components and GTP-binding proteins, which would be expected to compete for decreasing amounts of GTP at early time points. As a result, glomeruli showed increased expression of metabolic enzymes of central carbon metabolism, amino acid degradation, and lipid oxidation, findings observed in previously published studies from other disease models and patients with glomerular damage. Overall, multilayered omics provides an overview of hypertensive kidney damage and suggests that metabolic or dietary interventions could prevent and treat glomerular disease and hypertension-induced nephropathy.
Collapse
Affiliation(s)
- Markus M Rinschen
- Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, CA 92122, USA.,Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Cologne 50931, Germany
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Carlos Guijas
- Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, CA 92122, USA
| | - Amelia Palermo
- Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, CA 92122, USA
| | - Nicolas Palacio-Escat
- COMBINE-Joint Research Center for Computational Biomedicine RWTH Aachen University, Aachen 52074, Germany.,Institute of Computational Biomedicine, Bioquant, Faculty of Medicine and Heidelberg University Hospital, Heidelberg University, Heidelberg 69120, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg 69120, Germany
| | - Xavier Domingo-Almenara
- Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, CA 92122, USA
| | - Rafael Montenegro-Burke
- Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, CA 92122, USA
| | - Julio Saez-Rodriguez
- COMBINE-Joint Research Center for Computational Biomedicine RWTH Aachen University, Aachen 52074, Germany.,Institute of Computational Biomedicine, Bioquant, Faculty of Medicine and Heidelberg University Hospital, Heidelberg University, Heidelberg 69120, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory and Heidelberg University, Heidelberg 69120, Germany
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA. .,Clement J. Zablocki VA Medical Center, Milwaukee, WI 53295, USA
| | - Gary Siuzdak
- Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, CA 92122, USA.
| |
Collapse
|
44
|
Yes-associated protein regulates podocyte cell cycle re-entry and dedifferentiation in adriamycin-induced nephropathy. Cell Death Dis 2019; 10:915. [PMID: 31801948 PMCID: PMC6892849 DOI: 10.1038/s41419-019-2139-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/02/2019] [Accepted: 11/06/2019] [Indexed: 01/19/2023]
Abstract
Podocytes are terminally differentiated cells with little proliferative capacity. The high expression levels of cell cycle inhibitory proteins, including p21, p27, and p57, play an important role in maintaining the low level of proliferation of mature podocytes. In the present study, we aimed to explore the role of yes-associated protein (YAP) signalling in adriamycin-induced podocyte re-entry into the cell cycle and dedifferentiation. Proliferating cell nuclear antigen (PCNA)-, cyclin-dependent kinase 4 (CDK4)-, and Cyclin D1-positive podocytes were found in mice with adriamycin-induced nephropathy. In vitro, adriamycin administration increased the percentage of cells in S phase and the upregulation of mesenchymal-related marker proteins. CDK4 and cyclin D1 were significantly up-regulated after incubation with adriamycin. Overexpression of YAP in podocytes promoted their entry into the cell cycle; up-regulated cyclin D1, desmin, and snail2 expression and down-regulated Wilms’ tumour 1 (WT1) and nephrin production. Recombinant murine FGF-basic induced podocytes to re-enter the cell cycle, inhibited WT1 and nephrin, and increased desmin and snail2 expression. Pretreating podocytes with verteporfin, an inhibitor of YAP/ TEA domain transcription factor (TEAD), decreased the adriamycin-induced overexpression of cyclin D1 and reduced the ratio of S-phase podocytes. This result was further verified by knocking down YAP expression using RNA interference. In conclusion, adriamycin induced podocytes to re-enter the cell cycle via upregulation of CDK4 and cyclin D1 expression, which was at least partly mediated by YAP signalling. Re-entry into the cell cycle induced the over-expression of mesenchymal markers in podocytes.
