1
|
Krüger P, Schroll M, Fenzl FQ, Hartinger R, Lederer EM, Görlach A, Gordon LB, Cavalcante P, Iacomino N, Rathkolb B, Pimentel JAA, Östereicher M, Spielmann N, Wolf CM, de Angelis MH, Djabali K. Baricitinib and Lonafarnib Synergistically Target Progerin and Inflammation, Improving Lifespan and Health in Progeria Mice. Int J Mol Sci 2025; 26:4849. [PMID: 40429989 PMCID: PMC12112389 DOI: 10.3390/ijms26104849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare, fatal, and premature aging disorder caused by progerin, a truncated form of lamin A that disrupts nuclear architecture, induces systemic inflammation, and accelerates senescence. While the farnesyltransferase inhibitor lonafarnib extends the lifespan by limiting progerin farnesylation, it does not address the chronic inflammation or the senescence-associated secretory phenotype (SASP), which worsens disease progression. In this study, we investigated the combined effects of baricitinib (BAR), a JAK1/2 inhibitor, and lonafarnib (FTI) in a LmnaG609G/G609G mouse model of HGPS. BAR + FTI therapy synergistically extended the lifespan by 25%, surpassing the effects of either monotherapy. Treated mice showed improved health, as evidenced by reduced kyphosis, better fur quality, decreased incidence of cataracts, and less severe dysgnathia. Histological analyses indicated reduced fibrosis in the dermal, hepatic, and muscular tissues, restored cellularity and thickness in the aortic media, and improved muscle fiber integrity. Mechanistically, BAR decreased the SASP and inflammatory markers (e.g., IL-6 and PAI-1), complementing the progerin-targeting effects of FTI. This preclinical study demonstrates the synergistic potential of BAR + FTI therapy in addressing HGPS systemic and tissue-specific pathologies, offering a promising strategy for enhancing both lifespan and health.
Collapse
Affiliation(s)
- Peter Krüger
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine and Health, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany; (P.K.)
| | - Moritz Schroll
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine and Health, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany; (P.K.)
| | - Felix Quirin Fenzl
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine and Health, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany; (P.K.)
| | - Ramona Hartinger
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine and Health, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany; (P.K.)
| | - Eva-Maria Lederer
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine and Health, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany; (P.K.)
| | - Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich, Technical University Hospital, TUM School of Medicine and Health, 80636 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80636 Munich, Germany
| | - Leslie B. Gordon
- Department of Anesthesia, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatrics, Hasbro Children’s Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
| | - Paola Cavalcante
- Neurology 4-Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Nicola Iacomino
- Neurology 4-Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Birgit Rathkolb
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Juan Antonio Aguilar Pimentel
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Manuela Östereicher
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Nadine Spielmann
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Cordula Maria Wolf
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich, Technical University Hospital, TUM School of Medicine and Health, 80636 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80636 Munich, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Experimental Genetics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Karima Djabali
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine and Health, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany; (P.K.)
| |
Collapse
|
2
|
Soto‐Ponce A, De Ita M, Castro‐Obregón S, Cortez D, Landesman Y, Magaña JJ, Gonzalo S, Zavaleta T, Soberano‐Nieto A, Unzueta J, Arrieta‐Cruz I, Nava P, Candelario‐Martínez A, García‐Aguirre I, Cisneros B. Targeting CRM1 for Progeria Syndrome Therapy. Aging Cell 2025; 24:e14495. [PMID: 39871520 PMCID: PMC12073922 DOI: 10.1111/acel.14495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 01/29/2025] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disease caused by progerin, a mutant variant of lamin A. Progerin anchors aberrantly to the nuclear envelope disrupting a plethora of cellular processes, which in turn elicits senescence. We previously showed that the chromosomal region maintenance 1 (CRM1)-driven nuclear export pathway is abnormally enhanced in patient-derived fibroblasts, due to overexpression of CRM1. Interestingly, pharmacological inhibition of CRM1 using leptomycin B rescues the senescent phenotype of HGPS fibroblasts, delineating CRM1 as a potential therapeutic target against HGPS. As a proof of concept, we analyzed the beneficial effects of pharmacologically modulating CRM1 in dermal fibroblasts from HGPS patients and the LMNAG609G/G609G mouse, using the first-in-class selective inhibitor of CRM1 termed selinexor. Remarkably, treatment of HGPS fibroblasts with selinexor mitigated senescence and promoted progerin clearance via autophagy, while at the transcriptional level restored the expression of numerous differentially-expressed genes and rescued cellular processes linked to aging. In vivo, oral administration of selinexor to the progeric mouse resulted in decreased progerin immunostaining in the liver and aorta, decreased progerin levels in most liver, lung and kidney samples analyzed by immunoblotting, and improved aortic histopathology. Collectively our data indicate that selinexor exerts its geroprotective action by at least two mechanisms: normalizing the nucleocytoplasmic partition of proteins with a downstream effect on the aging-associated transcriptome and decreasing progerin levels. Further investigation of the overall effect of selinexor on LmnaG609G/G609G mouse physiology, with emphasis in cardiovascular function is warranted, to determine its therapeutic utility for HGPS and aging-associated disorders characterized by CRM1 overactivity.
Collapse
Affiliation(s)
- Adriana Soto‐Ponce
- Departamento de Genética y Biología MolecularCentro de Investigación y de Estudios AvanzadosCiudad de MéxicoMexico
| | - Marlon De Ita
- Departamento de Genética y Biología MolecularCentro de Investigación y de Estudios AvanzadosCiudad de MéxicoMexico
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSSSCiudad de MéxicoMexico
| | | | - Diego Cortez
- Centro de Ciencias Genómicas, UNAMCuernavacaMexico
| | | | - Jonathan J. Magaña
- Laboratorio de Medicina Genómica, Departamento de Genética (CENIAQ)Instituto Nacional de Rehabilitación‐Luis Guillermo Ibarra (INR‐LGII)Ciudad de MéxicoMexico
- Departamento de BioingenieríaEscuela de Ingeniería y Ciencias, Tecnologico de MonterreyCiudad de MéxicoMexico
| | - Susana Gonzalo
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| | - Tania Zavaleta
- Departamento de Genética y Biología MolecularCentro de Investigación y de Estudios AvanzadosCiudad de MéxicoMexico
| | - Angelica Soberano‐Nieto
- Departamento de Genética y Biología MolecularCentro de Investigación y de Estudios AvanzadosCiudad de MéxicoMexico
| | - Juan Unzueta
- Unidad Iztapalapa, División de Ciencias Biológicas y de la SaludUniversidad Autónoma MetropolitanaCiudad de MéxicoMexico
| | - Isabel Arrieta‐Cruz
- Departamento de Investigación Básica, División de InvestigaciónInstituto Nacional de Geriatría, Secretaría de SaludCiudad de MéxicoMexico
| | - Porfirio Nava
- Departamento de Fisiología, Biofísica y NeurocienciasCentro de Investigación y de Estudios AvanzadosCiudad de MéxicoMexico
| | - Aurora Candelario‐Martínez
- Departamento de Fisiología, Biofísica y NeurocienciasCentro de Investigación y de Estudios AvanzadosCiudad de MéxicoMexico
| | - Ian García‐Aguirre
- Departamento de BioingenieríaEscuela de Ingeniería y Ciencias, Tecnologico de MonterreyCiudad de MéxicoMexico
| | - Bulmaro Cisneros
- Departamento de Genética y Biología MolecularCentro de Investigación y de Estudios AvanzadosCiudad de MéxicoMexico
| |
Collapse
|
3
|
Benedicto I, Hamczyk MR, Dorado B, Andrés V. Vascular cell types in progeria: victims or villains? Trends Mol Med 2025:S1471-4914(25)00056-5. [PMID: 40240194 DOI: 10.1016/j.molmed.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 04/18/2025]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is an ultrarare genetic disease caused by progerin, a broadly expressed mutant variant of lamin A protein that accelerates aging and leads to premature death typically in adolescence. Progerin affects many organs and reproduces many characteristics of physiological aging, with the main cause of death in HGPS being atherosclerotic cardiovascular disease (CVD). Due to the rarity of HGPS, advances in understanding the disease and progress toward new therapeutic approaches are crucially dependent on preclinical models. We discuss recent research developments from a variety of HGPS experimental systems, with a special focus on in vivo studies of the role of vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) that are key players in atherosclerosis.
Collapse
Affiliation(s)
- Ignacio Benedicto
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.
| | - Magda R Hamczyk
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, 8000 Aarhus C, Denmark
| | - Beatriz Dorado
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain.
| |
Collapse
|
4
|
Cancado de Faria R, Silva L, Teodoro-Castro B, McCommis KS, Shashkova EV, Gonzalo S. A non-canonical cGAS-STING pathway drives cellular and organismal aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.645994. [PMID: 40236012 PMCID: PMC11996560 DOI: 10.1101/2025.04.03.645994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Accumulation of cytosolic DNA has emerged as a hallmark of aging, inducing sterile inflammation. STING (Stimulator of Interferon Genes) protein translates the sensing of cytosolic DNA by cGAS (cyclic-GMP-AMP synthase) into an inflammatory response. However, the molecular mechanisms whereby cytosolic DNA-induced cGAS-STING pathway leads to aging remain poorly understood. We show that STING does not follow the canonical pathway of activation in human fibroblasts passaged (aging) in culture, senescent fibroblasts, or progeria fibroblasts (from Hutchinson Gilford Progeria Syndrome patients). Despite cytosolic DNA buildup, features of the canonical cGAS-STING pathway like increased cGAMP production, STING phosphorylation, and STING trafficking to perinuclear compartment are not observed in progeria/senescent/aging fibroblasts. Instead, STING localizes at endoplasmic reticulum, nuclear envelope, and chromatin. Despite the non-conventional STING behavior, aging/senescent/progeria cells activate inflammatory programs such as the senescence-associated secretory phenotype (SASP) and the interferon (IFN) response, in a cGAS and STING-dependent manner, revealing a non-canonical pathway in aging. Importantly, progeria/aging/senescent cells are hindered in their ability to activate the canonical cGAS-STING pathway with synthetic DNA, compared to young cells. This deficiency is rescued by activating vitamin D receptor signaling, unveiling new mechanisms regulating the cGAS-STING pathway in aging. Significantly, in HGPS, inhibition of the non-canonical cGAS-STING pathway ameliorates cellular hallmarks of aging, reduces tissue degeneration, and extends the lifespan of progeria mice. Our study reveals that a new feature of aging is the progressively reduced ability to activate the canonical cGAS-STING pathway in response to cytosolic DNA, triggering instead a non-canonical pathway that drives senescence/aging phenotypes. Significance Statement Our study provides novel insights into the mechanisms driving sterile inflammation in aging and progeria. We reveal a previously unrecognized characteristic of aging cells: the progressive loss of ability to activate the canonical response to foreign or self-DNA at the cytoplasm. Instead, aging, senescent, and progeria cells activate inflammatory programs via a non-conventional pathway driven by cGAS and the adaptor protein STING. Importantly, pharmacological inhibition of the non-canonical cGAS-STING pathway ameliorates cellular, tissue and organismal decline in a devastating accelerated aging disease (Hutchinson Gilford Progeria Syndrome), highlighting it as a promising therapeutic target for age-related pathologies.
Collapse
|
5
|
Wang J, Guan Y, Wang Y, Tan J, Cao Z, Ding Y, Gao L, Fu H, Chen X, Lin J, Shen N, Fu X, Wang F, Mao J, Hu L. Disease pathogenicity in Hutchinson-Gilford progeria syndrome mice: insights from lung-associated alterations. Mol Med 2025; 31:114. [PMID: 40128656 PMCID: PMC11934591 DOI: 10.1186/s10020-025-01165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 03/11/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder characterized by accelerated aging, impaired growth, disrupted lipid metabolism, and reduced lifespan. METHODS Prior research has primarily focused on cardiovascular manifestations, our research sheds light on multiple organs that underwent significant age-related changes validated by tissue cross-sections H&E, Masson's trichrome, and β-galactosidase staining. RESULTS Among these pathologies tissues, the lung was severely affected and substantiated by clinical data of pulmonary anomalies from our HGPS patients. Biochemical and histological analyses of lung tissue from the HGPS mouse model revealed elevated Progerin expression, abnormal NAD metabolism, cellular senescence markers (higher level of p16 and p27, lower level of ki67), and various age-related morphology changes, including fibrosis, inflammation, and thickening of alveolar walls. Transcriptomic analyses of lung tissue indicated that down-regulated genes (Thy1, Tnc, Cspg4, Ccr1) were associated with extracellular space, immune response, calcium signaling pathway, osteoclast differentiation, and lipid binding pathway. CONCLUSIONS This study unveiled the previously overlooked organs involved in HGPS pathogenesis and suggested a specific emphasis on the lung. Our findings suggest that pulmonary abnormalities may contribute to disease progression, warranting further investigation into their role in HGPS monitoring and management.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310020, Zhejiang Province, China
| | - Yuelin Guan
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310020, Zhejiang Province, China
| | - Yue Wang
- Hubei Normal University, Huangshi, 435002, China
| | - Junyi Tan
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310020, Zhejiang Province, China
| | - Zhongkai Cao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310020, Zhejiang Province, China
| | - Yuhan Ding
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310020, Zhejiang Province, China
| | - Langping Gao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310020, Zhejiang Province, China
| | - Haidong Fu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310020, Zhejiang Province, China
| | - Xiangjun Chen
- Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou, 310020, China
| | - Jianyu Lin
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310020, Zhejiang Province, China
| | - Ning Shen
- Liangzhu Laboratory of Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Xudong Fu
- Liangzhu Laboratory of Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Fangqin Wang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310020, Zhejiang Province, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310020, Zhejiang Province, China.
| | - Lidan Hu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310020, Zhejiang Province, China.
| |
Collapse
|
6
|
Benedicto I, Hamczyk MR, Nevado RM, Barettino A, Carmona RM, Espinós‐Estévez C, Gonzalo P, de la Fuente‐Pérez M, Andrés‐Manzano MJ, González‐Gómez C, Dorado B, Andrés V. Endothelial cell-specific progerin expression does not cause cardiovascular alterations and premature death. Aging Cell 2025; 24:e14389. [PMID: 39479939 PMCID: PMC11822624 DOI: 10.1111/acel.14389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder caused by a mutation in the LMNA gene that provokes the synthesis of progerin, a mutant version of the nuclear protein lamin A that accelerates aging and precipitates death. The most clinically relevant feature of HGPS is the development of cardiac anomalies and severe vascular alterations, including massive loss of vascular smooth muscle cells, increased fibrosis, and generalized atherosclerosis. However, it is unclear if progerin expression in endothelial cells (ECs) causes the cardiovascular manifestations of HGPS. To tackle this question, we generated atherosclerosis-free mice (LmnaLCS/LCSCdh5-CreERT2) and atheroprone mice (Apoe-/-LmnaLCS/LCSCdh5-CreERT2) with EC-specific progerin expression. Like progerin-free controls, LmnaLCS/LCSCdh5-CreERT2 mice did not develop heart fibrosis or cardiac electrical and functional alterations, and had normal vascular structure, body weight, and lifespan. Similarly, atheroprone Apoe-/-LmnaLCS/LCSCdh5-CreERT2 mice showed no alteration in body weight or lifespan versus Apoe-/-LmnaLCS/LCS controls and did not develop vascular alterations or aggravated atherosclerosis. Our results indicate that progerin expression in ECs is not sufficient to cause the cardiovascular phenotype and premature death associated with progeria.
