1
|
Kono DH, Hahn BH. Animal models of systemic lupus erythematosus (SLE). DUBOIS' LUPUS ERYTHEMATOSUS AND RELATED SYNDROMES 2025:189-234. [DOI: 10.1016/b978-0-323-93232-5.00024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Sayers I, Thakker D, Billington C, Kreideweiss S, Grundl MA, Bouyssou T, Thamm S, Kreuz S, Hall IP. Interleukin-1 receptor-associated kinase 4 (IRAK4) is a critical regulator of inflammatory signalling through toll-like receptors 4 and 7/8 in murine and human lungs. Br J Pharmacol 2024; 181:4647-4657. [PMID: 39137914 DOI: 10.1111/bph.16509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND AND PURPOSE Toll-like receptors 4 (TLR4) and TLR7/TLR8 play an important role in mediating the inflammatory effects of bacterial and viral pathogens. Interleukin-1 receptor-associated kinase 4 (IRAK4) is an important regulator of signalling by toll-like receptor (TLR) and hence is a potential therapeutic target in diseases characterized by increased lung inflammatory signalling. EXPERIMENTAL APPROACH We used an established murine model of acute lung inflammation, and studied human lung tissue ex vivo, to investigate the effects of inhibiting IRAK4 on lung inflammatory pathways. KEY RESULTS We show that TLR4 stimulation produces an inflammatory response characterized by neutrophil influx and tumour necrosis factor-α (TNF-α) production in murine lungs and that these responses are markedly reduced in IRAK4 kinase-dead mice. In addition, we characterize a novel selective IRAK4 inhibitor, BI1543673, and show that this compound can reduce lipopolysaccharide (LPS)-induced airway inflammation in wild-type mice. Additionally, BI1543673 reduced inflammatory responses to both TLR4 and TLR7/8 stimulation in human lung tissue studied ex vivo. CONCLUSION AND IMPLICATIONS These data demonstrate a key role for IRAK4 signalling in lung inflammation and suggest that IRAK4 inhibition has potential utility to treat lung diseases characterized by inflammatory responses driven through TLR4 and TLR7/8.
Collapse
Affiliation(s)
- Ian Sayers
- Centre for Respiratory Research, NIHR Nottingham Biomedical Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Dhruma Thakker
- Centre for Respiratory Research, NIHR Nottingham Biomedical Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Charlotte Billington
- Centre for Respiratory Research, NIHR Nottingham Biomedical Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | | | - Marc A Grundl
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Sven Thamm
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Sebastian Kreuz
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Ian P Hall
- Centre for Respiratory Research, NIHR Nottingham Biomedical Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| |
Collapse
|
3
|
Mahla RS, Jones EL, Dustin LB. Ro60-Roles in RNA Processing, Inflammation, and Rheumatic Autoimmune Diseases. Int J Mol Sci 2024; 25:7705. [PMID: 39062948 PMCID: PMC11277228 DOI: 10.3390/ijms25147705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The Ro60/SSA2 autoantigen is an RNA-binding protein and a core component of nucleocytoplasmic ribonucleoprotein (RNP) complexes. Ro60 is essential in RNA metabolism, cell stress response pathways, and cellular homeostasis. It stabilises and mediates the quality control and cellular distribution of small RNAs, including YRNAs (for the 'y' in 'cytoplasmic'), retroelement transcripts, and misfolded RNAs. Ro60 transcriptional dysregulation or loss of function can result in the generation and release of RNA fragments from YRNAs and other small RNAs. Small RNA fragments can instigate an inflammatory cascade through endosomal toll-like receptors (TLRs) and cytoplasmic RNA sensors, which typically sense pathogen-associated molecular patterns, and mount the first line of defence against invading pathogens. However, the recognition of host-originating RNA moieties from Ro60 RNP complexes can activate inflammatory response pathways and compromise self-tolerance. Autoreactive B cells may produce antibodies targeting extracellular Ro60 RNP complexes. Ro60 autoantibodies serve as diagnostic markers for various autoimmune diseases, including Sjögren's disease (SjD) and systemic lupus erythematosus (SLE), and they may also act as predictive markers for anti-drug antibody responses among rheumatic patients. Understanding Ro60's structure, function, and role in self-tolerance can enhance our understanding of the underlying molecular mechanisms of autoimmune conditions.
Collapse
Affiliation(s)
- Ranjeet Singh Mahla
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK;
| | | | - Lynn B. Dustin
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK;
| |
Collapse
|
4
|
von Hofsten S, Fenton KA, Pedersen HL. Human and Murine Toll-like Receptor-Driven Disease in Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:5351. [PMID: 38791389 PMCID: PMC11120885 DOI: 10.3390/ijms25105351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) is linked to the differential roles of toll-like receptors (TLRs), particularly TLR7, TLR8, and TLR9. TLR7 overexpression or gene duplication, as seen with the Y-linked autoimmune accelerator (Yaa) locus or TLR7 agonist imiquimod, correlates with increased SLE severity, and specific TLR7 polymorphisms and gain-of-function variants are associated with enhanced SLE susceptibility and severity. In addition, the X-chromosome location of TLR7 and its escape from X-chromosome inactivation provide a genetic basis for female predominance in SLE. The absence of TLR8 and TLR9 have been shown to exacerbate the detrimental effects of TLR7, leading to upregulated TLR7 activity and increased disease severity in mouse models of SLE. The regulatory functions of TLR8 and TLR9 have been proposed to involve competition for the endosomal trafficking chaperone UNC93B1. However, recent evidence implies more direct, regulatory functions of TLR9 on TLR7 activity. The association between age-associated B cells (ABCs) and autoantibody production positions these cells as potential targets for treatment in SLE, but the lack of specific markers necessitates further research for precise therapeutic intervention. Therapeutically, targeting TLRs is a promising strategy for SLE treatment, with drugs like hydroxychloroquine already in clinical use.
