1
|
Glamočlija U, Mahmutović L, Bilajac E, Šoljić V, Vukojević K, Sezer A, Suljagić M. Single and Combinatorial Effects of Metformin and Thymoquinone in Diffuse Large B Cell Lymphoma Cells. Chem Biodivers 2025; 22:e202401533. [PMID: 39479950 DOI: 10.1002/cbdv.202401533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/02/2024]
Abstract
Diffuse large B cell lymphoma (DLBCL) is classified into Germinal Center B-cell (GCB) and activated B-cell (ABC) subgroups originating from different stages of lymphoid differentiation. Cell of origin dictates the behavior and therapeutic response of DLBCL. This study aimed to evaluate single and combinatorial effects of metformin and thymoquinone (TQ) in two DLBCL cell lines belonging to GCB and ABC subtypes. Metformin and TQ caused dose-dependent responses in both ABC and GCB DLBCL subtypes. Metformin had a greater impact on the ABC subtype while TQ demonstrated more pronounced effects on the GCB subtype. Synergistic effects were observed in the DHL4 (GCB subtype) but not in the HBL1 (ABC subtype) cell line. This is the first study to compare the effects of metformin and TQ in ABC versus GCB subtype of DLBCL. It brings valuable results that could be utilized in further research aimed at reshaping treatments for subtype-specific lymphomas.
Collapse
MESH Headings
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Benzoquinones/pharmacology
- Benzoquinones/chemistry
- Humans
- Metformin/pharmacology
- Metformin/chemistry
- Cell Proliferation/drug effects
- Drug Screening Assays, Antitumor
- Dose-Response Relationship, Drug
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Cell Survival/drug effects
- Cell Line, Tumor
- Apoptosis/drug effects
- Tumor Cells, Cultured
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Una Glamočlija
- Department of Pharmaceutical Biochemistry and Laboratory Diagnostics, University of Sarajevo - Faculty of Pharmacy, Zmaja od Bosne 8, Sarajevo, Bosnia and Herzegovina
| | - Lejla Mahmutović
- Genetics and Bioengineering Department, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnička cesta 15, Sarajevo, Bosnia and Herzegovina
| | - Esma Bilajac
- Genetics and Bioengineering Department, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnička cesta 15, Sarajevo, Bosnia and Herzegovina
| | - Violeta Šoljić
- Faculty of Health Studies, University of Mostar, Zrinskog Frankopana 34, Mostar, Bosnia and Herzegovina
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2A, Split, Croatia
| | - Abas Sezer
- Genetics and Bioengineering Department, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnička cesta 15, Sarajevo, Bosnia and Herzegovina
| | - Mirza Suljagić
- 3D BioLabs, FabLab Bosnia and Herzegovina, Zmaja od Bosne 8, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
2
|
Zhang W, Li W, Yin C, Feng C, Liu B, Xu H, Jin X, Tu C, Li Z. PRKDC Induces Chemoresistance in Osteosarcoma by Recruiting GDE2 to Stabilize GNAS and Activate AKT. Cancer Res 2024; 84:2873-2887. [PMID: 38900943 PMCID: PMC11372366 DOI: 10.1158/0008-5472.can-24-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/13/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Chemoresistance is one of the major causes of poor prognosis in osteosarcoma. Alternative therapeutic strategies for osteosarcoma are limited, indicating that increasing sensitivity to currently used chemotherapies could be an effective approach to improve patient outcomes. Using a kinome-wide CRISPR screen, we identified PRKDC as a critical determinant of doxorubicin (DOX) sensitivity in osteosarcoma. The analysis of clinical samples demonstrated that PRKDC was hyperactivated in osteosarcoma, and functional experiments showed that the loss of PRKDC significantly increased sensitivity of osteosarcoma to DOX. Mechanistically, PRKDC recruited and bound GDE2 to enhance the stability of protein GNAS. The elevated GNAS protein levels subsequently activated AKT phosphorylation and conferred resistance to DOX. The PRKDC inhibitor AZD7648 and DOX synergized and strongly suppressed the growth of osteosarcoma in mouse xenograft models and human organoids. In conclusion, the PRKDC-GDE2-GNAS-AKT regulatory axis suppresses DOX sensitivity and comprises targetable candidates for improving the efficacy of chemotherapy in osteosarcoma. Significance: Targeting PRKDC suppresses AKT activation and increases sensitivity to doxorubicin in osteosarcoma, which provides a therapeutic strategy for overcoming chemoresistance.
Collapse
Affiliation(s)
- Wenchao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China.
| | - Wei Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Chi Yin
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China.
| | - Chengyao Feng
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China.
| | - Binfeng Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China.
| | - Haodong Xu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China.
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China.
- Changsha Medical University, Changsha, China.
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China.
- Shenzhen Research Institute of Central South University, Guangdong, China.
- FuRong Laboratory, Changsha, China.
| |
Collapse
|
3
|
Chang CM, Chang CC, Lam HYP, Peng SY, Lai YH, Hsiang BD, Liao YY, Hsu HJ, Jiang SJ. Therapeutic Peptide RF16 Derived from CXCL8 Inhibits MDA-MB-231 Cell Invasion and Metastasis. Int J Mol Sci 2023; 24:14029. [PMID: 37762330 PMCID: PMC10531501 DOI: 10.3390/ijms241814029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Interleukin (IL)-8 plays a vital role in regulating inflammation and breast cancer formation by activating CXCR1/2. We previously designed an antagonist peptide, (RF16), to inhibits the activation of downstream signaling pathways by competing with IL-8 in binding to CXCR1/2, thereby inhibiting IL-8-induced chemoattractant monocyte binding. To evaluate the effect of the RF16 peptide on breast cancer progression, triple-negative MDA-MB-231 and ER-positive MCF-7 breast cancer cells were used to investigate whether RF16 can inhibit the IL-8-induced breast cancer metastasis. Using growth, proliferation, and invasiveness assays, the results revealed that RF16 reduced cell proliferation, migration, and invasiveness in MDA-MB-231 cells. The RF16 peptide also regulated the protein and mRNA expressions of epithelial-mesenchymal transition (EMT) markers in IL-8-stimulated MDA-MB-231 cells. It also inhibited downstream IL-8 signaling and the IL-8-induced inflammatory response via the mitogen-activated protein kinase (MAPK) and Phosphoinositide 3-kinase (PI3K) pathways. In the xenograft tumor mouse model, RF16 synergistically reinforces the antitumor efficacy of docetaxel by improving mouse survival and retarding tumor growth. Our results indicate that RF16 significantly inhibited IL-8-stimulated cell growth, migration, and invasion in MDA-MB-231 breast cancer cells by blocking the activation of p38 and AKT cascades. It indicated that the RF16 peptide may serve as a new supplementary drug for breast cancer.
Collapse
Affiliation(s)
- Chun-Ming Chang
- Department of General Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan;
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Chun-Chun Chang
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Hualien 97004, Taiwan;
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Ho Yin Pekkle Lam
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (H.Y.P.L.); (S.-Y.P.); (Y.-H.L.)
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Shih-Yi Peng
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (H.Y.P.L.); (S.-Y.P.); (Y.-H.L.)
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Yi-Hsuan Lai
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (H.Y.P.L.); (S.-Y.P.); (Y.-H.L.)
| | - Bi-Da Hsiang
- Department of Molecular Biology and Human Genetics, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Yu-Yi Liao
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Hao-Jen Hsu
- Department of Biomedical Sciences and Engineering, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Shinn-Jong Jiang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (H.Y.P.L.); (S.-Y.P.); (Y.-H.L.)
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| |
Collapse
|
4
|
Tiwari S, Kharbanda S, Singh H. Quatramer™ Mediated Codelivery of PI3-Kδ/HDAC6 Dual Inhibitor Augments the Anti-Cancer Efficacy of Epirubicin in Breast Cancer. Eur J Pharm Biopharm 2022; 179:184-193. [PMID: 36087881 DOI: 10.1016/j.ejpb.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 01/04/2023]
Abstract
The disruption and overexpression of phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway in cancer results in tumor growth, metastasis, and survival. Treatment with common anthracyclines has confirmed cancer cells' dependence on PI3K pathway through overexpression of AKT. Moreover, combining HDAC inhibitor with anthracycline has shown the targeting of breast cancer stem cells. Therefore, it has been hypothesized that the co-delivery of PI3-Kδ/HDAC6 dual inhibitor with Epirubicin using polymeric nanoparticle could increase the anti-cancer treatment efficacy with reduced toxicity. Pluronic modified polylactic acid block copolymer (quatramer) was used for encapsulation of PI3-Kδ/HDAC6 and Epirubicin. The co-encapsulated nanoparticles, PI3-Kδ/HDAC6-Epi-NPs have shown size of 99±3 nm, PDI of 0.18±0.07 with a sustained and slow-release profile in non-physiological buffer (PBS, pH 7.4). The in-vitro cell proliferation inhibition studies done on 2D and 3D culture of breast cancer cell lines have confirmed the synergistic effect of PI3-Kδ/HDAC6-Epi-NPs with lower IC50 values compared to PI3-Kδ/HDAC6-NPs and Epi-NPs. Additionally, intravenous twice a week treatment for three weeks with PI3-Kδ/HDAC6-Epi-NPs resulted in complete tumor eradication in the syngeneic breast tumor mice model. In comparison, the PI3-Kδ/HDAC6-NPs and Epi-NPs result in tumor growth inhibition of 15.86% and 81.59%, respectively. These studies predicted that clinical use of PI3-Kδ/HDAC6-Epi-NPs will be effective in breast cancer treatments.
Collapse
Affiliation(s)
- Sachchidanand Tiwari
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Surender Kharbanda
- Dana Farber Cancer Institute, Harvard Medical School, Boston-02115, MA, USA.
| | - Harpal Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India; Department of Biomedical Engineering, All India Institute of Medical Sciences Delhi, New Delhi 110023, India.
| |
Collapse
|
5
|
Glamoclija U, Mahmutovic L, Bilajac E, Soljic V, Vukojevic K, Suljagic M. Metformin and Thymoquinone Synergistically Inhibit Proliferation of Imatinib-Resistant Human Leukemic Cells. Front Pharmacol 2022; 13:867133. [PMID: 35496297 PMCID: PMC9043685 DOI: 10.3389/fphar.2022.867133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy resistance is one of the major challenges in cancer treatment, including leukemia. A massive array of research is evaluating combinations of drugs directed against different intracellular signaling molecules to overcome cancer resistance, increase therapy effectiveness, and decrease its adverse effects. Combining chemicals with proven safety profiles, such as drugs already used in therapy and active substances isolated from natural sources, could potentially have superior effects compared to monotherapies. In this study, we evaluated the effects of metformin and thymoquinone (TQ) as monotherapy and combinatorial treatments in chronic myeloid leukemia (CML) cell lines sensitive and resistant to imatinib therapy. The effects were also evaluated in primary monocytic acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL) cells. Both compounds induced a dose- and time-dependent decrease of viability and proliferation in tested cells. Metformin had similar IC50 values in imatinib-sensitive and imatinib-resistant cell lines. IC50 values of TQ were significantly higher in imatinib-resistant cells, but with a limited resistance index (2.4). Synergistic effects of combinatorial treatments were observed in all tested cell lines, as well as in primary cells. The strongest synergistic effects were observed in the inhibition of imatinib-resistant cell line proliferation. Metformin and TQ inhibited the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling and induced apoptosis in tested cell lines and primary cells. The enhanced effects of combinatorial treatments on the induction of apoptosis were more dominant in imatinib-resistant compared to imatinib-sensitive CML cells. Primary cells were more sensitive to combinatorial treatments compared to cell lines. A combination of 1.25 mM metformin and 0.625 µM TQ increased the levels of cleaved poly (ADP-ribose) polymerase (PARP), decreased the levels of proliferation regulatory proteins, and inhibited protein kinase B (Akt) and NF-κB signaling in primary CLL cells. This study demonstrates that combinatorial treatments of imatinib-resistant malignant clones with metformin and TQ by complementary intracellular multi-targeting represents a promising approach in future studies.
