1
|
McLean FE, Omondi BR, Diallo N, Otoboh S, Kifude C, Abdi AI, Lim R, Otto TD, Ghumra A, Rowe JA. Identification of novel PfEMP1 variants containing domain cassettes 11, 15 and 8 that mediate the Plasmodium falciparum virulence-associated rosetting phenotype. PLoS Pathog 2025; 21:e1012434. [PMID: 39804943 PMCID: PMC11759366 DOI: 10.1371/journal.ppat.1012434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/24/2025] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a diverse family of variant surface antigens, encoded by var genes, that mediates binding of infected erythrocytes to human cells and plays a key role in parasite immune evasion and malaria pathology. The increased availability of parasite genome sequence data has revolutionised the study of PfEMP1 diversity across multiple P. falciparum isolates. However, making functional sense of genomic data relies on the ability to infer binding phenotype from var gene sequence. For P. falciparum rosetting, the binding of infected erythrocytes to uninfected erythrocytes, the analysis of var gene/PfEMP1 sequences encoding the phenotype is limited, with only eight rosette-mediating PfEMP1 variants described to date. These known rosetting PfEMP1 variants fall into two types, characterised by N-terminal domains known as "domain cassette" 11 (DC11) and DC16. Here we test the hypothesis that DC11 and DC16 are the only PfEMP1 types in the P. falciparum genome that mediate rosetting, by examining a set of thirteen recent culture-adapted Kenyan parasite lines. We first analysed the var gene/PfEMP1 repertoires of the Kenyan lines and identified an average of three DC11 or DC16 PfEMP1 variants per genotype. In vitro rosette selection of the parasite lines yielded four with a high rosette frequency, and analysis of their var gene transcription, infected erythrocyte PfEMP1 surface expression, rosette disruption and erythrocyte binding function identified four novel rosette-mediating PfEMP1 variants. Two of these were of the predicted DC11 type (one showing the dual rosetting/IgM-Fc-binding phenotype), whereas two contained DC15 (DBLα1.2-CIDRα1.5b) a PfEMP1 type not previously associated with rosetting. We also showed that a Thai parasite line expressing a DC8-like PfEMP1 binds to erythrocytes to form rosettes. Hence, these data expand current knowledge of rosetting mechanisms and emphasize that the PfEMP1 types mediating rosetting are more diverse than previously recognised.
Collapse
Affiliation(s)
- Florence E. McLean
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Brian R. Omondi
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Nouhoum Diallo
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stanley Otoboh
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Carolyne Kifude
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Abdirahman I. Abdi
- KEMRI-Wellcome Trust Research Programme: Centre for Geographic Medicine Research Coast, Kilifi, Kenya
| | - Rivka Lim
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas D. Otto
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ashfaq Ghumra
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - J. Alexandra Rowe
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Tiedje KE, Zhan Q, Ruybal-Pesantez S, Tonkin-Hill G, He Q, Tan MH, Argyropoulos DC, Deed SL, Ghansah A, Bangre O, Oduro AR, Koram KA, Pascual M, Day KP. Measuring changes in Plasmodium falciparum census population size in response to sequential malaria control interventions. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.05.18.23290210. [PMID: 37292908 PMCID: PMC10246142 DOI: 10.1101/2023.05.18.23290210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Here we introduce a new endpoint ″census population size″ to evaluate the epidemiology and control of Plasmodium falciparum infections, where the parasite, rather than the infected human host, is the unit of measurement. To calculate census population size, we rely on a definition of parasite variation known as multiplicity of infection (MOI var ), based on the hyper-diversity of the var multigene family. We present a Bayesian approach to estimate MOI var from sequencing and counting the number of unique DBLα tags (or DBLα types) of var genes, and derive from it census population size by summation of MOI var in the human population. We track changes in this parasite population size and structure through sequential malaria interventions by indoor residual spraying (IRS) and seasonal malaria chemoprevention (SMC) from 2012 to 2017 in an area of high-seasonal malaria transmission in northern Ghana. Following IRS, which reduced transmission intensity by > 90% and decreased parasite prevalence by ~40-50%, significant reductions in var diversity, MOI var , and population size were observed in ~2,000 humans across all ages. These changes, consistent with the loss of diverse parasite genomes, were short lived and 32-months after IRS was discontinued and SMC was introduced, var diversity and population size rebounded in all age groups except for the younger children (1-5 years) targeted by SMC. Despite major perturbations from IRS and SMC interventions, the parasite population remained very large and retained the var population genetic characteristics of a high-transmission system (high var diversity; low var repertoire similarity) demonstrating the resilience of P. falciparum to short-term interventions in high-burden countries of sub-Saharan Africa.