Collapse
Affiliation(s)
- Susannah von Hofsten
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway;
| | - Kristin Andreassen Fenton
- Centre of Clinical Research and Education, University Hospital of North Norway, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway;
| | - Hege Lynum Pedersen
- Centre of Clinical Research and Education, University Hospital of North Norway, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway;
| |
Collapse
|
5
|
Huang Y, Ning Y, Chen Z, Song P, Tang H, Shi W, Wan Z, Huang G, Liu Q, Chen Y, Zhou Y, Li Y, Zhan Z, Ding J, Duan W, Xie H. A Novel IRAK4 Inhibitor DW18134 Ameliorates Peritonitis and Inflammatory Bowel Disease. Molecules 2024; 29:1803. [PMID: 38675622 PMCID: PMC11052001 DOI: 10.3390/molecules29081803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
IRAK4 is a critical mediator in NF-κB-regulated inflammatory signaling and has emerged as a promising therapeutic target for the treatment of autoimmune diseases; however, none of its inhibitors have received FDA approval. In this study, we identified a novel small-molecule IRAK4 kinase inhibitor, DW18134, with an IC50 value of 11.2 nM. DW18134 dose-dependently inhibited the phosphorylation of IRAK4 and IKK in primary peritoneal macrophages and RAW264.7 cells, inhibiting the secretion of TNF-α and IL-6 in both cell lines. The in vivo study demonstrated the efficacy of DW18134, significantly attenuating behavioral scores in an LPS-induced peritonitis model. Mechanistically, DW18134 reduced serum TNF-α and IL-6 levels and attenuated inflammatory tissue injury. By directly blocking IRAK4 activation, DW18134 diminished liver macrophage infiltration and the expression of related inflammatory cytokines in peritonitis mice. Additionally, in the DSS-induced colitis model, DW18134 significantly reduced the disease activity index (DAI) and normalized food and water intake and body weight. Furthermore, DW18134 restored intestinal damage and reduced inflammatory cytokine expression in mice by blocking the IRAK4 signaling pathway. Notably, DW18134 protected DSS-threatened intestinal barrier function by upregulating tight junction gene expression. In conclusion, our findings reported a novel IRAK4 inhibitor, DW18134, as a promising candidate for treating inflammatory diseases, including peritonitis and IBD.
Collapse
Affiliation(s)
- Yuqing Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (Y.H.); (P.S.); (H.T.); (W.S.); (Z.W.); (G.H.); (Y.Z.); (Y.L.)
- College of Pharmacy, Guizhou Medical University, Guiyang 561113, China
| | - Yi Ning
- Division of Antitumor Pharmacology & State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.N.); (Q.L.); (J.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Zhiwei Chen
- University of Chinese Academy of Sciences, Beijing 100049, China;
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.C.); (Z.Z.)
| | - Peiran Song
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (Y.H.); (P.S.); (H.T.); (W.S.); (Z.W.); (G.H.); (Y.Z.); (Y.L.)
- Division of Antitumor Pharmacology & State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.N.); (Q.L.); (J.D.)
| | - Haotian Tang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (Y.H.); (P.S.); (H.T.); (W.S.); (Z.W.); (G.H.); (Y.Z.); (Y.L.)
- Division of Antitumor Pharmacology & State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.N.); (Q.L.); (J.D.)
| | - Wenhao Shi
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (Y.H.); (P.S.); (H.T.); (W.S.); (Z.W.); (G.H.); (Y.Z.); (Y.L.)
| | - Zhipeng Wan
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (Y.H.); (P.S.); (H.T.); (W.S.); (Z.W.); (G.H.); (Y.Z.); (Y.L.)
| | - Gege Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (Y.H.); (P.S.); (H.T.); (W.S.); (Z.W.); (G.H.); (Y.Z.); (Y.L.)
| | - Qiupei Liu
- Division of Antitumor Pharmacology & State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.N.); (Q.L.); (J.D.)
- Department of Chemical and Environment Engineering, Science and Engineering Building, The University of Nottingham Ningbo China, Ningbo 315100, China
| | - Yun Chen
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.C.); (Z.Z.)
| | - Yu Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (Y.H.); (P.S.); (H.T.); (W.S.); (Z.W.); (G.H.); (Y.Z.); (Y.L.)
| | - Yuantong Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (Y.H.); (P.S.); (H.T.); (W.S.); (Z.W.); (G.H.); (Y.Z.); (Y.L.)
| | - Zhengsheng Zhan
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.C.); (Z.Z.)
| | - Jian Ding
- Division of Antitumor Pharmacology & State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.N.); (Q.L.); (J.D.)
| | - Wenhu Duan
- University of Chinese Academy of Sciences, Beijing 100049, China;
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.C.); (Z.Z.)
| | - Hua Xie
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (Y.H.); (P.S.); (H.T.); (W.S.); (Z.W.); (G.H.); (Y.Z.); (Y.L.)
- College of Pharmacy, Guizhou Medical University, Guiyang 561113, China
- Division of Antitumor Pharmacology & State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.N.); (Q.L.); (J.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| |
Collapse
|
6
|
Yi M, Niu Y, Liu S, Chen Y, Jiao B, Wang Y, Du H, Mei G, Duan H, Han J, Dai Y. Herpesvirus activated NF-κB-mediated antigen processing and presentation to aggravate trichloroethylene-induced hypersensitivity dermatitis. Toxicol Lett 2024; 393:47-56. [PMID: 38242488 DOI: 10.1016/j.toxlet.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Trichloroethylene-induced hypersensitivity dermatitis (TIHD) is a delayed hypersensitivity response that is affected by genetic and environmental factors. Occupational exposure to trichloroethylene (TCE) enhances antigen presentation, leading to hypersensitivity in workers with the HLA-B* 13:01 allele. Several studies have observed the activation of herpesviruses, such as EpsteinBarr virus (EBV), in TIHD patients. However, the underlying mechanisms remain unclear. Toll-like receptors (TLRs) play a pivotal role in the pathogenesis of herpesvirus infection. This study aimed to explore whether TLRs serve as a shared mechanism for both herpesvirus and allergenic chemicals. In this study, HLA-B* 13:01-transfected Hmy2. A C1R cell model was constructed, and cells were treated with TCOH and EBV to explore the possible mechanisms. We established a mouse model of dermatitis and used a TLR4 agonist to verify the effect of herpesvirus on TIHD. The results showed that EBV and TCOH synergistically enhance antigen processing and presentation via the TLR2/NF-κB axis. Furthermore, TLR4 agonist further aggravated skin lesions and liver damage in TCE-sensitized mice through TLR4/NF-κB axis-mediated antigen processing and presentation. Together, this study indicates that viral infection further aggravates the inflammatory response in TIHD based on environment-gene interactions.