Collapse
Affiliation(s)
- Una Glamoclija
- Department of Biochemistry and Clinical Analysis, University of Sarajevo-Faculty of Pharmacy, Sarajevo, Bosnia and Herzegovina
- Department of Histology and Embryology, School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina
- Scientific Research Unit, Bosnalijek JSC, Sarajevo, Bosnia and Herzegovina
| | - Lejla Mahmutovic
- Genetics and Bioengineering Department, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Esma Bilajac
- Genetics and Bioengineering Department, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Violeta Soljic
- Department of Histology and Embryology, School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina
- Faculty of Health Studies, University of Mostar, Mostar, Bosnia and Herzegovina
| | - Katarina Vukojevic
- Department of Histology and Embryology, School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Split, Croatia
| | - Mirza Suljagic
- 3D BioLabs, FabLab Bosnia and Herzegovina, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
- *Correspondence: Mirza Suljagic,
| |
Collapse
|
6
|
Cai R, Xiao L, Liu M, Du F, Wang Z. Recent Advances in Functional Carbon Quantum Dots for Antitumour. Int J Nanomedicine 2021; 16:7195-7229. [PMID: 34720582 PMCID: PMC8550800 DOI: 10.2147/ijn.s334012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022] Open
Abstract
Carbon quantum dots (CQDs) are an emerging class of quasi-zero-dimensional photoluminescent nanomaterials with particle sizes less than 10 nm. Owing to their favourable water dispersion, strong chemical inertia, stable optical performance, and good biocompatibility, CQDs have become prominent in biomedical fields. CQDs can be fabricated by “top-down” and “bottom-up” methods, both of which involve oxidation, carbonization, pyrolysis and polymerization. The functions of CQDs include biological imaging, biosensing, drug delivery, gene carrying, antimicrobial performance, photothermal ablation and so on, which enable them to be utilized in antitumour applications. The purpose of this review is to summarize the research progress of CQDs in antitumour applications from preparation and characterization to application prospects. Furthermore, the challenges and opportunities of CQDs are discussed along with future perspectives for precise individual therapy of tumours.
Collapse
Affiliation(s)
- Rong Cai
- Central Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215600, People's Republic of China
| | - Long Xiao
- Central Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215600, People's Republic of China
| | - Meixiu Liu
- Central Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215600, People's Republic of China
| | - Fengyi Du
- School of Medicine, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Zhirong Wang
- Central Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215600, People's Republic of China
| |
Collapse
|
7
|
Shi YY, Meng XT, Xu YN, Tian XJ. Role of FOXO protein's abnormal activation through PI3K/AKT pathway in platinum resistance of ovarian cancer. J Obstet Gynaecol Res 2021; 47:1946-1957. [PMID: 33827148 DOI: 10.1111/jog.14753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 02/04/2021] [Accepted: 03/05/2021] [Indexed: 01/12/2023]
Abstract
AIM Platinum-based chemotherapy is the standard treatment for ovarian cancer. However, tumor cells' resistance to platinum drugs often occurs. This paper provides a review of Forkhead box O (FOXO) protein's role in platinum resistance of ovarian cancer which hopefully may provide some further guidance for the treatment of platinum-resistant ovarian cancer. METHODS We reviewed a 128 published papers from authoritative and professional journals on FOXO and platinum-resistant ovarian cancer, and adopts qualitative analyses and interpretation based on the literature. RESULTS Ovarian cancer often has abnormal activation of cellular pathways, the most important of which is the PI3K/AKT pathway. FOXOs act as crucial downstream factor of the PI3K/Akt pathway and are negatively regulated by it. DNA damage response and apoptosis including the relationship between FOXOs and ATM-Chk2-p53 are essential for platinum resistance of ovarian cancer. Through gene expression analysis in platinum-resistant ovarian cancer cell model, it was found that FoxO-1 is decreased in platinum-resistant ovarian cancer, so studying the role of FOXO in the pathway on platinum-induced apoptosis may further guide the treatment of platinum-resistant ovarian cancer. CONCLUSIONS There are many drug resistance mechanisms in ovarian cancer, wherein the decrease in cancer cells apoptosis is one of the important causes. Constituted by a series of transcription factors evolving conservatively and mainly working in inhibiting cancer, FOXO proteins play various roles in cells' antitumor response. More and more evidence suggests that we need to re-understand the role that FOXOs have played in cancer development and treatment.
Collapse
Affiliation(s)
- Yun-Yue Shi
- Department of Obstetrics and gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiang-Tian Meng
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ya-Nan Xu
- Department of Obstetrics and gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiu-Juan Tian
- Department of Obstetrics and gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
8
|
Gris-Oliver A, Ibrahim YH, Rivas MA, García-García C, Sánchez-Guixé M, Ruiz-Pace F, Viaplana C, Pérez-García JM, Llombart-Cussac A, Grueso J, Parés M, Guzmán M, Rodríguez O, Anton P, Cozar P, Calvo MT, Bruna A, Arribas J, Caldas C, Dienstmann R, Nuciforo P, Oliveira M, Cortés J, Serra V. PI3K activation promotes resistance to eribulin in HER2-negative breast cancer. Br J Cancer 2021; 124:1581-1591. [PMID: 33723394 PMCID: PMC8076303 DOI: 10.1038/s41416-021-01293-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Eribulin is a microtubule-targeting agent approved for the treatment of advanced or metastatic breast cancer (BC) previously treated with anthracycline- and taxane-based regimens. PIK3CA mutation is associated with worse response to chemotherapy in oestrogen receptor-positive (ER+)/human epidermal growth factor receptor 2-negative (HER2-) metastatic BC. We aimed to evaluate the role of phosphoinositide 3-kinase (PI3K)/AKT pathway mutations in eribulin resistance. METHODS Resistance to eribulin was evaluated in HER2- BC cell lines and patient-derived tumour xenografts, and correlated with a mutation in the PI3K/AKT pathway. RESULTS Eleven out of 23 HER2- BC xenografts treated with eribulin exhibited disease progression. No correlation with ER status was detected. Among the resistant models, 64% carried mutations in PIK3CA, PIK3R1 or AKT1, but only 17% among the sensitive xenografts (P = 0.036). We observed that eribulin treatment induced AKT phosphorylation in vitro and in patient tumours. In agreement, the addition of PI3K inhibitors reversed primary and acquired resistance to eribulin in xenograft models, regardless of the genetic alterations in PI3K/AKT pathway or ER status. Mechanistically, PI3K blockade reduced p21 levels likely enabling apoptosis, thus sensitising to eribulin treatment. CONCLUSIONS PI3K pathway activation induces primary resistance or early adaptation to eribulin, supporting the combination of PI3K inhibitors and eribulin for the treatment of HER2- BC patients.
Collapse
Affiliation(s)
- Albert Gris-Oliver
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Yasir H Ibrahim
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Martín A Rivas
- Department of Medicine, Weil Cornell Medicine, New York, NY, USA
| | - Celina García-García
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Mònica Sánchez-Guixé
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Fiorella Ruiz-Pace
- Oncology Data Science (ODysSey Group), Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Cristina Viaplana
- Oncology Data Science (ODysSey Group), Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - José M Pérez-García
- Department of Medical Oncology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Medica Scientia Innovation Research (MedSIR), Barcelona, Spain
- Medica Scientia Innovation Research (MedSIR), Ridgewood, NJ, USA
- Breast Cancer Program, Quironsalud Group, Institute of Oncology (IOB), Barcelona, Spain
- Breast Cancer Program, Quironsalud Group, Institute of Oncology (IOB), Madrid, Spain
| | - Antonio Llombart-Cussac
- Medica Scientia Innovation Research (MedSIR), Barcelona, Spain
- Medica Scientia Innovation Research (MedSIR), Ridgewood, NJ, USA
| | - Judit Grueso
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Mireia Parés
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Marta Guzmán
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Olga Rodríguez
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Pilar Anton
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Patricia Cozar
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Maria Teresa Calvo
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Alejandra Bruna
- Preclinical Modelling of Paediatric Cancer Evolution Team, Institute of Cancer Research, Sutton, UK
| | - Joaquín Arribas
- Growth Factors Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Campus de la UAB, Bellaterra, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Caldas
- Department of Oncology and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Cambridge Breast Unit, NIHR Cambridge Biomedical Research Centre and Cambridge Experimental Cancer Medicine Centre at Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Rodrigo Dienstmann
- Oncology Data Science (ODysSey Group), Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Paolo Nuciforo
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Mafalda Oliveira
- Department of Medical Oncology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Javier Cortés
- Medica Scientia Innovation Research (MedSIR), Barcelona, Spain.
- Medica Scientia Innovation Research (MedSIR), Ridgewood, NJ, USA.
- Breast Cancer Program, Quironsalud Group, Institute of Oncology (IOB), Barcelona, Spain.
- Breast Cancer Program, Quironsalud Group, Institute of Oncology (IOB), Madrid, Spain.
- Breast Cancer GroupVall d'Hebron Institute of Oncology, Barcelona, Spain.
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain.
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
9
|
Li S, Li X, Xue W, Zhang L, Yang LZ, Cao SM, Lei YN, Liu CX, Guo SK, Shan L, Wu M, Tao X, Zhang JL, Gao X, Zhang J, Wei J, Li J, Yang L, Chen LL. Screening for functional circular RNAs using the CRISPR-Cas13 system. Nat Methods 2020; 18:51-59. [PMID: 33288960 DOI: 10.1038/s41592-020-01011-4] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022]
Abstract
Circular RNAs (circRNAs) produced from back-spliced exons are widely expressed, but individual circRNA functions remain poorly understood owing to the lack of adequate methods for distinguishing circRNAs from cognate messenger RNAs with overlapping exons. Here, we report that CRISPR-RfxCas13d can effectively discriminate circRNAs from mRNAs by using guide RNAs targeting sequences spanning back-splicing junction (BSJ) sites featured in RNA circles. Using a lentiviral library that targets sequences across BSJ sites of highly expressed human circRNAs, we show that a group of circRNAs are important for cell growth mostly in a cell-type-specific manner and that a common oncogenic circRNA, circFAM120A, promotes cell proliferation by preventing the mRNA for family with sequence similarity 120A (FAM120A) from binding the translation inhibitor IGF2BP2. Further application of RfxCas13d-BSJ-gRNA screening has uncovered circMan1a2, which has regulatory potential in mouse embryo preimplantation development. Together, these results establish CRISPR-RfxCas13d as a useful tool for the discovery and functional study of circRNAs at both individual and large-scale levels.
Collapse
Affiliation(s)
- Siqi Li
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Li
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Xue
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lin Zhang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liang-Zhong Yang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shi-Meng Cao
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yun-Ni Lei
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chu-Xiao Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Si-Kun Guo
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lin Shan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Man Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Tao
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jia-Lin Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Xiang Gao
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jun Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jia Wei
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China. .,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Li Yang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China. .,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
10
|
(-)-Kusunokinin inhibits breast cancer in N-nitrosomethylurea-induced mammary tumor rats. Eur J Pharmacol 2020; 882:173311. [PMID: 32619673 DOI: 10.1016/j.ejphar.2020.173311] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 01/10/2023]
Abstract
Natural and synthetic (-)-kusunokinin inhibited breast cancer, colon cancer and cholangiocarcinoma cells at the G2/M phase and induced apoptosis. However, there is no report on the action and adverse effects of (-)-kusunokinin in animal models. In this study, we investigated the cytotoxic effect of (-)-kusunokinin from Piper nigrum on cancer cells. NMU-induced rat mammary tumors, an ER positive breast cancer model, were treated with (-)-kusunokinin. Proteins of interest related to cell cycle, angiogenesis, migration and signaling proteins were detected in tumor tissues. Results showed that (-)-kusunokinin exhibited strong cytotoxicity against breast, colon and lung cancer cells and caused low toxicity against normal fibroblast cells. For in vivo study, 7.0 mg/kg and 14.0 mg/kg of (-)-kusunokinin reduced tumor growth without side effects on body weight, internal organs and bone marrow. Combination of (-)-kusunokinin with a low effective dose of doxorubicin significantly inhibited tumor growth and provoked cell death in cancer tissues. Mechanistically, 14.0 mg/kg of (-)-kusunokinin decreased cell proliferation (c-Src, PI3K, Akt, p-Erk1/2 and c-Myc), cell cycle (E2f-1, cyclin B1 and CDK1), and metastasis (E-cadherin, MMP-2 and MMP-9) proteins in tumor tissues, which supports its anticancer effect. We further confirmed the antimigration effect of (-)-kusunokinin; the results show that this compound inhibited breast cancer cell (MCF-7) migration in a dose-dependent manner. In conclusion, the results suggest that 14 mg/kg of (-)-kusunokinin inhibited tumors through the reduction of signaling proteins and their downstream molecules. Therefore, (-)-kusunokinin becomes an intriguing candidate for cancer treatment as it provides a strong potency in cancer inhibition.
