1
|
Yoon BK, Jackman JA. Medium-chain fatty acids and monoglycerides: Nanoarchitectonics-based insights into molecular self-assembly, membrane interactions, and applications. Adv Colloid Interface Sci 2025; 340:103465. [PMID: 40056558 DOI: 10.1016/j.cis.2025.103465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/10/2025]
Abstract
Medium-chain fatty acids (FAs) and monoglycerides (MGs) with saturated 6- to 12‑carbon long tails are single-chain lipid amphiphiles that demonstrate significant application merits. Key examples include their antimicrobial activity against antibiotic-resistant bacteria and emerging viral threats as well as innovations in oral pharmaceutics and biorenewable chemical production. These diverse functionalities are enabled by FA and MG self-assembly and their interactions with biological membranes. However, an integrated viewpoint connecting interfacial science principles to the broader application scope remains lacking. The objective of this review is to cover the latest progress in medium-chain FA and MG research and to build connections between molecular self-assembly, membrane interactions, and applications. By taking a bottom-up nanoarchitectonics perspective, we first examine molecular self-assembly principles, including ionization properties and formation of colloidal nanostructures such as micelles and vesicles. We then discuss membrane interaction concepts and experimental findings that illustrate how medium-chain FAs and MGs distinctly interact with phospholipid membranes. Based on this foundation, we highlight cutting-edge applications in medicine, agriculture, drug delivery, and sustainability, linking these advances to interfacial science concepts. In addition, we emphasize the growing convergence of experimental, theoretical, and computational approaches and offer a forward-looking perspective on future research needs and application opportunities.
Collapse
Affiliation(s)
- Bo Kyeong Yoon
- School of Biomedical Engineering, Chonnam National University, Yeosu, Republic of Korea
| | - Joshua A Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
2
|
Yang T, Fang B, Chen Y, Bao D, Zhang J, Liu P, Duan Z, He Y, Zhao X, Zhang QW, Dong WT, Zhang Y. Targeted Regulation of HSP70 by the ARP2/3 Complex in Mammary Epithelial Cells and Its Impact on Host Cell Apoptosis. Biomolecules 2025; 15:538. [PMID: 40305275 PMCID: PMC12025207 DOI: 10.3390/biom15040538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 05/02/2025] Open
Abstract
Mastitis is frequently triggered by the bacterial disruption of the epithelial cell barrier. The actin-related protein 2/3 complex (Arp2/3), a major endogenous protein involved in cytoskeletal regulation, plays a crucial role in preserving epithelial barrier integrity during inflammation; however, its specific role in mastitis progression remains unclear. This study aims to use lipopolysaccharide (LPS) to establish mammary alveolar cells-large T antigen cells (MAC-T is a bovine mammary epithelial cell line) and mouse models of mastitis, investigating the functional relationship between actin-related protein 2/3 complex subunits 3 (ARPC3) and 4 (ARPC4) and heat shock protein 70 (HSP70) during mammary epithelial cell inflammation and assessing its effects on apoptosis. Transcriptomic sequencing initially identified 48 differentially expressed genes associated with the bacterial invasion of epithelial cells and apoptosis. Further molecular biology analyses showed a significant upregulation of ARPC3/ARPC4 and HSP70 expression during inflammation, along with a marked increase in apoptosis rates. When ARPC3/ARPC4 was inhibited using CK666, HSP70 expression further increased compared to the LPS group, while inflammatory factors, apoptosis rates, and apoptosis-related protein expression were notably reduced. These findings indicate that targeting ARPC3/ARPC4 to regulate HSP70 can promote inflammation and apoptosis, highlighting its potential as a therapeutic target for mastitis.
Collapse
Affiliation(s)
- Tingji Yang
- College of Veterinary Medicine, Gansu Agricultural University, 1#Ying Men-Cun Road, Lanzhou 730070, China; (T.Y.); (B.F.); (Y.C.); (D.B.); (J.Z.); (P.L.); (Y.H.); (X.Z.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Bo Fang
- College of Veterinary Medicine, Gansu Agricultural University, 1#Ying Men-Cun Road, Lanzhou 730070, China; (T.Y.); (B.F.); (Y.C.); (D.B.); (J.Z.); (P.L.); (Y.H.); (X.Z.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Yan Chen
- College of Veterinary Medicine, Gansu Agricultural University, 1#Ying Men-Cun Road, Lanzhou 730070, China; (T.Y.); (B.F.); (Y.C.); (D.B.); (J.Z.); (P.L.); (Y.H.); (X.Z.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Dan Bao
- College of Veterinary Medicine, Gansu Agricultural University, 1#Ying Men-Cun Road, Lanzhou 730070, China; (T.Y.); (B.F.); (Y.C.); (D.B.); (J.Z.); (P.L.); (Y.H.); (X.Z.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Jiang Zhang
- College of Veterinary Medicine, Gansu Agricultural University, 1#Ying Men-Cun Road, Lanzhou 730070, China; (T.Y.); (B.F.); (Y.C.); (D.B.); (J.Z.); (P.L.); (Y.H.); (X.Z.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Peiwen Liu
- College of Veterinary Medicine, Gansu Agricultural University, 1#Ying Men-Cun Road, Lanzhou 730070, China; (T.Y.); (B.F.); (Y.C.); (D.B.); (J.Z.); (P.L.); (Y.H.); (X.Z.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Zhiwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, 1#Ying Men-Cun Road, Lanzhou 730070, China; (T.Y.); (B.F.); (Y.C.); (D.B.); (J.Z.); (P.L.); (Y.H.); (X.Z.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Yuxuan He