Collapse
Affiliation(s)
- Mengnan Yi
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yong Niu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Shuai Liu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yuanyuan Chen
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Bo Jiao
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yican Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Haijun Du
- Key Laboratory for Infectious Disease Control and Prevention, National Institute for viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Guoyong Mei
- Key Laboratory for Infectious Disease Control and Prevention, National Institute for viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jun Han
- Key Laboratory for Infectious Disease Control and Prevention, National Institute for viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yufei Dai
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China; National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
7
|
Liu Y, Huang Z, Zhang TX, Han B, Yang G, Jia D, Yang L, Liu Q, Lau AYL, Paul F, Verkhratsky A, Shi FD, Zhang C. Bruton's tyrosine kinase-bearing B cells and microglia in neuromyelitis optica spectrum disorder. J Neuroinflammation 2023; 20:309. [PMID: 38129902 PMCID: PMC10740299 DOI: 10.1186/s12974-023-02997-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory autoimmune disease of the central nervous system that involves B-cell receptor signaling as well as astrocyte-microglia interaction, which both contribute to evolution of NMOSD lesions. MAIN BODY Through transcriptomic and flow cytometry analyses, we found that Bruton's tyrosine kinase (BTK), a crucial protein of B-cell receptor was upregulated both in the blood and cerebrospinal fluid of NMOSD patients. Blockade of BTK with zanubrutinib, a highly specific BTK inhibitor, mitigated the activation and maturation of B cells and reduced production of causal aquaporin-4 (AQP4) autoantibodies. In a mouse model of NMO, we found that both BTK and pBTK expression were significantly increased in microglia. Transmission electron microscope scan demonstrated that BTK inhibitor ameliorated demyelination, edema, and axonal injury in NMO mice. In the same mice colocalization of GFAP and Iba-1 immunofluorescence indicated a noticeable increase of astrocytes-microglia interaction, which was alleviated by zanubrutinib. The smart-seq analysis demonstrated that treatment with BTK inhibitor instigated microglial transcriptome changes including downregulation of chemokine-related genes and genes involved in the top 5 biological processes related to cell adhesion and migration, which are likely responsible for the reduced crosstalk of microglia and astrocytes. CONCLUSIONS Our results show that BTK activity is enhanced both in B cells and microglia and BTK inhibition contributes to the amelioration of NMOSD pathology. These data collectively reveal the mechanism of action of BTK inhibition and corroborate BTK as a viable therapeutic target.
Collapse
Affiliation(s)
- Ye Liu
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Zhenning Huang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Tian-Xiang Zhang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Bin Han
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Guili Yang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Dongmei Jia
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Center of Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Li Yang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Qiang Liu
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Alexander Y L Lau
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitaetsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité-Universitaetsmedizin Berlin, Berlin, Germany
| | - Alexei Verkhratsky
- Faculty of Biology, Health and Medicine, University of Manchester, Manchester, M13 9PL, UK
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, 01102, Vilnius, Lithuania
| | - Fu-Dong Shi
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Center of Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chao Zhang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
- Center of Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Yasaka K, Yamazaki T, Sato H, Shirai T, Cho M, Ishida K, Ito K, Tanaka T, Ogasawara K, Harigae H, Ishii T, Fujii H. Phospholipase D4 as a signature of toll-like receptor 7 or 9 signaling is expressed on blastic T-bet + B cells in systemic lupus erythematosus. Arthritis Res Ther 2023; 25:200. [PMID: 37840148 PMCID: PMC10577954 DOI: 10.1186/s13075-023-03186-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND In systemic lupus erythematosus (SLE), autoreactive B cells are thought to develop by-passing immune checkpoints and contribute to its pathogenesis. Toll-like receptor (TLR) 7 and 9 signaling have been implicated in their development and differentiation. Although some B cell subpopulations such as T-bet + double negative 2 (DN2) cells have been identified as autoreactive in the past few years, because the upregulated surface markers of those cells are not exclusive to them, it is still challenging to specifically target autoreactive B cells in SLE patients. METHODS Our preliminary expression analysis revealed that phospholipase D4 (PLD4) is exclusively expressed in plasmacytoid dendritic cells (pDCs) and B cells in peripheral blood mononuclear cells (PBMCs) samples. Monoclonal antibodies against human PLD4 were generated, and flow cytometry analyses were conducted for PBMCs from 23 healthy donors (HDs) and 40 patients with SLE. In vitro cell culture was also performed to study the conditions that induce PLD4 in B cells from HDs. Finally, recombinant antibodies were synthesized from subpopulations of PLD4 + B cells from a patient with SLE, and their antinuclear activity was measured through enzyme-linked immunosorbent assay. RESULTS pDCs from both groups showed comparable frequency of surface PLD4 expression. PLD4 + B cells accounted for only a few percent of HD B cells, whereas they were significantly expanded in patients with SLE (2.1% ± 0.4% vs. 10.8% ± 1.2%, P < 0.005). A subpopulation within PLD4 + B cells whose cell size was comparable to CD38 + CD43 + plasmablasts was defined as "PLD4 + blasts," and their frequencies were significantly correlated with those of plasmablasts (P < 0.005). PLD4 + blasts phenotypically overlapped with double negative 2 (DN2) cells, and, in line with this, their frequencies were significantly correlated with several clinical markers of SLE. In vitro assay using healthy PBMCs demonstrated that TLR7 or TLR9 stimulation was sufficient to induce PLD4 on the surface of the B cells. Finally, two out of three recombinant antibodies synthesized from PLD4 + blasts showed antinuclear activity. CONCLUSION PLD4 + B cells, especially "blastic" ones, are likely autoreactive B cells undergoing TLR stimulation. Therefore, PLD4 is a promising target marker in SLE treatment.
Collapse
Affiliation(s)
- Ken Yasaka
- Department of Rheumatology, Tohoku University Hospital, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8574, Japan
| | - Tomohide Yamazaki
- Research and Development Department, Ginkgo Biomedical Research Institute, SBI Biotech Co., Ltd., Tokyo, Japan
| | - Hiroko Sato
- Department of Rheumatology, Tohoku University Hospital, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8574, Japan
| | - Tsuyoshi Shirai
- Department of Rheumatology, Tohoku University Hospital, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8574, Japan
| | - Minkwon Cho
- Research and Development Department, Ginkgo Biomedical Research Institute, SBI Biotech Co., Ltd., Tokyo, Japan
| | - Koji Ishida
- Research and Development Department, Ginkgo Biomedical Research Institute, SBI Biotech Co., Ltd., Tokyo, Japan
| | - Koyu Ito
- Department of Immunobiology, Institute of Development Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Tetsuhiro Tanaka
- Division of Nephrology and Hypertension, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Kouetsu Ogasawara
- Department of Immunobiology, Institute of Development Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Hideo Harigae
- Department of Hematology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tomonori Ishii
- Department of Rheumatology, Tohoku University Hospital, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8574, Japan
| | - Hiroshi Fujii
- Department of Rheumatology, Tohoku University Hospital, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8574, Japan.
| |
Collapse
|
9
|
Pennesi M, Benvenuto S. Lupus Nephritis in Children: Novel Perspectives. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1841. [PMID: 37893559 PMCID: PMC10607957 DOI: 10.3390/medicina59101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Childhood-onset systemic lupus erythematosus is an inflammatory and autoimmune condition characterized by heterogeneous multisystem involvement and a chronic course with unpredictable flares. Kidney involvement, commonly called lupus nephritis, mainly presents with immune complex-mediated glomerulonephritis and is more frequent and severe in adults. Despite a considerable improvement in long-term renal prognosis, children and adolescents with lupus nephritis still experience significant morbidity and mortality. Moreover, current literature often lacks pediatric-specific data, leading clinicians to rely exclusively on adult therapeutic approaches. This review aims to describe pediatric lupus nephritis and provide an overview of the novel perspectives on the pathogenetic mechanisms, histopathological classification, therapeutic approach, novel biomarkers, and follow-up targets in children and adolescents with lupus nephritis.