Collapse
|
11
|
Antitumor activity of ipatasertib combined with chemotherapy: results from a phase Ib study in solid tumors. Ann Oncol 2020; 31:626-633. [PMID: 32205017 DOI: 10.1016/j.annonc.2020.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/03/2020] [Accepted: 02/12/2020] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND This phase Ib study evaluated the safety, tolerability, pharmacokinetics, and preliminary efficacy of the oral AKT inhibitor ipatasertib and chemotherapy or hormonal therapy in patients with advanced or metastatic solid tumors to determine combined dose-limiting toxicities (DLTs), maximum tolerated dose, and recommended phase II doses and schedules. PATIENTS AND METHODS The clinical study comprised four combination treatment arms: arm A (with docetaxel), arm B [with mFOLFOX6 (modified leucovorin, 5-fluorouracil, and oxaliplatin)], arm C (with paclitaxel), and arm D (with enzalutamide). Primary endpoints were safety and tolerability; secondary endpoints were pharmacokinetics, clinical activity per Response Evaluation Criteria in Solid Tumors v1.1, and prostate-specific antigen levels. RESULTS In total, 122 patients were enrolled. Common adverse events were diarrhea, nausea, vomiting, decreased appetite, and fatigue. The safety profiles of the combination regimens were consistent with those of the background regimens, except for diarrhea, hyperglycemia, and rash, which were previously observed with ipatasertib treatment. The only combination DLT across all treatment arms was one event of grade 3 dehydration (ipatasertib 600 mg and paclitaxel). Recommended phase II doses for ipatasertib were 600 mg (and mFOLFOX6) and 400 mg (and paclitaxel), respectively. The maximum assessed dose of ipatasertib 600 mg combined with docetaxel or enzalutamide was well tolerated. Coadministration with enzalutamide (a cytochrome P450 3A inducer) resulted in approximately 50% lower ipatasertib exposure. CONCLUSIONS Ipatasertib in combination with chemotherapy or hormonal therapy was well tolerated with a safety profile consistent with that of ATP-competitive AKT inhibitors. CLINICAL TRIAL NUMBER NCT01362374.
Collapse
|
12
|
Cornillie J, Wozniak A, Van Renterghem B, Van Winkel N, Wellens J, Gebreyohannes YK, Debiec-Rychter M, Sciot R, Hompes D, Schöffski P. Assessment of the platelet-derived growth factor receptor alpha antibody olaratumab in a panel of patient-derived soft tissue sarcoma xenografts. BMC Cancer 2019; 19:724. [PMID: 31331295 PMCID: PMC6647161 DOI: 10.1186/s12885-019-5872-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022] Open
Abstract
Background Soft tissue sarcoma (STS) comprises a family of rare, heterogeneous tumors of mesenchymal origin. Single-agent doxorubicin remains the first-line standard-of-care treatment for advanced and inoperable STS, but response rates are only around 15%. In 2016, phase Ib/II clinical trial results reported an overall survival benefit of 11.8 months when combining doxorubicin and the platelet-derived growth factor receptor alpha (PDGFRA)-directed antibody olaratumab compared to doxorubicin alone, without providing a scientific rationale for such unprecedented therapeutic effect. We decided to evaluate the efficacy of olaratumab in a panel of STS patient-derived xenografts (PDX). Methods NMRI nu/nu mice were bilaterally transplanted with tumor tissue of patient-derived xenograft models expressing PDGFRA, including models of leiomyosarcoma (UZLX-STS22), malignant peripheral nerve sheath tumor (UZLX-STS39), myxofibrosarcoma (UZLX-STS59) and undifferentiated pleomorphic sarcoma (UZLX-STS84). Mice were randomly divided into four different treatment groups: (1) control, (2) doxorubicin (3 mg/kg once weekly), (3) anti-PDGFRA [olaratumab (60 mg/kg twice weekly) + mouse anti-PDGFRA antibody 1E10 (20 mg/kg twice weekly)] and (4) the combination of doxorubicin and anti-PDGFRA (same dose/schedule as in the single treatment arms). Tumor volume, histopathology and Western blotting were used to assess treatment efficacy. Results Anti-PDGFRA treatment as a single agent did not reduce tumor growth and did not result in significant anti-proliferative or pro-apoptotic activity. Combining doxorubicin and anti-PDGFRA did not reduce tumor burden, though a mild inhibition of proliferation was observed in UZLX-STS39 and -STS59. A pro-apoptotic effect was observed in all models except UZLX-STS22. Antitumor effects on histology were not significantly different comparing doxorubicin and the combination treatment. Moreover, anti-PDGFRA treatment, both as a single agent as well as combined with doxorubicin, did not result in inhibition of the downstream MAPK and PI3K/AKT signaling pathways. Conclusions We were not able to demonstrate significant antitumor effects of anti-PDGFRA treatment in selected STS PDX models, neither alone nor in combination with doxorubicin. This is in line with the very recent results of the phase III clinical trial NCT02451943 ANNOUNCE, which did not confirm the clinical benefit of olaratumab in combination with doxorubicin over single agent doxorubicin. Electronic supplementary material The online version of this article (10.1186/s12885-019-5872-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jasmien Cornillie
- Laboratory of Experimental Oncology, Department of Oncology and Department of General Medical Oncology, Leuven Cancer Institute, KU Leuven and University Hospitals Leuven, Leuven, Belgium.
| | - Agnieszka Wozniak
- Laboratory of Experimental Oncology, Department of Oncology and Department of General Medical Oncology, Leuven Cancer Institute, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Britt Van Renterghem
- Laboratory of Experimental Oncology, Department of Oncology and Department of General Medical Oncology, Leuven Cancer Institute, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Nathalie Van Winkel
- Laboratory of Experimental Oncology, Department of Oncology and Department of General Medical Oncology, Leuven Cancer Institute, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Jasmien Wellens
- Laboratory of Experimental Oncology, Department of Oncology and Department of General Medical Oncology, Leuven Cancer Institute, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Yemarshet K Gebreyohannes
- Laboratory of Experimental Oncology, Department of Oncology and Department of General Medical Oncology, Leuven Cancer Institute, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Maria Debiec-Rychter
- Department of Human Genetics, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Raf Sciot
- Department of Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Daphne Hompes
- Department of Surgical Oncology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Patrick Schöffski
- Laboratory of Experimental Oncology, Department of Oncology and Department of General Medical Oncology, Leuven Cancer Institute, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
13
|
PI3K-AKT-mTOR and NFκB Pathways in Ovarian Cancer: Implications for Targeted Therapeutics. Cancers (Basel) 2019; 11:cancers11070949. [PMID: 31284467 PMCID: PMC6679095 DOI: 10.3390/cancers11070949] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/10/2019] [Accepted: 06/30/2019] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy in the United States, with an estimated 22,530 new cases and 13,980 deaths in 2019. Recent studies have indicated that the phosphoinositol 3 kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), as well as the nuclear factor-κ light chain enhancer of activated B cells (NFκB) pathways are highly mutated and/or hyper-activated in a majority of ovarian cancer patients, and are associated with advanced grade and stage disease and poor prognosis. In this review, we will investigate PI3K/AKT/mTOR and their interconnection with NFκB pathway in ovarian cancer cells.
Collapse
|
14
|
Nuclear localized Akt limits skeletal muscle derived fibrotic signaling. Biochem Biophys Res Commun 2019; 508:838-843. [PMID: 30528731 DOI: 10.1016/j.bbrc.2018.11.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 11/21/2022]
Abstract
Skeletal muscle regeneration following injury is a complex multi-stage process involving the recruitment of inflammatory cells, the activation of muscle resident fibroblasts, and the differentiation of activated myoblasts into myocytes. Dysregulation of these cellular processes is associated with ineffective myofiber repair and excessive deposition of extracellular matrix proteins leading to fibrosis. PI3K/Akt signaling is a critical integrator of intra- and intercellular signals connecting nutrient availability to cell survival and growth. Activation of the PI3K/Akt pathway in skeletal muscle leads to hypertrophic growth and a reversal of the changes in body composition associated with obesity and advanced age. Though the molecular mechanisms mediating these effects are incompletely understood, changes in paracrine signaling are thought to play a key role. Here, we utilized modified RNA to study the biological role of the transient translocation of Akt to the myonuclei of maturing myotubes. Using a conditioned medium model system, we show that ectopic myonuclear Akt suppresses fibrogenic paracrine signaling in response to oxidative stress, and that interventions that increase or restore myonuclear Akt may impair fibrosis.
Collapse
|
15
|
Yndestad S, Austreid E, Svanberg IR, Knappskog S, Lønning PE, Eikesdal HP. Activation of Akt characterizes estrogen receptor positive human breast cancers which respond to anthracyclines. Oncotarget 2018; 8:41227-41241. [PMID: 28476032 PMCID: PMC5522318 DOI: 10.18632/oncotarget.17167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/24/2017] [Indexed: 12/18/2022] Open
Abstract
Anthracyclines are key components of human breast cancer chemotherapy. Here, we explored the role of Akt signaling in anthracycline resistance. The antitumor activity of doxorubicin and Akt inhibitor A-443654 alone or combined was examined in estrogen receptor (ER) positive and negative human breast cancer cell lines. Further, we examined mRNA changes induced by anthracyclines in locally advanced breast cancers biopsied before and after treatment in two clinical trials. Doxorubicin increased Akt phosphorylation in ER positive MCF7 and T47D cell lines, with no effect in ER negative MDA-MB231 breast cancer cells. A-443654 was significantly more cytotoxic in doxorubicin-resistant compared to doxorubicin-naïve MCF7. This difference was not observed in MDA-MB231. Among 24 patients, AKT1 gene expression increased 24 hrs after the initial epirubicin exposure in ER positive tumors responding to therapy (n=6), as compared to ER positive non-responders (n=7) or ER negative tumors (n=11). In contrast, AKT1 mRNA changes after 16 weeks of doxorubicin were unrelated to clinical response and ER status (n=30). In conclusion, rapid Akt activation was observed in ER positive breast cancers which responded to anthracyclines. Increased cytotoxicity of A-443654 in doxorubicin-resistant MCF7 cells indicates a possible role for Akt inhibitors in ER positive breast cancers where chemoresistance evolves.
Collapse
Affiliation(s)
- Synnøve Yndestad
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Eilin Austreid
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ida R Svanberg
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Stian Knappskog
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Per E Lønning
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Hans P Eikesdal
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
16
|
Wang X, Yi L, Zhu Y, Zou J, Hong Y, Zheng W. AKT Signaling Pathway in Invasive Ductal Carcinoma of the Breast: Correlation with ERα, ERβ and HER-2 Expression. TUMORI JOURNAL 2018; 97:185-90. [DOI: 10.1177/030089161109700209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aims and background Estradiol exerts most of its effects by direct binding to the estrogen receptor in breast carcinoma, ERβ expression is a useful biomarker for breast cancer in a manner that is independent of ERα expression. However, studies evaluating ERβ expression with certain tumor variables, such as tumor grade and disease-free survival, had produced conflicting results. The Akt signaling pathway currently attracts considerable attention as a new target for effective therapeutic strategies. The current study attempted to compare the relative associations of variables including ERα, ERβ, HER-2/neu and AKT staining with the presence of metastases or survival. Methods and study design Immunohistochemical staining was employed to determine the expression of ERα, ERβ, pAkt and HER-2/neu in 110 cases of primary breast carcinoma. Results Positive ERα, ERβ, pAkt and HER-2/neu expressions were respectively observed in 46.4% (51/110), 59.1% (65/110), 40.9% (45/110) and 31.8% (35/110) of the tumors. pAkt was significantly associated with HER-2/neu overexpression (P <0.005) and axillary lymph node metastasis (P <0.05). However, there was no significant relationship between pAkt and ERα, ERβ, p53 (P >0.05) expressions. Survival analysis showed that pAkt positivity was associated with poor disease-free survival of the patients. Conclusions The current study suggested that activity of the Akt signaling pathway may indicate a poor prognosis in patients with breast carcinoma. The results implied that estrogen can activate the PI3K-Akt pathway through ERα and ERβ-independent mechanisms in breast cancer.
