1
|
Farkona S, Kotlyar M, Burns K, Knoll G, Brinc D, Jurisica I, Konvalinka A. Urine Measurements of the Renin-Angiotensin System-Regulated Proteins Predict Death and Graft Loss in Kidney Transplant Recipients Enrolled in a Ramipril versus Placebo Randomized Controlled Trial. J Proteome Res 2025; 24:2040-2052. [PMID: 40111290 DOI: 10.1021/acs.jproteome.4c01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The renin-angiotensin system (RAS) is involved in kidney fibrosis. We previously identified six RAS-regulated proteins (RHOB, BST1, LYPA1, GLNA, TSP1, and LAMB2) that were increased in the urine of patients with kidney allograft fibrosis, compared to patients without fibrosis. We hypothesized that these urinary RAS-regulated proteins predicted primary outcomes in kidney transplant recipients enrolled in the largest RAS inhibitor randomized controlled trial. Urine excretion of 10 peptides corresponding to the six RAS-regulated proteins was quantified using parallel reaction monitoring mass spectrometry assays (normalized by urine creatinine) in a subset of patients in the trial. Machine learning models predicting outcomes based on urine peptide excretion rates were developed and evaluated. Urine samples (n = 111) from 56 patients were collected at 0, 6, 12, and 24 months. Twenty-four primary outcomes (doubling of serum creatinine, graft loss, or death) occurred in 17 patients. Logistic regression utilizing eight peptides of TSP1, BST1, LAMB2, LYPA1, and RHOB, from the last urine sample prior to outcomes, predicted a graft loss with an AUC of 0.78 (p = 0.00001). A random forest classifier utilizing BST1 and LYPA1 peptides predicted death with an AUC of 0.80 (p = 0.0016). Urine measurements of RAS-regulated proteins may predict outcomes in kidney transplant recipients, although further prospective studies are required.
Collapse
Affiliation(s)
- Sofia Farkona
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Max Kotlyar
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health, Toronto, ON M5T 0S8, Canada
| | - Kevin Burns
- Division of Nephrology, Department of Medicine and Kidney Research Centre, The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Greg Knoll
- Division of Nephrology, Department of Medicine and Kidney Research Centre, The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute and Department of Epidemiology and Community Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
- Kidney Research Centre, Ottawa Hospital Research Institute and University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Davor Brinc
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 3K3, Canada
- Division of Clinical Biochemistry, Laboratory Medicine Program, University Health Network, Toronto, Ontario M5S 3K3, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health, Toronto, ON M5T 0S8, Canada
- Departments of Medical Biophysics and Computer Science and Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1L7, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava 845 10, Slovakia
| | - Ana Konvalinka
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2N2, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 3K3, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 2N2, Canada
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, ON M5G 2N2, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3K3, Canada
| |
Collapse
|
2
|
Ozkan Kucuk NE, Yigit BN, Degirmenci BS, Qureshi MH, Yapici GN, Kamacıoglu A, Bavili N, Kiraz A, Ozlu N. Cell cycle-dependent palmitoylation of protocadherin 7 by ZDHHC5 promotes successful cytokinesis. J Cell Sci 2023; 136:297268. [PMID: 36762613 DOI: 10.1242/jcs.260266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Cell division requires dramatic reorganization of the cell cortex, which is primarily driven by the actomyosin network. We previously reported that protocadherin 7 (PCDH7) gets enriched at the cell surface during mitosis, which is required to build up the full mitotic rounding pressure. Here, we report that PCDH7 interacts with and is palmitoylated by the palmitoyltransferase, ZDHHC5. PCDH7 and ZDHHC5 colocalize at the mitotic cell surface and translocate to the cleavage furrow during cytokinesis. The localization of PCDH7 depends on the palmitoylation activity of ZDHHC5. Silencing PCDH7 increases the percentage of multinucleated cells and the duration of mitosis. Loss of PCDH7 expression correlates with reduced levels of active RhoA and phospho-myosin at the cleavage furrow. This work uncovers a palmitoylation-dependent translocation mechanism for PCDH7, which contributes to the reorganization of the cortical cytoskeleton during cell division.