Collapse
Affiliation(s)
- Marco Pennesi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Simone Benvenuto
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
10
|
Gronke K, Nguyen M, Santamaria N, Schumacher J, Yang Y, Sonnert N, Leopold S, Martin AL, Hallet R, Richter K, Schubert DA, Daniel GM, Dylus D, Forkel M, Vieira SM, Schwinge D, Schramm C, Lassen KG, Piali L, Palm NW, Bieniossek C, Kriegel MA. Human Th17- and IgG3-associated autoimmunity induced by a translocating gut pathobiont. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.546430. [PMID: 37425769 PMCID: PMC10327010 DOI: 10.1101/2023.06.29.546430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Extraintestinal autoimmune diseases are multifactorial with translocating gut pathobionts implicated as instigators and perpetuators in mice. However, the microbial contributions to autoimmunity in humans remain largely unclear, including whether specific pathological human adaptive immune responses are triggered by such pathobionts. We show here that the translocating pathobiont Enterococcus gallinarum induces human IFNγ + Th17 differentiation and IgG3 subclass switch of anti- E. gallinarum RNA and correlating anti-human RNA autoantibody responses in patients with systemic lupus erythematosus and autoimmune hepatitis. Human Th17 induction by E. gallinarum is cell-contact dependent and involves TLR8-mediated human monocyte activation. In murine gnotobiotic lupus models, E. gallinarum translocation triggers IgG3 anti-RNA autoantibody titers that correlate with renal autoimmune pathophysiology and with disease activity in patients. Overall, we define cellular mechanisms of how a translocating pathobiont induces human T- and B-cell-dependent autoimmune responses, providing a framework for developing host- and microbiota-derived biomarkers and targeted therapies in extraintestinal autoimmune diseases. One Sentence Summary Translocating pathobiont Enterococcus gallinarum promotes human Th17 and IgG3 autoantibody responses linked to disease activity in autoimmune patients.
Collapse
|
11
|
Accapezzato D, Caccavale R, Paroli MP, Gioia C, Nguyen BL, Spadea L, Paroli M. Advances in the Pathogenesis and Treatment of Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:6578. [PMID: 37047548 PMCID: PMC10095030 DOI: 10.3390/ijms24076578] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a genetically predisposed, female-predominant disease, characterized by multiple organ damage, that in its most severe forms can be life-threatening. The pathogenesis of SLE is complex and involves cells of both innate and adaptive immunity. The distinguishing feature of SLE is the production of autoantibodies, with the formation of immune complexes that precipitate at the vascular level, causing organ damage. Although progress in understanding the pathogenesis of SLE has been slower than in other rheumatic diseases, new knowledge has recently led to the development of effective targeted therapies, that hold out hope for personalized therapy. However, the new drugs available to date are still an adjunct to conventional therapy, which is known to be toxic in the short and long term. The purpose of this review is to summarize recent advances in understanding the pathogenesis of the disease and discuss the results obtained from the use of new targeted drugs, with a look at future therapies that may be used in the absence of the current standard of care or may even cure this serious systemic autoimmune disease.
Collapse
Affiliation(s)
- Daniele Accapezzato
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Rosalba Caccavale
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Pia Paroli
- Eye Clinic, Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Chiara Gioia
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Bich Lien Nguyen
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Luca Spadea
- Post Graduate School of Public Health, University of Siena, 53100 Siena, Italy
| | - Marino Paroli
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
12
|
Zheng H, Wu P, Bonnet PA. Recent Advances on Small-Molecule Antagonists Targeting TLR7. Molecules 2023; 28:molecules28020634. [PMID: 36677692 PMCID: PMC9865772 DOI: 10.3390/molecules28020634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Toll-like receptor 7 (TLR7) is a class of pattern recognition receptors (PRRs) recognizing the pathogen-associated elements and damage and as such is a major player in the innate immune system. TLR7 triggers the release of pro-inflammatory cytokines or type-I interferons (IFN), which is essential for immunoregulation. Increasing reports also highlight that the abnormal activation of endosomal TLR7 is implicated in various immune-related diseases, carcinogenesis as well as the proliferation of human immunodeficiency virus (HIV). Hence, the design and development of potent and selective TLR7 antagonists based on small molecules or oligonucleotides may offer new tools for the prevention and management of such diseases. In this review, we offer an updated overview of the main structural features and therapeutic potential of small-molecule antagonists of TLR7. Various heterocyclic scaffolds targeting TLR7 binding sites are presented: pyrazoloquinoxaline, quinazoline, purine, imidazopyridine, pyridone, benzanilide, pyrazolopyrimidine/pyridine, benzoxazole, indazole, indole, and quinoline. Additionally, their structure-activity relationships (SAR) studies associated with biological activities and protein binding modes are introduced.
Collapse
Affiliation(s)
- Haoyang Zheng
- Faculty of Pharmacy, Montpellier University, 34093 Montpellier, France
| | - Peiyang Wu
- School of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Pierre-Antoine Bonnet
- Institut des Biomolécules Max Mousseron IBMM, Ecole Nationale Supérieure de Chimie de Montpellier ENSCM, Montpellier University, Centre National de La Recherche Scientifique CNRS, 34093 Montpellier, France
- Correspondence:
| |
Collapse
|
13
|
Wen L, Zhang B, Wu X, Liu R, Fan H, Han L, Zhang Z, Ma X, Chu CQ, Shi X. Toll-like receptors 7 and 9 regulate the proliferation and differentiation of B cells in systemic lupus erythematosus. Front Immunol 2023; 14:1093208. [PMID: 36875095 PMCID: PMC9975558 DOI: 10.3389/fimmu.2023.1093208] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune illness marked by the loss of immune tolerance and the production of autoantibodies against nucleic acids and other nuclear antigens (Ags). B lymphocytes are important in the immunopathogenesis of SLE. Multiple receptors control abnormal B-cell activation in SLE patients, including intrinsic Toll-like receptors (TLRs), B-cell receptors (BCRs), and cytokine receptors. The role of TLRs, notably TLR7 and TLR9, in the pathophysiology of SLE has been extensively explored in recent years. When endogenous or exogenous nucleic acid ligands are recognized by BCRs and internalized into B cells, they bind TLR7 or TLR9 to activate related signalling pathways and thus govern the proliferation and differentiation of B cells. Surprisingly, TLR7 and TLR9 appear to play opposing roles in SLE B cells, and the interaction between them is still poorly understood. In addition, other cells can enhance TLR signalling in B cells of SLE patients by releasing cytokines that accelerate the differentiation of B cells into plasma cells. Therefore, the delineation of how TLR7 and TLR9 regulate the abnormal activation of B cells in SLE may aid the understanding of the mechanisms of SLE and provide directions for TLR-targeted therapies for SLE.