Collapse
|
3
|
Johnson EK, Larremore DB. Bayesian estimation of community size and overlap from random subsamples. PLoS Comput Biol 2022; 18:e1010451. [PMID: 36121879 PMCID: PMC9522272 DOI: 10.1371/journal.pcbi.1010451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/29/2022] [Accepted: 07/28/2022] [Indexed: 11/19/2022] Open
Abstract
Counting the number of species, items, or genes that are shared between two groups, sets, or communities is a simple calculation when sampling is complete. However, when only partial samples are available, quantifying the overlap between two communities becomes an estimation problem. Furthermore, to calculate normalized measures of β-diversity, such as the Jaccard and Sorenson-Dice indices, one must also estimate the total sizes of the communities being compared. Previous efforts to address these problems have assumed knowledge of total community sizes and then used Bayesian methods to produce unbiased estimates with quantified uncertainty. Here, we address communities of unknown size and show that this produces systematically better estimates—both in terms of central estimates and quantification of uncertainty in those estimates. We further show how to use species, item, or gene count data to refine estimates of community size in a Bayesian joint model of community size and overlap.
Collapse
Affiliation(s)
- Erik K. Johnson
- Department of Applied Mathematics, University of Colorado Boulder, Boulder, Colorado, United States of America
- * E-mail: (EKJ); (DBL)
| | - Daniel B. Larremore
- Department of Computer Science, University of Colorado Boulder, Boulder, Colorado, United States of America
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, United States of America
- * E-mail: (EKJ); (DBL)
| |
Collapse
|
4
|
Identifying Targets of Protective Antibodies against Severe Malaria in Papua, Indonesia, Using Locally Expressed Domains of Plasmodium falciparum Erythrocyte Membrane Protein 1. Infect Immun 2022; 90:e0043521. [PMID: 34871039 PMCID: PMC8853675 DOI: 10.1128/iai.00435-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), a diverse family of multidomain proteins expressed on the surface of malaria-infected erythrocytes, is an important target of protective immunity against malaria. Our group recently studied transcription of the var genes encoding PfEMP1 in individuals from Papua, Indonesia, with severe or uncomplicated malaria. We cloned and expressed domains from 32 PfEMP1s, including 22 that were upregulated in severe malaria and 10 that were upregulated in uncomplicated malaria, using a wheat germ cell-free expression system. We used Luminex technology to measure IgG antibodies to these 32 domains and control proteins in 63 individuals (11 children). At presentation to hospital, levels of antibodies to PfEMP1 domains were either higher in uncomplicated malaria or were not significantly different between groups. Using principal component analysis, antibodies to 3 of 32 domains were highly discriminatory between groups. These included two domains upregulated in severe malaria, a DBLβ13 domain and a CIDRα1.6 domain (which has been previously implicated in severe malaria pathogenesis), and a DBLδ domain that was upregulated in uncomplicated malaria. Antibody to control non-PfEMP1 antigens did not differ with disease severity. Antibodies to PfEMP1 domains differ with malaria severity. Lack of antibodies to locally expressed PfEMP1 types, including both domains previously associated with severe malaria and newly identified targets, may in part explain malaria severity in Papuan adults.
Collapse
|
5
|
Andisi KC, Abdi AI. Analysis of var Gene Transcription Pattern Using DBLα Tags. Methods Mol Biol 2022; 2470:173-184. [PMID: 35881346 PMCID: PMC7613572 DOI: 10.1007/978-1-0716-2189-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
AbstractThe Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) antigens, which are encoded by a multigene family called var genes, are exported and inserted onto the surface of the infected erythrocytes. PfEMP1 plays a key role in the pathogenesis of severe malaria and are major targets of naturally acquired immunity. Studying the expression pattern of var genes in P. falciparum clinical isolates is crucial for understanding disease mechanism and immunity to malaria. However, var genes are highly variable, which makes it difficult to study their expression in clinical isolates obtained directly from malaria patients. In this chapter, we describe an approach for analysis of var gene expression that targets a region referred to as DBLα tag, which is relatively conserved in all var genes.