Collapse
Affiliation(s)
- Nazlı Ezgi Ozkan Kucuk
- Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Türkiye
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Türkiye
| | - Berfu Nur Yigit
- Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Türkiye
| | | | | | - Gamze Nur Yapici
- Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Türkiye
| | - Altuğ Kamacıoglu
- Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Türkiye
| | - Nima Bavili
- Department of Physics, Koç University, 34450 Istanbul, Türkiye
| | - Alper Kiraz
- Department of Physics, Koç University, 34450 Istanbul, Türkiye
- Department of Electrical and Electronics Engineering, Koç University, 34450 Istanbul, Türkiye
| | - Nurhan Ozlu
- Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Türkiye
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Türkiye
| |
Collapse
|
3
|
Wirth A, Ponimaskin E. Lipidation of small GTPase Cdc42 as regulator of its physiological and pathophysiological functions. Front Physiol 2023; 13:1088840. [PMID: 36699687 PMCID: PMC9868626 DOI: 10.3389/fphys.2022.1088840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023] Open
Abstract
The protein cell division cycle 42 (Cdc42) is a small GTPase of the Rho family regulating a plethora of physiological functions in a tissue, cell and subcellular-specific manner via participating in multiple signaling pathways. Since the corresponding signaling hubs are mainly organized along the cellular membranes, cytosolic proteins like Cdc42 need to be properly targeted and held at the membrane. Here, lipid modifications come into play: Cdc42 can be associated with membranes by different lipid anchors including prenylation (Cdc42-prenyl) and palmitoylation (Cdc42-palm). While Cdc42-prenyl is ubiquitously expressed, Cdc42-palm splicing variant in mainly expressed in the brain. Mechanisms underlying Cdc42 lipidation as well as its regulation are the main topic of this review. Furthermore, we will discuss the functional importance of Cdc42 lipid modifications with the focus on the role of different lipids in regulating defined Cdc42 functions. Finally, we will provide an overview of the possible implementation of Cdc42 lipidation in pathological conditions and different diseases.
Collapse
|
4
|
Zhou B, Hao Q, Liang Y, Kong E. Protein palmitoylation in cancer: molecular functions and therapeutic potential. Mol Oncol 2022; 17:3-26. [PMID: 36018061 PMCID: PMC9812842 DOI: 10.1002/1878-0261.13308] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/30/2022] [Accepted: 08/16/2022] [Indexed: 02/03/2023] Open
Abstract
Protein S-palmitoylation (hereinafter referred to as protein palmitoylation) is a reversible lipid posttranslational modification catalyzed by the zinc finger DHHC-type containing (ZDHHC) protein family. The reverse reaction, depalmitoylation, is catalyzed by palmitoyl-protein thioesterases (PPTs), including acyl-protein thioesterases (APT1/2), palmitoyl protein thioesterases (PPT1/2), or alpha/beta hydrolase domain-containing protein 17A/B/C (ABHD17A/B/C). Proteins encoded by several oncogenes and tumor suppressors are modified by palmitoylation, which enhances the hydrophobicity of specific protein subdomains, and can confer changes in protein stability, membrane localization, protein-protein interaction, and signal transduction. The importance for protein palmitoylation in tumorigenesis has just started to be elucidated in the past decade; palmitoylation appears to affect key aspects of cancer, including cancer cell proliferation and survival, cell invasion and metastasis, and antitumor immunity. Here we review the current literature on protein palmitoylation in the various cancer types, and discuss the potential of targeting of palmitoylation enzymes or palmitoylated proteins for tumor treatment.
Collapse
Affiliation(s)
- Binhui Zhou
- Institute of Psychiatry and NeuroscienceXinxiang Medical UniversityChina,Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityChina
| | - Qianyun Hao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology IIPeking University Cancer Hospital & InstituteBeijingChina
| | - Yinming Liang
- Institute of Psychiatry and NeuroscienceXinxiang Medical UniversityChina,Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityChina,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory MedicineXinxiang Medical UniversityChina
| | - Eryan Kong
- Institute of Psychiatry and NeuroscienceXinxiang Medical UniversityChina
| |
Collapse
|
5
|
Li Z, Zhang YY, Zhang H, Yang J, Chen Y, Lu H. Asymmetric Cell Division and Tumor Heterogeneity. Front Cell Dev Biol 2022; 10:938685. [PMID: 35859890 PMCID: PMC9289117 DOI: 10.3389/fcell.2022.938685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
Asymmetric cell division (ACD) gives rise to two daughter cells with different fates after mitosis and is a fundamental process for generating cell diversity and for the maintenance of the stem cell population. The cancer stem cell (CSC) theory suggests that CSCs with dysregulated self-renewal and asymmetric cell division serve as a source of intra-tumoral heterogeneity. This heterogeneity complicates the diagnosis and treatment of cancer patients, because CSCs can give rise to aggressive clones that are metastatic and insensitive to multiple drugs, or to dormant tumor cells that are difficult to detect. Here, we review the regulatory mechanisms and biological significance of asymmetric division in tumor cells, with a focus on ACD-induced tumor heterogeneity in early tumorigenesis and cancer progression. We will also discuss how dissecting the relationship between ACD and cancer may help us find new approaches for combatting this heterogeneity.