Collapse
Affiliation(s)
- Ignacio Benedicto
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Magda R. Hamczyk
- CIBER en Enfermedades Cardiovasculares (CIBERCV)MadridSpain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA)Universidad de OviedoOviedoSpain
- Aarhus Institute of Advanced Studies (AIAS)Aarhus UniversityAarhusDenmark
| | - Rosa M. Nevado
- Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
- CIBER en Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - Ana Barettino
- Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
- CIBER en Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - Rosa M. Carmona
- Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | | | - Pilar Gonzalo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
- CIBER en Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | | | - María J. Andrés‐Manzano
- Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
- CIBER en Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - Cristina González‐Gómez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
- CIBER en Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - Beatriz Dorado
- Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
- CIBER en Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
- CIBER en Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| |
Collapse
|
7
|
Monterrubio-Ledezma F, Salcido-Gómez A, Zavaleta-Vásquez T, Navarro-García F, Cisneros B, Massieu L. The anti-senescence effect of D-β-hydroxybutyrate in Hutchinson-Gilford progeria syndrome involves progerin clearance by the activation of the AMPK-mTOR-autophagy pathway. GeroScience 2025:10.1007/s11357-024-01501-9. [PMID: 39821043 DOI: 10.1007/s11357-024-01501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025] Open
Abstract
D-β-hydroxybutyrate, BHB, has been previously proposed as an anti-senescent agent in vitro and in vivo in several tissues including vascular smooth muscle. Moreover, BHB derivatives as ketone esters alleviate heart failure. Here, we provide evidence of the potential therapeutic effect of BHB on Hutchinson-Gilford progeria syndrome (HGPS), a rare condition characterized by premature aging and heart failure, caused by the presence of progerin, the aberrant protein derived from LMNA/C gene c.1824C > T mutation. We have assessed several hallmarks of HGPS-senescent phenotype in vitro, such as progerin levels, nuclear morphometric aberrations, nucleolar expansion, cellular senescent morphology, SA-βGal-positive cells, H3K9me3 heterochromatin, γH2AX foci, Lamin B1, p21Waf1/Cip1 and p16CDKN2A abundance, and autophagy. Strikingly, BHB improved nuclear and nucleolar morphometrics, diminished the senescence-phenotype, and unstuck autophagy in HGPS as observed by an enhanced degradation of the cargo protein receptor SQSTM1/p62, suggesting the stimulation of the autophagic flux. Additionally, we observed a decrease in progerin abundance, the cause of senescence in HGPS. Furthermore, compound C, an inhibitor of AMPK, and SBI-0206965, an inhibitor of ULK1/2 and AMPK, which prevent autophagy activation, reversed BHB-induced progerin decline as well as its anti-senescent effect in an AMPK-mTORC1 dependent manner. Altogether, these results suggest that the anti-senescence effect of BHB involves progerin clearance by autophagy activation supporting the potential of BHB for HGPS therapeutics and further preclinical trials.
Collapse
Affiliation(s)
- Feliciano Monterrubio-Ledezma
- Department of Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), 07360, Mexico City, Mexico
| | - Ashley Salcido-Gómez
- Department of Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico
| | - Tania Zavaleta-Vásquez
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), 07360, Mexico City, Mexico
| | - Fernando Navarro-García
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), 07360, Mexico City, Mexico
| | - Bulmaro Cisneros
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), 07360, Mexico City, Mexico
| | - Lourdes Massieu
- Department of Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico.
| |
Collapse
|
8
|
Lattanzi G, Lanzuolo C, Cugudda E, Maggi L, Politano L, Santiago‐Fernández O, Ricci G, Squarzoni S, Lopez‐Otin C, the Italian Network for Laminopathies. Aging research from bench to bedside and beyond: What we learned from Sammy Basso. Aging Cell 2024; 23:e14414. [PMID: 39663551 PMCID: PMC11634728 DOI: 10.1111/acel.14414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 12/13/2024] Open
Affiliation(s)
- Giovanna Lattanzi
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli‐Sforza”Unit of BolognaBolognaItaly
- IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Chiara Lanzuolo
- ITB‐CNR, Institute of Biomedical Technologies, National Research CouncilSegrateItaly
- INGM Istituto Nazionale Genetica Molecolare “Romeo Ed Enrica Invernizzi”MilanItaly
| | - Eleonora Cugudda
- AIDMED, Associazione Italiana Distrofia Muscolare di Emery‐Dreifuss OdVModenaItaly
| | - Lorenzo Maggi
- Neuroimmunology and Neuromuscular DiseasesFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Luisa Politano
- Cardiomyology and Medical Genetics UnitLuigi Vanvitelli Campania UniversityNaplesItaly
| | - Olaya Santiago‐Fernández
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Giulia Ricci
- Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Stefano Squarzoni
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli‐Sforza”Unit of BolognaBolognaItaly
| | - Carlos Lopez‐Otin
- Centre de Recherche Des Cordeliers, Inserm U1138, Université Paris CitéSorbonne UniversitéParisFrance
| | | |
Collapse
|
9
|
Kono Y, Pack CG, Ichikawa T, Komatsubara A, Adam SA, Miyazawa K, Rolas L, Nourshargh S, Medalia O, Goldman RD, Fukuma T, Kimura H, Shimi T. Roles of the lamin A-specific tail region in the localization to sites of nuclear envelope rupture. PNAS NEXUS 2024; 3:pgae527. [PMID: 39677369 PMCID: PMC11645434 DOI: 10.1093/pnasnexus/pgae527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024]
Abstract
The nuclear lamina (NL) lines the nuclear envelope (NE) to maintain nuclear structure in metazoan cells. The major NL components, the nuclear lamins contribute to the protection against NE rupture induced by mechanical stress. Lamin A (LA) and a short form of the splicing variant lamin C (LC) are diffused from the nucleoplasm to sites of NE rupture in immortalized mouse embryonic fibroblasts (MEFs). LA localization to the rupture sites is significantly slow and weak compared with LC, but the underlying mechanism remains unknown. In this study, wild-type (WT), Hutchinson-Gilford Progeria syndrome (HGPS) knock-in MEFs expressing progerin (PG, an LA mutant lacking the second proteolytic cleavage site), and LA/C-knockout MEFs transiently and heterogeneously expressing LA/C WTs and mutants fused to mEmerald are examined before and after NE rupture induced by single-cell compression and laser microirradiation. The farnesylation at the CaaX motif of unprocessed LA and the inhibition of the second proteolytic cleavage decrease the nucleoplasmic pool and slow the localization to the rupture sites in a long-time window (60-70 min) after the induction of NE rupture. Our data could explain the defective repair of NE rupture in HGPS through the farnesylation at the CaaX motif of unprocessed progerin. In addition, unique segments in LA-specific tail region cooperate with each other to inhibit the rapid accumulation within a short-time window (3 min) that is also observed with LC.
Collapse
Affiliation(s)
- Yohei Kono
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Chan-Gi Pack
- Convergence Medicine Research Center, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Korea
- Department of Biomedical Engineering, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Takehiko Ichikawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Arata Komatsubara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Stephen A Adam
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA
| | - Keisuke Miyazawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Loïc Rolas
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Sussan Nourshargh
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich 8057, Switzerland
| | - Robert D Goldman
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA
| | - Takeshi Fukuma
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Takeshi Shimi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
10
|
Hamczyk MR, Nevado RM, Gonzalo P, Andrés-Manzano MJ, Nogales P, Quesada V, Rosado A, Torroja C, Sánchez-Cabo F, Dopazo A, Bentzon JF, López-Otín C, Andrés V. Endothelial-to-Mesenchymal Transition Contributes to Accelerated Atherosclerosis in Hutchinson-Gilford Progeria Syndrome. Circulation 2024; 150:1612-1630. [PMID: 39206565 DOI: 10.1161/circulationaha.123.065768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Atherosclerosis is the main medical problem in Hutchinson-Gilford progeria syndrome, a rare premature aging disorder caused by the mutant lamin-A protein progerin. Recently, we found that limiting progerin expression to vascular smooth muscle cells (VSMCs) is sufficient to hasten atherosclerosis and death in Apoe-deficient mice. However, the impact of progerin-driven VSMC defects on endothelial cells (ECs) remained unclear. METHODS Apoe- or Ldlr-deficient C57BL/6J mice with ubiquitous, VSMC-, EC- or myeloid-specific progerin expression fed a normal or high-fat diet were used to study endothelial phenotype during Hutchinson-Gilford progeria syndrome-associated atherosclerosis. Endothelial permeability to low-density lipoproteins was assessed by intravenous injection of fluorescently labeled human low-density lipoprotein and confocal microscopy analysis of the aorta. Leukocyte recruitment to the aortic wall was evaluated by en face immunofluorescence. Endothelial-to-mesenchymal transition (EndMT) was assessed by quantitative polymerase chain reaction and RNA sequencing in the aortic intima and by immunofluorescence in aortic root sections. TGFβ (transforming growth factor β) signaling was analyzed by multiplex immunoassay in serum, by Western blot in the aorta, and by immunofluorescence in aortic root sections. The therapeutic benefit of TGFβ1/SMAD3 pathway inhibition was evaluated in mice by intraperitoneal injection of SIS3 (specific inhibitor of SMAD3), and vascular phenotype was assessed by Oil Red O staining, histology, and immunofluorescence in the aorta and the aortic root. RESULTS Both ubiquitous and VSMC-specific progerin expression in Apoe-null mice provoked alterations in aortic ECs, including increased permeability to low-density lipoprotein and leukocyte recruitment. Atherosclerotic lesions in these progeroid mouse models, but not in EC- and myeloid-specific progeria models, contained abundant cells combining endothelial and mesenchymal features, indicating extensive EndMT triggered by dysfunctional VSMCs. Accordingly, the intima of ubiquitous and VSMC-specific progeroid models at the onset of atherosclerosis presented increased expression of EndMT-linked genes, especially those specific to fibroblasts and extracellular matrix. Aorta in both models showed activation of the TGFβ1/SMAD3 pathway, a major trigger of EndMT, and treatment of VSMC-specific progeroid mice with SIS3 alleviated the aortic phenotype. CONCLUSIONS Progerin-induced VSMC alterations promote EC dysfunction and EndMT through TGFβ1/SMAD3, identifying this process as a candidate target for Hutchinson-Gilford progeria syndrome treatment. These findings also provide insight into the complex role of EndMT during atherogenesis.
Collapse
Affiliation(s)
- Magda R Hamczyk
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Spain (M.R.H., V.Q., C.L.-O.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Spain (M.R.H., R.M.N., P.G., M.J.A.-M., A.D., V.A.)
| | - Rosa M Nevado
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
| | - Pilar Gonzalo
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Spain (M.R.H., R.M.N., P.G., M.J.A.-M., A.D., V.A.)
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
| | - María J Andrés-Manzano
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Spain (M.R.H., R.M.N., P.G., M.J.A.-M., A.D., V.A.)
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
| | - Paula Nogales
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
| | - Víctor Quesada
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Spain (M.R.H., V.Q., C.L.-O.)
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
- Centro de Investigación Biomédica en Red de Cáncer, Spain (V.Q.)
| | - Aránzazu Rosado
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
| | - Carlos Torroja
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
| | - Fátima Sánchez-Cabo
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
| | - Ana Dopazo
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Spain (M.R.H., R.M.N., P.G., M.J.A.-M., A.D., V.A.)
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
| | - Jacob F Bentzon
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
- Department of Clinical Medicine, Aarhus University, Denmark (J.F.B.)
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Spain (M.R.H., V.Q., C.L.-O.)
- Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, Madrid, Spain (C.L.-O.)
- Centre de Recherche des Cordeliers, Université de Paris Cité, Sorbonne Université, INSERM U1138, France (C.L.-O.)
| | - Vicente Andrés
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Spain (M.R.H., R.M.N., P.G., M.J.A.-M., A.D., V.A.)