- College of Veterinary Medicine, Gansu Agricultural University, 1#Ying Men-Cun Road, Lanzhou 730070, China; (T.Y.); (B.F.); (Y.C.); (D.B.); (J.Z.); (P.L.); (Y.H.); (X.Z.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, 1#Ying Men-Cun Road, Lanzhou 730070, China; (T.Y.); (B.F.); (Y.C.); (D.B.); (J.Z.); (P.L.); (Y.H.); (X.Z.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Quan-Wei Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
- College of Life Sciences and Biotechnology, Gansu Agricultural University, Lanzhou 730030, China
| | - Wei-Tao Dong
- College of Veterinary Medicine, Gansu Agricultural University, 1#Ying Men-Cun Road, Lanzhou 730070, China; (T.Y.); (B.F.); (Y.C.); (D.B.); (J.Z.); (P.L.); (Y.H.); (X.Z.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, 1#Ying Men-Cun Road, Lanzhou 730070, China; (T.Y.); (B.F.); (Y.C.); (D.B.); (J.Z.); (P.L.); (Y.H.); (X.Z.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| |
Collapse
|
3
|
Veerapagu M, Jeya K, Sankara Narayanan A. Gastrointestinal microbiome engineering in pig. HUMAN AND ANIMAL MICROBIOME ENGINEERING 2025:265-290. [DOI: 10.1016/b978-0-443-22348-8.00016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
4
|
Dong S, Zhang N, Wang J, Cao Y, Johnston LJ, Ma Y. Effects of Medium- and Short-Chain Fatty Acids on Growth Performance, Nutrient Digestibility, Gut Microbiota and Immune Function in Weaned Piglets. Animals (Basel) 2024; 15:37. [PMID: 39794980 PMCID: PMC11718992 DOI: 10.3390/ani15010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
The aim of this study was to investigate the combination effects of α-glycerol monolaurate (GML) and glyceryl tributyrate (TB) on growth performance, nutrient digestibility, gut microbiota, and immune function in weaned piglets. A total of 120 weaned piglets with an average body weight (BW) of 6.88 kg were randomly allocated to one of the three dietary treatments: (1) CON: a basal diet; (2) 0.1%: a basal diet with 0.1% MSCFA (GML/TB = 1:1); (3) 0.2%: a basal diet with 0.2% MSCFA (GML/TB = 1:1). The experiment lasted 28 days. There were no differences on average daily growth (ADG), average daily feed intake (ADFI), and feed conversion ratio (FCR). Supplementation with 0.1% MSCFA increased apparent total tract digestibility (ATTD) of crude protein (CP) and gross energy (GE, p < 0.05) on d 14 and increased GE (p < 0.05) on d 28 compared with the CON group. The ATTD of dry matter (DM), organic matter (OM) and crude protein (CP) of piglets supplemented with 0.1% MSCFA was higher (p < 0.05). Compared with the CON group, supplementation with 0.1% MSCFA increased immunoglobulin M (IgM) concentration, decreased interleukin-6 (IL-6) content (p < 0.05) on d 14 and decreased malonaldehyde (MDA), interleukin-1beta (IL-1β), IL-6 concentrations (p < 0.05) on d 28. Supplementation with 0.1% MSCFA increased total antioxidant capacity (T-AOC) concentration (p < 0.05), decreased GSH-Px, MDA content (p < 0.05) in jejunum compared with the CON group. Moreover, supplementation with MSCFA increased the activity of duodenal lipase (p < 0.05) and the abundance of firmicutes and decreased the abundance of proteobacteria compared with the CON group. Overall, supplementation with MSCFA can improve nutrient digestibility, enhance immunity and antioxidant capacity, and improve the intestinal health of piglets. The combined use of MSCFA is a nutrition regulation strategy worthy of further exploration in modern animal husbandry.
Collapse
Affiliation(s)
- Shuang Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.D.); (N.Z.)
| | - Nan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.D.); (N.Z.)
| | - Jihua Wang
- Galido Biotechnology Co., Ltd., Wuhan 430074, China; (J.W.); (Y.C.)
| | - Yu Cao
- Galido Biotechnology Co., Ltd., Wuhan 430074, China; (J.W.); (Y.C.)
| | - Lee J. Johnston
- Department of Animal Science, West Central Research and Outreach Center, University of Minnesota, Morris, MN 56267, USA;
| | - Yongxi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.D.); (N.Z.)
| |
Collapse
|
5
|
Yang M, Zhang J, Yan H, Pan Y, Zhou J, Zhong H, Wang J, Cai H, Feng F, Zhao M. A comprehensive review of medium chain monoglycerides on metabolic pathways, nutritional and functional properties, nanotechnology formulations and applications in food system. Crit Rev Food Sci Nutr 2024; 65:2943-2964. [PMID: 38779723 DOI: 10.1080/10408398.2024.2353403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A large and growing body of literature has investigated the broad antibacterial spectrum and strong synergistic antimicrobial activity of medium chain monoglycerides (MCMs) have been widely investigated. Recently, more and more researches have focused on the regulation of MCMs on metabolic health and gut microbiota both in vivo and in vitro. The current review summarizes the digestion, absorption and metabolism of MCMs. Subsequently, it focuses on the functional and nutritional properties of MCMs, including the antibacterial and antiviral characteristics, the modulation of metabolic balance, the regulation of gut microbiota, and the improvement in intestinal health. Additionally, we discuss the most recent developments and application of MCMs using nanotechnologies in food industry, poultry and pharmaceutical industry. Additionally, we analyze recent application examples of MCMs and their nanotechnology formation used in food. The development of nanotechnology platforms facilitating molecular encapsulation and functional presentation contribute to the application of hydrophobic fatty acids and monoglycerides in food preservation and their antibacterial effectiveness. This study emphasizes the metabolic mechanisms and biological activity of MCMs by summarizing the prevailing state of knowledge on this topic, as well as providing insights into prospective techniques for developing the beneficial applications of MCMs to realize the industrialized production.