Collapse
Affiliation(s)
- Xiuling Wang
- Department of Pathology, The Seventh People's Hospital
| | - Lina Yi
- Department of Pathology, The Seventh People's Hospital
| | - Yan Zhu
- Department of Pathology, Changhai Hospital, Second Military Medical University
| | - Jue Zou
- Department of Pathology, The Seventh People's Hospital
| | - Yuelin Hong
- Department of Surgery, The Seventh People's Hospital, Shanghai, China
| | - Weiqiang Zheng
- Department of Pathology, Changhai Hospital, Second Military Medical University
| |
Collapse
|
17
|
Zervantonakis IK, Iavarone C, Chen HY, Selfors LM, Palakurthi S, Liu JF, Drapkin R, Matulonis U, Leverson JD, Sampath D, Mills GB, Brugge JS. Systems analysis of apoptotic priming in ovarian cancer identifies vulnerabilities and predictors of drug response. Nat Commun 2017. [PMID: 28848242 DOI: 10.1038/s41467-017-00263-7]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2022] Open
Abstract
The lack of effective chemotherapies for high-grade serous ovarian cancers (HGS-OvCa) has motivated a search for alternative treatment strategies. Here, we present an unbiased systems-approach to interrogate a panel of 14 well-annotated HGS-OvCa patient-derived xenografts for sensitivity to PI3K and PI3K/mTOR inhibitors and uncover cell death vulnerabilities. Proteomic analysis reveals that PI3K/mTOR inhibition in HGS-OvCa patient-derived xenografts induces both pro-apoptotic and anti-apoptotic signaling responses that limit cell killing, but also primes cells for inhibitors of anti-apoptotic proteins. In-depth quantitative analysis of BCL-2 family proteins and other apoptotic regulators, together with computational modeling and selective anti-apoptotic protein inhibitors, uncovers new mechanistic details about apoptotic regulators that are predictive of drug sensitivity (BIM, caspase-3, BCL-XL) and resistance (MCL-1, XIAP). Our systems-approach presents a strategy for systematic analysis of the mechanisms that limit effective tumor cell killing and the identification of apoptotic vulnerabilities to overcome drug resistance in ovarian and other cancers.High-grade serous ovarian cancers (HGS-OvCa) frequently develop chemotherapy resistance. Here, the authors through a systematic analysis of proteomic and drug response data of 14 HGS-OvCa PDXs demonstrate that targeting apoptosis regulators can improve response of these tumors to inhibitors of the PI3K/mTOR pathway.
Collapse
Affiliation(s)
- Ioannis K Zervantonakis
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, MA, 02115, USA
| | - Claudia Iavarone
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, MA, 02115, USA
| | - Hsing-Yu Chen
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, MA, 02115, USA
| | - Laura M Selfors
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, MA, 02115, USA
| | - Sangeetha Palakurthi
- Belfer Center for Applied Cancer Research, Dana Farber Cancer Institute, Boston, MA, 02115, USA
| | - Joyce F Liu
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, 02115, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Ursula Matulonis
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, 02115, USA
| | - Joel D Leverson
- Oncology Development, AbbVie, Inc, North Chicago, IL, 60064, USA
| | - Deepak Sampath
- Translational Oncology, Genentech, South San Francisco, CA, 94080, USA
| | - Gordon B Mills
- Department of Systems Biology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Joan S Brugge
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
18
|
Systems analysis of apoptotic priming in ovarian cancer identifies vulnerabilities and predictors of drug response. Nat Commun 2017; 8:365. [PMID: 28848242 PMCID: PMC5573720 DOI: 10.1038/s41467-017-00263-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/15/2017] [Indexed: 12/15/2022] Open
Abstract
The lack of effective chemotherapies for high-grade serous ovarian cancers (HGS-OvCa) has motivated a search for alternative treatment strategies. Here, we present an unbiased systems-approach to interrogate a panel of 14 well-annotated HGS-OvCa patient-derived xenografts for sensitivity to PI3K and PI3K/mTOR inhibitors and uncover cell death vulnerabilities. Proteomic analysis reveals that PI3K/mTOR inhibition in HGS-OvCa patient-derived xenografts induces both pro-apoptotic and anti-apoptotic signaling responses that limit cell killing, but also primes cells for inhibitors of anti-apoptotic proteins. In-depth quantitative analysis of BCL-2 family proteins and other apoptotic regulators, together with computational modeling and selective anti-apoptotic protein inhibitors, uncovers new mechanistic details about apoptotic regulators that are predictive of drug sensitivity (BIM, caspase-3, BCL-XL) and resistance (MCL-1, XIAP). Our systems-approach presents a strategy for systematic analysis of the mechanisms that limit effective tumor cell killing and the identification of apoptotic vulnerabilities to overcome drug resistance in ovarian and other cancers. High-grade serous ovarian cancers (HGS-OvCa) frequently develop chemotherapy resistance. Here, the authors through a systematic analysis of proteomic and drug response data of 14 HGS-OvCa PDXs demonstrate that targeting apoptosis regulators can improve response of these tumors to inhibitors of the PI3K/mTOR pathway.
Collapse
|
19
|
Zervantonakis IK, Iavarone C, Chen HY, Selfors LM, Palakurthi S, Liu JF, Drapkin R, Matulonis U, Leverson JD, Sampath D, Mills GB, Brugge JS. Systems analysis of apoptotic priming in ovarian cancer identifies vulnerabilities and predictors of drug response. Nat Commun 2017. [PMID: 28848242 DOI: 10.1038/s41467-017-00263-7] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The lack of effective chemotherapies for high-grade serous ovarian cancers (HGS-OvCa) has motivated a search for alternative treatment strategies. Here, we present an unbiased systems-approach to interrogate a panel of 14 well-annotated HGS-OvCa patient-derived xenografts for sensitivity to PI3K and PI3K/mTOR inhibitors and uncover cell death vulnerabilities. Proteomic analysis reveals that PI3K/mTOR inhibition in HGS-OvCa patient-derived xenografts induces both pro-apoptotic and anti-apoptotic signaling responses that limit cell killing, but also primes cells for inhibitors of anti-apoptotic proteins. In-depth quantitative analysis of BCL-2 family proteins and other apoptotic regulators, together with computational modeling and selective anti-apoptotic protein inhibitors, uncovers new mechanistic details about apoptotic regulators that are predictive of drug sensitivity (BIM, caspase-3, BCL-XL) and resistance (MCL-1, XIAP). Our systems-approach presents a strategy for systematic analysis of the mechanisms that limit effective tumor cell killing and the identification of apoptotic vulnerabilities to overcome drug resistance in ovarian and other cancers.High-grade serous ovarian cancers (HGS-OvCa) frequently develop chemotherapy resistance. Here, the authors through a systematic analysis of proteomic and drug response data of 14 HGS-OvCa PDXs demonstrate that targeting apoptosis regulators can improve response of these tumors to inhibitors of the PI3K/mTOR pathway.
Collapse
Affiliation(s)
- Ioannis K Zervantonakis
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, MA, 02115, USA
| | - Claudia Iavarone
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, MA, 02115, USA
| | - Hsing-Yu Chen
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, MA, 02115, USA
| | - Laura M Selfors
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, MA, 02115, USA
| | - Sangeetha Palakurthi
- Belfer Center for Applied Cancer Research, Dana Farber Cancer Institute, Boston, MA, 02115, USA
| | - Joyce F Liu
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, 02115, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Ursula Matulonis
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, 02115, USA
| | - Joel D Leverson
- Oncology Development, AbbVie, Inc, North Chicago, IL, 60064, USA
| | - Deepak Sampath
- Translational Oncology, Genentech, South San Francisco, CA, 94080, USA
| | - Gordon B Mills
- Department of Systems Biology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Joan S Brugge
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
20
|
Yndestad S, Austreid E, Knappskog S, Chrisanthar R, Lilleng PK, Lønning PE, Eikesdal HP. High PTEN gene expression is a negative prognostic marker in human primary breast cancers with preserved p53 function. Breast Cancer Res Treat 2017; 163:177-190. [PMID: 28213783 PMCID: PMC5387035 DOI: 10.1007/s10549-017-4160-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 02/13/2017] [Indexed: 12/22/2022]
Abstract
Purpose PTEN is an important tumor suppressor in breast cancer. Here, we examined the prognostic and predictive value of PTEN and PTEN pseudogene (PTENP1) gene expression in patients with locally advanced breast cancer given neoadjuvant chemotherapy. Methods The association between pretreatment PTEN and PTENP1 gene expression, response to neoadjuvant chemotherapy, and recurrence-free and disease-specific survival was assessed in 364 patients with locally advanced breast cancer given doxorubicin, 5-fluorouracil/mitomycin, or epirubicin versus paclitaxel in three phase II prospective studies. Further, protein expression of PTEN or phosphorylated Akt, S6 kinase, and 4EBP1 was assessed in a subgroup of 187 tumors. Results Neither PTEN nor PTENP1 gene expression level predicted response to any of the chemotherapy regimens tested (n = 317). Among patients without distant metastases (n = 282), a high pretreatment PTEN mRNA level was associated with inferior relapse-free (RFS; p = 0.001) and disease-specific survival (DSS; p = 0.003). Notably, this association was limited to patients harboring TP53 wild-type tumors (RFS; p = 0.003, DSS; p = 0.009). PTEN mRNA correlated significantly with PTENP1 mRNA levels (rs = 0.456, p < 0.0001) and PTEN protein staining (rs = 0.163, p = 0.036). However, no correlation between PTEN, phosphorylated Akt, S6 kinase or 4EBP1 protein staining, and survival was recorded. Similarly, no correlation between PTENP1 gene expression and survival outcome was observed. Conclusion High intratumoral PTEN gene expression was associated with poor prognosis in patients with locally advanced breast cancers harboring wild-type TP53. Electronic supplementary material The online version of this article (doi:10.1007/s10549-017-4160-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Synnøve Yndestad
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Eilin Austreid
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Stian Knappskog
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Ranjan Chrisanthar
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway.,Section of Molecular Pathology, Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Peer Kåre Lilleng
- Department of Pathology, Haukeland University Hospital, Bergen, Norway.,The Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Per Eystein Lønning
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Hans Petter Eikesdal
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway. .,Department of Oncology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
21
|
Yu Z, Wan Y, Liu Y, Yang J, Li L, Zhang W. Curcumin induced apoptosis via PI3K/Akt-signalling pathways in SKOV3 cells. PHARMACEUTICAL BIOLOGY 2016; 54:2026-2032. [PMID: 26911246 DOI: 10.3109/13880209.2016.1139601] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Context Curcumin is widely used in China and India as a traditional herb but additional work is required to ascertain the folkloric claim of its antitumour and antioxidant activities. Objective The present study determines the antitumour effect of curcumin against SKOV3 cell growth. Materials and methods SKOV3 cells were incubated with curcumin (0, 20, 30 and 40 μM) for 72 h. The antiproliferative activity and the apoptosis rate were measured by MTT and flow cytometry. Expression of PI3K, T-Akt and p-Akt proteins was measured by western blotting. Results The administration of curcumin (0, 20, 30 and 40 μM) inhibits SKOV3 cell growth (IC50 value= 24.8 μM) and increased apoptosis (32.5 and 85.7%). The activity of SKOV3 cell invasion (98.2 and 19.4%) was also decreased by curcumin administration (p < 0.05). Results of western blot analysis confirmed that the expression of p-Akt protein was decreased by curcumin (p < 0.05). It was also found that a high dose of curcumin (40 μM) can cause stronger antitumour activity (80.4%). Conclusion Our results suggest that the curcumin induced SKOV3 apoptosis via modulation of the PI3K/Akt-signalling pathway.
Collapse
Affiliation(s)
- Zeshun Yu
- a Department of Oncology , Binzhou Medical University Hospital , Shandong , China
| | - Yingjun Wan
- b Department of Oncology , Binzhou PEOPLE'S Hospital , Shandong , China
| | - Yanni Liu
- c Department of Gynecology , Binzhou Medical University Hospital , Shandong , China
| | - Jing Yang
- a Department of Oncology , Binzhou Medical University Hospital , Shandong , China
| | - Lei Li
- a Department of Oncology , Binzhou Medical University Hospital , Shandong , China
| | - Weiming Zhang
- a Department of Oncology , Binzhou Medical University Hospital , Shandong , China
| |
Collapse
|
22
|
Ross RL, McPherson HR, Kettlewell L, Shnyder SD, Hurst CD, Alder O, Knowles MA. PIK3CA dependence and sensitivity to therapeutic targeting in urothelial carcinoma. BMC Cancer 2016; 16:553. [PMID: 27465249 PMCID: PMC4964013 DOI: 10.1186/s12885-016-2570-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022] Open
Abstract
Background Many urothelial carcinomas (UC) contain activating PIK3CA mutations. In telomerase-immortalized normal urothelial cells (TERT-NHUC), ectopic expression of mutant PIK3CA induces PI3K pathway activation, cell proliferation and cell migration. However, it is not clear whether advanced UC tumors are PIK3CA-dependent and whether PI3K pathway inhibition is a good therapeutic option in such cases. Methods We used retrovirus-mediated delivery of shRNA to knock down mutant PIK3CA in UC cell lines and assessed effects on pathway activation, cell proliferation, migration and tumorigenicity. The effect of the class I PI3K inhibitor GDC-0941 was assessed in a panel of UC cell lines with a range of known molecular alterations in the PI3K pathway. Results Specific knockdown of PIK3CA inhibited proliferation, migration, anchorage-independent growth and in vivo tumor growth of cells with PIK3CA mutations. Sensitivity to GDC-0941 was dependent on hotspot PIK3CA mutation status. Cells with rare PIK3CA mutations and co-occurring TSC1 or PTEN mutations were less sensitive. Furthermore, downstream PI3K pathway alterations in TSC1 or PTEN or co-occurring AKT1 and RAS gene mutations were associated with GDC-0941 resistance. Conclusions Mutant PIK3CA is a potent oncogenic driver in many UC cell lines and may represent a valuable therapeutic target in advanced bladder cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2570-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- R L Ross
- Section of Experimental Oncology, Leeds Institute of Cancer and Pathology, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - H R McPherson
- Section of Experimental Oncology, Leeds Institute of Cancer and Pathology, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - L Kettlewell
- Section of Experimental Oncology, Leeds Institute of Cancer and Pathology, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - S D Shnyder
- Institute of Cancer Therapeutics, University of Bradford, Richmond Road, Bradford, BD7 1DP, UK
| | - C D Hurst
- Section of Experimental Oncology, Leeds Institute of Cancer and Pathology, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - O Alder
- Section of Experimental Oncology, Leeds Institute of Cancer and Pathology, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - M A Knowles
- Section of Experimental Oncology, Leeds Institute of Cancer and Pathology, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK.