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
| |
Collapse
|
11
|
Qi H, Wu Y, Zhang W, Yu N, Lu X, Liu J. The syntaxin-binding protein STXBP5 regulates progerin expression. Sci Rep 2024; 14:23376. [PMID: 39379476 PMCID: PMC11461833 DOI: 10.1038/s41598-024-74621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
Hutchinson-Gilfor progeria syndrome (HGPS) is caused by a mutation in Lamin A resulting in the production of a protein called progerin. The accumulation of progerin induces inflammation, cellular senescence and activation of the P53 pathway. In this study, through public dataset analysis, we identified Syntaxin Binding Protein 5 (STXBP5) as an influencing factor of progerin expression. STXBP5 overexpression accelerated the onset of senescence, while STXBP5 deletion suppressed progerin expression, delayed senility, and decreased the expression of senescence-related factors. STXBP5 and progerin have synergistic effects and a protein-protein interaction. Through bioinformatics analysis, we found that STXBP5 affects ageing-related signalling pathways such as the mitogen-activated protein kinase (MAPK) pathway, the hippo pathway and the interleukin 17 (IL17) signalling pathway in progerin-expressing cells. In addition, STXBP5 overexpression induced changes in transposable elements (TEs), such as the human endogenous retrovirus H internal coding sequence (HERVH-int) changes. Our protein coimmunoprecipitation (Co-IP) results indicated that STXBP5 bound directly to progerin. Therefore, decreasing STXBP5 expression is a potential new therapeutic strategy for treating ageing-related phenotypes in patients with HGPS.
Collapse
Affiliation(s)
- Hongqian Qi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
- College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Yingying Wu
- College of Artificial Intelligence, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin, 300350, China
| | - Weiyu Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853-2703, USA
| | - Ningbo Yu
- College of Artificial Intelligence, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin, 300350, China
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Jinchao Liu
- College of Artificial Intelligence, Nankai University, Tianjin, 300350, China.
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
12
|
Wang X, Ma L, Lu D, Zhao G, Ren H, Lin Q, Jia M, Huang F, Wang S, Xu Z, Yang Z, Chu Y, Xu Z, Li W, Yu L, Jiang Q, Zhang C. Nuclear envelope budding inhibition slows down progerin-induced aging process. Proc Natl Acad Sci U S A 2024; 121:e2321378121. [PMID: 39352925 PMCID: PMC11474064 DOI: 10.1073/pnas.2321378121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/08/2024] [Indexed: 10/04/2024] Open
Abstract
Progerin causes Hutchinson-Gilford progeria syndrome (HGPS), but how progerin accelerates aging is still an interesting question. Here, we provide evidence linking nuclear envelope (NE) budding and accelerated aging. Mechanistically, progerin disrupts nuclear lamina to induce NE budding in concert with lamin A/C, resulting in transport of chromatin into the cytoplasm where it is removed via autophagy, whereas emerin antagonizes this process. Primary cells from both HGPS patients and mouse models express progerin and display NE budding and chromatin loss, and ectopically expressing progerin in cells can mimic this process. More excitingly, we screen a NE budding inhibitor chaetocin by high-throughput screening, which can dramatically sequester progerin from the NE and prevent this NE budding through sustaining ERK1/2 activation. Chaetocin alleviates NE budding-induced chromatin loss and ameliorates HGPS defects in cells and mice and significantly extends lifespan of HGPS mice. Collectively, we propose that progerin-induced NE budding participates in the induction of progeria, highlight the roles of chaetocin and sustained ERK1/2 activation in anti-aging, and provide a distinct avenue for treating HGPS.
Collapse
Affiliation(s)
- Xiangyang Wang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing100871, China
- The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming650500, China
| | - Lin Ma
- Department of Dermatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing100045, China
| | - Di Lu
- The State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Gan Zhao
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing100871, China
| | - He Ren
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing100871, China
| | - Qiaoyu Lin
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing100871, China
| | - Mingkang Jia
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing100871, China
| | - Fan Huang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing100871, China
| | - Shan Wang
- Department of Dermatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing100045, China
| | - Zhe Xu
- Department of Dermatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing100045, China
| | - Zhou Yang
- Department of Dermatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing100045, China
| | - Yan Chu
- Department of Dermatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing100045, China
| | - Zigang Xu
- Department of Dermatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing100045, China
| | - Wei Li
- Genetics and Birth Defects Control Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing100045, China
| | - Li Yu
- The State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Qing Jiang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing100871, China
| | - Chuanmao Zhang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing100871, China
- The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming650500, China
| |
Collapse
|
13
|
Barettino A, González-Gómez C, Gonzalo P, Andrés-Manzano MJ, Guerrero CR, Espinosa FM, Carmona RM, Blanco Y, Dorado B, Torroja C, Sánchez-Cabo F, Quintas A, Benguría A, Dopazo A, García R, Benedicto I, Andrés V. Endothelial YAP/TAZ activation promotes atherosclerosis in a mouse model of Hutchinson-Gilford progeria syndrome. J Clin Invest 2024; 134:e173448. [PMID: 39352768 PMCID: PMC11563688 DOI: 10.1172/jci173448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare disease caused by the expression of progerin, an aberrant protein produced by a point mutation in the LMNA gene. HGPS patients show accelerated aging and die prematurely mainly from complications of atherosclerosis such as myocardial infarction, heart failure, or stroke. However, the mechanisms underlying HGPS vascular pathology remain ill-defined. We used single-cell RNA sequencing to characterize the aorta in progerin-expressing LmnaG609G/G609G mice and wild-type controls, with a special focus on endothelial cells (ECs). HGPS ECs showed gene expression changes associated with extracellular matrix alterations, increased leukocyte extravasation, and activation of the yes-associated protein 1/transcriptional activator with PDZ-binding domain (YAP/TAZ) mechanosensing pathway, all validated by different techniques. Atomic force microscopy experiments demonstrated stiffer subendothelial extracellular matrix in progeroid aortae, and ultrasound assessment of live HGPS mice revealed disturbed aortic blood flow, both key inducers of the YAP/TAZ pathway in ECs. YAP/TAZ inhibition with verteporfin reduced leukocyte accumulation in the aortic intimal layer and decreased atherosclerosis burden in progeroid mice. Our findings identify endothelial YAP/TAZ signaling as a key mechanism of HGPS vascular disease and open a new avenue for the development of YAP/TAZ-targeting drugs to ameliorate progerin-induced atherosclerosis.
Collapse
Affiliation(s)
- Ana Barettino
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Cristina González-Gómez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Pilar Gonzalo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - María J. Andrés-Manzano
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | | | - Rosa M. Carmona
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Yaazan Blanco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Beatriz Dorado
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Carlos Torroja
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Fátima Sánchez-Cabo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Ana Quintas
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Alberto Benguría
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Ana Dopazo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | - Ignacio Benedicto
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
14
|
Kjer-Hansen P, Phan TG, Weatheritt RJ. Protein isoform-centric therapeutics: expanding targets and increasing specificity. Nat Rev Drug Discov 2024; 23:759-779. [PMID: 39232238 DOI: 10.1038/s41573-024-01025-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Most protein-coding genes produce multiple protein isoforms; however, these isoforms are commonly neglected in drug discovery. The expression of protein isoforms can be specific to a disease, tissue and/or developmental stage, and this specific expression can be harnessed to achieve greater drug specificity than pan-targeting of all gene products and to enable improved treatments for diseases caused by aberrant protein isoform production. In recent years, several protein isoform-centric therapeutics have been developed. Here, we collate these studies and clinical trials to highlight three distinct but overlapping modes of action for protein isoform-centric drugs: isoform switching, isoform introduction or depletion, and modulation of isoform activity. In addition, we discuss how protein isoforms can be used clinically as targets for cell type-specific drug delivery and immunotherapy, diagnostic biomarkers and sources of cancer neoantigens. Collectively, we emphasize the value of a focus on isoforms as a route to discovering drugs with greater specificity and fewer adverse effects. This approach could enable the targeting of proteins for which pan-inhibition of all isoforms is toxic and poorly tolerated.
Collapse
Affiliation(s)
- Peter Kjer-Hansen
- EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
- St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Darlinghurst, New South Wales, Australia.
| | - Tri Giang Phan
- St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Darlinghurst, New South Wales, Australia
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Robert J Weatheritt
- EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
15
|
Rolas L, Stein M, Barkaway A, Reglero-Real N, Sciacca E, Yaseen M, Wang H, Vazquez-Martinez L, Golding M, Blacksell IA, Giblin MJ, Jaworska E, Bishop CL, Voisin MB, Gaston-Massuet C, Fossati-Jimack L, Pitzalis C, Cooper D, Nightingale TD, Lopez-Otin C, Lewis MJ, Nourshargh S. Senescent endothelial cells promote pathogenic neutrophil trafficking in inflamed tissues. EMBO Rep 2024; 25:3842-3869. [PMID: 38918502 PMCID: PMC11387759 DOI: 10.1038/s44319-024-00182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Cellular senescence is a hallmark of advanced age and a major instigator of numerous inflammatory pathologies. While endothelial cell (EC) senescence is aligned with defective vascular functionality, its impact on fundamental inflammatory responses in vivo at single-cell level remain unclear. To directly investigate the role of EC senescence on dynamics of neutrophil-venular wall interactions, we applied high resolution confocal intravital microscopy to inflamed tissues of an EC-specific progeroid mouse model, characterized by profound indicators of EC senescence. Progerin-expressing ECs supported prolonged neutrophil adhesion and crawling in a cell autonomous manner that additionally mediated neutrophil-dependent microvascular leakage. Transcriptomic and immunofluorescence analysis of inflamed tissues identified elevated levels of EC CXCL1 on progerin-expressing ECs and functional blockade of CXCL1 suppressed the dysregulated neutrophil responses elicited by senescent ECs. Similarly, cultured progerin-expressing human ECs exhibited a senescent phenotype, were pro-inflammatory and prompted increased neutrophil attachment and activation. Collectively, our findings support the concept that senescent ECs drive excessive inflammation and provide new insights into the mode, dynamics, and mechanisms of this response at single-cell level.
Collapse
Affiliation(s)
- Loïc Rolas
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Monja Stein
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Anna Barkaway
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Natalia Reglero-Real
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Elisabetta Sciacca
- Centre for Translational Bioinformatics, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mohammed Yaseen
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Haitao Wang
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Laura Vazquez-Martinez
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Matthew Golding
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Isobel A Blacksell
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Meredith J Giblin
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Edyta Jaworska
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Cleo L Bishop
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mathieu-Benoit Voisin
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Liliane Fossati-Jimack
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Dianne Cooper
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Thomas D Nightingale
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Carlos Lopez-Otin
- Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Paris, France
- Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, Madrid, Spain
| | - Myles J Lewis
- Centre for Translational Bioinformatics, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sussan Nourshargh
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK.
| |
Collapse
|
16
|
Li X, Yu H, Li D, Liu N. LINE-1 transposable element renaissance in aging and age-related diseases. Ageing Res Rev 2024; 100:102440. [PMID: 39059477 DOI: 10.1016/j.arr.2024.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
Transposable elements (TEs) are essential components of eukaryotic genomes and subject to stringent regulatory mechanisms to avoid their potentially deleterious effects. However, numerous studies have verified the resurrection of TEs, particularly long interspersed nuclear element-1 (LINE-1), during preimplantation development, aging, cancer, and other age-related diseases. The LINE-1 family has also been implicated in several aging-related processes, including genomic instability, loss of heterochromatin, DNA methylation, and the senescence-associated secretory phenotype (SASP). Additionally, the role of the LINE-1 family in cancer development has also been substantiated. Research in this field has offered valuable insights into the functional mechanisms underlying LINE-1 activity, enhancing our understanding of aging regulation. This review provides a comprehensive summary of current findings on LINE-1 and their roles in aging and age-related diseases.
Collapse
Affiliation(s)
- Xiang Li
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Huaxin Yu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Dong Li
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Na Liu
- School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
17
|
Muela‐Zarzuela I, Suarez‐Rivero JM, Boy‐Ruiz D, López‐Pérez J, Sotelo‐Montoro M, del Mar Navarrete‐Alonso M, Collado IG, Botubol‐Ares JM, Sanz A, Cordero MD. The NLRP3 inhibitor Dapansutrile improves the therapeutic action of lonafarnib on progeroid mice. Aging Cell 2024; 23:e14272. [PMID: 39192596 PMCID: PMC11488313 DOI: 10.1111/acel.14272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 08/29/2024] Open
Abstract
The role of the inflammasomes in aging and progeroid syndromes remain understudied. Recently, MCC950, a NLRP3 inhibitor, was used in Zmpste24-/- mice to ameliorate the phenotypes. However, the safety of MCC950 was questioned due to liver toxicity observed in humans. Nevertheless, inhibition of the inflammasomes would be a beneficial therapy for progeria. Here, we show that OLT1177 (dapansutrile), other NLRP3 inhibitor, improved cellular and animal phenotypes using progeroid fibroblasts and a LmnaG609G/G609G mouse model. In both cases dapansutrile reduced progerin accumulation, NLRP3-inflammasome activation and secretory phenotype of senescence, extended the lifespan of progeroid animals, preserved bodyweight, and reduced kyphosis, inflammation, and senescence. Interestingly, dapansutrile further improved the effect of lonafarnib, the only FDA-approved drug for the progeria. The combination of both drugs reduced the inflammation and senescence, extended survival and ameliorated various progeroid defects both in vitro and in vivo, compared with treatment using lonafarnib alone. These findings and the safety of dapansutrile demonstrated in several clinical trials proposes it as a possible co-adjuvant treatment with lonafarnid in HGPS.