Collapse
Affiliation(s)
- Mengyu Yang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Junhui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Heng Yan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Ya Pan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Jie Zhou
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Jing Wang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
- Guangdong Qingyunshan Pharmaceutical Co., Ltd, Shaoguan, China
| | - Haiying Cai
- School of Biological & Chemical Engineering, Zhejiang Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Wilfahrt D, Delgoffe GM. Metabolic waypoints during T cell differentiation. Nat Immunol 2024; 25:206-217. [PMID: 38238609 DOI: 10.1038/s41590-023-01733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/07/2023] [Indexed: 02/03/2024]
Abstract
This Review explores the interplay between T cell activation and cell metabolism and highlights how metabolites serve two pivotal functions in shaping the immune response. Traditionally, T cell activation has been characterized by T cell antigen receptor-major histocompatibility complex interaction (signal 1), co-stimulation (signal 2) and cytokine signaling (signal 3). However, recent research has unveiled the critical role of metabolites in this process. Firstly, metabolites act as signal propagators that aid in the transmission of core activation signals, such as specific lipid species that are crucial at the immune synapse. Secondly, metabolites also function as unique signals that influence immune differentiation pathways, such as amino acid-induced mTORC1 signaling. Metabolites also play a substantial role in epigenetic remodeling, by directly modifying histones, altering gene expression and influencing T cell behavior. This Review discusses how T cells integrate nutrient sensing with activating stimuli to shape their differentiation and sensitivity to metabolites. We underscore the integration of immunological and metabolic inputs in T cell function and suggest that metabolite availability is a fundamental determinant of adaptive immune responses.
Collapse
Affiliation(s)
- Drew Wilfahrt
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Greg M Delgoffe
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Tumor Microenvironment Center and Department of Immunology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Dahmer PL, Harrison OL, Jones CK. Effects of formic acid and glycerol monolaurate on weanling pig growth performance, fecal consistency, fecal microbiota, and serum immunity. Transl Anim Sci 2022; 6:txac145. [PMID: 36425847 PMCID: PMC9682209 DOI: 10.1093/tas/txac145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/21/2022] [Indexed: 03/05/2024] Open
Abstract
A total of 350 weanling pigs (DNA 400 × 200; initially, 5.67 ± 0.06 kg BW) were used in a 42-day study with 5 pigs per pen and 14 replicate pens per treatment. At weaning, pigs were allotted to pens in a completely randomized design and pens of pigs were randomly assigned to one of five dietary treatments: 1) negative control (CON; standard nursery diet containing only 150 ppm Zn from trace mineral premix and no acidifier); 2) control diet with 3,000 ppm added zinc from ZnO included in phase 1 and 2,000 ppm added zinc from ZnO included in phase 2 (ZnO); 3) control diet with 0.70% formic acid (FA; Amasil NA; BASF, Florham, NJ); 4) control diet with 0.18% glycerol monolaurate (GML; Natural Biologics GML, Natural Biologics, Newfield, NY); and 5) control diet with a 1.0% blend of formic acid and glycerol monolaurate (FORMI; FORMI 3G, ADDCON GmbH, Bitterfeld-Wolfen, Germany). Pigs were fed treatment diets from d 0 to d 28 and were then fed a common diet from d 28 to d 42. From days 0 to 7, pigs fed ZnO or FORMI had increased (P = 0.03) ADG compared to pigs fed CON, with no difference in feed intake (P > 0.05). Overall, pigs fed GML had reduced (P < 0.0001) ADG compared with those fed the CON, ZnO, or FORMI diets. Fecal DM was evaluated from days 7 to 28 and there was a treatment × day interaction (P = 0.04). Pigs fed GML had a lower fecal DM % on day 7, but a higher fecal DM % on days 14 and 21; however, no differences in fecal DM were observed on day 28. Fresh fecal samples were collected from the same randomly selected pig on days 0 and 14 (70 pigs total;14 pigs per treatment) for analysis of fecal microbial populations using 16S rDNA sequencing. Dietary treatment did not significantly impact fecal microbiota at the phyla level, but pigs fed ZnO had an increased relative abundance (P < 0.01) of the family Clostridiaceae. A blood sample was also collected from one pig per pen on days 0 and 14 for analysis of serum IgA, IgG, and TNF-α. There was no evidence that dietary treatment effected IgA, IgG, or TNF-α concentrations. The effect of sampling day was significant (P < 0.05), where circulating IgA and TNF-α was increased and IgG was decreased from days 0 to 14. In summary, there is potential for a blend of formic acid and GML to improve growth performance immediately post-weaning without negatively impacting fecal consistency. Formic acid and GML alone or in combination did not impact fecal microbial populations or serum immune parameters.