| |
Collapse
|
23
|
Roviello G, Milani M, Gobbi A, Cappelletti MR, Zanotti L, Senti C, Bottini A, Strina C, Sigala S, Generali D. A Phase Ib Open-Label Study to Assess the Safety and Tolerability of Everolimus in Combination With Eribulin in Triple-Negative Breast Cancers. Clin Breast Cancer 2016; 16:e57-e59. [PMID: 26943987 DOI: 10.1016/j.clbc.2016.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/03/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND The VERITAS (A Phase 1B open-label study to assess the safety and tolerability of everolimus in combination with eribulin in triple-negative breast cancers) trial (EudraCT number: 2014-000135-17) is a phase Ib, open label, multicenter, dose-escalation, safety, pharmacokinetic, and pharmacodynamic study based on the combination of everolimus with eribulin in sequential cohorts of metastatic triple negative breast cancer (TNBC) patients. PATIENTS AND METHODS The primary objective of the study is to identify the recommended dose of everolimus in combination with eribulin. Secondary endpoints include the assessment of pharmacokinetics and antitumor activity of the experimental treatment. The sample size is based on the Bayesisan approach with regards to the maximum tolerated dose (MTD) and maximum tolerated dose (MTD) observed. An average sample size of approximately 12 patients is deemed reasonable based on simulations. CONCLUSION The VERITAS trial is expected to determine the recommended dose of everolimus in combination with eribulin in TBNC. This study may open the way for further analysis of this combination in phase II studies in this orphan disease of active drug combination such as the TNBC subset.
Collapse
Affiliation(s)
- Giandomenico Roviello
- Section of Pharmacology and University Center DIFF-Drug Innovation Forward Future, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Manuela Milani
- U.S. Terapia Molecolare e Farmacogenomica, AO Azienda Istituti Ospitalieri di Cremona, Cremona, Italy
| | - Angela Gobbi
- U.S. Terapia Molecolare e Farmacogenomica, AO Azienda Istituti Ospitalieri di Cremona, Cremona, Italy
| | - Maria Rosa Cappelletti
- U.S. Terapia Molecolare e Farmacogenomica, AO Azienda Istituti Ospitalieri di Cremona, Cremona, Italy
| | - Laura Zanotti
- U.S. Terapia Molecolare e Farmacogenomica, AO Azienda Istituti Ospitalieri di Cremona, Cremona, Italy
| | - Chiara Senti
- U.S. Terapia Molecolare e Farmacogenomica, AO Azienda Istituti Ospitalieri di Cremona, Cremona, Italy
| | - Alberto Bottini
- U.S. Terapia Molecolare e Farmacogenomica, AO Azienda Istituti Ospitalieri di Cremona, Cremona, Italy
| | - Carla Strina
- U.S. Terapia Molecolare e Farmacogenomica, AO Azienda Istituti Ospitalieri di Cremona, Cremona, Italy
| | - Sandra Sigala
- Section of Pharmacology and University Center DIFF-Drug Innovation Forward Future, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniele Generali
- Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
24
|
Chakravarty G, Mathur A, Mallade P, Gerlach S, Willis J, Datta A, Srivastav S, Abdel-Mageed AB, Mondal D. Nelfinavir targets multiple drug resistance mechanisms to increase the efficacy of doxorubicin in MCF-7/Dox breast cancer cells. Biochimie 2016; 124:53-64. [PMID: 26844637 DOI: 10.1016/j.biochi.2016.01.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 01/29/2016] [Indexed: 01/02/2023]
Abstract
Development of multidrug resistance (MDR) remains a significant problem in cancer chemotherapy and underscores the importance of using chemosensitizers. Well known MDR mechanisms include: (i) upregulation of drug-efflux; (ii) increased signaling via AKT; and (iii) decreased apoptosis. Therefore, chemosensitizers should target multiple resistance mechanisms. We investigated the efficacy of nelfinavir (NFV), a clinically approved anti-HIV drug, in increasing doxorubicin (DOX) toxicity in a MDR breast cancer cell line, MCF-7/Dox. As compared to parental MCF-7 cells, the MCF-7/Dox were 15-20 fold more resistant to DOX-induced cytotoxicity at 48 h post-exposure (DOX IC50 = 1.8 μM vs. 32.4 μM). Coexposures to NFV could significantly (p < 0.05) decrease DOX-IC50 in MCF-7/Dox cells. Multiple exposures to physiologic concentrations of NFV (2.25 μM or 6.75 μM) decreased DOX-IC50 by 21-fold and 50-fold, respectively. Interestingly, although single exposure to NFV transiently induced P-glycoprotein (P-gp) levels, multiple treatments with NFV inhibited both P-gp expression and efflux function, which increased intracellular DOX concentrations. Single exposure to NFV augmented the markers of cell-survival (AKT) and autophagy (LC3-II), whereas multiple exposures enabled suppression of both total AKT (t-AKT) and insulin like growth factor-1 (IGF-1)-induced phosphorylated AKT (p-AKT) levels. Multiple exposures to NFV also resulted in increased unfolded protein response (UPR) transducers, e.g. Grp78, p-PERK, p-eIF2α, and ATF-4; and endoplasmic reticulum (ER) stress induced death sensors, e.g. CHOP & TRIB-3. Multiple exposures to NFV also abrogated the mitogenic effects of IGF-1. In mice carrying MCF-7/Dox tumor xenografts, intraperitoneal (i.p.) injection of NFV (20 mg/kg/day) and DOX (2 mg/kg/twice/wk) decreased tumor growth more significantly (p < 0.01) than either agent alone. Immunohistochemical (IHC) analysis revealed decreased p-AKT and Ki-67 levels. Thus, NFV overcomes MDR in breast cancer cells and should be tested as an adjunct to chemotherapy.
Collapse
Affiliation(s)
| | - Aditi Mathur
- Department of Pharmacology, Tulane University Medical Center, USA
| | - Pallavi Mallade
- Department of Pharmacology, Tulane University Medical Center, USA
| | - Samantha Gerlach
- Department of Pharmacology, Tulane University Medical Center, USA
| | - Joniece Willis
- Department of Pharmacology, Tulane University Medical Center, USA
| | - Amrita Datta
- Department of Urology, Tulane University Medical Center, USA
| | - Sudesh Srivastav
- Department of Biostatistics, Tulane University School of Public Health and Tropical Medicine, USA
| | | | - Debasis Mondal
- Department of Pharmacology, Tulane University Medical Center, USA.
| |
Collapse
|
25
|
Durrant DE, Das A, Dyer S, Tavallai S, Dent P, Kukreja RC. Targeted Inhibition of Phosphoinositide 3-Kinase/Mammalian Target of Rapamycin Sensitizes Pancreatic Cancer Cells to Doxorubicin without Exacerbating Cardiac Toxicity. Mol Pharmacol 2015; 88:512-23. [PMID: 26101222 PMCID: PMC4551046 DOI: 10.1124/mol.115.099143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/16/2015] [Indexed: 12/22/2022] Open
Abstract
Pancreatic cancer has the lowest 5-year survival rate of all major cancers despite decades of effort to design and implement novel, more effective treatment options. In this study, we tested whether the dual phosphoinositide 3-kinase/mechanistic target of rapamycin inhibitor BEZ235 (BEZ) potentiates the antitumor effects of doxorubicin (DOX) against pancreatic cancer. Cotreatment of BEZ235 with DOX resulted in dose-dependent inhibition of the phosphoinositide 3-kinase/mechanistic target of rapamycin survival pathway, which corresponded with an increase in poly ADP ribose polymerase cleavage. Moreover, BEZ cotreatment significantly improved the effects of DOX toward both cell viability and cell death in part through reduced Bcl-2 expression and increased expression of the shorter, more cytotoxic forms of BIM. BEZ also facilitated intracellular accumulation of DOX, which led to enhanced DNA damage and reactive oxygen species generation. Furthermore, BEZ in combination with gemcitabine reduced MiaPaca2 cell proliferation but failed to increase reactive oxygen species generation or BIM expression, resulting in reduced necrosis and apoptosis. Treatment with BEZ and DOX in mice bearing tumor xenographs significantly repressed tumor growth as compared with BEZ, DOX, or gemcitabine. Additionally, in contrast to the enhanced expression seen in MiaPaca2 cells, BEZ and DOX cotreatment reduced BIM expression in H9C2 cardiomyocytes. Also, the Bcl-2/Bax ratio was increased, which was associated with a reduction in cell death. In vivo echocardiography showed decreased cardiac function with DOX treatment, which was not improved by combination treatment with BEZ. Thus, we propose that combining BEZ with DOX would be a better option for patients than current standard of care by providing a more effective tumor response without the associated increase in toxicity.
Collapse
Affiliation(s)
- David E Durrant
- Department of Biochemistry and Molecular Biology (D.E.D., S.T., P.D.), Department of Internal Medicine, Division of Cardiology, Pauley Heart Center (A.D., S.D., R.C.K.), and Department of Physiology and Biophysics (R.C.K.), Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Anindita Das
- Department of Biochemistry and Molecular Biology (D.E.D., S.T., P.D.), Department of Internal Medicine, Division of Cardiology, Pauley Heart Center (A.D., S.D., R.C.K.), and Department of Physiology and Biophysics (R.C.K.), Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Samya Dyer
- Department of Biochemistry and Molecular Biology (D.E.D., S.T., P.D.), Department of Internal Medicine, Division of Cardiology, Pauley Heart Center (A.D., S.D., R.C.K.), and Department of Physiology and Biophysics (R.C.K.), Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Seyedmehrad Tavallai
- Department of Biochemistry and Molecular Biology (D.E.D., S.T., P.D.), Department of Internal Medicine, Division of Cardiology, Pauley Heart Center (A.D., S.D., R.C.K.), and Department of Physiology and Biophysics (R.C.K.), Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Paul Dent
- Department of Biochemistry and Molecular Biology (D.E.D., S.T., P.D.), Department of Internal Medicine, Division of Cardiology, Pauley Heart Center (A.D., S.D., R.C.K.), and Department of Physiology and Biophysics (R.C.K.), Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Rakesh C Kukreja
- Department of Biochemistry and Molecular Biology (D.E.D., S.T., P.D.), Department of Internal Medicine, Division of Cardiology, Pauley Heart Center (A.D., S.D., R.C.K.), and Department of Physiology and Biophysics (R.C.K.), Virginia Commonwealth University Medical Center, Richmond, Virginia
| |
Collapse
|
26
|
Brown KK, Montaser-Kouhsari L, Beck AH, Toker A. MERIT40 Is an Akt Substrate that Promotes Resolution of DNA Damage Induced by Chemotherapy. Cell Rep 2015; 11:1358-66. [PMID: 26027929 DOI: 10.1016/j.celrep.2015.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/12/2015] [Accepted: 05/01/2015] [Indexed: 11/30/2022] Open
Abstract
Resistance to cytotoxic chemotherapy drugs, including doxorubicin, is a significant obstacle to the effective treatment of breast cancer. Here, we have identified a mechanism by which the PI3K/Akt pathway mediates resistance to doxorubicin. In addition to inducing DNA damage, doxorubicin triggers sustained activation of Akt signaling in breast cancer cells. We show that Akt contributes to chemotherapy resistance such that PI3K or Akt inhibitors sensitize cells to doxorubicin. We identify MERIT40, a component of the BRCA1-A DNA damage repair complex, as an Akt substrate that is phosphorylated following doxorubicin treatment. MERIT40 phosphorylation facilitates assembly of the BRCA1-A complex in response to DNA damage and contributes to DNA repair and cell survival following doxorubicin treatment. Finally, MERIT40 phosphorylation in human breast cancers is associated with estrogen receptor positivity. Our findings suggest that combination therapy with PI3K or Akt inhibitors and doxorubicin may constitute a successful strategy for overcoming chemotherapy resistance.