Collapse
|
6
|
Wichers JS, Tonkin-Hill G, Thye T, Krumkamp R, Kreuels B, Strauss J, von Thien H, Scholz JAM, Smedegaard Hansson H, Weisel Jensen R, Turner L, Lorenz FR, Schöllhorn A, Bruchhaus I, Tannich E, Fendel R, Otto TD, Lavstsen T, Gilberger TW, Duffy MF, Bachmann A. Common virulence gene expression in adult first-time infected malaria patients and severe cases. eLife 2021; 10:e69040. [PMID: 33908865 PMCID: PMC8102065 DOI: 10.7554/elife.69040] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/18/2021] [Indexed: 12/22/2022] Open
Abstract
Sequestration of Plasmodium falciparum(P. falciparum)-infected erythrocytes to host endothelium through the parasite-derived P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion proteins is central to the development of malaria pathogenesis. PfEMP1 proteins have diversified and expanded to encompass many sequence variants, conferring each parasite a similar array of human endothelial receptor-binding phenotypes. Here, we analyzed RNA-seq profiles of parasites isolated from 32 P. falciparum-infected adult travellers returning to Germany. Patients were categorized into either malaria naive (n = 15) or pre-exposed (n = 17), and into severe (n = 8) or non-severe (n = 24) cases. For differential expression analysis, PfEMP1-encoding var gene transcripts were de novo assembled from RNA-seq data and, in parallel, var-expressed sequence tags were analyzed and used to predict the encoded domain composition of the transcripts. Both approaches showed in concordance that severe malaria was associated with PfEMP1 containing the endothelial protein C receptor (EPCR)-binding CIDRα1 domain, whereas CD36-binding PfEMP1 was linked to non-severe malaria outcomes. First-time infected adults were more likely to develop severe symptoms and tended to be infected for a longer period. Thus, parasites with more pathogenic PfEMP1 variants are more common in patients with a naive immune status, and/or adverse inflammatory host responses to first infections favor the growth of EPCR-binding parasites.
Collapse
Affiliation(s)
- J Stephan Wichers
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | | | - Thorsten Thye
- Epidemiology and Diagnostics, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
| | - Ralf Krumkamp
- Epidemiology and Diagnostics, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-RiemsHamburgGermany
| | - Benno Kreuels
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, GermanyHamburgGermany
- Department of Medicine, College of MedicineBlantyreMalawi
- Department of Medicine, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Jan Strauss
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Heidrun von Thien
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Judith AM Scholz
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
| | | | | | | | | | - Anna Schöllhorn
- Institute of Tropical Medicine, University of TübingenTübingenGermany
| | - Iris Bruchhaus
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Egbert Tannich
- Epidemiology and Diagnostics, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-RiemsHamburgGermany
| | - Rolf Fendel
- Institute of Tropical Medicine, University of TübingenTübingenGermany
- German Center for Infection Research (DZIF), Partner Site TübingenTübingenGermany
| | - Thomas D Otto
- Institute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUnited Kingdom
| | | | - Tim W Gilberger
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Michael F Duffy
- Department of Microbiology and Immunology, University of MelbourneMelbourneAustralia
| | - Anna Bachmann
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-RiemsHamburgGermany
| |
Collapse
|
7
|
Milne K, Ivens A, Reid AJ, Lotkowska ME, O'Toole A, Sankaranarayanan G, Munoz Sandoval D, Nahrendorf W, Regnault C, Edwards NJ, Silk SE, Payne RO, Minassian AM, Venkatraman N, Sanders MJ, Hill AVS, Barrett M, Berriman M, Draper SJ, Rowe JA, Spence PJ. Mapping immune variation and var gene switching in naive hosts infected with Plasmodium falciparum. eLife 2021; 10:e62800. [PMID: 33648633 PMCID: PMC7924948 DOI: 10.7554/elife.62800] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Falciparum malaria is clinically heterogeneous and the relative contribution of parasite and host in shaping disease severity remains unclear. We explored the interaction between inflammation and parasite variant surface antigen (VSA) expression, asking whether this relationship underpins the variation observed in controlled human malaria infection (CHMI). We uncovered marked heterogeneity in the host response to blood challenge; some volunteers remained quiescent, others triggered interferon-stimulated inflammation and some showed transcriptional evidence of myeloid cell suppression. Significantly, only inflammatory volunteers experienced hallmark symptoms of malaria. When we tracked temporal changes in parasite VSA expression to ask whether variants associated with severe disease rapidly expand in naive hosts, we found no transcriptional evidence to support this hypothesis. These data indicate that parasite variants that dominate severe malaria do not have an intrinsic growth or survival advantage; instead, they presumably rely upon infection-induced changes in their within-host environment for selection.