Collapse
Affiliation(s)
- Payton L Dahmer
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, USA
| | - Olivia L Harrison
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, USA
| | - Cassandra K Jones
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
8
|
Kong L, Wang Z, Xiao C, Zhu Q, Song Z. Glycerol monolaurate attenuated immunological stress and intestinal mucosal injury by regulating the gut microbiota and activating AMPK/Nrf2 signaling pathway in lipopolysaccharide-challenged broilers. ANIMAL NUTRITION 2022; 10:347-359. [PMID: 35919246 PMCID: PMC9307562 DOI: 10.1016/j.aninu.2022.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/29/2022] [Accepted: 06/14/2022] [Indexed: 11/11/2022]
Abstract
This study was conducted to investigate the effects of glycerol monolaurate (GML) on lipopolysaccharide (LPS)-induced immunological stress and intestinal mucosal injury in broilers and its underlying mechanisms. A total of 144 one-d-old Arbor Acres broilers were allocated to a 2 × 2 factorial arrangement involving dietary treatment (0 or 1,200 mg/kg dietary GML) and LPS challenge (injected with saline or Escherichia coli LPS on d 16, 18, and 20). Samples were collected on d 21. The results revealed that dietary GML augmented serum immunoglobulin A (P = 0.009) and immunoglobulin G (P < 0.001) levels in challenged birds. Dietary GML normalized LPS-induced variations in serum interleukin-6, interferon-gamma, and LPS levels (P < 0.05), jejunal villus height (P = 0.030), and gene expression of interleukin-6, macrophage inflammatory protein-3 alpha, Toll-like receptor 4, nuclear factor kappa-B, caspase-1, tight junction proteins, adenosine monophosphate-activated protein kinase alpha 1 (AMPKα1), nuclear factor-erythroid 2-related factor 2 (Nrf2), and superoxide dismutase-1 (P < 0.05). GML supplementation ameliorated LPS-induced peroxidation by reducing malondialdehyde content and increasing antioxidant enzyme activity (P < 0.05). Dietary GML enhanced the abundances of Anaerostipes, Pseudoflavonifractor, and Gordonibacter and reduced the proportion of Phascolarctobacterium in challenged birds. Dietary GML was positively correlated with alterations in antioxidant enzyme activities and AMPKα1, Nrf2, and zonula occludens-1 expressions. The genera Anaerostipes, Lachnospira, Gordonibacter, Lachnospira, Marvinbryantia, Peptococcus, and Pseudoflavonifractor were linked to attenuated inflammation and improved antioxidant capacity of challenged birds. In conclusion, dietary GML alleviated LPS-induced immunological stress and intestinal injury of broilers by suppressing inflammation and oxidative stress. Dietary GML regulated cecal microbiota and activated the AMPK/Nrf2 pathway in LPS-challenged broilers.
Collapse
|
9
|
Fosdick MG, Loftus S, Phillips I, Zacharias ZR, Houtman JCD. Glycerol monolaurate inhibition of human B cell activation. Sci Rep 2022; 12:13506. [PMID: 35931746 PMCID: PMC9355977 DOI: 10.1038/s41598-022-17432-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
Glycerol monolaurate (GML) is a naturally occurring antimicrobial agent used commercially in numerous products and food items. GML is also used as a homeopathic agent and is being clinically tested to treat several human diseases. In addition to its anti-microbial function, GML suppresses immune cell proliferation and inhibits primary human T cell activation. GML suppresses T cell activation by altering membrane dynamics and disrupting the formation of protein clusters necessary for intracellular signaling. The ability of GML to disrupt cellular membranes suggests it may alter other cell types. To explore this possibility, we tested how GML affects human B cells. We found that GML inhibits BCR-induced cytokine production, phosphorylation of signaling proteins, and protein clustering, while also changing cellular membrane dynamics and dysregulating cytoskeleton rearrangement. Although similar, there are also differences between how B cells and T cells respond to GML. These differences suggest that unique intrinsic features of a cell may result in differential responses to GML treatment. Overall, this study expands our understanding of how GML impacts the adaptive immune response and contributes to a broader knowledge of immune modulating monoglycerides.
Collapse
Affiliation(s)
- Micaela G Fosdick
- Biomedical Sciences Graduate Program, Subprogram in Molecular Medicine, Carver College of Medicine, University of Iowa, 2110 MERF, Iowa City, IA, 52242, USA
| | - Shannon Loftus
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Isabella Phillips
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Zeb R Zacharias
- Human Immunology Core, Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Jon C D Houtman
- Biomedical Sciences Graduate Program, Subprogram in Molecular Medicine, Carver College of Medicine, University of Iowa, 2110 MERF, Iowa City, IA, 52242, USA.
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA.