Collapse
Affiliation(s)
- Inés Muela‐Zarzuela
- Department of Molecular Biology and Biochemical EngineeringUniversidad Pablo de OlavideSevilleSpain
| | | | - Daniel Boy‐Ruiz
- Department of Molecular Biology and Biochemical EngineeringUniversidad Pablo de OlavideSevilleSpain
| | - Juan López‐Pérez
- Department of ImmunologyPuerta del Mar HospitalCádizSpain
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICAHospital Universitario Puerta del MarCádizSpain
| | - Marta Sotelo‐Montoro
- Department of Molecular Biology and Biochemical EngineeringUniversidad Pablo de OlavideSevilleSpain
| | | | - Isidro G. Collado
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre Sur, 4a PlantaUniversity of CádizCádizSpain
| | - José Manuel Botubol‐Ares
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre Sur, 4a PlantaUniversity of CádizCádizSpain
| | - Alberto Sanz
- School of Molecular Biosciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Mario D. Cordero
- Department of Molecular Biology and Biochemical EngineeringUniversidad Pablo de OlavideSevilleSpain
| |
Collapse
|
18
|
Krüger P, Schroll M, Fenzl F, Lederer EM, Hartinger R, Arnold R, Cagla Togan D, Guo R, Liu S, Petry A, Görlach A, Djabali K. Inflammation and Fibrosis in Progeria: Organ-Specific Responses in an HGPS Mouse Model. Int J Mol Sci 2024; 25:9323. [PMID: 39273272 PMCID: PMC11395088 DOI: 10.3390/ijms25179323] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is an extremely rare genetic disorder that causes accelerated aging, due to a pathogenic variant in the LMNA gene. This pathogenic results in the production of progerin, a defective protein that disrupts the nuclear lamina's structure. In our study, we conducted a histopathological analysis of various organs in the LmnaG609G/G609G mouse model, which is commonly used to study HGPS. The objective of this study was to show that progerin accumulation drives systemic but organ-specific tissue damage and accelerated aging phenotypes. Our findings show significant fibrosis, inflammation, and dysfunction in multiple organ systems, including the skin, cardiovascular system, muscles, lungs, liver, kidneys, spleen, thymus, and heart. Specifically, we observed severe vascular fibrosis, reduced muscle regeneration, lung tissue remodeling, depletion of fat in the liver, and disruptions in immune structures. These results underscore the systemic nature of the disease and suggest that chronic inflammation and fibrosis play crucial roles in the accelerated aging seen in HGPS. Additionally, our study highlights that each organ responds differently to the toxic effects of progerin, indicating that there are distinct mechanisms of tissue-specific damage.
Collapse
Affiliation(s)
- Peter Krüger
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany
| | - Moritz Schroll
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany
| | - Felix Fenzl
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany
| | - Eva-Maria Lederer
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany
| | - Ramona Hartinger
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany
| | - Rouven Arnold
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Deniz Cagla Togan
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany
| | - Runjia Guo
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany
| | - Shiyu Liu
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany
| | - Andreas Petry
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital, Heart Diseases, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80636 Munich, Germany
| | - Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital, Heart Diseases, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80636 Munich, Germany
| | - Karima Djabali
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany
| |
Collapse
|
19
|
Díaz-López EJ, Sánchez-Iglesias S, Castro AI, Cobelo-Gómez S, Prado-Moraña T, Araújo-Vilar D, Fernandez-Pombo A. Lipodystrophic Laminopathies: From Dunnigan Disease to Progeroid Syndromes. Int J Mol Sci 2024; 25:9324. [PMID: 39273270 PMCID: PMC11395136 DOI: 10.3390/ijms25179324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Lipodystrophic laminopathies are a group of ultra-rare disorders characterised by the presence of pathogenic variants in the same gene (LMNA) and other related genes, along with an impaired adipose tissue pattern and other features that are specific of each of these disorders. The most fascinating traits include their complex genotype-phenotype associations and clinical heterogeneity, ranging from Dunnigan disease, in which the most relevant feature is precisely adipose tissue dysfunction and lipodystrophy, to the other laminopathies affecting adipose tissue, which are also characterised by the presence of signs of premature ageing (Hutchinson Gilford-progeria syndrome, LMNA-atypical progeroid syndrome, mandibuloacral dysplasia types A and B, Nestor-Guillermo progeria syndrome, LMNA-associated cardiocutaneous progeria). This raises several questions when it comes to understanding how variants in the same gene can lead to similar adipose tissue disturbances and, at the same time, to such heterogeneous phenotypes and variable degrees of metabolic abnormalities. The present review aims to gather the molecular basis of adipose tissue impairment in lipodystrophic laminopathies, their main clinical aspects and recent therapeutic strategies. In addition, it also summarises the key aspects for their differential diagnosis.
Collapse
Affiliation(s)
- Everardo Josué Díaz-López
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Sofía Sánchez-Iglesias
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Ana I Castro
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), 28029 Madrid, Spain
| | - Silvia Cobelo-Gómez
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Teresa Prado-Moraña
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - David Araújo-Vilar
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Antia Fernandez-Pombo
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| |
Collapse
|
20
|
Swahari V, Nakamura A, Hollville E, Hung YH, Kanke M, Kurtz CL, Caravia XM, Roiz-Valle D, He S, Krishnamurthy J, Kapoor S, Prasad V, Flowers C, Beck M, Baran-Gale J, Sharpless N, López-Otín C, Sethupathy P, Deshmukh M. miR-29 is an important driver of aging-related phenotypes. Commun Biol 2024; 7:1055. [PMID: 39191864 PMCID: PMC11349983 DOI: 10.1038/s42003-024-06735-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Aging is a consequence of complex molecular changes, but whether a single microRNA (miRNA) can drive aging remains unclear. A miRNA known to be upregulated during both normal and premature aging is miR-29. We find miR-29 to also be among the top miRNAs predicted to drive aging-related gene expression changes. We show that partial loss of miR-29 extends the lifespan of Zmpste24-/- mice, an established model of progeria, indicating that miR-29 is functionally important in this accelerated aging model. To examine whether miR-29 alone is sufficient to promote aging-related phenotypes, we generated mice in which miR-29 can be conditionally overexpressed (miR-29TG). miR-29 overexpression is sufficient to drive many aging-related phenotypes and led to early lethality. Transcriptomic analysis of both young miR-29TG and old WT mice reveals shared downregulation of genes associated with extracellular matrix organization and fatty acid metabolism, and shared upregulation of genes in pathways linked to inflammation. These results highlight the functional importance of miR-29 in controlling a gene expression program that drives aging-related phenotypes.
Collapse
Affiliation(s)
- Vijay Swahari
- Neuroscience Center; University of North Carolina, Chapel Hill, NC, USA
| | - Ayumi Nakamura
- Neuroscience Center; University of North Carolina, Chapel Hill, NC, USA
- Neurobiology Curriculum; University of North Carolina, Chapel Hill, NC, USA
| | - Emilie Hollville
- Neuroscience Center; University of North Carolina, Chapel Hill, NC, USA
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Yu-Han Hung
- Department of Biomedical Sciences; College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Matt Kanke
- Department of Biomedical Sciences; College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - C Lisa Kurtz
- Department of Genetics; University of North Carolina, Chapel Hill, NC, USA
| | - Xurde M Caravia
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - David Roiz-Valle
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Shenghui He
- Department of Genetics; University of North Carolina, Chapel Hill, NC, USA
- The Lineberger Comprehensive Cancer Center; University of North Carolina, Chapel Hill, NC, USA
| | - Janakiraman Krishnamurthy
- Department of Genetics; University of North Carolina, Chapel Hill, NC, USA
- The Lineberger Comprehensive Cancer Center; University of North Carolina, Chapel Hill, NC, USA
| | - Sahil Kapoor
- Neuroscience Center; University of North Carolina, Chapel Hill, NC, USA
| | - Varun Prasad
- Neuroscience Center; University of North Carolina, Chapel Hill, NC, USA
| | - Cornelius Flowers
- Neuroscience Center; University of North Carolina, Chapel Hill, NC, USA
| | - Matt Beck
- Neuroscience Center; University of North Carolina, Chapel Hill, NC, USA
| | - Jeanette Baran-Gale
- Department of Genetics; University of North Carolina, Chapel Hill, NC, USA
- Bioinformatics and Computational Biology Curriculum; University of North Carolina, Chapel Hill, NC, USA
| | - Norman Sharpless
- Department of Genetics; University of North Carolina, Chapel Hill, NC, USA
- The Lineberger Comprehensive Cancer Center; University of North Carolina, Chapel Hill, NC, USA
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Praveen Sethupathy
- Department of Biomedical Sciences; College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Mohanish Deshmukh
- Neuroscience Center; University of North Carolina, Chapel Hill, NC, USA.
- Neurobiology Curriculum; University of North Carolina, Chapel Hill, NC, USA.
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
21
|
Haoyu W, Meiqin L, Jiaoyang S, Guangliang H, Haofeng L, Pan C, Xiongzhi Q, Kaixin W, Mingli H, Xuejie Y, Lämmermann I, Grillari J, Zhengli S, Jiekai C, Guangming W. Premature aging effects on COVID-19 pathogenesis: new insights from mouse models. Sci Rep 2024; 14:19703. [PMID: 39181932 PMCID: PMC11344828 DOI: 10.1038/s41598-024-70612-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
Aging is identified as a significant risk factor for severe coronavirus disease-2019 (COVID-19), often resulting in profound lung damage and mortality. Yet, the biological relationship between aging, aging-related comorbidities, and COVID-19 remains incompletely understood. This study aimed to elucidate the age-related COVID19 pathogenesis using an Hutchinson-Gilford progeria syndrome (HGPS) mouse model, a premature aging disease model, with humanized ACE2 receptors. Pathological features were compared between young, aged, and HGPS hACE2 mice following SARS-CoV-2 challenge. We demonstrated that young mice display robust interferon response and antiviral activity, whereas this response is attenuated in aged mice. Viral infection in aged mice results in severe respiratory tract hemorrhage, likely contributing a higher mortality rate. In contrast, HGPS hACE2 mice exhibit milder disease manifestations characterized by minor immune cell infiltration and dysregulation of multiple metabolic processes. Comprehensive transcriptome analysis revealed both shared and unique gene expression dynamics among different mouse groups. Collectively, our studies evaluated the impact of SARS-CoV-2 infection on progeroid syndromes using a HGPS hACE2 mouse model, which holds promise as a useful tool for investigating COVID-19 pathogenesis in individuals with premature aging.
Collapse
Affiliation(s)
- Wu Haoyu
- Center for Cell Lineage Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Liu Meiqin
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory Clinical Base, Guangzhou Medical University, Guangzhou, China
| | - Sun Jiaoyang
- Division of Basic Research, Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Hong Guangliang
- Division of Basic Research, Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Lin Haofeng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Chen Pan
- Center for Cell Lineage Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Quan Xiongzhi
- Center for Cell Lineage Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wu Kaixin
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou, China
| | - Hu Mingli
- Center for Cell Lineage Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yang Xuejie
- Center for Cell Lineage Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | | | - Johannes Grillari
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute of Molecular Biotechnology, BOKU University, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200, Vienna, Austria
| | - Shi Zhengli
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Chen Jiekai
- Center for Cell Lineage Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Kowloon, 999077, Hong Kong SAR, China.
| | - Wu Guangming
- Division of Basic Research, Guangzhou National Laboratory, Guangzhou, 510005, China.
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
22
|
Krüger P, Hartinger R, Djabali K. Navigating Lipodystrophy: Insights from Laminopathies and Beyond. Int J Mol Sci 2024; 25:8020. [PMID: 39125589 PMCID: PMC11311807 DOI: 10.3390/ijms25158020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Recent research into laminopathic lipodystrophies-rare genetic disorders caused by mutations in the LMNA gene-has greatly expanded our knowledge of their complex pathology and metabolic implications. These disorders, including Hutchinson-Gilford progeria syndrome (HGPS), Mandibuloacral Dysplasia (MAD), and Familial Partial Lipodystrophy (FPLD), serve as crucial models for studying accelerated aging and metabolic dysfunction, enhancing our understanding of the cellular and molecular mechanisms involved. Research on laminopathies has highlighted how LMNA mutations disrupt adipose tissue function and metabolic regulation, leading to altered fat distribution and metabolic pathway dysfunctions. Such insights improve our understanding of the pathophysiological interactions between genetic anomalies and metabolic processes. This review merges current knowledge on the phenotypic classifications of these diseases and their associated metabolic complications, such as insulin resistance, hypertriglyceridemia, hepatic steatosis, and metabolic syndrome, all of which elevate the risk of cardiovascular disease, stroke, and diabetes. Additionally, a range of published therapeutic strategies, including gene editing, antisense oligonucleotides, and novel pharmacological interventions aimed at addressing defective adipocyte differentiation and lipid metabolism, will be explored. These therapies target the core dysfunctional lamin A protein, aiming to mitigate symptoms and provide a foundation for addressing similar metabolic and genetic disorders.
Collapse
Affiliation(s)
| | | | - Karima Djabali
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany; (P.K.); (R.H.)
| |
Collapse
|
23
|
Carr LM, Mustafa S, Care A, Collins-Praino LE. More than a number: Incorporating the aged phenotype to improve in vitro and in vivo modeling of neurodegenerative disease. Brain Behav Immun 2024; 119:554-571. [PMID: 38663775 DOI: 10.1016/j.bbi.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 03/04/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024] Open
Abstract
Age is the number one risk factor for developing a neurodegenerative disease (ND), such as Alzheimer's disease (AD) or Parkinson's disease (PD). With our rapidly ageing world population, there will be an increased burden of ND and need for disease-modifying treatments. Currently, however, translation of research from bench to bedside in NDs is poor. This may be due, at least in part, to the failure to account for the potential effect of ageing in preclinical modelling of NDs. While ageing can impact upon physiological response in multiple ways, only a limited number of preclinical studies of ND have incorporated ageing as a factor of interest. Here, we evaluate the aged phenotype and highlight the critical, but unmet, need to incorporate aspects of this phenotype into both the in vitro and in vivo models used in ND research. Given technological advances in the field over the past several years, we discuss how these could be harnessed to create novel models of ND that more readily incorporate aspects of the aged phenotype. This includes a recently described in vitro panel of ageing markers, which could help lead to more standardised models and improve reproducibility across studies. Importantly, we cannot assume that young cells or animals yield the same responses as seen in the context of ageing; thus, an improved understanding of the biology of ageing, and how to appropriately incorporate this into the modelling of ND, will ensure the best chance for successful translation of new therapies to the aged patient.