Collapse
Affiliation(s)
- Kathryn Milne
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
| | - Alasdair Ivens
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
- Centre for Immunity, Infection and Evolution, University of EdinburghEdinburghUnited Kingdom
| | - Adam J Reid
- Wellcome Sanger InstituteCambridgeUnited Kingdom
| | | | - Aine O'Toole
- Centre for Immunity, Infection and Evolution, University of EdinburghEdinburghUnited Kingdom
- Institute of Evolutionary Biology, University of EdinburghEdinburghUnited Kingdom
| | | | - Diana Munoz Sandoval
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
- Instituto de Microbiologia, Universidad San Francisco de QuitoQuitoEcuador
| | - Wiebke Nahrendorf
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
| | - Clement Regnault
- Wellcome Centre for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
- Glasgow Polyomics, University of GlasgowGlasgowUnited Kingdom
| | - Nick J Edwards
- The Jenner Institute, University of OxfordOxfordUnited Kingdom
| | - Sarah E Silk
- The Jenner Institute, University of OxfordOxfordUnited Kingdom
| | - Ruth O Payne
- The Jenner Institute, University of OxfordOxfordUnited Kingdom
| | | | | | | | - Adrian VS Hill
- The Jenner Institute, University of OxfordOxfordUnited Kingdom
| | - Michael Barrett
- Wellcome Centre for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
- Glasgow Polyomics, University of GlasgowGlasgowUnited Kingdom
| | | | - Simon J Draper
- The Jenner Institute, University of OxfordOxfordUnited Kingdom
| | - J Alexandra Rowe
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
- Centre for Immunity, Infection and Evolution, University of EdinburghEdinburghUnited Kingdom
| | - Philip J Spence
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
- Centre for Immunity, Infection and Evolution, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
8
|
Penman BS, Gandon S. Adaptive immunity selects against malaria infection blocking mutations. PLoS Comput Biol 2020; 16:e1008181. [PMID: 33031369 PMCID: PMC7544067 DOI: 10.1371/journal.pcbi.1008181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/22/2020] [Indexed: 11/18/2022] Open
Abstract
The mutation responsible for Duffy negativity, which impedes Plasmodium vivax infection, has reached high frequencies in certain human populations. Conversely, mutations capable of blocking the more lethal P. falciparum have not succeeded in malarious zones. Here we present an evolutionary-epidemiological model of malaria which demonstrates that if adaptive immunity against the most virulent effects of malaria is gained rapidly by the host, mutations which prevent infection per se are unlikely to succeed. Our results (i) explain the rarity of strain-transcending P. falciparum infection blocking adaptations in humans; (ii) make the surprising prediction that mutations which block P. falciparum infection are most likely to be found in populations experiencing low or infrequent malaria transmission, and (iii) predict that immunity against some of the virulent effects of P. vivax malaria may be built up over the course of many infections.
Collapse
Affiliation(s)
- Bridget S. Penman
- Zeeman Institute and School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Sylvain Gandon
- CEFE, CNRS, University of Montpellier, Paul Valéry University of Montpellier, EPHE, IRD, Montpellier, France
| |
Collapse
|
9
|
Tessema SK, Nakajima R, Jasinskas A, Monk SL, Lekieffre L, Lin E, Kiniboro B, Proietti C, Siba P, Felgner PL, Doolan DL, Mueller I, Barry AE. Protective Immunity against Severe Malaria in Children Is Associated with a Limited Repertoire of Antibodies to Conserved PfEMP1 Variants. Cell Host Microbe 2020; 26:579-590.e5. [PMID: 31726028 DOI: 10.1016/j.chom.2019.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/08/2019] [Accepted: 10/18/2019] [Indexed: 01/31/2023]
Abstract
Extreme diversity of the major Plasmodium falciparum antigen, PfEMP1, poses a barrier to identifying targets of immunity to malaria. Here, we used protein microarrays containing hundreds of variants of the DBLα domain of PfEMP1 to cover the diversity of Papua New Guinean (PNG) parasites. Probing the plasma of a longitudinal cohort of malaria-exposed PNG children showed that group 2 DBLα antibodies were moderately associated with a lower risk of uncomplicated malaria, whereas individual variants were only weakly associated with clinical immunity. In contrast, antibodies to 85 individual group 1 and 2 DBLα variants were associated with a 70%-100% reduction in severe malaria. Of these, 17 variants were strong predictors of severe malaria. Analysis of full-length PfEMP1 sequences from PNG samples shows that these 17 variants are linked to pathogenic CIDR domains. This suggests that whereas immunity to uncomplicated malaria requires a broad repertoire of antibodies, immunity to severe malaria targets a subset of conserved variants. These findings provide insights into antimalarial immunity and potential antibody biomarkers for disease risk.