- Human Immunology Core, Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, USA.
| |
Collapse
|
10
|
Moon S, Yoon BK, Jackman JA. Effect of Membrane Curvature Nanoarchitectonics on Membrane-Disruptive Interactions of Antimicrobial Lipids and Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4606-4616. [PMID: 35389653 DOI: 10.1021/acs.langmuir.1c03384] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Single-chain lipid amphiphiles such as fatty acids and monoglycerides along with structurally related surfactants have received significant attention as membrane-disrupting antimicrobials to inhibit bacteria and viruses. Such promise has motivated deeper exploration of how these compounds disrupt phospholipid membranes, and the membrane-mimicking, supported lipid bilayer (SLB) platform has provided a useful model system to evaluate corresponding mechanisms of action and potency levels. Even so, it remains largely unknown how biologically relevant membrane properties, such as sub-100 nm membrane curvature, might affect these membrane-disruptive interactions, especially from a nanoarchitectonics perspective. Herein, using the quartz crystal microbalance-dissipation (QCM-D) technique, we fabricated intact vesicle adlayers composed of different-size vesicles (70 or 120 nm diameter) with varying degrees of membrane curvature on a titanium oxide surface and tracked changes in vesicle adlayer properties upon adding lauric acid (LA), glycerol monolaurate (GML), or sodium dodecyl sulfate (SDS). Above their critical micelle concentration (CMC) values, LA and GML caused QCM-D measurement shifts associated with tubule- and bud-like formation, respectively, and both compounds interacted similarly with small (high curvature) and large (low curvature) vesicles. In marked contrast, SDS exhibited distinct interactions with small and large vesicles. For large vesicles, SDS caused nearly complete membrane solubilization in a CMC-independent manner, whereas SDS was largely ineffective at solubilizing small vesicles at all tested concentrations. We rationalize these experimental observations by taking into account the interplay of the headgroup properties of LA, GML, and SDS and curvature-induced membrane geometry, and our findings demonstrate that membrane curvature nanoarchitectonics can strongly influence the membrane interaction profiles of antimicrobial lipids and surfactants.
Collapse
Affiliation(s)
- Suji Moon
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bo Kyeong Yoon
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Joshua A Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
11
|
Wu Y, Li Q, Liu J, Liu Y, Xu Y, Zhang R, Yu Y, Wang Y, Yang C. Integrating Serum Metabolome and Gut Microbiome to Evaluate the Benefits of Lauric Acid on Lipopolysaccharide- Challenged Broilers. Front Immunol 2021; 12:759323. [PMID: 34721434 PMCID: PMC8554146 DOI: 10.3389/fimmu.2021.759323] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
Lauric acid (LA) is a crucial medium-chain fatty acid (MCFA) that has many beneficial effects on humans and animals. This study aimed to investigate the effects of LA on the intestinal barrier, immune functions, serum metabolism, and gut microbiota of broilers under lipopolysaccharide (LPS) challenge. A total of 384 one-day-old broilers were randomly divided into four groups, and fed with a basal diet, or a basal diet supplemented with 75 mg/kg antibiotic (ANT), or a basal diet supplemented with 1000 mg/kg LA. After 42 days of feeding, three groups were intraperitoneally injected with 0.5 mg/kg Escherichia coli- derived LPS (LPS, ANT+LPS and LA+LPS groups) for three consecutive days, and the control (CON) group was injected with the same volume of saline. Then, the birds were sacrificed. Results showed that LA pretreatment significantly alleviated the weight loss and intestinal mucosal injuries caused by LPS challenge. LA enhanced immune functions and inhibited inflammatory responses by upregulating the concentrations of immunoglobulins (IgA, IgM, and IgY), decreasing IL-6 and increasing IL-4 and IL-10. Metabolomics analysis revealed a significant difference of serum metabolites by LA pretreatment. Twenty-seven serum metabolic biomarkers were identified and mostly belong to lipids. LA also markedly modulated the pathway for sphingolipid metabolism, suggesting its ability to regulate lipid metabolism. Moreover,16S rRNA analysis showed that LA inhibited LPS-induced gut dysbiosis by altering cecal microbial composition (reducing Escherichia-Shigella, Barnesiella and Alistipes, and increasing Lactobacillus and Bacteroides), and modulating the production of volatile fatty acids (VFAs). Pearson’s correlation assays showed that alterations in serum metabolism and gut microbiota were strongly correlated to the immune factors; there were also strong correlations between serum metabolites and microbiota composition. The results highlight the potential of LA as a dietary supplement to combat bacterial LPS challenge in animal production and to promote food safety.
Collapse
Affiliation(s)
- Yanping Wu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Qing Li
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Jinsong Liu
- Institute of Animal Health Products, Zhejiang Vegamax Biotechnology Co., Ltd., Anji, China
| | - Yulan Liu
- Institute of Animal Health Products, Zhejiang Vegamax Biotechnology Co., Ltd., Anji, China
| | - Yinglei Xu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Ruiqiang Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Yang Yu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Yongxia Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Caimei Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| |
Collapse
|
12
|
Tan JYB, Yoon BK, Cho NJ, Lovrić J, Jug M, Jackman JA. Lipid Nanoparticle Technology for Delivering Biologically Active Fatty Acids and Monoglycerides. Int J Mol Sci 2021; 22:9664. [PMID: 34575831 PMCID: PMC8465605 DOI: 10.3390/ijms22189664] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022] Open
Abstract
There is enormous interest in utilizing biologically active fatty acids and monoglycerides to treat phospholipid membrane-related medical diseases, especially with the global health importance of membrane-enveloped viruses and bacteria. However, it is difficult to practically deliver lipophilic fatty acids and monoglycerides for therapeutic applications, which has led to the emergence of lipid nanoparticle platforms that support molecular encapsulation and functional presentation. Herein, we introduce various classes of lipid nanoparticle technology and critically examine the latest progress in utilizing lipid nanoparticles to deliver fatty acids and monoglycerides in order to treat medical diseases related to infectious pathogens, cancer, and inflammation. Particular emphasis is placed on understanding how nanoparticle structure is related to biological function in terms of mechanism, potency, selectivity, and targeting. We also discuss translational opportunities and regulatory needs for utilizing lipid nanoparticles to deliver fatty acids and monoglycerides, including unmet clinical opportunities.