Collapse
Affiliation(s)
- Kristin K Brown
- Departments of Pathology and Medicine and Cancer Center, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA 02215, USA
| | - Laleh Montaser-Kouhsari
- Departments of Pathology and Medicine and Cancer Center, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA 02215, USA
| | - Andrew H Beck
- Departments of Pathology and Medicine and Cancer Center, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA 02215, USA
| | - Alex Toker
- Departments of Pathology and Medicine and Cancer Center, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
27
|
Brown KK, Toker A. The phosphoinositide 3-kinase pathway and therapy resistance in cancer. F1000PRIME REPORTS 2015; 7:13. [PMID: 25750731 PMCID: PMC4335789 DOI: 10.12703/p7-13] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The phosphoinositide 3-kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling network is a master regulator of processes that contribute to tumorigenesis and tumor maintenance. The PI3K pathway also plays a critical role in driving resistance to diverse anti-cancer therapies. This review article focuses on mechanisms by which the PI3K pathway contributes to therapy resistance in cancer, and highlights potential combination therapy strategies to circumvent resistance driven by PI3K signaling. In addition, resistance mechanisms that limit the clinical efficacy of small molecule inhibitors of the PI3K pathway are discussed.
Collapse
|
28
|
Niu Y, Yu M, Zhang J, Yang Y, Xu C, Yeh M, Taran E, Hou JJC, Gray PP, Yu C. Synthesis of silica nanoparticles with controllable surface roughness for therapeutic protein delivery. J Mater Chem B 2015; 3:8477-8485. [DOI: 10.1039/c5tb01405k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silica nanoparticles with controllable surface roughness have been successfully prepared for therapeutic anti-pAkt antibody delivery.
Collapse
Affiliation(s)
- Yuting Niu
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Meihua Yu
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Jun Zhang
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Chun Xu
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Michael Yeh
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Elena Taran
- Australian National Fabrication Facility-QLD Node
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Jeff Jia Cheng Hou
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Peter P. Gray
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| |
Collapse
|
29
|
Milosevic Z, Pesic M, Stankovic T, Dinic J, Milovanovic Z, Stojsic J, Dzodic R, Tanic N, Bankovic J. Targeting RAS-MAPK-ERK and PI3K-AKT-mTOR signal transduction pathways to chemosensitize anaplastic thyroid carcinoma. Transl Res 2014; 164:411-23. [PMID: 25016932 DOI: 10.1016/j.trsl.2014.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 05/16/2014] [Accepted: 06/17/2014] [Indexed: 11/17/2022]
Abstract
Anaplastic thyroid carcinoma (ATC) is a rare, but aggressive and chemoresistant tumor with dismal prognosis. Most ATCs harbor mutations that activate RAS/MAPK/ERK and PI3K/AKT/mTOR pathways. Therefore, we investigated and correlated the expression of phosphatase and tensin homolog, pERK, and pAKT proteins as well as mutations of BRAF, RAS, and p53 genes in samples of patients with ATC. Furthermore, we evaluated the potential of inhibition of these pathways on chemosensitization of ATC using 2 thyroid carcinoma cell lines (FRO and SW1736). Our results revealed a negative correlation between the activity of RAS-MAPK-ERK and PI3K-AKT-mTOR pathways in samples of patients. To be specific, the PI3K-AKT-mTOR pathway was suppressed in patients with activated NRAS or high pERK expression. In vitro results suggest that the inhibition of either RAS-MAPK-ERK or PI3K-AKT-mTOR components may confer sensitivity of thyroid cancer cells to classic chemotherapeutics. This may form a basis for the development of novel genetic-based therapeutic approach for this cancer type.
Collapse
Affiliation(s)
- Zorica Milosevic
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Milica Pesic
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Tijana Stankovic
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Jelena Dinic
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | | | - Jelena Stojsic
- Department of Thoracopulmonary Pathology, Clinical Centre of Serbia, Belgrade, Serbia
| | - Radan Dzodic
- Institute for Oncology and Radiology of Serbia, Belgrade, Serbia; School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nikola Tanic
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Jasna Bankovic
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
30
|
Chou TC. Frequently asked questions in drug combinations and the mass-action law-based answers. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.synres.2014.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
The wedelolactone derivative inhibits estrogen receptor-mediated breast, endometrial, and ovarian cancer cells growth. BIOMED RESEARCH INTERNATIONAL 2014; 2014:713263. [PMID: 25221777 PMCID: PMC4157183 DOI: 10.1155/2014/713263] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 02/13/2014] [Indexed: 11/17/2022]
Abstract
Estrogen and estrogen receptor (ER)-mediated signaling pathways play important roles in the etiology and progression of human breast, endometrial, and ovarian cancers. Attenuating ER activities by natural products and their derivatives is a relatively practical strategy to control and reduce breast, endometrial, and ovarian cancer risk. Here, we found 3-butoxy-1,8,9-trihydroxy-6H-benzofuro[3,2-c]benzopyran-6-one (BTB), a new derivative of wedelolactone, could effectively inhibit the 17-estradiol (E2)-induced ER transactivation and suppress the growth of breast cancer as well as endometrial and ovarian cancer cells. Our results indicate that 2.5 μM BTB effectively suppresses ER-positive, but not ER-negative, breast, endometrial, and ovarian cancer cells. Furthermore, our data indicate that BTB can modulate ER transactivation and suppress the expression of E2-mediated ER target genes (Cyclin D1, E2F1, and TERT) in the ER-positive MCF-7, Ishikawa, and SKOV-3 cells. Importantly, this BTB mediated inhibition of ER activity is selective since BTB does not suppress the activities of other nuclear receptors, including glucocorticoid receptor and progesterone receptor, suggesting that BTB functions as a selective ER signaling inhibitor with the potential to treat breast, endometrial, and ovarian cancers.
Collapse
|
32
|
Campbell PA, Rudnicki MA. Oct4 interaction with Hmgb2 regulates Akt signaling and pluripotency. Stem Cells 2014; 31:1107-20. [PMID: 23495099 DOI: 10.1002/stem.1365] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/26/2013] [Accepted: 01/31/2013] [Indexed: 12/20/2022]
Abstract
In pluripotent stem cells, bivalent domains mark the promoters of developmentally regulated loci. Histones in these chromatin regions contain coincident epigenetic modifications of gene activation and repression. How these marks are transmitted to maintain the pluripotent state in daughter progeny remains poorly understood. Our study demonstrates that Oct4 post-translational modifications (PTMs) form a positive feedback loop, which promotes Akt activation and interaction with Hmgb2 and the SET complex. This preserves H3K27me3 modifications in daughter progeny and maintains the pluripotent gene expression signature in murine embryonic stem cells. However, if Oct4 is not phosphorylated, a negative feedback loop is formed that inactivates Akt and initiates the DNA damage response. Oct4 sumoylation then is required for G1/S progression and transmission of the repressive H3K27me3 mark. Therefore, PTMs regulate the ability of Oct4 to direct the spatio-temporal formation of activating and repressing complexes to orchestrate chromatin plasticity and pluripotency. Our work highlights a previously unappreciated role for Oct4 PTM-dependent interactions in maintaining restrained Akt signaling and promoting a primitive epigenetic state.
Collapse
Affiliation(s)
- Pearl A Campbell
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | |
Collapse
|
33
|
Austreid E, Lonning PE, Eikesdal HP. The emergence of targeted drugs in breast cancer to prevent resistance to endocrine treatment and chemotherapy. Expert Opin Pharmacother 2014; 15:681-700. [PMID: 24579888 DOI: 10.1517/14656566.2014.885952] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Deregulated signaling pathways are associated with resistance to chemotherapy and endocrine treatment, providing a rationale for the implementation of novel targeted therapies in breast cancer therapy. Key molecules targeted therapeutically in ongoing clinical breast cancer trials are phosphoinositide 3-kinase-Akt-mammalian target of rapamycin (mTOR), Src, insulin-like growth factor 1 receptor, heat shock protein-90, histone deacetylases, cyclin-dependent kinases (CDKs), Notch and human epidermal growth factor receptors (HERs). AREAS COVERED This review provides an overview of novel targeted agents currently explored in clinical breast cancer trials and registered in ClinicalTrials.gov. The main focus will be on their ability to prevent or reverse endocrine resistance and chemoresistance in breast cancer. EXPERT OPINION HER2 targeted agents have extended survival substantially, both in the adjuvant and metastatic setting, pointing to a crucial dependency on this pathway in HER2-amplified breast cancer, including drug resistance reversal. While data on mTOR inhibitors are encouraging and preliminary results on CDK4/6 and Src inhibitors exciting, so far other targeted agents have been of limited benefit when added in concert with conventional therapies. Future clinical trials should systematically explore biomarkers and defects in functional gene cascades to identify relevant biological mechanisms to be targeted therapeutically in breast cancer.
Collapse
Affiliation(s)
- Eilin Austreid
- University of Bergen, Department of Clinical Science, Section of Oncology , Bergen , Norway
| | | | | |
Collapse
|
34
|
Targeted therapies of metastatic breast cancer: relationships with cancer stem cells. Biomed Pharmacother 2013; 67:543-55. [PMID: 23643355 DOI: 10.1016/j.biopha.2013.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/10/2013] [Indexed: 12/15/2022] Open
Abstract
In the last years, many targeted agents have been developed for metastatic breast cancer (MBC) treatment and are being tested in clinical trials. In spite of this, apart from epidermal growth factor receptor 2 (HER2) positive subset, no significant increase in the median overall survival (OS) has been reported. Similarly to conventional chemo- and radiotherapy, the cancer stem cell theory has been evoked to explain the frustrating results often obtained with this emerging category of drugs. This review examines the results in MBC of the approved targeted therapies or those currently under evaluation in experimental studies or in clinical trials, in the light of their relationships with breast CSCs and of the efforts to circumvent the development of resistance. In the next, there is the principal need to investigate if the effects on CSCs may be used to overcome cancer resistance and it will be opportune to consider whether molecular targeted therapies should be used alone or combined with conventional therapy, or with a different target drug specific for CSCs.
Collapse
|
35
|
Giudice FS, Squarize CH. The determinants of head and neck cancer: Unmasking the PI3K pathway mutations. ACTA ACUST UNITED AC 2013; Suppl 5. [PMID: 25126449 DOI: 10.4172/2157-2518.s5-003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Studies attempting to identify and understand the function of mutated genes and deregulated molecular pathways in cancer have been ongoing for many years. The PI3K-PTEN-mTOR signaling pathway is one of the most frequently deregulated pathways in cancer. PIK3CA mutations are found 11%-33% of head and neck cancer (HNC). The hotspot mutation sites for PIK3CA are E542K, E545K and H1047R/L. The PTEN somatic mutations are in 9-23% of HNC, and they frequently cluster in the phosphatase domain of PTEN protein. PTEN loss of heterozygosity (LOH) ranges from 41%-71% and loss of PTEN protein expression occurs in 31.2% of the HNC samples. PIK3CA and PTEN are key molecules in the PI3K-PTEN-mTOR signaling pathway. In this review, we provided a comprehensive overview of mutations in the PI3K-PTEN-mTOR molecular circuitry in HNC, including PI3K family members, TSC1/TSC2, PTEN, AKT, and mTORC1 and mTORC2 complexes. We discussed how these genetic alterations may affect protein structure and function. We also highlight the latest discoveries in protein kinase and tumor suppressor families, emphasizing how mutations in these families interfere with PI3K signaling. A better understanding of the mechanisms underlying cancer formation, progression and resistance to therapy will inform selection of novel genomic-based personalized therapies for head and neck cancer patients.