Collapse
Affiliation(s)
- Zizhu Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Yi Zhang
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Haomiao Zhang
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Jiaxuan Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yongze Chen
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hezhe Lu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Hezhe Lu,
| |
Collapse
|
6
|
Li X, Shen L, Xu Z, Liu W, Li A, Xu J. Protein Palmitoylation Modification During Viral Infection and Detection Methods of Palmitoylated Proteins. Front Cell Infect Microbiol 2022; 12:821596. [PMID: 35155279 PMCID: PMC8829041 DOI: 10.3389/fcimb.2022.821596] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 01/31/2023] Open
Abstract
Protein palmitoylation—a lipid modification in which one or more cysteine thiols on a substrate protein are modified to form a thioester with a palmitoyl group—is a significant post-translational biological process. This process regulates the trafficking, subcellular localization, and stability of different proteins in cells. Since palmitoylation participates in various biological processes, it is related to the occurrence and development of multiple diseases. It has been well evidenced that the proteins whose functions are palmitoylation-dependent or directly involved in key proteins’ palmitoylation/depalmitoylation cycle may be a potential source of novel therapeutic drugs for the related diseases. Many researchers have reported palmitoylation of proteins, which are crucial for host-virus interactions during viral infection. Quite a few explorations have focused on figuring out whether targeting the acylation of viral or host proteins might be a strategy to combat viral diseases. All these remarkable achievements in protein palmitoylation have been made to technological advances. This paper gives an overview of protein palmitoylation modification during viral infection and the methods for palmitoylated protein detection. Future challenges and potential developments are proposed.
Collapse
Affiliation(s)
- Xiaoling Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Lingyi Shen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Zhao Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Aihua Li
- Clinical Lab, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Jun Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Jun Xu, ;
| |
Collapse
|
7
|
FASN-dependent de novo lipogenesis is required for brain development. Proc Natl Acad Sci U S A 2022; 119:2112040119. [PMID: 34996870 PMCID: PMC8764667 DOI: 10.1073/pnas.2112040119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 01/24/2023] Open
Abstract
Fate and behavior of neural progenitor cells are tightly regulated during mammalian brain development. Metabolic pathways, such as glycolysis and oxidative phosphorylation, that are required for supplying energy and providing molecular building blocks to generate cells govern progenitor function. However, the role of de novo lipogenesis, which is the conversion of glucose into fatty acids through the multienzyme protein fatty acid synthase (FASN), for brain development remains unknown. Using Emx1Cre-mediated, tissue-specific deletion of Fasn in the mouse embryonic telencephalon, we show that loss of FASN causes severe microcephaly, largely due to altered polarity of apical, radial glia progenitors and reduced progenitor proliferation. Furthermore, genetic deletion and pharmacological inhibition of FASN in human embryonic stem cell-derived forebrain organoids identifies a conserved role of FASN-dependent lipogenesis for radial glia cell polarity in human brain organoids. Thus, our data establish a role of de novo lipogenesis for mouse and human brain development and identify a link between progenitor-cell polarity and lipid metabolism.
Collapse
|
8
|
Suazo KF, Park KY, Distefano MD. A Not-So-Ancient Grease History: Click Chemistry and Protein Lipid Modifications. Chem Rev 2021; 121:7178-7248. [PMID: 33821625 PMCID: PMC8820976 DOI: 10.1021/acs.chemrev.0c01108] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein lipid modification involves the attachment of hydrophobic groups to proteins via ester, thioester, amide, or thioether linkages. In this review, the specific click chemical reactions that have been employed to study protein lipid modification and their use for specific labeling applications are first described. This is followed by an introduction to the different types of protein lipid modifications that occur in biology. Next, the roles of click chemistry in elucidating specific biological features including the identification of lipid-modified proteins, studies of their regulation, and their role in diseases are presented. A description of the use of protein-lipid modifying enzymes for specific labeling applications including protein immobilization, fluorescent labeling, nanostructure assembly, and the construction of protein-drug conjugates is presented next. Concluding remarks and future directions are presented in the final section.