Collapse
Affiliation(s)
- Jia Ying Brenda Tan
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (J.Y.B.T.); (B.K.Y.)
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 637553, Singapore;
| | - Bo Kyeong Yoon
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (J.Y.B.T.); (B.K.Y.)
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 637553, Singapore;
| | - Jasmina Lovrić
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (J.L.); (M.J.)
| | - Mario Jug
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (J.L.); (M.J.)
| | - Joshua A. Jackman
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (J.Y.B.T.); (B.K.Y.)
| |
Collapse
|
13
|
Jug M, Yoon BK, Jackman JA. Cyclodextrin-based Pickering emulsions: functional properties and drug delivery applications. J INCL PHENOM MACRO 2021; 101:31-50. [PMID: 34366706 PMCID: PMC8330820 DOI: 10.1007/s10847-021-01097-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022]
Abstract
Cyclodextrins (CDs) are biocompatible, cyclic oligosaccharides that are widely used in various industrial applications and have intriguing interfacial science properties. While CD molecules typically have low surface activity, they are capable of stabilizing emulsions by inclusion complexation of oil-phase components at the oil/water interface, which results in Pickering emulsion formation. Such surfactant-free formulations have gained considerable attention in recent years, owing to their enhanced physical stability, improved tolerability, and superior environmental compatibility compared to conventional, surfactant-based emulsions. In this review, we critically describe the latest insights into the molecular mechanisms involved in CD stabilization of Pickering emulsions, including covering practical aspects such as methods to prepare CD-based Pickering emulsions, lipid encapsulation, and relevant stability issues. In addition, the rheological and textural features of CD-based Pickering emulsions are discussed and particular attention is focused on promising examples for drug delivery, cosmetic, and nutraceutical applications. The functionality of currently developed CD-based Pickering emulsions is also summarised, including examples such as antifungal uses, and we close by discussing emerging possibilities to utilize the molecular encapsulation of CD-based emulsions for translational medicine applications in the antiviral and antibacterial spaces.
Collapse
Affiliation(s)
- Mario Jug
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, Zagreb, Croatia
| | - Bo Kyeong Yoon
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - Joshua A. Jackman
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419 Republic of Korea
| |
Collapse
|
14
|
Fosdick MG, Chheda PR, Tran PM, Wolff A, Peralta R, Zhang MY, Kerns R, Houtman JCD. Suppression of human T cell activation by derivatives of glycerol monolaurate. Sci Rep 2021; 11:8943. [PMID: 33903712 PMCID: PMC8076190 DOI: 10.1038/s41598-021-88584-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/07/2021] [Indexed: 11/20/2022] Open
Abstract
Glycerol monolaurate (GML), a naturally occurring monoglyceride, is widely used commercially for its antimicrobial properties. Interestingly, several studies have shown that GML not only has antimicrobial properties but is also an anti-inflammatory agent. GML inhibits peripheral blood mononuclear cell proliferation and inhibits T cell receptor (TCR)-induced signaling events. In this study, we perform an extensive structure activity relationship analysis to investigate the structural components of GML necessary for its suppression of human T cell activation. Human T cells were treated with analogs of GML, differing in acyl chain length, head group, linkage of acyl chain, and number of laurate groups. Treated cells were then tested for changes in membrane dynamics, LAT clustering, calcium signaling, and cytokine production. We found that an acyl chain with 12-14 carbons, a polar head group, an ester linkage, and a single laurate group at any position are all necessary for GML to inhibit protein clustering, calcium signaling, and cytokine production. Removing the glycerol head group or replacing the ester linkage with a nitrogen prevented derivative-mediated inhibition of protein cluster formation and calcium signaling, while still inhibiting TCR-induced cytokine production. These findings expand our current understanding of the mechanisms of action of GML and the of GML needed to function as a novel immunosuppressant.
Collapse
Affiliation(s)
- Micaela G Fosdick
- Biomedical Sciences Graduate Program, Subprogram in Molecular Medicine, Carver College of Medicine, University of Iowa, 2110 MERF, Iowa City, IA, 52242, USA
| | - Pratik Rajesh Chheda
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, USA
| | - Phuong M Tran
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Alex Wolff
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Ronal Peralta
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Michael Y Zhang
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Robert Kerns
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, USA
| | - Jon C D Houtman
- Biomedical Sciences Graduate Program, Subprogram in Molecular Medicine, Carver College of Medicine, University of Iowa, 2110 MERF, Iowa City, IA, 52242, USA.
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA.
| |
Collapse
|
15
|
Yoon BK, Park S, Ma GJ, Kolahdouzan K, Zhdanov VP, Jackman JA, Cho NJ. Competing Interactions of Fatty Acids and Monoglycerides Trigger Synergistic Phospholipid Membrane Remodeling. J Phys Chem Lett 2020; 11:4951-4957. [PMID: 32478524 DOI: 10.1021/acs.jpclett.0c01138] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Using quartz crystal microbalance-dissipation and time-lapse fluorescence microscopy, we demonstrate that adding mixtures of lauric acid (LA) and glycerol monolaurate (GML), two of the most biologically active antimicrobial fatty acids and monoglycerides, to a supported lipid bilayer triggers concurrent tubule and bud formation, which unexpectedly results in synergistic phospholipid membrane remodeling that far exceeds the effects of GML or LA alone. Together, GML and LA drive pearling instability, dynamic transformation of buds into tubules and vice versa, and extensive membrane lysis. The most pronounced effects occurred with equimolar concentrations of GML and LA, highlighting that synergistic membrane disruption arises from competition for the lipid supply to buds and tubules and an inability to relieve membrane strains. These findings offer a conceptually new model to explain how fatty acid and monoglyceride interactions can trigger phospholipid membrane remodeling events relevant to various biophysical and biological systems.