Collapse
Affiliation(s)
- Sofonias K Tessema
- Division of Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne 3000, VIC, Australia
| | - Rie Nakajima
- Physiology & Biophysics Department, Vaccine R&D Center, University of California, Irvine, Irvine 92697, CA, USA
| | - Algis Jasinskas
- Physiology & Biophysics Department, Vaccine R&D Center, University of California, Irvine, Irvine 92697, CA, USA
| | - Stephanie L Monk
- Division of Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne 3000, VIC, Australia
| | - Lea Lekieffre
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Enmoore Lin
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Goroka 441, EHG, Papua New Guinea
| | - Benson Kiniboro
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Goroka 441, EHG, Papua New Guinea
| | - Carla Proietti
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878, QLD, Australia
| | - Peter Siba
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Goroka 441, EHG, Papua New Guinea
| | - Philip L Felgner
- Physiology & Biophysics Department, Vaccine R&D Center, University of California, Irvine, Irvine 92697, CA, USA
| | - Denise L Doolan
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878, QLD, Australia
| | - Ivo Mueller
- Division of Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne 3000, VIC, Australia; Department of Parasites and Insect Vectors, Institut Pasteur, Paris 75015, France
| | - Alyssa E Barry
- Division of Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne 3000, VIC, Australia.
| |
Collapse
|
10
|
Jensen AR, Adams Y, Hviid L. Cerebral Plasmodium falciparum malaria: The role of PfEMP1 in its pathogenesis and immunity, and PfEMP1-based vaccines to prevent it. Immunol Rev 2020; 293:230-252. [PMID: 31562653 PMCID: PMC6972667 DOI: 10.1111/imr.12807] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Malaria, a mosquito-borne infectious disease caused by parasites of the genus Plasmodium continues to be a major health problem worldwide. The unicellular Plasmodium-parasites have the unique capacity to infect and replicate within host erythrocytes. By expressing variant surface antigens Plasmodium falciparum has evolved to avoid protective immune responses; as a result in endemic areas anti-malaria immunity develops gradually over many years of multiple and repeated infections. We are studying the role of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) expressed by asexual stages of P. falciparum responsible for the pathogenicity of severe malaria. The immunopathology of falciparum malaria has been linked to cyto-adhesion of infected erythrocytes to specific host receptors. A greater appreciation of the PfEMP1 molecules important for the development of protective immunity and immunopathology is a prerequisite for the rational discovery and development of a safe and protective anti-disease malaria vaccine. Here we review the role of ICAM-1 and EPCR receptor adhering falciparum-parasites in the development of severe malaria; we discuss our current research to understand the factors involved in the pathogenesis of cerebral malaria and the feasibility of developing a vaccine targeted specifically to prevent this disease.
Collapse
Affiliation(s)
- Anja Ramstedt Jensen
- Centre for Medical Parasitology at Department of Immunology and MicrobiologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Yvonne Adams
- Centre for Medical Parasitology at Department of Immunology and MicrobiologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Lars Hviid
- Centre for Medical Parasitology at Department of Immunology and MicrobiologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Infectious DiseasesRigshospitaletCopenhagenDenmark
| |
Collapse
|
11
|
Otto TD, Assefa SA, Böhme U, Sanders MJ, Kwiatkowski D, Berriman M, Newbold C. Evolutionary analysis of the most polymorphic gene family in falciparum malaria. Wellcome Open Res 2019; 4:193. [PMID: 32055709 PMCID: PMC7001760 DOI: 10.12688/wellcomeopenres.15590.1] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
The var gene family of the human malaria parasite Plasmodium falciparum encode proteins that are crucial determinants of both pathogenesis and immune evasion and are highly polymorphic. Here we have assembled nearly complete var gene repertoires from 2398 field isolates and analysed a normalised set of 714 from across 12 countries. This therefore represents the first large scale attempt to catalogue the worldwide distribution of var gene sequences We confirm the extreme polymorphism of this gene family but also demonstrate an unexpected level of sequence sharing both within and between continents. We show that this is likely due to both the remnants of selective sweeps as well as a worrying degree of recent gene flow across continents with implications for the spread of drug resistance. We also address the evolution of the var repertoire with respect to the ancestral genes within the Laverania and show that diversity generated by recombination is concentrated in a number of hotspots. An analysis of the subdomain structure indicates that some existing definitions may need to be revised From the analysis of this data, we can now understand the way in which the family has evolved and how the diversity is continuously being generated. Finally, we demonstrate that because the genes are distributed across the genome, sequence sharing between genotypes acts as a useful population genetic marker.
Collapse
Affiliation(s)
- Thomas D. Otto
- Parasite Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
- Institute of Infection, Immunity & Inflammation, MVLS, University of Glasgow, Glasgow, UK
| | - Sammy A. Assefa
- Parasite Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Ulrike Böhme
- Parasite Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Dominic Kwiatkowski
- Parasite Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Pf3k consortium
- Parasite Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
- Institute of Infection, Immunity & Inflammation, MVLS, University of Glasgow, Glasgow, UK
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Matt Berriman
- Parasite Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Chris Newbold
- Parasite Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
12
|
Duffy PE. Immunity to Severe Malaria: PfEMP1 Tags Tell a Tale. Cell Host Microbe 2019; 26:571-573. [PMID: 31726024 PMCID: PMC11132668 DOI: 10.1016/j.chom.2019.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PfEMP1 is the major surface antigen of P. falciparum-infected erythrocytes, mediates endothelial adhesion, and displays extreme sequence diversity that underpins antigenic variation. In this issue of Cell Host & Microbe, Tessema et al. (2019) find that antibodies in sera from a pediatric cohort that bind a discrete PfEMP1 subset associate with protection from severe malaria and predict future risk.