Collapse
Affiliation(s)
- Fernanda S Giudice
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, 48109-1078, USA ; International Research Center, A. C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Cristiane H Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, 48109-1078, USA
| |
Collapse
|
36
|
Pal I, Mandal M. PI3K and Akt as molecular targets for cancer therapy: current clinical outcomes. Acta Pharmacol Sin 2012; 33:1441-58. [PMID: 22983389 DOI: 10.1038/aps.2012.72] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The PI3K-Akt pathway is a vital regulator of cell proliferation and survival. Alterations in the PIK3CA gene that lead to enhanced PI3K kinase activity have been reported in many human cancer types, including cancers of the colon, breast, brain, liver, stomach and lung. Deregulation of PI3K causes aberrant Akt activity. Therefore targeting this pathway could have implications for cancer treatment. The first generation PI3K-Akt inhibitors were proven to be highly effective with a low IC(50), but later, they were shown to have toxic side effects and poor pharmacological properties and selectivity. Thus, these inhibitors were only effective in preclinical models. However, derivatives of these first generation inhibitors are much more selective and are quite effective in targeting the PI3K-Akt pathway, either alone or in combination. These second-generation inhibitors are essentially a specific chemical moiety that helps to form a strong hydrogen bond interaction with the PI3K/Akt molecule. The goal of this review is to delineate the current efforts that have been undertaken to inhibit the various components of the PI3K and Akt pathway in different types of cancer both in vitro and in vivo. Our focus here is on these novel therapies and their inhibitory effects that depend upon their chemical nature, as well as their development towards clinical trials.
Collapse
|
37
|
Spoerke JM, O'Brien C, Huw L, Koeppen H, Fridlyand J, Brachmann RK, Haverty PM, Pandita A, Mohan S, Sampath D, Friedman LS, Ross L, Hampton GM, Amler LC, Shames DS, Lackner MR. Phosphoinositide 3-kinase (PI3K) pathway alterations are associated with histologic subtypes and are predictive of sensitivity to PI3K inhibitors in lung cancer preclinical models. Clin Cancer Res 2012; 18:6771-83. [PMID: 23136191 DOI: 10.1158/1078-0432.ccr-12-2347] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Class 1 phosphatidylinositol 3-kinase (PI3K) plays a major role in cell proliferation and survival in a wide variety of human cancers. Here, we investigated biomarker strategies for PI3K pathway inhibitors in non-small-cell lung cancer (NSCLC). EXPERIMENTAL DESIGN Molecular profiling for candidate PI3K predictive biomarkers was conducted on a collection of NSCLC tumor samples. Assays included comparative genomic hybridization, reverse-transcription polymerase chain reaction gene expression, mutation detection for PIK3CA and other oncogenes, PTEN immunohistochemistry, and FISH for PIK3CA copy number. In addition, a panel of NSCLC cell lines characterized for alterations in the PI3K pathway was screened with PI3K and dual PI3K/mTOR inhibitors to assess the preclinical predictive value of candidate biomarkers. RESULTS PIK3CA amplification was detected in 37% of squamous tumors and 5% of adenocarcinomas, whereas PIK3CA mutations were found in 9% of squamous and 0% of adenocarcinomas. Total loss of PTEN immunostaining was found in 21% of squamous tumors and 4% of adenocarcinomas. Cell lines harboring pathway alterations (receptor tyrosine kinase activation, PI3K mutation or amplification, and PTEN loss) were exquisitely sensitive to the PI3K inhibitor GDC-0941. A dual PI3K/mTOR inhibitor had broader activity across the cell line panel and in tumor xenografts. The combination of GDC-0941 with paclitaxel, erlotinib, or a mitogen-activated protein-extracellular signal-regulated kinase inhibitor had greater effects on cell viability than PI3K inhibition alone. CONCLUSIONS Candidate biomarkers for PI3K inhibitors have predictive value in preclinical models and show histology-specific alterations in primary tumors, suggesting that distinct biomarker strategies may be required in squamous compared with nonsquamous NSCLC patient populations.
Collapse
Affiliation(s)
- Jill M Spoerke
- Departments of Oncology Biomarker Development, Genentech Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fulda S. Shifting the balance of mitochondrial apoptosis: therapeutic perspectives. Front Oncol 2012; 2:121. [PMID: 23061040 PMCID: PMC3465793 DOI: 10.3389/fonc.2012.00121] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/03/2012] [Indexed: 01/25/2023] Open
Abstract
Signaling via the intrinsic (mitochondrial) pathway of apoptosis represents one of the critical signal transduction cascades that control the regulation of cell death. This pathway is typically altered in human cancers, thereby providing a suitable target for therapeutic intervention. Members of the Bcl-2 family of proteins as well as cell survival signaling cascades such as the PI3K/Akt/mTOR pathway are involved in the regulation of mitochondria-mediated apoptosis. Therefore, further insights into the molecular mechanisms that form the basis for the control of mitochondria-mediated apoptosis will likely open new perspectives to bypass evasion of apoptosis and treatment resistance in human cancers.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany
| |
Collapse
|
39
|
Galanopoulou AS, Gorter JA, Cepeda C. Finding a better drug for epilepsy: the mTOR pathway as an antiepileptogenic target. Epilepsia 2012; 53:1119-1130. [PMID: 22578218 PMCID: PMC3389589 DOI: 10.1111/j.1528-1167.2012.03506.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mammalian target of rapamycin (mTOR) signaling pathway regulates cell growth, differentiation, proliferation, and metabolism. Loss-of-function mutations in upstream regulators of mTOR have been highly associated with dysplasias, epilepsy, and neurodevelopmental disorders. These include tuberous sclerosis, which is due to mutations in TSC1 or TSC2 genes; mutations in phosphatase and tensin homolog (PTEN) as in Cowden syndrome, polyhydramnios, megalencephaly, symptomatic epilepsy syndrome (PMSE) due to mutations in the STE20-related kinase adaptor alpha (STRADalpha); and neurofibromatosis type 1 attributed to neurofibromin 1 mutations. Inhibition of the mTOR pathway with rapamycin may prevent epilepsy and improve the underlying pathology in mouse models with disrupted mTOR signaling, due to PTEN or TSC mutations. However the timing and duration of its administration appear critical in defining the seizure and pathology-related outcomes. Rapamycin application in human cortical slices from patients with cortical dysplasias reduces the 4-aminopyridine-induced oscillations. In the multiple-hit model of infantile spasms, pulse high-dose rapamycin administration can reduce the cortical overactivation of the mTOR pathway, suppresses spasms, and has disease-modifying effects by partially improving cognitive deficits. In post-status epilepticus models of temporal lobe epilepsy, rapamycin may ameliorate the development of epilepsy-related pathology and reduce the expression of spontaneous seizures, but its effects depend on the timing and duration of administration, and possibly the model used. The observed recurrence of seizures and epilepsy-related pathology after rapamycin discontinuation suggests the need for continuous administration to maintain the benefit. However, the use of pulse administration protocols may be useful in certain age-specific epilepsy syndromes, like infantile spasms, whereas repetitive-pulse rapamycin protocols may suffice to sustain a long-term benefit in genetic disorders of the mTOR pathway. In summary, mTOR dysregulation has been implicated in several genetic and acquired forms of epileptogenesis. The use of mTOR inhibitors can reverse some of these epileptogenic processes, although their effects depend upon the timing and dose of administration as well as the model used.
Collapse
Affiliation(s)
- Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience, Laboratory of Developmental Epilepsy, Montefiore/Einstein Epilepsy Management Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jan A. Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam and Epilepsy Institute in The Netherlands Foundation (Stichting Epilepsie Instellingen Nederland, SEIN), Heemstede, The Netherlands
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California Los Angeles, USA
| |
Collapse
|
40
|
Role of phosphatidylinositol-3-kinase pathway in head and neck squamous cell carcinoma. JOURNAL OF ONCOLOGY 2012; 2012:450179. [PMID: 22666248 PMCID: PMC3362130 DOI: 10.1155/2012/450179] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/14/2012] [Indexed: 01/04/2023]
Abstract
Activation of the phosphatidylinositol-3-kinase (PI3K) pathway is one of the most frequently observed molecular alterations in many human malignancies, including head and neck squamous cell carcinoma (HNSCC). A growing body of evidence demonstrates the prime importance of the PI3K pathway at each stage of tumorigenesis, that is, tumor initiation, progression, recurrence, and metastasis. Expectedly, targeting the PI3K pathway yields some promising results in both preclinical studies and clinical trials for certain cancer patients. However, there are still many questions that need to be answered, given the complexity of this pathway and the existence of its multiple feedback loops and interactions with other signaling pathways. In this paper, we will summarize recent advances in the understanding of the PI3K pathway role in human malignancies, with an emphasis on HNSCC, and discuss the clinical applications and future direction of this field.
Collapse
|
41
|
Abstract
The mammalian target of rapamycin (mTOR) and the phosphoinositide 3-kinase (PI3K) signaling pathways are commonly deregulated in cancers and promote cellular growth, proliferation, and survival. mTOR is part of two complexes, mTORC1 and mTORC2, with different biochemical structures and substrates specificity. PI3K/AKT activation may result from genetic hits affecting different components of the pathway, whereas the mechanisms leading to constitutive mTORC1 activation remain globally unknown. The connections between the PI3K and mTOR kinases are multiple and complex, including common substrates, negative feedback loops, or direct activation mechanisms. First-generation allosteric mTOR inhibitors (eg, rapamycin) are mainly active on mTORC1 and mostly display cytostatic anti-tumor activity. Recently, second-generation catalytic mTOR inhibitors targeting both mTOR complexes 1 and 2 have been developed. Some of them also inhibit class IA PI3K. Here, we highlight recent data generated with these new inhibitors against cancer cells and their potential as anti-cancer drugs.
Collapse
|
42
|
Assessing signaling pathways associated with in vitro resistance to cytotoxic agents in AML. Leuk Res 2012; 36:900-4. [PMID: 22521550 DOI: 10.1016/j.leukres.2012.02.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 02/09/2012] [Accepted: 02/26/2012] [Indexed: 12/20/2022]
Abstract
This study uses single cell network profiling (SCNP) to characterize biological pathways associated with in vitro resistance or sensitivity to chemotherapeutics commonly used in acute myeloid leukemia (AML) (i.e. cytarabine/daunorubicin, gemtuzumab ozogamicin (GO), decitabine, azacitidine, clofarabine). Simultaneous measurements at the single cell level of changes in DNA damage, apoptosis and signaling pathway responses in AML blasts incubated in vitro with the above drugs showed distinct profiles for each sample and mechanistically different profiles between distinct classes of agents. Studies are ongoing to assess the clinical predictive value of these findings.
Collapse
|
43
|
DNA-PK mediates AKT activation and apoptosis inhibition in clinically acquired platinum resistance. Neoplasia 2012; 13:1069-80. [PMID: 22131882 DOI: 10.1593/neo.111032] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/20/2011] [Accepted: 09/23/2011] [Indexed: 01/04/2023] Open
Abstract
Clinical resistance to chemotherapy is a frequent event in cancer treatment and is closely linked to poor outcome. High-grade serous (HGS) ovarian cancer is characterized by p53 mutation and high levels of genomic instability. Treatment includes platinum-based chemotherapy and initial response rates are high; however, resistance is frequently acquired, at which point treatment options are largely palliative. Recent data indicate that platinum-resistant clones exist within the sensitive primary tumor at presentation, implying resistant cell selection after treatment with platinum chemotherapy. The AKT pathway is central to cell survival and has been implicated in platinum resistance. Here, we show that platinum exposure induces an AKT-dependent, prosurvival, DNA damage response in clinically platinum-resistant but not platinum-sensitive cells. AKT relocates to the nucleus of resistant cells where it is phosphorylated specifically on S473 by DNA-dependent protein kinase (DNA-PK), and this activation inhibits cisplatin-mediated apoptosis. Inhibition of DNA-PK or AKT, but not mTORC2, restores platinum sensitivity in a panel of clinically resistant HGS ovarian cancer cell lines: we also demonstrate these effects in other tumor types. Resensitization is associated with prevention of AKT-mediated BAD phosphorylation. Strikingly, in patient-matched sensitive cells, we do not see enhanced apoptosis on combining cisplatin with AKT or DNA-PK inhibition. Insulin-mediated activation of AKT is unaffected by DNA-PK inhibitor treatment, suggesting that this effect is restricted to DNA damage-mediated activation of AKT and that, clinically, DNA-PK inhibition might prevent platinum-induced AKT activation without interfering with normal glucose homeostasis, an unwanted toxicity of direct AKT inhibitors.
Collapse
|
44
|
Akt: a double-edged sword in cell proliferation and genome stability. JOURNAL OF ONCOLOGY 2012; 2012:951724. [PMID: 22481935 PMCID: PMC3317191 DOI: 10.1155/2012/951724] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 12/29/2011] [Indexed: 01/31/2023]
Abstract
The Akt family of serine/threonine protein kinases are key regulators of multiple aspects of cell behaviour, including proliferation, survival, metabolism, and tumorigenesis. Growth-factor-activated Akt signalling promotes progression through normal, unperturbed cell cycles by acting on diverse downstream factors involved in controlling the G1/S and G2/M transitions. Remarkably, several recent studies have also implicated Akt in modulating DNA damage responses and genome stability. High Akt activity can suppress ATR/Chk1 signalling and homologous recombination repair (HRR) via direct phosphorylation of Chk1 or TopBP1 or, indirectly, by inhibiting recruitment of double-strand break (DSB) resection factors, such as RPA, Brca1, and Rad51, to sites of damage. Loss of checkpoint and/or HRR proficiency is therefore a potential cause of genomic instability in tumor cells with high Akt. Conversely, Akt is activated by DNA double-strand breaks (DSBs) in a DNA-PK- or ATM/ATR-dependent manner and in some circumstances can contribute to radioresistance by stimulating DNA repair by nonhomologous end joining (NHEJ). Akt therefore modifies both the response to and repair of genotoxic damage in complex ways that are likely to have important consequences for the therapy of tumors with deregulation of the PI3K-Akt-PTEN pathway.