Collapse
Affiliation(s)
- Bo Kyeong Yoon
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Soohyun Park
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore
| | - Gamaliel J Ma
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore
| | - Kavoos Kolahdouzan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711, United States
| | - Vladimir P Zhdanov
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Joshua A Jackman
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore
| |
Collapse
|
16
|
Welch JL, Xiang J, Okeoma CM, Schlievert PM, Stapleton JT. Glycerol Monolaurate, an Analogue to a Factor Secreted by Lactobacillus, Is Virucidal against Enveloped Viruses, Including HIV-1. mBio 2020; 11:e00686-20. [PMID: 32371599 PMCID: PMC7201201 DOI: 10.1128/mbio.00686-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022] Open
Abstract
The vaginal microbiota influences sexual transmission of human immunodeficiency virus type 1 (HIV-1). Colonization of the vaginal tract is normally dominated by Lactobacillus species. Both Lactobacillus and Enterococcus faecalis may secrete reutericyclin, which inhibits the growth of a variety of pathogenic bacteria. Increasing evidence suggests a potential therapeutic role for an analogue of reutericyclin, glycerol monolaurate (GML), against microbial pathogens. Previous studies using a macaque vaginal simian immunodeficiency virus (SIV) transmission model demonstrated that GML reduces transmission and alters immune responses to infection in vitro Previous studies showed that structural analogues of GML negatively impact other enveloped viruses. We sought to expand understanding of how GML inhibits HIV-1 and other enveloped viruses and show that GML restricts HIV-1 entry post-CD4 engagement at the step of coreceptor binding. Further, HIV-1 and yellow fever virus (YFV) particles were more sensitive to GML interference than particles "matured" by proteolytic processing. We show that high-pressure-liquid-chromatography (HPLC)-purified reutericyclin and reutericyclin secreted by Lactobacillus inhibit HIV-1. These data emphasize the importance and protective nature of the normal vaginal flora during viral infections and provide insights into the antiviral mechanism of GML during HIV-1 infection and, more broadly, to other enveloped viruses.IMPORTANCE A total of 340 million sexually transmitted infections (STIs) are acquired each year. Antimicrobial agents that target multiple infectious pathogens are ideal candidates to reduce the number of newly acquired STIs. The antimicrobial and immunoregulatory properties of GML make it an excellent candidate to fit this critical need. Previous studies established the safety profile and antibacterial activity of GML against both Gram-positive and Gram-negative bacteria. GML protected against high-dose SIV infection and reduced inflammation, which can exacerbate disease, during infection. We found that GML inhibits HIV-1 and other human-pathogenic viruses (yellow fever virus, mumps virus, and Zika virus), broadening its antimicrobial range. Because GML targets diverse infectious pathogens, GML may be an effective agent against the broad range of sexually transmitted pathogens. Further, our data show that reutericyclin, a GML analog expressed by some lactobacillus species, also inhibits HIV-1 replication and thus may contribute to the protective effect of Lactobacillus in HIV-1 transmission.
Collapse
Affiliation(s)
- Jennifer L Welch
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Medical Service, Iowa City Veterans Affairs Medical Center, Iowa City, Iowa, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jinhua Xiang
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Medical Service, Iowa City Veterans Affairs Medical Center, Iowa City, Iowa, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Chioma M Okeoma
- Department of Pharmacology, Stony Brook University School of Medicine, Stony Brook, New York, USA
| | - Patrick M Schlievert
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jack T Stapleton
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Medical Service, Iowa City Veterans Affairs Medical Center, Iowa City, Iowa, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
17
|
Jackman JA, Boyd RD, Elrod CC. Medium-chain fatty acids and monoglycerides as feed additives for pig production: towards gut health improvement and feed pathogen mitigation. J Anim Sci Biotechnol 2020; 11:44. [PMID: 32337029 PMCID: PMC7178611 DOI: 10.1186/s40104-020-00446-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Ongoing challenges in the swine industry, such as reduced access to antibiotics and virus outbreaks (e.g., porcine epidemic diarrhea virus, African swine fever virus), have prompted calls for innovative feed additives to support pig production. Medium-chain fatty acids (MCFAs) and monoglycerides have emerged as a potential option due to key molecular features and versatile functions, including inhibitory activity against viral and bacterial pathogens. In this review, we summarize recent studies examining the potential of MCFAs and monoglycerides as feed additives to improve pig gut health and to mitigate feed pathogens. The molecular properties and biological functions of MCFAs and monoglycerides are first introduced along with an overview of intervention needs at different stages of pig production. The latest progress in testing MCFAs and monoglycerides as feed additives in pig diets is then presented, and their effects on a wide range of production issues, such as growth performance, pathogenic infections, and gut health, are covered. The utilization of MCFAs and monoglycerides together with other feed additives such as organic acids and probiotics is also described, along with advances in molecular encapsulation and delivery strategies. Finally, we discuss how MCFAs and monoglycerides demonstrate potential for feed pathogen mitigation to curb disease transmission. Looking forward, we envision that MCFAs and monoglycerides may become an important class of feed additives in pig production for gut health improvement and feed pathogen mitigation.