Collapse
Affiliation(s)
- Luyao Wen
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Bei Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xinfeng Wu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Rongzeng Liu
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Hua Fan
- Office of Research & Innovation, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Lei Han
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Zhibo Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xin Ma
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Cong-Qiu Chu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University and VA Portland Health Care System, Portland, OR, United States
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
14
|
Crow MK. Advances in lupus therapeutics: Achieving sustained control of the type I interferon pathway. Curr Opin Pharmacol 2022; 67:102291. [PMID: 36183477 DOI: 10.1016/j.coph.2022.102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 01/25/2023]
Abstract
Achieving sustained control of disease activity in patients with systemic lupus erythematosus has been impeded by the complexity of its immunopathogenesis as well its clinical heterogeneity. In spite of these challenges, gains in understanding disease mechanisms have identified immune targets that are currently under study in trials of candidate therapeutics. Defining the type I interferon (IFN-I) pathway and autoantibodies specific for nucleic acid binding proteins as core pathogenic mediators allows an analysis of approaches that could control production of those mediators and improve patient outcomes. This review describes therapeutic targets and agents that could achieve control of the IFN-I pathway. Toll-like receptor 7, involved in IFN-I production and differentiation of B cells, and long-lived plasma cells, the producers of autoantibodies specific for RNA-binding proteins, components of the immune complex drivers of IFN-I, are particularly attractive therapeutic targets.
Collapse
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, 535 East 70th Street, New York, NY 10021, USA.
| |
Collapse
|
15
|
Cao T, Wang Z, Zhu X. The Immunomodulatory Functions of BTK Inhibition in the Central Nervous System. J Inflamm Res 2022; 15:6427-6438. [PMID: 36452053 PMCID: PMC9704002 DOI: 10.2147/jir.s389958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/15/2022] [Indexed: 02/22/2025] Open
Abstract
Bruton's tyrosine kinase (BTK) is a central signaling node in B cells. BTK inhibition has witnessed great success in the treatment of B-cell malignancies. Additionally, in the immune system, BTK is also a prominent component linking a wide variety of immune-related pathways. Therefore, more and more studies attempting to dissect the role of BTK in autoimmune and inflammation progression have emerged in recent years. In particular, BTK expression was also found to be elevated within the central nervous system (CNS) during neuroinflammation. BTK inhibitors are capable of crossing the blood-brain barrier rapidly to modulate B cell functions, attenuate microglial activities and affect NLRP3 inflammasome pathways within the CNS to improve the outcome of diseases. Thus, BTK inhibition appears to be a promising approach to modulate dysregulated inflammation in the CNS and alleviate destruction caused by excessive inflammatory responses. This review will summarize the immunomodulatory mechanisms in which BTK is involved in the development of neurological diseases and discuss the therapeutic potential of BTK inhibition for the treatment of neuroinflammatory pathology.
Collapse
Affiliation(s)
- Tingyu Cao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Xiaodong Zhu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
16
|
Li Q, Li R, Yin H, Wang S, Liu B, Li J, Zhou M, Yan Q, Lu L. Oral IRAK4 inhibitor BAY-1834845 prevents acute respiratory distress syndrome. Biomed Pharmacother 2022; 153:113459. [PMID: 36076574 PMCID: PMC9339262 DOI: 10.1016/j.biopha.2022.113459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a lethal clinical entity that has become an emergency event with the outbreak of COVID-19. However, to date, there are no well-proven pharmacotherapies except dexamethasone. This study is aimed to evaluate IRAK4 inhibitors as a potential treatment for ARDS-cytokine release syndrome (CRS). We applied two IRAK4 inhibitors, BAY-1834845 and PF-06650833 to an inhaled lipopolysaccharide (LPS)-induced ARDS mouse model with control of high dose dexamethasone (10 mg/kg). Unexpectedly, although both compounds had excellent IC50 on IRAK4 kinase activity, only BAY-1834845 but not PF-06650833 or high dose dexamethasone could significantly prevent lung injury according to a blinded pathology scoring. Further, only BAY-1834845 and BAY-1834845 combined with dexamethasone could effectively improve the injury score of pre-existed ARDS. Compared with PF-06650833 and high dose dexamethasone, BAY-1834845 remarkably decreased inflammatory cells infiltrating lung tissue and neutrophil count in BALF. BAY-1834845, DEX, and the combination of the two agents could decrease BALF total T cells, monocyte, and macrophages. In further cell type enrichment analysis based on lung tissue RNA-seq, both BAY-1834845 and dexamethasone decreased signatures of inflammatory cells and effector lymphocytes. Interestingly, unlike the dexamethasone group, BAY-1834845 largely preserved the signatures of naïve lymphocytes and stromal cells such as endothelial cells, chondrocytes, and smooth muscle cells. Differential gene enrichment suggested that BAY-1834845 downregulated genes more efficiently than dexamethasone, especially TNF, IL-17, interferon, and Toll-like receptor signaling.
Collapse
|
17
|
Dendritic cells in systemic lupus erythematosus: From pathogenesis to therapeutic applications. J Autoimmun 2022; 132:102856. [DOI: 10.1016/j.jaut.2022.102856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022]
|
18
|
Satterthwaite AB. TLR7 Signaling in Lupus B Cells: New Insights into Synergizing Factors and Downstream Signals. Curr Rheumatol Rep 2021; 23:80. [PMID: 34817709 DOI: 10.1007/s11926-021-01047-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE OF THE REVIEW Systemic lupus erythematosus (SLE) is driven by nucleic acid-containing antigens that stimulate endosomal TLRs. We review new advances in our understanding of how TLR7 signaling in B cells drives autoimmunity. RECENT FINDINGS Pathogenic B cell responses to TLR7 engagement are shaped by the disease-associated cytokine environment. TLR7, IFNγ, and IL-21 together promote the formation of autoreactive germinal centers and the ABC/DN2 B cell subset. BAFF and type 1 IFNs enhance autoantibody production from transitional B cells in concert with TLR7. TLR7 signaling components STAT1, BANK1, IRF5, SLC15A4, and CXorf21/TASL are associated genetically with SLE and important for lupus development in mice, while role of T-bet is controversial. Proper control of TLR7 trafficking by UNC93B1, syntenin-1, and αvβ3 integrin is critical for preventing autoimmunity. A better understanding of TLR7 signaling has revealed potential new therapeutic approaches for SLE, several of which are being tested in animal models or clinical trials.