Collapse
|
45
|
Rinschen MM, Gödel M, Grahammer F, Zschiedrich S, Helmstädter M, Kretz O, Zarei M, Braun DA, Dittrich S, Pahmeyer C, Schroder P, Teetzen C, Gee H, Daouk G, Pohl M, Kuhn E, Schermer B, Küttner V, Boerries M, Busch H, Schiffer M, Bergmann C, Krüger M, Hildebrandt F, Dengjel J, Benzing T, Huber TB. A Multi-layered Quantitative In Vivo Expression Atlas of the Podocyte Unravels Kidney Disease Candidate Genes. Cell Rep 2019; 23:2495-2508. [PMID: 29791858 PMCID: PMC5986710 DOI: 10.1016/j.celrep.2018.04.059] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/07/2018] [Accepted: 04/15/2018] [Indexed: 12/31/2022] Open
Abstract
Damage to and loss of glomerular podocytes has been identified as the culprit lesion in progressive kidney diseases. Here, we combine mass spectrometry-based proteomics with mRNA sequencing, bioinformatics, and hypothesis-driven studies to provide a comprehensive and quantitative map of mammalian podocytes that identifies unanticipated signaling pathways. Comparison of the in vivo datasets with proteomics data from podocyte cell cultures showed a limited value of available cell culture models. Moreover, in vivo stable isotope labeling by amino acids uncovered surprisingly rapid synthesis of mitochondrial proteins under steady-state conditions that was perturbed under autophagy-deficient, disease-susceptible conditions. Integration of acquired omics dimensions suggested FARP1 as a candidate essential for podocyte function, which could be substantiated by genetic analysis in humans and knockdown experiments in zebrafish. This work exemplifies how the integration of multi-omics datasets can identify a framework of cell-type-specific features relevant for organ health and disease. Deep proteome and transcriptome analyses of native podocytes unravel druggable targets Static and dynamic proteomics uncover features of podocyte identity and proteostasis Candidate genes for nephrotic syndrome were predicted based on multi-omic integration FARP1 is a previously unreported candidate gene for human proteinuric kidney disease
Collapse
Affiliation(s)
- Markus M Rinschen
- Department II of Internal Medicine, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, 50931 Cologne, Germany.
| | - Markus Gödel
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Florian Grahammer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Stefan Zschiedrich
- Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Martin Helmstädter
- Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Mostafa Zarei
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79104 Freiburg, Germany; Center for Systems Biology (ZBSA), Albert Ludwigs University, 79104 Freiburg, Germany
| | - Daniela A Braun
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sebastian Dittrich
- Department II of Internal Medicine, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Caroline Pahmeyer
- Department II of Internal Medicine, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Patricia Schroder
- Department of Medicine/Nephrology, Hannover Medical School, 30625 Hannover, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04609, USA
| | - Carolin Teetzen
- Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - HeonYung Gee
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04609, USA; Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ghaleb Daouk
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Martin Pohl
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center and Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Elisa Kuhn
- Center for Human Genetics, Bioscientia, 55218 Ingelheim, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, 50931 Cologne, Germany
| | - Victoria Küttner
- Department for Neuroanatomy, University of Freiburg, 79104 Freiburg, Germany; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79104 Freiburg, Germany; Department of Dermatology, Medical Center - University of Freiburg, 79106 Freiburg, Germany
| | - Melanie Boerries
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert Ludwigs University Freiburg, 79106 Freiburg, Germany; German Cancer Consortium (DKTK), 79106 Freiburg, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Hauke Busch
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert Ludwigs University Freiburg, 79106 Freiburg, Germany; Lübeck Institute for Experimental Dermatology (LIED), University of Lübeck, 23562 Lübeck, Germany
| | - Mario Schiffer
- Department of Medicine/Nephrology, Hannover Medical School, 30625 Hannover, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04609, USA
| | - Carsten Bergmann
- Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; Center for Human Genetics, Bioscientia, 55218 Ingelheim, Germany
| | - Marcus Krüger
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joern Dengjel
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79104 Freiburg, Germany; Center for Systems Biology (ZBSA), Albert Ludwigs University, 79104 Freiburg, Germany; Department of Dermatology, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; BIOSS Centre for Biological Signaling Studies, Albert Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, 50931 Cologne, Germany.
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79104 Freiburg, Germany; Center for Systems Biology (ZBSA), Albert Ludwigs University, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Albert Ludwigs University Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
46
|
Ho LTY, Osterwald A, Ruf I, Hunziker D, Mattei P, Challa P, Vann R, Ullmer C, Rao PV. Role of the autotaxin-lysophosphatidic acid axis in glaucoma, aqueous humor drainage and fibrogenic activity. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165560. [PMID: 31648019 DOI: 10.1016/j.bbadis.2019.165560] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/27/2019] [Accepted: 09/16/2019] [Indexed: 01/06/2023]
Abstract
Ocular hypertension due to impaired aqueous humor (AH) drainage through the trabecular meshwork (TM) is a major risk factor for glaucoma, a leading cause of irreversible blindness. However, the etiology of ocular hypertension remains unclear. Although autotaxin, a secreted lysophospholipase D and its catalytic product lysophosphatidic acid (LPA) have been shown to modulate AH drainage through TM, we do not have a complete understanding of their role and regulation in glaucoma patients, TM and AH outflow. This study reports a significant increase in the levels of autotaxin, lysophosphatidylcholine (LPC), LPA and connective tissue growth factor (CTGF) in the AH of Caucasian and African American open angle glaucoma patients relative to age-matched non-glaucoma patients. Treatment of human TM cells with dexamethasone, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) increased the levels of autotaxin protein, a response that was mitigated by inhibitors of glucocorticoid receptor, NF-kB and SMAD3. Dexamethasone, TNF-α, IL-1β and LPC treatment of TM cells also led to an increase in the levels of CTGF, fibronectin and collagen type 1 in an autotaxin dependent manner. Additionally, in perfused enucleated mouse eyes, autotaxin and LPC were noted to decrease, while inhibition of autotaxin was increased aqueous outflow through the TM. Taken together, these results provide additional evidence for dysregulation of the autotaxin-LPA axis in the AH of glaucoma patients, reveal molecular insights into the regulation of autotaxin expression in TM cells and the consequences of autotaxin inhibitors in suppressing the fibrogenic response and resistance to AH outflow through the TM.