Collapse
Affiliation(s)
- Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
13
|
Rambhatla JS, Turner L, Manning L, Laman M, Davis TME, Beeson JG, Mueller I, Warrel J, Theander TG, Lavstsen T, Rogerson SJ. Acquisition of Antibodies Against Endothelial Protein C Receptor-Binding Domains of Plasmodium falciparum Erythrocyte Membrane Protein 1 in Children with Severe Malaria. J Infect Dis 2019; 219:808-818. [PMID: 30365003 DOI: 10.1093/infdis/jiy564] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/18/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) mediates parasite sequestration in postcapillary venules in P. falciparum malaria. PfEMP1 types can be classified based on their cysteine-rich interdomain region (CIDR) domains. Antibodies to different PfEMP1 types develop gradually after repeated infections as children age, and antibodies to specific CIDR types may confer protection. METHODS Levels of immunoglobulin G to 35 recombinant CIDR domains were measured by means of Luminex assay in acute-stage (baseline) and convalescent-stage plasma samples from Papua New Guinean children with severe or uncomplicated malaria and in healthy age-matched community controls. RESULTS At baseline, antibody levels were similar across the 3 groups. After infection, children with severe malaria had higher antibody levels than those with uncomplicated malaria against the endothelial protein C receptor (EPCR) binding CIDRα1 domains, and this difference was largely confined to older children. Antibodies to EPCR-binding domains increased from presentation to follow-up in severe malaria, but not in uncomplicated malaria. CONCLUSIONS The acquisition of antibodies against EPCR-binding CIDRα1 domains of PfEMP1 after a severe malaria episode suggest that EPCR-binding PfEMP1 may have a role in the pathogenesis of severe malaria in Papua New Guinea.
Collapse
Affiliation(s)
- Janavi S Rambhatla
- Department of Medicine, The Peter Doherty Institute for Infection and Immunity, Parkville
| | - Louise Turner
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Denmark
| | - Laurens Manning
- School of Medicine and Pharmacology, University of Western Australia, Harry Perkins Research Institute, Fiona Stanley Hospital, Murdoch
| | - Moses Laman
- Papua New Guinea Institute of Medical Research, Madang
| | - Timothy M E Davis
- School of Medicine and Pharmacology, University of Western Australia, Harry Perkins Research Institute, Fiona Stanley Hospital, Murdoch
| | - James G Beeson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | - Ivo Mueller
- Department of Medical Biology, University of Melbourne, Parkville.,Walter and Eliza Hall Institute of Medical Research, Parkville.,Parasite and Insect Vectors Department, Institut Pasteur, Paris, France
| | | | - Thor G Theander
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Denmark
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Denmark
| | - Stephen J Rogerson
- Department of Medicine, The Peter Doherty Institute for Infection and Immunity, Parkville
| |
Collapse
|
14
|
Kivisi CA, Muthui M, Hunt M, Fegan G, Otto TD, Githinji G, Warimwe GM, Rance R, Marsh K, Bull PC, Abdi AI. Exploring Plasmodium falciparum Var Gene Expression to Assess Host Selection Pressure on Parasites During Infancy. Front Immunol 2019; 10:2328. [PMID: 31681266 PMCID: PMC6798654 DOI: 10.3389/fimmu.2019.02328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/16/2019] [Indexed: 11/13/2022] Open
Abstract
In sub-Saharan Africa, children below 5 years bear the greatest burden of severe malaria because they lack naturally acquired immunity that develops following repeated exposure to infections by Plasmodium falciparum. Antibodies to the surface of P. falciparum infected erythrocytes (IE) play an important role in this immunity. In children under the age of 6 months, relative protection from severe malaria is observed and this is thought to be partly due to trans-placental acquired protective maternal antibodies. However, the protective effect of maternal antibodies has not been fully established, especially the role of antibodies to variant surface antigens (VSA) expressed on IE. Here, we assessed the immune pressure on parasites infecting infants using markers associated with the acquisition of naturally acquired immunity to surface antigens. We hypothesized that, if maternal antibodies to VSA imposed a selection pressure on parasites, then the expression of a relatively conserved subset of var genes called group A var genes in infants should change with waning maternal antibodies. To test this, we compared their expression in parasites from children between 0 and 12 months and above 12 months of age. The transcript quantity and the proportional expression of group A var subgroup, including those containing domain cassette 13, were positively associated with age during the first year of life, which contrasts with above 12 months. This was accompanied by a decline in infected erythrocyte surface antibodies and an increase in parasitemia during this period. The observed increase in group A var gene expression with age in the first year of life, when the maternal antibodies are waning and before acquisition of naturally acquired antibodies with repeated exposure, is consistent with the idea that maternally acquired antibodies impose a selection pressure on parasites that infect infants and may play a role in protecting these infants against severe malaria.