Collapse
Affiliation(s)
- Kiall F. Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Keun-Young Park
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Mark D. Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
9
|
Azbazdar Y, Karabicici M, Erdal E, Ozhan G. Regulation of Wnt Signaling Pathways at the Plasma Membrane and Their Misregulation in Cancer. Front Cell Dev Biol 2021; 9:631623. [PMID: 33585487 PMCID: PMC7873896 DOI: 10.3389/fcell.2021.631623] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Wnt signaling is one of the key signaling pathways that govern numerous physiological activities such as growth, differentiation and migration during development and homeostasis. As pathway misregulation has been extensively linked to pathological processes including malignant tumors, a thorough understanding of pathway regulation is essential for development of effective therapeutic approaches. A prominent feature of cancer cells is that they significantly differ from healthy cells with respect to their plasma membrane composition and lipid organization. Here, we review the key role of membrane composition and lipid order in activation of Wnt signaling pathway by tightly regulating formation and interactions of the Wnt-receptor complex. We also discuss in detail how plasma membrane components, in particular the ligands, (co)receptors and extracellular or membrane-bound modulators, of Wnt pathways are affected in lung, colorectal, liver and breast cancers that have been associated with abnormal activation of Wnt signaling. Wnt-receptor complex components and their modulators are frequently misexpressed in these cancers and this appears to correlate with metastasis and cancer progression. Thus, composition and organization of the plasma membrane can be exploited to develop new anticancer drugs that are targeted in a highly specific manner to the Wnt-receptor complex, rendering a more effective therapeutic outcome possible.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| | - Mustafa Karabicici
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| | - Esra Erdal
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| |
Collapse
|
10
|
Shin D, Kang S, Smartt CT. Profiling Transcripts of Vector Competence between Two Different Aedes aegypti Populations in Florida. Viruses 2020; 12:v12080823. [PMID: 32751270 PMCID: PMC7472143 DOI: 10.3390/v12080823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/17/2020] [Accepted: 07/26/2020] [Indexed: 01/09/2023] Open
Abstract
A Chikungunya virus (CHIKV) outbreak in Italy in 2007 spread to include the islands of the Caribbean and most of the Americas and still circulates in Europe and Africa. Florida being close in distance to the Caribbean islands experienced a CHIKV outbreak in 2014 and continues to have a few travel-related cases each year. It is known that different environmental conditions in different regions can result in genetic variation that favor changes in competence to arbovirus. We evaluated the vector competence of Florida Aedes aegypti for CHIKV and determined if there is a geographic component that influences genes involved in CHIKV competence. We utilized a genomic approach to identify the candidate genes using RNA sequencing. The infection and dissemination results showed that field populations were more competent vectors for CHIKV than a lab population. The differentially expressed genes in the two field-collected CHIKV-infected populations, compared to the Rockefeller strain, were related to the Wnt/Notch signaling pathway, with similarity to genes scattered throughout the signaling pathway. This result suggested the possibility of identifying genes involved in the determination of vector competence in different gene pools of Ae. aegypti.
Collapse
Affiliation(s)
- Dongyoung Shin
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Science, University of Florida, Vero Beach, FL 32962, USA
- Correspondence: (D.S.); (C.T.S.)
| | - Seokyoung Kang
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Chelsea T. Smartt
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Science, University of Florida, Vero Beach, FL 32962, USA
- Correspondence: (D.S.); (C.T.S.)
| |
Collapse
|
11
|
Albanesi JP, Barylko B, DeMartino GN, Jameson DM. Palmitoylated Proteins in Dendritic Spine Remodeling. Front Synaptic Neurosci 2020; 12:22. [PMID: 32655390 PMCID: PMC7325885 DOI: 10.3389/fnsyn.2020.00022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Activity-responsive changes in the actin cytoskeleton are required for the biogenesis, motility, and remodeling of dendritic spines. These changes are governed by proteins that regulate the polymerization, depolymerization, bundling, and branching of actin filaments. Thus, processes that have been extensively characterized in the context of non-neuronal cell shape change and migration are also critical for learning and memory. In this review article, we highlight actin regulatory proteins that associate, at least transiently, with the dendritic plasma membrane. All of these proteins have been shown, either in directed studies or in high-throughput screens, to undergo palmitoylation, a potentially reversible, and stimulus-dependent cysteine modification. Palmitoylation increases the affinity of peripheral proteins for the membrane bilayer and contributes to their subcellular localization and recruitment to cholesterol-rich membrane microdomains.