Collapse
Affiliation(s)
- Joshua A Jackman
- 1School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - R Dean Boyd
- Hanor Company, Franklin, KY 42134 USA.,3North Carolina State University, Raleigh, NC 27695 USA
| | - Charles C Elrod
- Natural Biologics Inc., Newfield, NY 14867 USA.,5Department of Animal Science, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
18
|
Hosseini A, Gharibi T, Marofi F, Babaloo Z, Baradaran B. CTLA-4: From mechanism to autoimmune therapy. Int Immunopharmacol 2020; 80:106221. [PMID: 32007707 DOI: 10.1016/j.intimp.2020.106221] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/16/2022]
Abstract
CD28 and CTLA-4 are both important stimulatory receptors for the regulation of T cell activation. Because receptors share common ligands, B7.1 and B7.2, the expression and biological function of CTLA-4 is important for the negative regulation of T cell responses. Therefore, elimination of CTLA-4 can result in the breakdown of immune tolerance and the development of several diseases such as autoimmunity. Inhibitory signals of CTLA-4 suppress T cell responses and protect against autoimmune diseases in many ways. In this review, we summarize the structure, expression and signaling pathway of CTLA-4. We also highlight how CTLA-4 defends against potentially self-reactive T cells. Finally, we discuss how the CTLA-4 regulates a number of autoimmune diseases that indicate manipulation of this inhibitory molecule is a promise as a strategy for the immunotherapy of autoimmune diseases.
Collapse
Affiliation(s)
- Arezoo Hosseini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babaloo
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Glycerol Monolaurate Contributes to the Antimicrobial and Anti-inflammatory Activity of Human Milk. Sci Rep 2019; 9:14550. [PMID: 31601928 PMCID: PMC6787265 DOI: 10.1038/s41598-019-51130-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023] Open
Abstract
Human milk has antimicrobial compounds and immunomodulatory activities. We investigated glycerol monolaurate (GML) in human milk versus bovine milk and infant formula for antimicrobial and anti-inflammatory activities. Human milk contained approximately 3000 µg/ml of GML, compared to 150 μg/ml in bovine milk and none in infant formula. For bacteria tested (Staphylococcus aureus, Bacillus subtilis, Clostridium perfringens, Escherichia coli), except Enterococcus faecalis, human milk was more antimicrobial than bovine milk and formula. The Enterococcus faecalis strain, which was not inhibited, produced reutericyclin, which is an analogue of GML and functions as a growth stimulant in bacteria that produce it. Removal of GML and other lipophilic molecules from human milk by ethanol extraction resulted in a loss of antibacterial activity, which was restored by re-addition of GML. GML addition caused bovine milk to become antimicrobial. Human milk but not bovine milk or formula inhibited superantigen and bacterial-induced IL-8 production by model human epithelial cells. GML may contribute beneficially to human milk compared to bovine milk or infant formula.
Collapse
|
20
|
Abstract
Bacillus and Clostridium spores are known to be highly resistant to killing, persisting on environmental and human body surfaces for long periods of time. In favorable environments, these spores may germinate and cause human diseases. It is thus important to identify agents that can be used on both environmental and human skin and mucosal surfaces and that are effective in killing spores. We previously showed that the fatty acid monoester glycerol monolaurate (GML) kills stationary-phase cultures of Bacillus anthracis. Since such cultures are likely to contain spores, it is possible that GML and a human-use-approved GML nonaqueous gel would kill Bacillus and Clostridium spores. The significance of our studies is that we have identified GML, and, to a greater extent, GML solubilized in a nonaqueous gel, as effective in killing spores from both bacterial genera. Glycerol monolaurate is a broadly antimicrobial fatty acid monoester, killing bacteria, fungi, and enveloped viruses. The compound kills stationary-phase cultures of Bacillus anthracis, suggesting that the molecule may kill spores. In this study, we examined the ability of glycerol monolaurate alone or solubilized in a nonaqueous gel to kill vegetative cells and spores of aerobic B. anthracis, B. subtilis, and B. cereus and anaerobic Clostridium perfringens and Clostridium (Clostridioides) difficile. Glycerol monolaurate alone was bactericidal for all five organisms tested. Glycerol monolaurate alone was effective in killing spores. When solubilized in a nonaqueous gel, the glycerol monolaurate gel was bactericidal for all spores tested. The data suggest that glycerol monolaurate nonaqueous gel could be effective in decontaminating environmental and body surfaces, such as skin. IMPORTANCEBacillus and Clostridium spores are known to be highly resistant to killing, persisting on environmental and human body surfaces for long periods of time. In favorable environments, these spores may germinate and cause human diseases. It is thus important to identify agents that can be used on both environmental and human skin and mucosal surfaces and that are effective in killing spores. We previously showed that the fatty acid monoester glycerol monolaurate (GML) kills stationary-phase cultures of Bacillus anthracis. Since such cultures are likely to contain spores, it is possible that GML and a human-use-approved GML nonaqueous gel would kill Bacillus and Clostridium spores. The significance of our studies is that we have identified GML, and, to a greater extent, GML solubilized in a nonaqueous gel, as effective in killing spores from both bacterial genera.
Collapse
|