Collapse
|
45
|
DNA-PK mediates AKT activation and apoptosis inhibition in clinically acquired platinum resistance. Neoplasia 2011. [PMID: 22131882 DOI: 10.1593/neo.111032] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Clinical resistance to chemotherapy is a frequent event in cancer treatment and is closely linked to poor outcome. High-grade serous (HGS) ovarian cancer is characterized by p53 mutation and high levels of genomic instability. Treatment includes platinum-based chemotherapy and initial response rates are high; however, resistance is frequently acquired, at which point treatment options are largely palliative. Recent data indicate that platinum-resistant clones exist within the sensitive primary tumor at presentation, implying resistant cell selection after treatment with platinum chemotherapy. The AKT pathway is central to cell survival and has been implicated in platinum resistance. Here, we show that platinum exposure induces an AKT-dependent, prosurvival, DNA damage response in clinically platinum-resistant but not platinum-sensitive cells. AKT relocates to the nucleus of resistant cells where it is phosphorylated specifically on S473 by DNA-dependent protein kinase (DNA-PK), and this activation inhibits cisplatin-mediated apoptosis. Inhibition of DNA-PK or AKT, but not mTORC2, restores platinum sensitivity in a panel of clinically resistant HGS ovarian cancer cell lines: we also demonstrate these effects in other tumor types. Resensitization is associated with prevention of AKT-mediated BAD phosphorylation. Strikingly, in patient-matched sensitive cells, we do not see enhanced apoptosis on combining cisplatin with AKT or DNA-PK inhibition. Insulin-mediated activation of AKT is unaffected by DNA-PK inhibitor treatment, suggesting that this effect is restricted to DNA damage-mediated activation of AKT and that, clinically, DNA-PK inhibition might prevent platinum-induced AKT activation without interfering with normal glucose homeostasis, an unwanted toxicity of direct AKT inhibitors.
Collapse
|
46
|
Škrtić M, Sriskanthadevan S, Jhas B, Gebbia M, Wang X, Wang Z, Hurren R, Jitkova Y, Gronda M, Maclean N, Lai CK, Eberhard Y, Bartoszko J, Spagnuolo P, Rutledge AC, Datti A, Ketela T, Moffat J, Robinson BH, Cameron JH, Wrana J, Eaves CJ, Minden MD, Wang JC, Dick JE, Humphries K, Nislow C, Giaever G, Schimmer AD. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell 2011; 20:674-88. [PMID: 22094260 PMCID: PMC3221282 DOI: 10.1016/j.ccr.2011.10.015] [Citation(s) in RCA: 523] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/05/2011] [Accepted: 10/14/2011] [Indexed: 12/17/2022]
Abstract
To identify FDA-approved agents targeting leukemic cells, we performed a chemical screen on two human leukemic cell lines and identified the antimicrobial tigecycline. A genome-wide screen in yeast identified mitochondrial translation inhibition as the mechanism of tigecycline-mediated lethality. Tigecycline selectively killed leukemia stem and progenitor cells compared to their normal counterparts and also showed antileukemic activity in mouse models of human leukemia. ShRNA-mediated knockdown of EF-Tu mitochondrial translation factor in leukemic cells reproduced the antileukemia activity of tigecycline. These effects were derivative of mitochondrial biogenesis that, together with an increased basal oxygen consumption, proved to be enhanced in AML versus normal hematopoietic cells and were also important for their difference in tigecycline sensitivity.
Collapse
Affiliation(s)
- Marko Škrtić
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Shrivani Sriskanthadevan
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Bozhena Jhas
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Marinella Gebbia
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1 Canada
| | - Xiaoming Wang
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Zezhou Wang
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Rose Hurren
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Yulia Jitkova
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Marcela Gronda
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Neil Maclean
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Courteney K. Lai
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, V5Z 1L3 Canada
| | - Yanina Eberhard
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Justyna Bartoszko
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Paul Spagnuolo
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Angela C. Rutledge
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Alessandro Datti
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5 Canada
| | - Troy Ketela
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1 Canada
| | - Jason Moffat
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1 Canada
| | - Brian H. Robinson
- Genetics and Genome Biology, The Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 1X8 Canada
| | - Jessie H. Cameron
- Genetics and Genome Biology, The Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 1X8 Canada
| | - Jeffery Wrana
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5 Canada
| | - Connie J. Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, V5Z 1L3 Canada
| | - Mark D. Minden
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Jean C.Y. Wang
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
- Division of Stem Cell and Developmental Biology, Campbell Family Institute for Cancer Research/Ontario Cancer Institute, Toronto, Ontario M5G 1L7, Canada
| | - John E. Dick
- Division of Stem Cell and Developmental Biology, Campbell Family Institute for Cancer Research/Ontario Cancer Institute, Toronto, Ontario M5G 1L7, Canada
| | - Keith Humphries
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, V5Z 1L3 Canada
| | - Corey Nislow
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1 Canada
| | - Guri Giaever
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1 Canada
| | - Aaron D. Schimmer
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
- To whom correspondence should be addressed: Aaron D. Schimmer, Princess Margaret Hospital, Rm 9-516, 610 University Ave, Toronto, ON, Canada M5G 2M9, Tel: 416-946-2838, Fax: 416-946-6546,
| |
Collapse
|
47
|
Miller TW, Rexer BN, Garrett JT, Arteaga CL. Mutations in the phosphatidylinositol 3-kinase pathway: role in tumor progression and therapeutic implications in breast cancer. Breast Cancer Res 2011; 13:224. [PMID: 22114931 PMCID: PMC3315683 DOI: 10.1186/bcr3039] [Citation(s) in RCA: 347] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mutations in genes that constitute the phosphatidylinositol 3-kinase (PI3K) pathway occur in >70% of breast cancers. Clinical and experimental evidence suggest that PI3K pathway activation promotes resistance to some of the current breast cancer therapies. PI3K is a major signaling hub downstream of human epidermal growth factor receptor (HER)2 and other receptor tyrosine kinases. PI3K activates AKT, serum/glucocorticoid regulated kinase (SGK), phosphoinositide-dependent kinase 1 (PDK1), mammalian target of rapamycin (mTOR), and several other molecules involved in cell cycle progression and survival. In estrogen receptor (ER)+ breast cancer cells, PI3K activation promotes estrogen-dependent and -independent ER transcriptional activity, which, in turn, may contribute to anti-estrogen resistance. Activation of this pathway also confers resistance to HER2-targeted therapies. In experimental models of resistance to anti-estrogens and HER2 inhibitors, pharmacological inhibition of PI3K/AKT/mTOR has been shown to overcome drug resistance. Early clinical data suggest that combined inhibition of either HER2 or ER plus inhibition of the PI3K pathway might be an effective strategy for treatment of respective HER2+ and ER+ breast cancers resistant to standard therapies. Here, we review alterations in the PI3K pathway in breast cancer, their association with therapeutic resistance, and the state of clinical development of PI3K pathway inhibitors.
Collapse
Affiliation(s)
- Todd W Miller
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
48
|
Wallin JJ, Edgar KA, Guan J, Berry M, Prior WW, Lee L, Lesnick JD, Lewis C, Nonomiya J, Pang J, Salphati L, Olivero AG, Sutherlin DP, O'Brien C, Spoerke JM, Patel S, Lensun L, Kassees R, Ross L, Lackner MR, Sampath D, Belvin M, Friedman LS. GDC-0980 is a novel class I PI3K/mTOR kinase inhibitor with robust activity in cancer models driven by the PI3K pathway. Mol Cancer Ther 2011; 10:2426-36. [PMID: 21998291 DOI: 10.1158/1535-7163.mct-11-0446] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alterations of the phosphoinositide-3 kinase (PI3K)/Akt signaling pathway occur broadly in cancer via multiple mechanisms including mutation of the PIK3CA gene, loss or mutation of phosphatase and tensin homolog (PTEN), and deregulation of mammalian target of rapamycin (mTOR) complexes. The dysregulation of this pathway has been implicated in tumor initiation, cell growth and survival, invasion and angiogenesis, thus, PI3K and mTOR are promising therapeutic targets for cancer. We discovered GDC-0980, a selective, potent, orally bioavailable inhibitor of Class I PI3 kinase and mTOR kinase (TORC1/2) with excellent pharmacokinetic and pharmaceutical properties. GDC-0980 potently inhibits signal transduction downstream of both PI3K and mTOR, as measured by pharmacodynamic (PD) biomarkers, thereby acting upon two key pathway nodes to produce the strongest attainable inhibition of signaling in the pathway. Correspondingly, GDC-0980 was potent across a broad panel of cancer cell lines, with the greatest potency in breast, prostate, and lung cancers and less activity in melanoma and pancreatic cancers, consistent with KRAS and BRAF acting as resistance markers. Treatment of cancer cell lines with GDC-0980 resulted in G1 cell-cycle arrest, and in contrast to mTOR inhibitors, GDC-0980 induced apoptosis in certain cancer cell lines, including those with direct pathway activation via PI3K and PTEN. Low doses of GDC-0980 potently inhibited tumor growth in xenograft models including those with activated PI3K, loss of LKB1 or PTEN, and elicited an exposure-related decrease in PD biomarkers. These preclinical data show that GDC-0980 is a potent and effective dual PI3K/mTOR inhibitor with promise for the clinic.
Collapse
Affiliation(s)
- Jeffrey J Wallin
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Faratian D, Um I, Wilson DS, Mullen P, Langdon SP, Harrison DJ. Phosphoprotein pathway profiling of ovarian carcinoma for the identification of potential new targets for therapy. Eur J Cancer 2011; 47:1420-31. [DOI: 10.1016/j.ejca.2011.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 12/26/2010] [Accepted: 01/20/2011] [Indexed: 12/31/2022]
|
50
|
Kanai R, Wakimoto H, Martuza RL, Rabkin SD. A novel oncolytic herpes simplex virus that synergizes with phosphoinositide 3-kinase/Akt pathway inhibitors to target glioblastoma stem cells. Clin Cancer Res 2011; 17:3686-96. [PMID: 21505062 PMCID: PMC3107877 DOI: 10.1158/1078-0432.ccr-10-3142] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE To develop a new oncolytic herpes simplex virus (oHSV) for glioblastoma (GBM) therapy that will be effective in glioblastoma stem cells (GSC), an important and untargeted component of GBM. One approach to enhance oHSV efficacy is by combination with other therapeutic modalities. EXPERIMENTAL DESIGN MG18L, containing a U(S)3 deletion and an inactivating LacZ insertion in U(L)39, was constructed for the treatment of brain tumors. Safety was evaluated after intracerebral injection in HSV-susceptible mice. The efficacy of MG18L in human GSCs and glioma cell lines in vitro was compared with other oHSVs, alone or in combination with phosphoinositide-3-kinase (PI3K)/Akt inhibitors (LY294002, triciribine, GDC-0941, and BEZ235). Cytotoxic interactions between MG18L and PI3K/Akt inhibitors were determined using Chou-Talalay analysis. In vivo efficacy studies were conducted using a clinically relevant mouse model of GSC-derived GBM. RESULTS MG18L was severely neuroattenuated in mice, replicated well in GSCs, and had anti-GBM activity in vivo. PI3K/Akt inhibitors displayed significant but variable antiproliferative activities in GSCs, whereas their combination with MG18L synergized in killing GSCs and glioma cell lines, but not human astrocytes, through enhanced induction of apoptosis. Importantly, synergy was independent of inhibitor sensitivity. In vivo, the combination of MG18L and LY294002 significantly prolonged survival of mice, as compared with either agent alone, achieving 50% long-term survival in GBM-bearing mice. CONCLUSIONS This study establishes a novel therapeutic strategy: oHSV manipulation of critical oncogenic pathways to sensitize cancer cells to molecularly targeted drugs. MG18L is a promising agent for the treatment of GBM, being especially effective when combined with PI3K/Akt pathway-targeted agents.
Collapse
Affiliation(s)
- Ryuichi Kanai
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | |
Collapse
|