Collapse
Affiliation(s)
- Laura M Carr
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Sanam Mustafa
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia; Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, SA, Australia; Davies Livestock Research Centre, The University of Adelaide, Roseworthy, SA, Australia
| | - Andrew Care
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Lyndsey E Collins-Praino
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia; Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
24
|
Guo W, Zhang Z, Kang J, Gao Y, Qian P, Xie G. Single-cell transcriptome profiling highlights the importance of telocyte, kallikrein genes, and alternative splicing in mouse testes aging. Sci Rep 2024; 14:14795. [PMID: 38926537 PMCID: PMC11208613 DOI: 10.1038/s41598-024-65710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
Advancing healthcare for elderly men requires a deeper understanding of testicular aging processes. In this study, we conducted transcriptomic profiling of 43,323 testicular single cells from young and old mice, shedding light on 1032 telocytes-an underexplored testicular cell type in previous research. Our study unveiled 916 age-related differentially expressed genes (age-DEGs), with telocytes emerging as the cell type harboring the highest count of age-DEGs. Of particular interest, four genes (Klk1b21, Klk1b22, Klk1b24, Klk1b27) from the Kallikrein family, specifically expressed in Leydig cells, displayed down-regulation in aged testes. Moreover, cell-type-level splicing analyses unveiled 1838 age-related alternative splicing (AS) events. While we confirmed the presence of more age-DEGs in somatic cells compared to germ cells, unexpectedly, more age-related AS events were identified in germ cells. Further experimental validation highlighted 4930555F03Rik, a non-coding RNA gene exhibiting significant age-related AS changes. Our study represents the first age-related single-cell transcriptomic investigation of testicular telocytes and Kallikrein genes in Leydig cells, as well as the first delineation of cell-type-level AS dynamics during testicular aging in mice.
Collapse
Affiliation(s)
- Wuyier Guo
- Institute of Reproductive Medicine, Medical School, Nantong University, Qixiu Road 19, Nantong, 226001, China
| | - Ziyan Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Qixiu Road 19, Nantong, 226001, China
| | - Jiahui Kang
- Institute of Reproductive Medicine, Medical School, Nantong University, Qixiu Road 19, Nantong, 226001, China
| | - Yajing Gao
- Institute of Reproductive Medicine, Medical School, Nantong University, Qixiu Road 19, Nantong, 226001, China
| | - Peipei Qian
- Institute of Reproductive Medicine, Medical School, Nantong University, Qixiu Road 19, Nantong, 226001, China
| | - Gangcai Xie
- Institute of Reproductive Medicine, Medical School, Nantong University, Qixiu Road 19, Nantong, 226001, China.
| |
Collapse
|
25
|
Bougaran P, Bautch VL. Life at the crossroads: the nuclear LINC complex and vascular mechanotransduction. Front Physiol 2024; 15:1411995. [PMID: 38831796 PMCID: PMC11144885 DOI: 10.3389/fphys.2024.1411995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024] Open
Abstract
Vascular endothelial cells line the inner surface of all blood vessels, where they are exposed to polarized mechanical forces throughout their lifespan. Both basal substrate interactions and apical blood flow-induced shear stress regulate blood vessel development, remodeling, and maintenance of vascular homeostasis. Disruption of these interactions leads to dysfunction and vascular pathologies, although how forces are sensed and integrated to affect endothelial cell behaviors is incompletely understood. Recently the endothelial cell nucleus has emerged as a prominent force-transducing organelle that participates in vascular mechanotransduction, via communication to and from cell-cell and cell-matrix junctions. The LINC complex, composed of SUN and nesprin proteins, spans the nuclear membranes and connects the nuclear lamina, the nuclear envelope, and the cytoskeleton. Here we review LINC complex involvement in endothelial cell mechanotransduction, describe unique and overlapping functions of each LINC complex component, and consider emerging evidence that two major SUN proteins, SUN1 and SUN2, orchestrate a complex interplay that extends outward to cell-cell and cell-matrix junctions and inward to interactions within the nucleus and chromatin. We discuss these findings in relation to vascular pathologies such as Hutchinson-Gilford progeria syndrome, a premature aging disorder with cardiovascular impairment. More knowledge of LINC complex regulation and function will help to understand how the nucleus participates in endothelial cell force sensing and how dysfunction leads to cardiovascular disease.
Collapse
Affiliation(s)
- Pauline Bougaran
- Department of Biology, The University of North Carolina, Chapel Hill, NC, United States
| | - Victoria L. Bautch
- Department of Biology, The University of North Carolina, Chapel Hill, NC, United States
- McAllister Heart Institute, The University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
26
|
van der Linden J, Stefens SJM, Heredia‐Genestar JM, Ridwan Y, Brandt RMC, van Vliet N, de Beer I, van Thiel BS, Steen H, Cheng C, Roks AJM, Danser AHJ, Essers J, van der Pluijm I. Ercc1 DNA repair deficiency results in vascular aging characterized by VSMC phenotype switching, ECM remodeling, and an increased stress response. Aging Cell 2024; 23:e14126. [PMID: 38451018 PMCID: PMC11113264 DOI: 10.1111/acel.14126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Cardiovascular diseases are the number one cause of death globally. The most important determinant of cardiovascular health is a person's age. Aging results in structural changes and functional decline of the cardiovascular system. DNA damage is an important contributor to the aging process, and mice with a DNA repair defect caused by Ercc1 deficiency display hypertension, vascular stiffening, and loss of vasomotor control. To determine the underlying cause, we compared important hallmarks of vascular aging in aortas of both Ercc1Δ/- and age-matched wildtype mice. Additionally, we investigated vascular aging in 104 week old wildtype mice. Ercc1Δ/- aortas displayed arterial thickening, a loss of cells, and a discontinuous endothelial layer. Aortas of 24 week old Ercc1Δ/- mice showed phenotypical switching of vascular smooth muscle cells (VSMCs), characterized by a decrease in contractile markers and a decrease in synthetic markers at the RNA level. As well as an increase in osteogenic markers, microcalcification, and an increase in markers for damage induced stress response. This suggests that Ercc1Δ/- VSMCs undergo a stress-induced contractile-to-osteogenic phenotype switch. Ercc1Δ/- aortas showed increased MMP activity, elastin fragmentation, and proteoglycan deposition, characteristic of vascular aging and indicative of age-related extracellular matrix remodeling. The 104 week old WT mice showed loss of cells, VSMC dedifferentiation, and senescence. In conclusion, Ercc1Δ/- aortas rapidly display many characteristics of vascular aging, and thus the Ercc1Δ/- mouse is an excellent model to evaluate drugs that prevent vascular aging in a short time span at the functional, histological, and cellular level.
Collapse
Affiliation(s)
- Janette van der Linden
- Division of Vascular Medicine and Pharmacology, Department of Internal MedicineErasmus University Medical CenterRotterdamThe Netherlands
- Department of Molecular Genetics, Cancer Genomics CenterErasmus University Medical CenterRotterdamThe Netherlands
| | - Sanne J. M. Stefens
- Department of Molecular Genetics, Cancer Genomics CenterErasmus University Medical CenterRotterdamThe Netherlands
| | - José María Heredia‐Genestar
- Department of Molecular Genetics, Cancer Genomics CenterErasmus University Medical CenterRotterdamThe Netherlands
| | - Yanto Ridwan
- Department of Molecular Genetics, Cancer Genomics CenterErasmus University Medical CenterRotterdamThe Netherlands
- AMIE Core facilityErasmus University Medical CenterRotterdamThe Netherlands
| | - Renata M. C. Brandt
- Department of Molecular Genetics, Cancer Genomics CenterErasmus University Medical CenterRotterdamThe Netherlands
| | - Nicole van Vliet
- Department of Molecular Genetics, Cancer Genomics CenterErasmus University Medical CenterRotterdamThe Netherlands
| | - Isa de Beer
- Department of Molecular Genetics, Cancer Genomics CenterErasmus University Medical CenterRotterdamThe Netherlands
| | - Bibi S. van Thiel
- Department of Molecular Genetics, Cancer Genomics CenterErasmus University Medical CenterRotterdamThe Netherlands
| | | | - Caroline Cheng
- Division of Experimental Cardiology, Department of CardiologyMC UtrechtUtrechtThe Netherlands
- Division of Internal Medicine and Dermatology, Department of Nephrology and HypertensionMC UtrechtUtrechtThe Netherlands
| | - Anton J. M. Roks
- Division of Vascular Medicine and Pharmacology, Department of Internal MedicineErasmus University Medical CenterRotterdamThe Netherlands
| | - A. H. Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal MedicineErasmus University Medical CenterRotterdamThe Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Cancer Genomics CenterErasmus University Medical CenterRotterdamThe Netherlands
- Department of Vascular SurgeryCardiovascular Institute, Erasmus University Medical CenterRotterdamThe Netherlands
- Department of RadiotherapyErasmus University Medical CenterRotterdamThe Netherlands
| | - Ingrid van der Pluijm
- Department of Molecular Genetics, Cancer Genomics CenterErasmus University Medical CenterRotterdamThe Netherlands
- Department of Vascular SurgeryCardiovascular Institute, Erasmus University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
27
|
Tiwari V, Alam MJ, Bhatia M, Navya M, Banerjee SK. The structure and function of lamin A/C: Special focus on cardiomyopathy and therapeutic interventions. Life Sci 2024; 341:122489. [PMID: 38340979 DOI: 10.1016/j.lfs.2024.122489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/21/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Lamins are inner nuclear membrane proteins that belong to the intermediate filament family. Lamin A/C lie adjacent to the heterochromatin structure in polymer form, providing skeletal to the nucleus. Based on the localization, lamin A/C provides nuclear stability and cytoskeleton to the nucleus and modulates chromatin organization and gene expression. Besides being the structural protein making the inner nuclear membrane in polymer form, lamin A/C functions as a signalling molecule involved in gene expression as an enhancer inside the nucleus. Lamin A/C regulates various cellular pathways like autophagy and energy balance in the cytoplasm. Its expression is highly variable in differentiated tissues, higher in hard tissues like bone and muscle cells, and lower in soft tissues like the liver and brain. In muscle cells, including the heart, lamin A/C must be expressed in a balanced state. Lamin A/C mutation is linked with various diseases, such as muscular dystrophy, lipodystrophy, and cardiomyopathies. It has been observed that a good number of mutations in the LMNA gene impact cardiac activity and its function. Although several works have been published, there are still several unexplored areas left regarding the lamin A/C function and structure in the cardiovascular system and its pathological state. In this review, we focus on the structural organization, expression pattern, and function of lamin A/C, its interacting partners, and the pathophysiology associated with mutations in the lamin A/C gene, with special emphasis on cardiovascular diseases. With the recent finding on lamin A/C, we have summarized the possible therapeutic interventions to treat cardiovascular symptoms and reverse the molecular changes.
Collapse
Affiliation(s)
- Vikas Tiwari
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Md Jahangir Alam
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India; Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Madhavi Bhatia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Malladi Navya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Sanjay K Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India.
| |
Collapse
|
28
|
Damacena de Angelis C, Meddeb M, Chen N, Fisher SA. An antisense oligonucleotide efficiently suppresses splicing of an alternative exon in vascular smooth muscle in vivo. Am J Physiol Heart Circ Physiol 2024; 326:H860-H869. [PMID: 38276948 PMCID: PMC11221813 DOI: 10.1152/ajpheart.00745.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Targeting alternative exons for therapeutic gain has been achieved in a few instances and potentially could be applied more broadly. The myosin phosphatase (MP) enzyme is a critical hub upon which signals converge to regulate vessel tone. Alternative exon 24 of myosin phosphatase regulatory subunit (Mypt1 E24) is an ideal target as toggling between the two isoforms sets smooth muscle sensitivity to vasodilators such as nitric oxide (NO). This study aimed to develop a gene-based therapy to suppress splicing of Mypt1 E24 thereby switching MP enzyme to the NO-responsive isoform. CRISPR/Cas9 constructs were effective at editing of Mypt1 E24 in vitro; however, targeting of vascular smooth muscle in vivo with AAV9 was inefficient. In contrast, an octo-guanidine conjugated antisense oligonucleotide targeting the 5' splice site of Mypt1 E24 was highly efficient in vivo. It reduced the percent splicing inclusion of Mypt1 E24 from 80% to 10% in mesenteric arteries. The maximal and half-maximal effects occurred at 12.5 and 6.25 mg/kg, respectively. The effect persisted for at least 1 mo without toxicity. This highly effective splice-blocking antisense oligonucleotide could be developed as a novel therapy to reverse vascular dysfunction common to diseases such as hypertension and heart failure.NEW & NOTEWORTHY Alternative exon usage is a major driver of phenotypic diversity in all cell types including smooth muscle. However, the functional significance of most of the hundreds of thousands of alternative exons has not been defined, nor in most cases even tested. If their importance to vascular function were known these alternative exons could represent novel therapeutic targets. Here, we present injection of Vivo-morpholino splice-blocking antisense oligonucleotides as a simple, efficient, and cost-effective method for suppression of alternative exon usage in vascular smooth muscle in vivo.
Collapse
Affiliation(s)
| | - Mariam Meddeb
- Division of Cardiology, Department of Medicine, Baltimore, Maryland, United States
| | - Nelson Chen
- University of Maryland-Baltimore Scholars Program, Baltimore, Maryland, United States
| | - Steven A Fisher
- Division of Cardiology, Department of Medicine, Baltimore, Maryland, United States
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States
| |
Collapse
|
29
|
Paine PT, Nguyen A, Ocampo A. Partial cellular reprogramming: A deep dive into an emerging rejuvenation technology. Aging Cell 2024; 23:e14039. [PMID: 38040663 PMCID: PMC10861195 DOI: 10.1111/acel.14039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 12/03/2023] Open
Abstract
Aging and age-associated disease are a major medical and societal burden in need of effective treatments. Cellular reprogramming is a biological process capable of modulating cell fate and cellular age. Harnessing the rejuvenating benefits without altering cell identity via partial cellular reprogramming has emerged as a novel translational strategy with therapeutic potential and strong commercial interests. Here, we explore the aging-related benefits of partial cellular reprogramming while examining limitations and future directions for the field.