Collapse
Affiliation(s)
- Anne B Satterthwaite
- Department of Internal Medicine, Rheumatic Diseases Division and Department of Immunology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8884, USA.
| |
Collapse
|
19
|
Winkler A, Sun W, De S, Jiao A, Sharif MN, Symanowicz PT, Athale S, Shin JH, Wang J, Jacobson BA, Ramsey SJ, Dower K, Andreyeva T, Liu H, Hegen M, Homer BL, Brodfuehrer J, Tilley M, Gilbert SA, Danto SI, Beebe JJ, Barnes BJ, Pascual V, Lin LL, Kilty I, Fleming M, Rao VR. The Interleukin-1 Receptor-Associated Kinase 4 Inhibitor PF-06650833 Blocks Inflammation in Preclinical Models of Rheumatic Disease and in Humans Enrolled in a Randomized Clinical Trial. Arthritis Rheumatol 2021; 73:2206-2218. [PMID: 34423919 PMCID: PMC8671219 DOI: 10.1002/art.41953] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the role of PF-06650833, a highly potent and selective small-molecule inhibitor of interleukin-1-associated kinase 4 (IRAK4), in autoimmune pathophysiology in vitro, in vivo, and in the clinical setting. METHODS Rheumatoid arthritis (RA) inflammatory pathophysiology was modeled in vitro through 1) stimulation of primary human macrophages with anti-citrullinated protein antibody immune complexes (ICs), 2) RA fibroblast-like synoviocyte (FLS) cultures stimulated with Toll-like receptor (TLR) ligands, as well as 3) additional human primary cell cocultures exposed to inflammatory stimuli. Systemic lupus erythematosus (SLE) pathophysiology was simulated in human neutrophils, dendritic cells, B cells, and peripheral blood mononuclear cells stimulated with TLR ligands and SLE patient ICs. PF-06650833 was evaluated in vivo in the rat collagen-induced arthritis (CIA) model and the mouse pristane-induced and MRL/lpr models of lupus. Finally, RNA sequencing data generated with whole blood samples from a phase I multiple-ascending-dose clinical trial of PF-06650833 were used to test in vivo human pharmacology. RESULTS In vitro, PF-06650833 inhibited human primary cell inflammatory responses to physiologically relevant stimuli generated with RA and SLE patient plasma. In vivo, PF-06650833 reduced circulating autoantibody levels in the pristane-induced and MRL/lpr murine models of lupus and protected against CIA in rats. In a phase I clinical trial (NCT02485769), PF-06650833 demonstrated in vivo pharmacologic action pertinent to SLE by reducing whole blood interferon gene signature expression in healthy volunteers. CONCLUSION These data demonstrate that inhibition of IRAK4 kinase activity can reduce levels of inflammation markers in humans and provide confidence in the rationale for clinical development of IRAK4 inhibitors for rheumatologic indications.
Collapse
Affiliation(s)
| | | | - Saurav De
- The Feinstein Institute, Manhasset, New York
| | | | | | | | - Shruti Athale
- Baylor Institute for Immunology Research, Dallas, Texas
| | | | - Ju Wang
- Pfizer, Cambridge, Massachusetts
| | | | | | | | | | - Heng Liu
- Pfizer, Cambridge, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Onodi F, Bonnet-Madin L, Meertens L, Karpf L, Poirot J, Zhang SY, Picard C, Puel A, Jouanguy E, Zhang Q, Le Goff J, Molina JM, Delaugerre C, Casanova JL, Amara A, Soumelis V. SARS-CoV-2 induces human plasmacytoid predendritic cell diversification via UNC93B and IRAK4. J Exp Med 2021; 218:211734. [PMID: 33533916 PMCID: PMC7849819 DOI: 10.1084/jem.20201387] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/08/2020] [Accepted: 01/07/2021] [Indexed: 12/25/2022] Open
Abstract
Several studies have analyzed antiviral immune pathways in late-stage severe COVID-19. However, the initial steps of SARS-CoV-2 antiviral immunity are poorly understood. Here we have isolated primary SARS-CoV-2 viral strains and studied their interaction with human plasmacytoid predendritic cells (pDCs), a key player in antiviral immunity. We show that pDCs are not productively infected by SARS-CoV-2. However, they efficiently diversified into activated P1-, P2-, and P3-pDC effector subsets in response to viral stimulation. They expressed CD80, CD86, CCR7, and OX40 ligand at levels similar to influenza virus-induced activation. They rapidly produced high levels of interferon-α, interferon-λ1, IL-6, IP-10, and IL-8. All major aspects of SARS-CoV-2-induced pDC activation were inhibited by hydroxychloroquine. Mechanistically, SARS-CoV-2-induced pDC activation critically depended on IRAK4 and UNC93B1, as established using pDC from genetically deficient patients. Overall, our data indicate that human pDC are efficiently activated by SARS-CoV-2 particles and may thus contribute to type I IFN-dependent immunity against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Fanny Onodi
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U976, Hôpital Saint-Louis, Paris, France
| | - Lucie Bonnet-Madin
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U944, Centre National de la Recherche Scientifique 7212, Hôpital Saint-Louis, Paris, France
| | - Laurent Meertens
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U944, Centre National de la Recherche Scientifique 7212, Hôpital Saint-Louis, Paris, France
| | - Léa Karpf
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U976, Hôpital Saint-Louis, Paris, France
| | - Justine Poirot
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U976, Hôpital Saint-Louis, Paris, France
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, Necker Hospital for Sick Children, Paris, France.,Université de Paris, Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche 1163, Institut Imagine, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Capucine Picard
- Université de Paris, Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche 1163, Institut Imagine, Paris, France.,Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, Necker Hospital for Sick Children, Paris, France.,Université de Paris, Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche 1163, Institut Imagine, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, Necker Hospital for Sick Children, Paris, France.,Université de Paris, Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche 1163, Institut Imagine, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Jérôme Le Goff
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U976, Hôpital Saint-Louis, Paris, France.,Laboratoire de Virologie et Département des Maladies Infectieuses, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean-Michel Molina
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U944, Centre National de la Recherche Scientifique 7212, Hôpital Saint-Louis, Paris, France.,Laboratoire de Virologie et Département des Maladies Infectieuses, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Constance Delaugerre
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U944, Centre National de la Recherche Scientifique 7212, Hôpital Saint-Louis, Paris, France.,Laboratoire de Virologie et Département des Maladies Infectieuses, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, Necker Hospital for Sick Children, Paris, France.,Université de Paris, Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche 1163, Institut Imagine, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Howard Hughes Medical Institute, New York, NY
| | - Ali Amara
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U944, Centre National de la Recherche Scientifique 7212, Hôpital Saint-Louis, Paris, France
| | - Vassili Soumelis
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U976, Hôpital Saint-Louis, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Laboratoire d'Immunologie, Paris, France
| |
Collapse
|
21
|
Phosphorylation of Microglial IRF5 and IRF4 by IRAK4 Regulates Inflammatory Responses to Ischemia. Cells 2021; 10:cells10020276. [PMID: 33573200 PMCID: PMC7912637 DOI: 10.3390/cells10020276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Interferon Regulatory Factor (IRF) 5 and 4 play a determinant role in regulating microglial pro- and anti-inflammatory responses to cerebral ischemia. How microglial IRF5 and IRF4 signaling are activated has been elusive. We hypothesized that interleukin-1 receptor associated kinase 4 (IRAK4) phosphorylates and activates IRF5 and IRF4 in ischemic microglia. We aimed to explore the upstream signals of the two IRFs, and to determine how the IRAK4-IRF signaling regulates the expression of inflammatory mediators, and impacts neuropathology. Methods: Spontaneously Immortalized Murine (SIM)-A9 microglial cell line, primary microglia and neurons from C57BL/6 WT mice were cultured and exposed to oxygen-glucose deprivation (OGD), followed by stimulation with LPS or IL-4. An IRAK4 inhibitor (ND2158) was used to examine IRAK4′s effects on the phosphorylation of IRF5/IRF4 and the impacts on neuronal morphology by co-immunoprecipitation (Co-IP)/Western blot, ELISA, and immunofluorescence assays. Results: We confirmed that IRAK4 formed a Myddosome with MyD88/IRF5/IRF4, and phosphorylated both IRFs, which subsequently translocated into the nucleus. Inhibition of IRAK4 phosphorylation quenched microglial pro-inflammatory response primarily, and increased neuronal viability and neurite lengths after ischemia. Conclusions: IRAK4 signaling is critical for microglial inflammatory responses and a potential therapeutic target for neuroinflammatory diseases including cerebral ischemia.