Collapse
Affiliation(s)
- Leona T Y Ho
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Anja Osterwald
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Iris Ruf
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Daniel Hunziker
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Patrizio Mattei
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Pratap Challa
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Robin Vann
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Christoph Ullmer
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland.
| | - Ponugoti Vasanth Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
47
|
Kim CL, Choi SH, Mo JS. Role of the Hippo Pathway in Fibrosis and Cancer. Cells 2019; 8:cells8050468. [PMID: 31100975 PMCID: PMC6562634 DOI: 10.3390/cells8050468] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022] Open
Abstract
The Hippo pathway is the key player in various signaling processes, including organ development and maintenance of tissue homeostasis. This pathway comprises a core kinases module and transcriptional activation module, representing a highly conserved mechanism from Drosophila to vertebrates. The central MST1/2-LATS1/2 kinase cascade in this pathway negatively regulates YAP/TAZ transcription co-activators in a phosphorylation-dependent manner. Nuclear YAP/TAZ bind to transcription factors to stimulate gene expression, contributing to the regenerative potential and regulation of cell growth and death. Recent studies have also highlighted the potential role of Hippo pathway dysfunctions in the pathology of several diseases. Here, we review the functional characteristics of the Hippo pathway in organ fibrosis and tumorigenesis, and discuss its potential as new therapeutic targets.
Collapse
Affiliation(s)
- Cho-Long Kim
- Department of Biomedical Sciences, Cancer Biology Graduate Program, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Sue-Hee Choi
- Department of Biomedical Sciences, Cancer Biology Graduate Program, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Jung-Soon Mo
- Genomic Instability Research Center (GIRC), Ajou University School of Medicine, Suwon 16499, Korea.
| |
Collapse
|
48
|
Profibrotic epithelial phenotype: a central role for MRTF and TAZ. Sci Rep 2019; 9:4323. [PMID: 30867502 PMCID: PMC6416270 DOI: 10.1038/s41598-019-40764-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/19/2019] [Indexed: 01/05/2023] Open
Abstract
Epithelial injury is a key initiator of fibrosis but - in contrast to the previous paradigm - the epithelium in situ does not undergo wide-spread epithelial-mesenchymal/myofibroblast transition (EMT/EMyT). Instead, it assumes a Profibrotic Epithelial Phenotype (PEP) characterized by fibrogenic cytokine production. The transcriptional mechanisms underlying PEP are undefined. As we have shown that two RhoA/cytoskeleton-regulated transcriptional coactivators, Myocardin-related transcription factor (MRTF) and TAZ, are indispensable for EMyT, we asked if they might mediate PEP as well. Here we show that mechanical stress (cyclic stretch) increased the expression of transforming growth factor-β1 (TGFβ1), connective tissue growth factor (CTGF), platelet-derived growth factor and Indian Hedgehog mRNA in LLC-PK1 tubular cells. These responses were mitigated by siRNA-mediated silencing or pharmacological inhibition of MRTF (CCG-1423) or TAZ (verteporfin). RhoA inhibition exerted similar effects. Unilateral ureteral obstruction, a murine model of mechanically-triggered kidney fibrosis, induced tubular RhoA activation along with overexpression/nuclear accumulation of MRTF and TAZ, and increased transcription of the above-mentioned cytokines. Laser capture microdissection revealed TAZ, TGFβ1 and CTGF induction specifically in the tubular epithelium. CCG-1423 suppressed total renal and tubular expression of these proteins. Thus, MRTF regulates epithelial TAZ expression, and both MRTF and TAZ are critical mediators of PEP-related epithelial cytokine production.
Collapse
|
49
|
Meliambro K, Campbell KN. Hippo pathway deficiency and recovery from heart failure after myocardial infarction: potential implications for kidney disease. Kidney Int 2019; 93:290-292. [PMID: 29389390 DOI: 10.1016/j.kint.2017.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/12/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Kristin Meliambro
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kirk N Campbell
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
50
|
Hoyer KJR, Dittrich S, Bartram MP, Rinschen MM. Quantification of molecular heterogeneity in kidney tissue by targeted proteomics. J Proteomics 2019. [DOI: 10.1016/j.jprot.2018.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|