Collapse
Affiliation(s)
- Patrick T. Paine
- Department of Biomedical Sciences, Faculty of Biology and MedicineUniversity of LausanneLausanneVaudSwitzerland
- Center for Virology and Vaccine ResearchHarvard Medical SchoolBostonMassachusettsUSA
- Present address:
McGovern Institute for Brain Research at MIT, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | | | - Alejandro Ocampo
- Department of Biomedical Sciences, Faculty of Biology and MedicineUniversity of LausanneLausanneVaudSwitzerland
- EPITERNA SAEpalingesSwitzerland
| |
Collapse
|
30
|
Costa DG, Ferreira-Marques M, Cavadas C. Lipodystrophy as a target to delay premature aging. Trends Endocrinol Metab 2024; 35:97-106. [PMID: 37968143 DOI: 10.1016/j.tem.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/25/2023] [Accepted: 10/18/2023] [Indexed: 11/17/2023]
Abstract
Lipodystrophy syndromes are rare diseases characterized by low levels and an abnormal distribution of adipose tissue, caused by diverse genetic or acquired causes. These conditions commonly exhibit metabolic complications, including insulin resistance, diabetes, hypertriglyceridemia, nonalcoholic fatty liver disease, and adipose tissue dysfunction. Moreover, genetic lipodystrophic laminopathies exhibit a premature aging phenotype, emphasizing the importance of restoring adipose tissue distribution and function. In this opinion, we discuss the relevance of adipose tissue reestablishment as a potential approach to alleviate premature aging and age-related complications in genetic lipodystrophy syndromes.
Collapse
Affiliation(s)
- Daniela G Costa
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Marisa Ferreira-Marques
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Cláudia Cavadas
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
31
|
Perez K, Parras A, Picó S, Rechsteiner C, Haghani A, Brooke R, Mrabti C, Schoenfeldt L, Horvath S, Ocampo A. DNA repair-deficient premature aging models display accelerated epigenetic age. Aging Cell 2024; 23:e14058. [PMID: 38140713 PMCID: PMC10861193 DOI: 10.1111/acel.14058] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Several premature aging mouse models have been developed to study aging and identify interventions that can delay age-related diseases. Yet, it is still unclear whether these models truly recapitulate natural aging. Here, we analyzed DNA methylation in multiple tissues of four previously reported mouse models of premature aging (Ercc1, LAKI, Polg, and Xpg). We estimated DNA methylation (DNAm) age of these samples using the Horvath clock. The most pronounced increase in DNAm age could be observed in Ercc1 mice, a strain which exhibits a deficit in DNA nucleotide excision repair. Similarly, we detected an increase in epigenetic age in fibroblasts isolated from patients with progeroid syndromes associated with mutations in DNA excision repair genes. These findings highlight that mouse models with deficiencies in DNA repair, unlike other premature aging models, display accelerated epigenetic age, suggesting a strong connection between DNA damage and epigenetic dysregulation during aging.
Collapse
Affiliation(s)
- Kevin Perez
- Department of Biomedical Sciences, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
- EPITERNA SAEpalingesSwitzerland
| | - Alberto Parras
- Department of Biomedical Sciences, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
- EPITERNA SAEpalingesSwitzerland
| | - Sara Picó
- Department of Biomedical Sciences, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Cheyenne Rechsteiner
- Department of Biomedical Sciences, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | | | - Robert Brooke
- Epigenetic Clock Development FoundationTorranceCaliforniaUSA
| | - Calida Mrabti
- Department of Biomedical Sciences, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Lucas Schoenfeldt
- Department of Biomedical Sciences, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
- EPITERNA SAEpalingesSwitzerland
| | - Steve Horvath
- Altos LabsSan DiegoCaliforniaUSA
- Epigenetic Clock Development FoundationTorranceCaliforniaUSA
- Human Genetics, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Alejandro Ocampo
- Department of Biomedical Sciences, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
- EPITERNA SAEpalingesSwitzerland
| |
Collapse
|
32
|
Macías Á, Nevado RM, González-Gómez C, Gonzalo P, Andrés-Manzano MJ, Dorado B, Benedicto I, Andrés V. Coronary and carotid artery dysfunction and K V7 overexpression in a mouse model of Hutchinson-Gilford progeria syndrome. GeroScience 2024; 46:867-884. [PMID: 37233881 PMCID: PMC10828489 DOI: 10.1007/s11357-023-00808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare genetic disease caused by expression of progerin, a lamin A variant that is also expressed at low levels in non-HGPS individuals. Although HGPS patients die predominantly from myocardial infarction and stroke, the mechanisms that provoke pathological alterations in the coronary and cerebral arteries in HGPS remain ill defined. Here, we assessed vascular function in the coronary arteries (CorAs) and carotid arteries (CarAs) of progerin-expressing LmnaG609G/G609G mice (G609G), both in resting conditions and after hypoxic stimulus. Wire myography, pharmacological screening, and gene expression studies demonstrated vascular atony and stenosis, as well as other functional alterations in progeroid CorAs and CarAs and aorta. These defects were associated with loss of vascular smooth muscle cells and overexpression of the KV7 family of voltage-dependent potassium channels. Compared with wild-type controls, G609G mice showed reduced median survival upon chronic isoproterenol exposure, a baseline state of chronic cardiac hypoxia characterized by overexpression of hypoxia-inducible factor 1α and 3α genes, and increased cardiac vascularization. Our results shed light on the mechanisms underlying progerin-induced coronary and carotid artery disease and identify KV7 channels as a candidate target for the treatment of HGPS.
Collapse
Affiliation(s)
- Álvaro Macías
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Rosa M Nevado
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina González-Gómez
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Gonzalo
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - María Jesús Andrés-Manzano
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Dorado
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio Benedicto
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040, Madrid, Spain
| | - Vicente Andrés
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
33
|
Hasper J, Welle K, Swovick K, Hryhorenko J, Ghaemmaghami S, Buchwalter A. Long lifetime and tissue-specific accumulation of lamin A/C in Hutchinson-Gilford progeria syndrome. J Cell Biol 2024; 223:e202307049. [PMID: 37966721 PMCID: PMC10651395 DOI: 10.1083/jcb.202307049] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
LMNA mutations cause laminopathies that afflict the cardiovascular system and include Hutchinson-Gilford progeria syndrome. The origins of tissue specificity in these diseases are unclear as the lamin A/C proteins are broadly expressed. We show that LMNA transcript levels are not predictive of lamin A/C protein levels across tissues and use quantitative proteomics to discover that tissue context and disease mutation each influence lamin A/C protein's lifetime. Lamin A/C's lifetime is an order of magnitude longer in the aorta, heart, and fat, where laminopathy pathology is apparent, than in the liver and intestine, which are spared from the disease. Lamin A/C is especially insoluble in cardiovascular tissues, which may limit degradation and promote protein stability. Progerin is even more long lived than lamin A/C in the cardiovascular system and accumulates there over time. Progerin accumulation is associated with impaired turnover of hundreds of abundant proteins in progeroid tissues. These findings identify impaired lamin A/C protein turnover as a novel feature of laminopathy syndromes.
Collapse
Affiliation(s)
- John Hasper
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Kevin Welle
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, NY, USA
| | - Kyle Swovick
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, NY, USA
| | - Jennifer Hryhorenko
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, NY, USA
| | - Sina Ghaemmaghami
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, NY, USA
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Abigail Buchwalter
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Physiology, University of California, San Francisco, CA, USA
| |
Collapse
|
34
|
Macicior J, Fernández D, Ortega-Gutiérrez S. A new fluorescent probe for the visualization of progerin. Bioorg Chem 2024; 142:106967. [PMID: 37979321 DOI: 10.1016/j.bioorg.2023.106967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) or progeria is a rare genetic disease that causes premature aging, leading to a drastic reduction in the life expectancy of patients. Progeria is mainly caused by the intracellular accumulation of a defective protein called progerin, generated from a mutation in the LMNA gene. Currently, there is only one approved drug for the treatment of progeria, which has limited efficacy. It is believed that progerin levels are the most important biomarker related to the severity of the disease. However, there is a lack of effective tools to directly visualize progerin in the native cellular models, since the commercially available antibodies are not well suited for the direct visualization of progerin in cells from the mouse model of the disease. In this context, an alternative option for the visualization of a protein relies on the use of fluorescent chemical probes, molecules with affinity and specificity towards a protein. In this work we report the synthesis and characterization of a new fluorescent probe (UCM-23079) that allows for the direct visualization of progerin in cells from the most widely used progeroid mouse model. Thus, UCM-23079 is a new tool compound that could help prioritize potential preclinical therapies towards the final goal of finding a definitive cure for progeria.
Collapse
Affiliation(s)
- Jon Macicior
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Plaza de las Ciencias s/n, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Daniel Fernández
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Plaza de las Ciencias s/n, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Silvia Ortega-Gutiérrez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Plaza de las Ciencias s/n, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
35
|
Santinha D, Vilaça A, Estronca L, Schüler SC, Bartoli C, De Sandre-Giovannoli A, Figueiredo A, Quaas M, Pompe T, Ori A, Ferreira L. Remodeling of the Cardiac Extracellular Matrix Proteome During Chronological and Pathological Aging. Mol Cell Proteomics 2024; 23:100706. [PMID: 38141925 PMCID: PMC10828820 DOI: 10.1016/j.mcpro.2023.100706] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023] Open
Abstract
Impaired extracellular matrix (ECM) remodeling is a hallmark of many chronic inflammatory disorders that can lead to cellular dysfunction, aging, and disease progression. The ECM of the aged heart and its effects on cardiac cells during chronological and pathological aging are poorly understood across species. For this purpose, we first used mass spectrometry-based proteomics to quantitatively characterize age-related remodeling of the left ventricle (LV) of mice and humans during chronological and pathological (Hutchinson-Gilford progeria syndrome (HGPS)) aging. Of the approximately 300 ECM and ECM-associated proteins quantified (named as Matrisome), we identified 13 proteins that were increased during aging, including lactadherin (MFGE8), collagen VI α6 (COL6A6), vitronectin (VTN) and immunoglobulin heavy constant mu (IGHM), whereas fibulin-5 (FBLN5) was decreased in most of the data sets analyzed. We show that lactadherin accumulates with age in large cardiac blood vessels and when immobilized, triggers phosphorylation of several phosphosites of GSK3B, MAPK isoforms 1, 3, and 14, and MTOR kinases in aortic endothelial cells (ECs). In addition, immobilized lactadherin increased the expression of pro-inflammatory markers associated with an aging phenotype. These results extend our knowledge of the LV proteome remodeling induced by chronological and pathological aging in different species (mouse and human). The lactadherin-triggered changes in the proteome and phosphoproteome of ECs suggest a straight link between ECM component remodeling and the aging process of ECs, which may provide an additional layer to prevent cardiac aging.
Collapse
Affiliation(s)
- Deolinda Santinha
- Faculty of Medicine, University of Coimbra, Celas, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, Coimbra, Portugal
| | - Andreia Vilaça
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, Coimbra, Portugal; CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Luís Estronca
- Faculty of Medicine, University of Coimbra, Celas, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, Coimbra, Portugal
| | - Svenja C Schüler
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | | | - Annachiara De Sandre-Giovannoli
- Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France; Molecular genetics laboratory, La Timone children's hospital, Marseille, France
| | - Arnaldo Figueiredo
- Serviço de Urologia e Transplantação Renal, Centro Hospitalar Universitário Coimbra EPE, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Maximillian Quaas
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Tilo Pompe
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany.
| | - Lino Ferreira
- Faculty of Medicine, University of Coimbra, Celas, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, Coimbra, Portugal.
| |
Collapse
|
36
|
Arun A, Nath AR, Thankachan B, Unnikrishnan MK. Hutchinson-Gilford progeria syndrome: unraveling the genetic basis, symptoms, and advancements in therapeutic approaches. THERAPEUTIC ADVANCES IN RARE DISEASE 2024; 5:26330040241305144. [PMID: 39691184 PMCID: PMC11650505 DOI: 10.1177/26330040241305144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
Hutchinson-Gilford Progeria syndrome (HGPS) serves as a prominent model for Progeroid syndromes, a group of rare genetic disorders characterized by accelerated aging. This review explores the genetic basis, clinical presentation, and complications of HGPS. HGPS is caused by mutations in the LMNA gene, resulting in the production of a defective structural protein, prelamin A. This protein contains a "CAAX" motif, where C represents cysteine, and its abnormal processing is central to the disease's pathology. HGPS leads to multiple organ systems being affected, including cardiovascular, skeletal, neurological, and dermatological systems, causing severe disability and increased mortality. Cardiovascular issues are particularly significant in HGPS and are crucial for developing therapeutic strategies. Recent advances in treatment modalities offer promise for managing HGPS. Farnesyltransferase inhibitors and genetic interventions, such as CRISPR-Cas9, have shown potential in mitigating progerin-associated symptoms, with encouraging results observed in preclinical and clinical studies. Additionally, emerging therapies such as rapamycin, sulforaphane, and MG132 hold promise in targeting underlying disease mechanisms. Comprehensive management approaches, including growth hormone therapy, retinoids, and dental care, are emphasized to enhance overall patient well-being. Despite progress, further research is essential to unravel the complex pathophysiology of Progeroid syndromes and develop effective treatments. Continued focus on therapies that address progerin accumulation and its downstream effects is vital for improving patient care and outcomes for individuals affected by HGPS and related disorders. This review highlights ongoing efforts to understand and combat Progeroid syndromes, aiming to alleviate the burdens imposed by these debilitating conditions.