Collapse
Affiliation(s)
- Joseph P. Albanesi
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Barbara Barylko
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - George N. DeMartino
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - David M. Jameson
- Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI, United States
| |
Collapse
|
12
|
Morris EJ, Gillespie JA, Maxwell CA, Dedhar S. A Model of Differential Mammary Growth Initiation by Stat3 and Asymmetric Integrin-α6 Inheritance. Cell Rep 2020; 30:3605-3615.e5. [PMID: 32187533 DOI: 10.1016/j.celrep.2020.02.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/13/2020] [Accepted: 02/20/2020] [Indexed: 12/29/2022] Open
Abstract
Multiple cancer-related genes both promote and paradoxically suppress growth initiation, depending on the cell context. We discover an explanation for how this occurs for one such protein, Stat3, based on asymmetric cell division. Here, we show that Stat3, by Stathmin/PLK-1, regulates mitotic spindle orientation, and we use it to create and test a model for differential growth initiation. We demonstrate that Integrin-α6 is polarized and required for mammary growth initiation. Spindles orient relative to polar Integrin-α6, dividing perpendicularly in normal cells and parallel in tumor-derived cells, resulting in asymmetric or symmetric Integrin-α6 inheritance, respectively. Stat3 inhibition randomizes spindle orientation, which promotes normal growth initiation while reducing tumor-derived growth initiation. Lipid raft disruption depolarizes Integrin-α6, inducing spindle-orientation-independent Integrin-α6 inheritance. Stat3 inhibition no longer affects the growth of these cells, suggesting Stat3 acts through the regulation of spindle orientation to control growth initiation.
Collapse
Affiliation(s)
- Edward J Morris
- Department of Integrative Oncology, BC Cancer Research Centre, BC Cancer Agency, Vancouver, BC, Canada; Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital, Vancouver, BC, Canada.
| | - Jordan A Gillespie
- Department of Integrative Oncology, BC Cancer Research Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Christopher A Maxwell
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital, Vancouver, BC, Canada; Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Centre, BC Cancer Agency, Vancouver, BC, Canada; Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
13
|
Abstract
S-palmitoylation is required for membrane anchoring, proper trafficking, and the normal function of hundreds of integral and peripheral membrane proteins. Previous bioorthogonal pulse-chase proteomics analyses identified Ras family GTPases, polarity proteins, and G proteins as rapidly cycling S-palmitoylated proteins sensitive to depalmitoylase inhibition, yet the breadth of enzyme regulated dynamic S-palmitoylation largely remains a mystery. Here, we present a pulsed bioorthogonal S-palmitoylation assay for temporal analysis of S-palmitoylation dynamics. Low concentration hexadecylfluorophosphonate (HDFP) inactivates the APT and ABHD17 families of depalmitoylases, which dramatically increases alkynyl-fatty acid labeling and stratifies S-palmitoylated proteins into kinetically distinct subgroups. Most surprisingly, HDFP treatment does not affect steady-state S-palmitoylation levels, despite inhibiting all validated depalmitoylating enzymes. S-palmitoylation profiling of APT1-/-/APT2-/- mouse brains similarly show no change in S-palmitoylation levels. In comparison with hydroxylamine-switch methods, bioorthogonal alkynyl fatty acids are only incorporated into a small fraction of dynamic S-palmitoylated proteins, raising the possibility that S-palmitoylation is more stable than generally characterized. Overall, disrupting depalmitoylase activity enhances alkynyl fatty acid incorporation, but does not greatly affect steady state S-palmitoylation across the proteome.
Collapse
Affiliation(s)
- Sang Joon Won
- Program in Chemical Biology, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, USA
| | - Brent R. Martin
- Program in Chemical Biology, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, USA
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, USA
| |
Collapse
|