Collapse
|
22
|
Abstract
B cell subsets differ in development, tissue distribution, and mechanisms of activation. In response to infections, however, all can differentiate into extrafollicular plasmablasts that rapidly provide highly protective antibodies, indicating that these plasmablasts are the main humoral immune response effectors. Yet, the effectiveness of this response type depends on the presence of antigen-specific precursors in the circulating mature B cell pool, a pool that is generated initially through the stochastic processes of B cell receptor assembly. Importantly, germinal centers then mold the repertoire of this B cell pool to be increasingly responsive to pathogens by generating a broad array of antimicrobial memory B cells that act as highly effective precursors of extrafollicular plasmablasts. Such B cell repertoire molding occurs in two ways: continuously via the chronic germinal centers of mucosal lymphoid tissues, driven by the presence of the microbiome, and via de novo generated germinal centers following acute infections. For effectively evaluating humoral immunity as a correlate of immune protection, it might be critical to measure memory B cell pools in addition to antibody titers.
Collapse
Affiliation(s)
- Nicole Baumgarth
- Center for Immunology and Infectious Diseases and Department of Pathology, Microbiology and Immunology, University of California, Davis, California 95616, USA;
| |
Collapse
|
23
|
Katewa A, Suto E, Hui J, Heredia J, Liang J, Hackney J, Anderson K, Alcantar TM, Bacarro N, Dunlap D, Eastham J, Paler-Martinez A, Rairdan XY, Modrusan Z, Lee WP, Austin CD, Lafkas D, Ghilardi N. The peptide symporter SLC15a4 is essential for the development of systemic lupus erythematosus in murine models. PLoS One 2021; 16:e0244439. [PMID: 33444326 PMCID: PMC7808665 DOI: 10.1371/journal.pone.0244439] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/09/2020] [Indexed: 11/18/2022] Open
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease representing a serious unmet medical need. The disease is associated with the loss of self-tolerance and exaggerated B cell activation, resulting in autoantibody production and the formation of immune complexes that accumulate in the kidney, causing glomerulonephritis. TLR7, an important mediator of the innate immune response, drives the expression of type-1 interferon (IFN), which leads to expression of type-1 IFN induced genes and aggravates lupus pathology. Because the lysosomal peptide symporter slc15a4 is critically required for type-1 interferon production by pDC, and for certain B cell functions in response to TLR7 and TLR9 signals, we considered it as a potential target for pharmacological intervention in SLE. We deleted the slc15a4 gene in C57BL/6, NZB, and NZW mice and found that pristane-challenged slc15a4-/- mice in the C57BL/6 background and lupus prone slc15a4-/- NZB/W F1 mice were both completely protected from lupus like disease. In the NZB/W F1 model, protection persisted even when disease development was accelerated with an adenovirus encoding IFNα, emphasizing a broad role of slc15a4 in disease initiation. Our results establish a non-redundant function of slc15a4 in regulating both innate and adaptive components of the immune response in SLE pathobiology and suggest that it may be an attractive drug target.
Collapse
Affiliation(s)
- Arna Katewa
- Dept. Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, United States of America
| | - Eric Suto
- Dept. Translational Immunology, Genentech, South San Francisco, CA, United States of America
| | - Jessica Hui
- Evercore ISI, New York, NY, United States of America
| | - Jose Heredia
- Dept. Immunology, Genentech, South San Francisco, CA, United States of America
| | - Jie Liang
- Dept. Molecular Oncology, Genentech, South San Francisco, CA, United States of America
| | - Jason Hackney
- Dept. Bioinformatics, Genentech, South San Francisco, CA, United States of America
| | - Keith Anderson
- Dept. Molecular Biology, Genentech, South San Francisco, CA, United States of America
| | - Tuija M. Alcantar
- Dept. Molecular Biology, Genentech, South San Francisco, CA, United States of America
| | - Natasha Bacarro
- Dept. Molecular Biology, Genentech, South San Francisco, CA, United States of America
| | - Debra Dunlap
- Dept. Pathology, Genentech, South San Francisco, CA, United States of America
| | - Jeffrey Eastham
- Dept. Pathology, Genentech, South San Francisco, CA, United States of America
| | - Andres Paler-Martinez
- Dept. Translational Immunology, Genentech, South San Francisco, CA, United States of America
| | - Xin Y. Rairdan
- gRED Animal Resources, South San Francisco, CA, United States of America
| | - Zora Modrusan
- Dept. Microchemistry, Proteomics, & Lipidomics, Genentech, South San Francisco, CA, United States of America
| | - Wyne P. Lee
- Dept. Translational Immunology, Genentech, South San Francisco, CA, United States of America
| | - Cary D. Austin
- Dept. Pathology, Genentech, South San Francisco, CA, United States of America
| | - Daniel Lafkas
- Dept. Immunology, Genentech, South San Francisco, CA, United States of America
| | - Nico Ghilardi
- DiCE Molecules, South San Francisco, CA, United States of America
| |
Collapse
|
24
|
Onodi F, Bonnet-Madin L, Meertens L, Karpf L, Poirot J, Zhang SY, Picard C, Puel A, Jouanguy E, Zhang Q, Le Goff J, Molina JM, Delaugerre C, Casanova JL, Amara A, Soumelis V. SARS-CoV-2 induces human plasmacytoid pre-dendritic cell diversification via UNC93B and IRAK4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33442685 PMCID: PMC7805442 DOI: 10.1101/2020.07.10.197343] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Several studies have analyzed antiviral immune pathways in late-stage severe COVID-19. However, the initial steps of SARS-CoV-2 antiviral immunity are poorly understood. Here, we have isolated primary SARS-CoV-2 viral strains, and studied their interaction with human plasmacytoid pre-dendritic cells (pDC), a key player in antiviral immunity. We show that pDC are not productively infected by SARS-CoV-2. However, they efficiently diversified into activated P1-, P2-, and P3-pDC effector subsets in response to viral stimulation. They expressed CD80, CD86, CCR7, and OX40 ligand at levels similar to influenza virus-induced activation. They rapidly produced high levels of interferon-α, interferon-λ1, IL-6, IP-10, and IL-8. All major aspects of SARS-CoV-2-induced pDC activation were inhibited by hydroxychloroquine. Mechanistically, SARS-CoV-2-induced pDC activation critically depended on IRAK4 and UNC93B1, as established using pDC from genetically deficient patients. Overall, our data indicate that human pDC are efficiently activated by SARS-CoV-2 particles and may thus contribute to type I IFN-dependent immunity against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Fanny Onodi