Collapse
Affiliation(s)
- Akhil Arun
- Department of Pharmacy Practice Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, AIMS Ponekkara P.O., Kochi, KL 682041, India
| | - Athira Rejith Nath
- Department of Pharmacy Practice Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, KL, India
| | - Bonny Thankachan
- Department of Pharmacy Practice Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, KL, India
| | - M. K. Unnikrishnan
- Department of Pharmacy Practice Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, KL, India
| |
Collapse
|
37
|
Malakar P, Shukla S, Mondal M, Kar RK, Siddiqui JA. The nexus of long noncoding RNAs, splicing factors, alternative splicing and their modulations. RNA Biol 2024; 21:1-20. [PMID: 38017665 PMCID: PMC10761143 DOI: 10.1080/15476286.2023.2286099] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
The process of alternative splicing (AS) is widely deregulated in a variety of cancers. Splicing is dependent upon splicing factors. Recently, several long noncoding RNAs (lncRNAs) have been shown to regulate AS by directly/indirectly interacting with splicing factors. This review focuses on the regulation of AS by lncRNAs through their interaction with splicing factors. AS mis-regulation caused by either mutation in splicing factors or deregulated expression of splicing factors and lncRNAs has been shown to be involved in cancer development and progression, making aberrant splicing, splicing factors and lncRNA suitable targets for cancer therapy. This review also addresses some of the current approaches used to target AS, splicing factors and lncRNAs. Finally, we discuss research challenges, some of the unanswered questions in the field and provide recommendations to advance understanding of the nexus of lncRNAs, AS and splicing factors in cancer.
Collapse
Affiliation(s)
- Pushkar Malakar
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Sudhanshu Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
| | - Meghna Mondal
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Rajesh Kumar Kar
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
38
|
Baralle M, Romano M. Age-Related Alternative Splicing: Driver or Passenger in the Aging Process? Cells 2023; 12:2819. [PMID: 38132139 PMCID: PMC10742131 DOI: 10.3390/cells12242819] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Alternative splicing changes are closely linked to aging, though it remains unclear if they are drivers or effects. As organisms age, splicing patterns change, varying gene isoform levels and functions. These changes may contribute to aging alterations rather than just reflect declining RNA quality control. Three main splicing types-intron retention, cassette exons, and cryptic exons-play key roles in age-related complexity. These events modify protein domains and increase nonsense-mediated decay, shifting protein isoform levels and functions. This may potentially drive aging or serve as a biomarker. Fluctuations in splicing factor expression also occur with aging. Somatic mutations in splicing genes can also promote aging and age-related disease. The interplay between splicing and aging has major implications for aging biology, though differentiating correlation and causation remains challenging. Declaring a splicing factor or event as a driver requires comprehensive evaluation of the associated molecular and physiological changes. A greater understanding of how RNA splicing machinery and downstream targets are impacted by aging is essential to conclusively establish the role of splicing in driving aging, representing a promising area with key implications for understanding aging, developing novel therapeutical options, and ultimately leading to an increase in the healthy human lifespan.
Collapse
Affiliation(s)
- Marco Baralle
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy;
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via A. Valerio 28, 34127 Trieste, Italy
| |
Collapse
|
39
|
Ferreira‐Marques M, Carvalho A, Franco AC, Leal A, Botelho M, Carmo‐Silva S, Águas R, Cortes L, Lucas V, Real AC, López‐Otín C, Nissan X, de Almeida LP, Cavadas C, Aveleira CA. Ghrelin delays premature aging in Hutchinson-Gilford progeria syndrome. Aging Cell 2023; 22:e13983. [PMID: 37858983 PMCID: PMC10726901 DOI: 10.1111/acel.13983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare and fatal genetic condition that arises from a single nucleotide alteration in the LMNA gene, leading to the production of a defective lamin A protein known as progerin. The accumulation of progerin accelerates the onset of a dramatic premature aging phenotype in children with HGPS, characterized by low body weight, lipodystrophy, metabolic dysfunction, skin, and musculoskeletal age-related dysfunctions. In most cases, these children die of age-related cardiovascular dysfunction by their early teenage years. The absence of effective treatments for HGPS underscores the critical need to explore novel safe therapeutic strategies. In this study, we show that treatment with the hormone ghrelin increases autophagy, decreases progerin levels, and alleviates other cellular hallmarks of premature aging in human HGPS fibroblasts. Additionally, using a HGPS mouse model (LmnaG609G/G609G mice), we demonstrate that ghrelin administration effectively rescues molecular and histopathological progeroid features, prevents progressive weight loss in later stages, reverses the lipodystrophic phenotype, and extends lifespan of these short-lived mice. Therefore, our findings uncover the potential of modulating ghrelin signaling offers new treatment targets and translational approaches that may improve outcomes and enhance the quality of life for patients with HGPS and other age-related pathologies.
Collapse
Affiliation(s)
- Marisa Ferreira‐Marques
- CNC – Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- CIBB – Center for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
- Faculty of PharmacyUniversity of CoimbraCoimbraPortugal
| | - André Carvalho
- CNC – Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
| | - Ana Catarina Franco
- CNC – Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- CIBB – Center for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
- Faculty of PharmacyUniversity of CoimbraCoimbraPortugal
| | - Ana Leal
- CNC – Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
| | - Mariana Botelho
- CNC – Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
| | - Sara Carmo‐Silva
- CNC – Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- CIBB – Center for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
| | - Rodolfo Águas
- CNC – Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
| | - Luísa Cortes
- CNC – Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- CIBB – Center for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
| | - Vasco Lucas
- CNC – Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
| | - Ana Carolina Real
- CNC – Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
| | - Carlos López‐Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de OncologíaUniversidad de OviedoOviedoSpain
| | - Xavier Nissan
- CECS, I‐StemCorbeil‐EssonnesFrance
- INSERM U861, I‐StemCorbeil‐EssonnesFrance
- UEVE U861, I‐StemCorbeil‐EssonnesFrance
| | - Luís Pereira de Almeida
- CNC – Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- CIBB – Center for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
- Faculty of PharmacyUniversity of CoimbraCoimbraPortugal
| | - Cláudia Cavadas
- CNC – Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- CIBB – Center for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
- Faculty of PharmacyUniversity of CoimbraCoimbraPortugal
| | - Célia A. Aveleira
- CNC – Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- CIBB – Center for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
- MIA‐Portugal – Multidisciplinar Institute of AgeingUniversity of CoimbraCoimbraPortugal
| |
Collapse
|
40
|
Lian J, Du L, Li Y, Yin Y, Yu L, Wang S, Ma H. Hutchinson-Gilford progeria syndrome: Cardiovascular manifestations and treatment. Mech Ageing Dev 2023; 216:111879. [PMID: 37832833 DOI: 10.1016/j.mad.2023.111879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/04/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS), also known as hereditary progeria syndrome, is caused by mutations in the LMNA gene and the expression of progerin, which causes accelerated aging and premature death, with most patients dying of heart failure or other cardiovascular complications in their teens. HGPS patients are able to exhibit cardiovascular phenotypes similar to physiological aging, such as extensive atherosclerosis, smooth muscle cell loss, vascular lesions, and electrical and functional abnormalities of the heart. It also excludes the traditional risk causative factors of cardiovascular disease, making HGPS a new model for studying aging-related cardiovascular disease. Here, we analyzed the pathogenesis and pathophysiological characteristics of HGPS and the relationship between HGPS and cardiovascular disease, provided insight into the molecular mechanisms of cardiovascular disease pathogenesis in HGPS patients and treatment strategies for this disease. Moreover, we summarize the disease models used in HGPS studies to improve our understanding of the pathological mechanisms of cardiovascular aging in HGPS patients.
Collapse
Affiliation(s)
- Jing Lian
- Medical School of Yan'an University, Yan'an, China
| | - Linfang Du
- Medical School of Yan'an University, Yan'an, China
| | - Yang Li
- School of Basic Medical Sciences, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Lu Yu
- Department of Pathology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | | | - Heng Ma
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
41
|
Worman HJ, Michaelis S. Prelamin A and ZMPSTE24 in premature and physiological aging. Nucleus 2023; 14:2270345. [PMID: 37885131 PMCID: PMC10730219 DOI: 10.1080/19491034.2023.2270345] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
As human longevity increases, understanding the molecular mechanisms that drive aging becomes ever more critical to promote health and prevent age-related disorders. Premature aging disorders or progeroid syndromes can provide critical insights into aspects of physiological aging. A major cause of progeroid syndromes which result from mutations in the genes LMNA and ZMPSTE24 is disruption of the final posttranslational processing step in the production of the nuclear scaffold protein lamin A. LMNA encodes the lamin A precursor, prelamin A and ZMPSTE24 encodes the prelamin A processing enzyme, the zinc metalloprotease ZMPSTE24. Progeroid syndromes resulting from mutations in these genes include the clinically related disorders Hutchinson-Gilford progeria syndrome (HGPS), mandibuloacral dysplasia-type B, and restrictive dermopathy. These diseases have features that overlap with one another and with some aspects of physiological aging, including bone defects resembling osteoporosis and atherosclerosis (the latter primarily in HGPS). The progeroid syndromes have ignited keen interest in the relationship between defective prelamin A processing and its accumulation in normal physiological aging. In this review, we examine the hypothesis that diminished processing of prelamin A by ZMPSTE24 is a driver of physiological aging. We review features a new mouse (LmnaL648R/L648R) that produces solely unprocessed prelamin A and provides an ideal model for examining the effects of its accumulation during aging. We also discuss existing data on the accumulation of prelamin A or its variants in human physiological aging, which call out for further validation and more rigorous experimental approaches to determine if prelamin A contributes to normal aging.
Collapse
Affiliation(s)
- Howard J. Worman
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Susan Michaelis
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
42
|
Xin H, Tang Y, Jin YH, Li HL, Tian Y, Yu C, Zhao ZJ, Wu MS, Pan YF. Knockdown of LMNA inhibits Akt/β-catenin-mediated cell invasion and migration in clear cell renal cell carcinoma cells. Cell Adh Migr 2023; 17:1-14. [PMID: 37749865 PMCID: PMC10524799 DOI: 10.1080/19336918.2023.2260644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/18/2023] [Indexed: 09/27/2023] Open
Abstract
The LMNA gene encoding lamin A/C is amplified in some clear cell renal cell carcinoma (ccRCC) samples. Our data showed that depletion of the tumor suppressor PBRM1 can upregulate lamin A/C levels, and lamin A/C could interact with PBRM1. However, the role of lamin A/C in ccRCC is not yet fully understood. Our functional assays showed that although the proliferation ability was slightly impaired after LMNA depletion, the migration and invasion of ccRCC cells were significantly inhibited. This suppression was accompanied by a reduction in MMP2, MMP9, AKT/p-AKT, and Wnt/β-catenin protein levels. Our data therefore suggest that lamin A/C, as an interaction partner of the tumor suppressor PBRM1, plays a crucial role in tumor invasion and metastasis in ccRCC.
Collapse
Affiliation(s)
- Hui Xin
- Department of Medical Genetics, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Gene Detection and Treatment in Guizhou Province, Zunyi, Guizhou, China
| | - Yu Tang
- Department of Medical Genetics, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Gene Detection and Treatment in Guizhou Province, Zunyi, Guizhou, China
| | - Yan-Hong Jin
- Department of Medical Genetics, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Gene Detection and Treatment in Guizhou Province, Zunyi, Guizhou, China
| | - Hu-Li Li
- Department of Medical Genetics, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yu Tian
- Department of Medical Genetics, Zunyi Medical University, Zunyi, Guizhou, China
| | - Cong Yu
- Department of Medical Genetics, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ze-Ju Zhao
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Ming-Song Wu
- Department of Medical Genetics, Zunyi Medical University, Zunyi, Guizhou, China
| | - You-Fu Pan
- Department of Medical Genetics, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Gene Detection and Treatment in Guizhou Province, Zunyi, Guizhou, China
| |
Collapse
|
43
|
van der Linden J, Trap L, Scherer CV, Roks AJM, Danser AHJ, van der Pluijm I, Cheng C. Model Systems to Study the Mechanism of Vascular Aging. Int J Mol Sci 2023; 24:15379. [PMID: 37895059 PMCID: PMC10607365 DOI: 10.3390/ijms242015379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death globally. Within cardiovascular aging, arterial aging holds significant importance, as it involves structural and functional alterations in arteries that contribute substantially to the overall decline in cardiovascular health during the aging process. As arteries age, their ability to respond to stress and injury diminishes, while their luminal diameter increases. Moreover, they experience intimal and medial thickening, endothelial dysfunction, loss of vascular smooth muscle cells, cellular senescence, extracellular matrix remodeling, and deposition of collagen and calcium. This aging process also leads to overall arterial stiffening and cellular remodeling. The process of genomic instability plays a vital role in accelerating vascular aging. Progeria syndromes, rare genetic disorders causing premature aging, exemplify the impact of genomic instability. Throughout life, our DNA faces constant challenges from environmental radiation, chemicals, and endogenous metabolic products, leading to DNA damage and genome instability as we age. The accumulation of unrepaired damages over time manifests as an aging phenotype. To study vascular aging, various models are available, ranging from in vivo mouse studies to cell culture options, and there are also microfluidic in vitro model systems known as vessels-on-a-chip. Together, these models offer valuable insights into the aging process of blood vessels.
Collapse
Affiliation(s)
- Janette van der Linden
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Department of Molecular Genetics, Cancer Genomics Center Netherlands, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Lianne Trap
- Department of Pulmonary Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Caroline V. Scherer
- Department of Molecular Genetics, Cancer Genomics Center Netherlands, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Anton J. M. Roks
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - A. H. Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Ingrid van der Pluijm
- Department of Molecular Genetics, Cancer Genomics Center Netherlands, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Department of Vascular Surgery, Cardiovascular Institute, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Caroline Cheng
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
44
|
Quintana‐Torres D, Valle‐Cao A, Bousquets‐Muñoz P, Freitas‐Rodríguez S, Rodríguez F, Lucia A, López‐Otín C, López‐Soto A, Folgueras AR. The secretome atlas of two mouse models of progeria. Aging Cell 2023; 22:e13952. [PMID: 37565451 PMCID: PMC10577534 DOI: 10.1111/acel.13952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease caused by nuclear envelope alterations that lead to accelerated aging and premature death. Several studies have linked health and longevity to cell-extrinsic mechanisms, highlighting the relevance of circulating factors in the aging process as well as in age-related diseases. We performed a global plasma proteomic analysis in two preclinical progeroid models (LmnaG609G/G609G and Zmpste24-/- mice) using aptamer-based proteomic technology. Pathways related to the extracellular matrix, growth factor response and calcium ion binding were among the most enriched in the proteomic signature of progeroid samples compared to controls. Despite the global downregulation trend found in the plasma proteome of progeroid mice, several proteins associated with cardiovascular disease, the main cause of death in HGPS, were upregulated. We also developed a chronological age predictor using plasma proteome data from a cohort of healthy mice (aged 1-30 months), that reported an age acceleration when applied to progeroid mice, indicating that these mice exhibit an "old" plasma proteomic signature. Furthermore, when compared to naturally-aged mice, a great proportion of differentially expressed circulating proteins in progeroid mice were specific to premature aging, highlighting secretome-associated differences between physiological and accelerated aging. This is the first large-scale profiling of the plasma proteome in progeroid mice, which provides an extensive list of candidate circulating plasma proteins as potential biomarkers and/or therapeutic targets for further exploration and hypothesis generation in the context of both physiological and premature aging.