Collapse
Affiliation(s)
- Cheryl A Kivisi
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya.,Pwani University Biosciences Research Centre, Pwani University, Kilifi, Kenya.,Department of Biological Sciences, Pwani University, Kilifi, Kenya
| | | | - Martin Hunt
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Greg Fegan
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | | | | | - George M Warimwe
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Richard Rance
- Pwani University Biosciences Research Centre, Pwani University, Kilifi, Kenya
| | - Kevin Marsh
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Peter C Bull
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Abdirahman I Abdi
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya.,Pwani University Biosciences Research Centre, Pwani University, Kilifi, Kenya
| |
Collapse
|
15
|
Rosetting revisited: a critical look at the evidence for host erythrocyte receptors in Plasmodium falciparum rosetting. Parasitology 2019; 147:1-11. [PMID: 31455446 PMCID: PMC7050047 DOI: 10.1017/s0031182019001288] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Malaria remains a major cause of mortality in African children, with no adjunctive treatments currently available to ameliorate the severe clinical forms of the disease. Rosetting, the adhesion of infected erythrocytes (IEs) to uninfected erythrocytes, is a parasite phenotype strongly associated with severe malaria, and hence is a potential therapeutic target. However, the molecular mechanisms of rosetting are complex and involve multiple distinct receptor–ligand interactions, with some similarities to the diverse pathways involved in P. falciparum erythrocyte invasion. This review summarizes the current understanding of the molecular interactions that lead to rosette formation, with a particular focus on host uninfected erythrocyte receptors including the A and B blood group trisaccharides, complement receptor one, heparan sulphate, glycophorin A and glycophorin C. There is strong evidence supporting blood group A trisaccharides as rosetting receptors, but evidence for other molecules is incomplete and requires further study. It is likely that additional host erythrocyte rosetting receptors remain to be discovered. A rosette-disrupting low anti-coagulant heparin derivative is being investigated as an adjunctive therapy for severe malaria, and further research into the receptor–ligand interactions underlying rosetting may reveal additional therapeutic approaches to reduce the unacceptably high mortality rate of severe malaria.
Collapse
|
16
|
Bayes-optimal estimation of overlap between populations of fixed size. PLoS Comput Biol 2019; 15:e1006898. [PMID: 30925165 PMCID: PMC6440621 DOI: 10.1371/journal.pcbi.1006898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 02/22/2019] [Indexed: 11/19/2022] Open
Abstract
Measuring the overlap between two populations is, in principle, straightforward. Upon fully sampling both populations, the number of shared objects—species, taxonomical units, or gene variants, depending on the context—can be directly counted. In practice, however, only a fraction of each population’s objects are likely to be sampled due to stochastic data collection or sequencing techniques. Although methods exists for quantifying population overlap under subsampled conditions, their bias is well documented and the uncertainty of their estimates cannot be quantified. Here we derive and validate a method to rigorously estimate the population overlap from incomplete samples when the total number of objects, species, or genes in each population is known, a special case of the more general β-diversity problem that is particularly relevant in the ecology and genomic epidemiology of malaria. By solving a Bayesian inference problem, this method takes into account the rates of subsampling and produces unbiased and Bayes-optimal estimates of overlap. In addition, it provides a natural framework for computing the uncertainty of its estimates, and can be used prospectively in study planning by quantifying the tradeoff between sampling effort and uncertainty. Understanding when two populations are composed of similar species is important for ecologists, epidemiologists, and population geneticists, and in principle it is easy: just sample the two populations, compare the sets of species identified in each, and count how many appear in both populations. In practice, however, this is difficult because sampling methods typically produce only a random subset of the total population, leaving current population overlap estimates biased. Knowing only the number of shared members between two of these partial population samples, this paper shows how we can nevertheless estimate the true overlap between the full populations, when those full populations’ sizes are known. Using Bayesian statistics, we can also compute credible intervals to produce error bars. We show that using this unbiased approach has a dramatic impact on the conclusions one might draw from previously published studies in the malaria literature, which used simple but biased methods. Because the method in this paper quantifies the tradeoff between sampling effort and uncertainty, we also show how to compute the number of samples required to ensure high-confidence results, which may be useful for planning future studies or budgeting lab reagents and time.