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Hôpital Saint-Louis, 75010 Paris, France
| | - Lucie Bonnet-Madin
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U944 CNRS 7212, Hôpital Saint-Louis, 75010 Paris, France
| | - Laurent Meertens
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U944 CNRS 7212, Hôpital Saint-Louis, 75010 Paris, France
| | - Léa Karpf
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Hôpital Saint-Louis, 75010 Paris, France
| | - Justine Poirot
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Hôpital Saint-Louis, 75010 Paris, France
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France, EU.,Université de Paris; INSERM UMR 1163 Institut Imagine, France EU.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Capucine Picard
- Université de Paris; INSERM UMR 1163 Institut Imagine, France EU.,Study center for primary immunodeficiencies, Necker Hospital for Sick Children Assistance Publique-Hôpitaux (AP-HP) de Paris, Paris, France, EU.,Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France, EU
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France, EU.,Université de Paris; INSERM UMR 1163 Institut Imagine, France EU.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France, EU.,Université de Paris; INSERM UMR 1163 Institut Imagine, France EU.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jérôme Le Goff
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Hôpital Saint-Louis, 75010 Paris, France.,Laboratoire de Virologie et Département des Maladies Infectieuses, Hôpital Saint-Louis, APHP, 75010 Paris, France
| | - Jean-Michel Molina
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U944 CNRS 7212, Hôpital Saint-Louis, 75010 Paris, France.,Laboratoire de Virologie et Département des Maladies Infectieuses, Hôpital Saint-Louis, APHP, 75010 Paris, France
| | - Constance Delaugerre
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U944 CNRS 7212, Hôpital Saint-Louis, 75010 Paris, France.,Laboratoire de Virologie et Département des Maladies Infectieuses, Hôpital Saint-Louis, APHP, 75010 Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France, EU.,Université de Paris; INSERM UMR 1163 Institut Imagine, France EU.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France, EU.,Howard Hughes Medical Institute, New York, NY, USA
| | - Ali Amara
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U944 CNRS 7212, Hôpital Saint-Louis, 75010 Paris, France
| | - Vassili Soumelis
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Hôpital Saint-Louis, 75010 Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, Laboratoire d'Immunologie, F-75010, Paris, France
| |
Collapse
|
25
|
Abstract
Despite recent advances in the treatment of autoimmune and inflammatory diseases, unmet medical needs in some areas still exist. One of the main therapeutic approaches to alleviate dysregulated inflammation has been to target the activity of kinases that regulate production of inflammatory mediators. Small-molecule kinase inhibitors have the potential for broad efficacy, convenience and tissue penetrance, and thus often offer important advantages over biologics. However, designing kinase inhibitors with target selectivity and minimal off-target effects can be challenging. Nevertheless, immense progress has been made in advancing kinase inhibitors with desirable drug-like properties into the clinic, including inhibitors of JAKs, IRAK4, RIPKs, BTK, SYK and TPL2. This Review will address the latest discoveries around kinase inhibitors with an emphasis on clinically validated autoimmunity and inflammatory pathways.
Collapse
Affiliation(s)
- Ali A Zarrin
- Discovery Department, TRex Bio, South San Francisco, CA, USA.
| | - Katherine Bao
- Early Discovery Biochemistry Department, Genentech, South San Francisco, CA, USA
| | | | - Domagoj Vucic
- Early Discovery Biochemistry Department, Genentech, South San Francisco, CA, USA
| |
Collapse
|
26
|
Jung JY, Kim JW, Suh CH, Kim HA. Roles of Interactions Between Toll-Like Receptors and Their Endogenous Ligands in the Pathogenesis of Systemic Juvenile Idiopathic Arthritis and Adult-Onset Still's Disease. Front Immunol 2020; 11:583513. [PMID: 33224145 PMCID: PMC7674197 DOI: 10.3389/fimmu.2020.583513] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Systemic juvenile idiopathic arthritis (JIA) and adult-onset Still’s disease (AOSD) are systemic inflammatory disorders that manifest as high-spiking fever, joint pain, evanescent skin rash, and organomegaly. Their pathogenesis is unclear, but inflammation is triggered by activation of the innate immune system with aberrant production of proinflammatory cytokines. Along with extrinsic factors, intrinsic pathways can trigger an unexpected immune response. Damage-associated molecular patterns (DAMPs) induce the activation of innate immune cells, leading to sterile inflammation in systemic JIA and AOSD. These endogenous proteins interact with Toll-like receptors (TLRs), which are pattern recognition receptors, and mediate immune signaling following stimulation by pathogen-associated molecular patterns and DAMPs. Several DAMPs, such as S100 proteins, play a role in the development or severity of systemic JIA and AOSD, in which their interactions with TLRs are altered. Also, the expression levels of genes encoding DAMPs contribute to the susceptibility to systemic JIA and AOSD. Herein, we review reports that TLR and DAMP signaling initiates and/or maintains the inflammatory response in systemic JIA and AOSD, and their correlations with the clinical characteristics of those diseases. In addition, we assess their utility as biomarkers or therapeutics for systemic JIA and AOSD.
Collapse
Affiliation(s)
- Ju-Yang Jung
- Department of Rheumatology, Ajou University of Medical School, Suwon, South Korea
| | - Ji-Won Kim
- Department of Rheumatology, Ajou University of Medical School, Suwon, South Korea
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University of Medical School, Suwon, South Korea
| | - Hyoun-Ah Kim
- Department of Rheumatology, Ajou University of Medical School, Suwon, South Korea
| |
Collapse
|