Collapse
Affiliation(s)
- Diego Quintana‐Torres
- Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de OviedoOviedoSpain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
| | - Alejandra Valle‐Cao
- Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de OviedoOviedoSpain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
| | - Pablo Bousquets‐Muñoz
- Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de OviedoOviedoSpain
| | - Sandra Freitas‐Rodríguez
- Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de OviedoOviedoSpain
| | - Francisco Rodríguez
- Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de OviedoOviedoSpain
| | - Alejandro Lucia
- CIBER of Frailty and Healthy Aging (CIBERFES) and Instituto de Investigación 12 de Octubre (i+12)MadridSpain
- Faculty of Sport SciencesUniversidad EuropeaMadridSpain
| | - Carlos López‐Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de OviedoOviedoSpain
| | - Alejandro López‐Soto
- Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de OviedoOviedoSpain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
| | - Alicia R. Folgueras
- Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de OviedoOviedoSpain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
| |
Collapse
|
45
|
Kim BH, Chung YH, Woo TG, Kang SM, Park S, Park BJ. Progerin, an Aberrant Spliced Form of Lamin A, Is a Potential Therapeutic Target for HGPS. Cells 2023; 12:2299. [PMID: 37759521 PMCID: PMC10527460 DOI: 10.3390/cells12182299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare genetic disorder caused by the mutant protein progerin, which is expressed by the abnormal splicing of the LMNA gene. HGPS affects systemic levels, with the exception of cognition or brain development, in children, showing that cellular aging can occur in the short term. Studying progeria could be useful in unraveling the causes of human aging (as well as fatal age-related disorders). Elucidating the clear cause of HGPS or the development of a therapeutic medicine could improve the quality of life and extend the survival of patients. This review aimed to (i) briefly describe how progerin was discovered as the causative agent of HGPS, (ii) elucidate the puzzling observation of the absence of primary neurological disease in HGPS, (iii) present several studies showing the deleterious effects of progerin and the beneficial effects of its inhibition, and (iv) summarize research to develop a therapy for HGPS and introduce clinical trials for its treatment.
Collapse
Affiliation(s)
- Bae-Hoon Kim
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.); (Y.-H.C.); (T.-G.W.)
| | - Yeon-Ho Chung
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.); (Y.-H.C.); (T.-G.W.)
| | - Tae-Gyun Woo
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.); (Y.-H.C.); (T.-G.W.)
| | - So-Mi Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46231, Republic of Korea; (S.-M.K.); (S.P.)
| | - Soyoung Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46231, Republic of Korea; (S.-M.K.); (S.P.)
| | - Bum-Joon Park
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.); (Y.-H.C.); (T.-G.W.)
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46231, Republic of Korea; (S.-M.K.); (S.P.)
| |
Collapse
|
46
|
Cabral WA, Stephan C, Terajima M, Thaivalappil AA, Blanchard O, Tavarez UL, Narisu N, Yan T, Wincovitch S, Taga Y, Yamauchi M, Kozloff KM, Erdos MR, Collins FS. Bone dysplasia in Hutchinson-Gilford progeria syndrome is associated with dysregulated differentiation and function of bone cell populations. Aging Cell 2023; 22:e13903. [PMID: 37365004 PMCID: PMC10497813 DOI: 10.1111/acel.13903] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disorder affecting tissues of mesenchymal origin. Most individuals with HGPS harbor a de novo c.1824C > T (p.G608G) mutation in the gene encoding lamin A (LMNA), which activates a cryptic splice donor site resulting in production of the toxic "progerin" protein. Clinical manifestations include growth deficiency, lipodystrophy, sclerotic dermis, cardiovascular defects, and bone dysplasia. Here we utilized the LmnaG609G knock-in (KI) mouse model of HGPS to further define mechanisms of bone loss associated with normal and premature aging disorders. Newborn skeletal staining of KI mice revealed altered rib cage shape and spinal curvature, and delayed calvarial mineralization with increased craniofacial and mandibular cartilage content. MicroCT analysis and mechanical testing of adult femurs indicated increased fragility associated with reduced bone mass, recapitulating the progressive bone deterioration that occurs in HGPS patients. We investigated mechanisms of bone loss in KI mice at the cellular level in bone cell populations. Formation of wild-type and KI osteoclasts from marrow-derived precursors was inhibited by KI osteoblast-conditioned media in vitro, suggesting a secreted factor(s) responsible for decreased osteoclasts on KI trabecular surfaces in vivo. Cultured KI osteoblasts exhibited abnormal differentiation characterized by reduced deposition and mineralization of extracellular matrix with increased lipid accumulation compared to wild-type, providing a mechanism for altered bone formation. Furthermore, quantitative analyses of KI transcripts confirmed upregulation of adipogenic genes both in vitro and in vivo. Thus, osteoblast phenotypic plasticity, inflammation and altered cellular cross-talk contribute to abnormal bone formation in HGPS mice.
Collapse
Affiliation(s)
- Wayne A. Cabral
- Molecular Genetics Section, Center for Precision Health ResearchNational Human Genome Research Institute, NIHBethesdaMarylandUSA
| | - Chris Stephan
- Departments of Orthopedic Surgery and Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Masahiko Terajima
- Division of Oral and Craniofacial Health Sciences, Adams School of DentistryUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Abhirami A. Thaivalappil
- Molecular Genetics Section, Center for Precision Health ResearchNational Human Genome Research Institute, NIHBethesdaMarylandUSA
| | - Owen Blanchard
- Departments of Orthopedic Surgery and Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Urraca L. Tavarez
- Molecular Genetics Section, Center for Precision Health ResearchNational Human Genome Research Institute, NIHBethesdaMarylandUSA
| | - Narisu Narisu
- Molecular Genetics Section, Center for Precision Health ResearchNational Human Genome Research Institute, NIHBethesdaMarylandUSA
| | - Tingfen Yan
- Molecular Genetics Section, Center for Precision Health ResearchNational Human Genome Research Institute, NIHBethesdaMarylandUSA
| | - Stephen M. Wincovitch
- Cytogenetics and Microscopy CoreNational Human Genome Research Institute, NIHBethesdaMarylandUSA
| | - Yuki Taga
- Nippi Research Institute of BiomatrixIbarakiJapan
| | - Mitsuo Yamauchi
- Division of Oral and Craniofacial Health Sciences, Adams School of DentistryUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Kenneth M. Kozloff
- Departments of Orthopedic Surgery and Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Michael R. Erdos
- Molecular Genetics Section, Center for Precision Health ResearchNational Human Genome Research Institute, NIHBethesdaMarylandUSA
| | - Francis S. Collins
- Molecular Genetics Section, Center for Precision Health ResearchNational Human Genome Research Institute, NIHBethesdaMarylandUSA
| |
Collapse
|
47
|
Murtada SI, Kawamura Y, Cavinato C, Wang M, Ramachandra AB, Spronck B, Li DS, Tellides G, Humphrey JD. Biomechanical and transcriptional evidence that smooth muscle cell death drives an osteochondrogenic phenotype and severe proximal vascular disease in progeria. Biomech Model Mechanobiol 2023; 22:1333-1347. [PMID: 37149823 PMCID: PMC10544720 DOI: 10.1007/s10237-023-01722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
Hutchinson-Gilford Progeria Syndrome results in rapid aging and severe cardiovascular sequelae that accelerate near end-of-life. We found a progressive disease process in proximal elastic arteries that was less evident in distal muscular arteries. Changes in aortic structure and function were then associated with changes in transcriptomics assessed via both bulk and single cell RNA sequencing, which suggested a novel sequence of progressive aortic disease: adverse extracellular matrix remodeling followed by mechanical stress-induced smooth muscle cell death, leading a subset of remnant smooth muscle cells to an osteochondrogenic phenotype that results in an accumulation of proteoglycans that thickens the aortic wall and increases pulse wave velocity, with late calcification exacerbating these effects. Increased central artery pulse wave velocity is known to drive left ventricular diastolic dysfunction, the primary diagnosis in progeria children. It appears that mechanical stresses above ~ 80 kPa initiate this progressive aortic disease process, explaining why elastic lamellar structures that are organized early in development under low wall stresses appear to be nearly normal whereas other medial constituents worsen progressively in adulthood. Mitigating early mechanical stress-driven smooth muscle cell loss/phenotypic modulation promises to have important cardiovascular implications in progeria patients.
Collapse
Affiliation(s)
- Sae-Il Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Yuki Kawamura
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Molly Wang
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Bart Spronck
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Maastricht University, Maastricht, Netherlands
| | - David S Li
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - George Tellides
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
48
|
Cancado de Faria R, Shashkova EV, Flaveny C, Baldan A, McCommis KS, Gonzalo S. STAT1 Drives the Interferon-Like Response and Aging Hallmarks in Progeria. AGING BIOLOGY 2023; 1:20230009. [PMID: 40255266 PMCID: PMC12007894 DOI: 10.59368/agingbio.20230009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS), a devastating premature aging disease caused by the mutant lamin-A protein "progerin," features robust sterile inflammation/interferon (IFN)-like response. Targeting inflammation delays cellular and organismal HGPS phenotypes. However, specific mechanisms driving the sterile inflammation/IFN-like response and how this response causes tissue degeneration/loss in HGPS are unknown. We demonstrate that signal transducer and activator of transcription 1 (STAT1) drives the IFN-like response and aging phenotypes in HGPS cellular and mouse models. Calcitriol and baricitinib strongly repress sterile inflammation/IFN-like response, improving hallmarks of progerin-expressing cells such as mitochondrial, autophagy, and proliferation defects. In vivo, calcitriol or baricitinib extend lifespan of progeria mice, and baricitinib alone or combined with a high-caloric/high-fat diet has a remarkable impact reducing skin, aortic, and adipose tissue degeneration. Critically, Stat1 haploinsufficiency reduces tissue degeneration/loss and extends lifespan of progeria mice, recapitulating baricitinib benefits. Our study unveils STAT1 as a driver of the IFN-like response and HGPS pathology and suggests that aberrant STAT1 signaling contributes to aging, providing new therapeutic possibilities for HGPS and other inflammation/IFN response-associated diseases.
Collapse
Affiliation(s)
- Rafael Cancado de Faria
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Elena V. Shashkova
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Colin Flaveny
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
- Now at Pfizer Translation Sciences, Oncology Research Unit, San Diego, CA, USA
| | - Angel Baldan
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Kyle S. McCommis
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Susana Gonzalo
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
49
|
Wilkie SE, Marcu DE, Carter RN, Morton NM, Gonzalo S, Selman C. Hepatic hydrogen sulfide levels are reduced in mouse model of Hutchinson-Gilford progeria syndrome. Aging (Albany NY) 2023; 15:5266-5278. [PMID: 37354210 PMCID: PMC10333079 DOI: 10.18632/aging.204835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/09/2023] [Indexed: 06/26/2023]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare human disease characterised by accelerated biological ageing. Current treatments are limited, and most patients die before 15 years of age. Hydrogen sulfide (H2S) is an important gaseous signalling molecule that it central to multiple cellular homeostasis mechanisms. Dysregulation of tissue H2S levels is thought to contribute to an ageing phenotype in many tissues across animal models. Whether H2S is altered in HGPS is unknown. We investigated hepatic H2S production capacity and transcript, protein and enzymatic activity of proteins that regulate hepatic H2S production and disposal in a mouse model of HGPS (G609G mice, mutated Lmna gene equivalent to a causative mutation in HGPS patients). G609G mice were maintained on either regular chow (RC) or high fat diet (HFD), as HFD has been previously shown to significantly extend lifespan of G609G mice, and compared to wild type (WT) mice maintained on RC. RC fed G609G mice had significantly reduced hepatic H2S production capacity relative to WT mice, with a compensatory elevation in mRNA transcripts associated with several H2S production enzymes, including cystathionine-γ-lyase (CSE). H2S levels and CSE protein were partially rescued in HFD fed G609G mice. As current treatments for patients with HGPS have failed to confer significant improvements to symptoms or longevity, the need for novel therapeutic targets is acute and the regulation of H2S through dietary or pharmacological means may be a promising new avenue for research.
Collapse
Affiliation(s)
- Stephen E. Wilkie
- Glasgow Ageing Research Network (GARNER), School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna 171 65, Sweden
| | - Diana E. Marcu
- Glasgow Ageing Research Network (GARNER), School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Roderick N. Carter
- Molecular Metabolism Group, University/BHF Centre for Cardiovascular Sciences, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Nicholas M. Morton
- Molecular Metabolism Group, University/BHF Centre for Cardiovascular Sciences, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Susana Gonzalo
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, MO 63104, USA
| | - Colin Selman
- Glasgow Ageing Research Network (GARNER), School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
50
|
Eriksson M, Haugaa K, Revêchon G. Readily Available Tools to Detect Progerin and Cardiac Disease Progression in Hutchinson-Gilford Progeria Syndrome. Circulation 2023; 147:1745-1747. [PMID: 37276251 DOI: 10.1161/circulationaha.123.064765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Maria Eriksson
- Departments of Biosciences and Nutrition (M.E., G.R.), Karolinska Institutet, Huddinge, Sweden
| | - Kristina Haugaa
- Medicine Huddinge (K.H.), Karolinska Institutet, Huddinge, Sweden
| | - Gwladys Revêchon
- Departments of Biosciences and Nutrition (M.E., G.R.), Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|