Collapse
|
17
|
The Plasmodium falciparum transcriptome in severe malaria reveals altered expression of genes involved in important processes including surface antigen-encoding var genes. PLoS Biol 2018; 16:e2004328. [PMID: 29529020 PMCID: PMC5864071 DOI: 10.1371/journal.pbio.2004328] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/22/2018] [Accepted: 02/16/2018] [Indexed: 01/13/2023] Open
Abstract
Within the human host, the malaria parasite Plasmodium falciparum is exposed to multiple selection pressures. The host environment changes dramatically in severe malaria, but the extent to which the parasite responds to-or is selected by-this environment remains unclear. From previous studies, the parasites that cause severe malaria appear to increase expression of a restricted but poorly defined subset of the PfEMP1 variant, surface antigens. PfEMP1s are major targets of protective immunity. Here, we used RNA sequencing (RNAseq) to analyse gene expression in 44 parasite isolates that caused severe and uncomplicated malaria in Papuan patients. The transcriptomes of 19 parasite isolates associated with severe malaria indicated that these parasites had decreased glycolysis without activation of compensatory pathways; altered chromatin structure and probably transcriptional regulation through decreased histone methylation; reduced surface expression of PfEMP1; and down-regulated expression of multiple chaperone proteins. Our RNAseq also identified novel associations between disease severity and PfEMP1 transcripts, domains, and smaller sequence segments and also confirmed all previously reported associations between expressed PfEMP1 sequences and severe disease. These findings will inform efforts to identify vaccine targets for severe malaria and also indicate how parasites adapt to-or are selected by-the host environment in severe malaria.
Collapse
|
18
|
Carrington E, Otto TD, Szestak T, Lennartz F, Higgins MK, Newbold CI, Craig AG. In silico guided reconstruction and analysis of ICAM-1-binding var genes from Plasmodium falciparum. Sci Rep 2018; 8:3282. [PMID: 29459671 PMCID: PMC5818487 DOI: 10.1038/s41598-018-21591-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/07/2018] [Indexed: 11/23/2022] Open
Abstract
The Plasmodium falciparum variant surface antigen PfEMP1 expressed on the surface of infected erythrocytes is thought to play a major role in the pathology of severe malaria. As the sequence pool of the var genes encoding PfEMP1 expands there are opportunities, despite the high degree of sequence diversity demonstrated by this gene family, to reconstruct full-length var genes from small sequence tags generated from patient isolates. To test whether this is possible we have used a set of recently laboratory adapted ICAM-1-binding parasite isolates to generate sequence tags and, from these, to identify the full-length PfEMP1 being expressed by them. In a subset of the strains available we were able to produce validated, full-length var gene sequences and use these to conduct biophysical analyses of the ICAM-1 binding regions.
Collapse
Affiliation(s)
- Eilidh Carrington
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Malaria Gene Regulation Lab, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland
| | - Thomas D Otto
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Institute of Infection, Immunity and Inflammation, University of Glasgow, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Tadge Szestak
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Frank Lennartz
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Matt K Higgins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Chris I Newbold
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | - Alister G Craig
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
19
|
Infected erythrocytes expressing DC13 PfEMP1 differ from recombinant proteins in EPCR-binding function. Proc Natl Acad Sci U S A 2018; 115:1063-1068. [PMID: 29339517 PMCID: PMC5798336 DOI: 10.1073/pnas.1712879115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Sequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the brain microvasculature underlies the pathology of cerebral malaria. Parasites that express P. falciparum erythrocyte membrane protein 1 of domain cassette (DC) 8 and DC13 types bind to brain endothelial cells. Recent studies, largely based on recombinant proteins, have identified endothelial protein C receptor (EPCR) as the key receptor for endothelial cell binding. Using DC8- and DC13-expressing IEs, we show that binding of DC13 IEs to brain endothelial cells is not EPCR-dependent and that cytoadhesion of EPCR-binding DC8 IEs to brain endothelial cells is blocked by human serum. This study highlights differences between recombinant protein and native protein in EPCR-binding properties and suggests that other receptors are also required for sequestration in cerebral malaria. Recent advances have identified a new paradigm for cerebral malaria pathogenesis in which endothelial protein C receptor (EPCR) is a major host receptor for sequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the brain and other vital organs. The parasite adhesins that bind EPCR are members of the IE variant surface antigen family Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) containing specific adhesion domains called domain cassette (DC) 8 and DC13. The binding interaction site between PfEMP1 and EPCR has been mapped by biophysical and crystallography studies using recombinant proteins. However, studies examining the interaction of native PfEMP1 on the IE surface with EPCR are few. We aimed to study binding to EPCR by IEs expressing DC8 and DC13 PfEMP1 variants whose recombinant proteins have been used in key prior functional and structural studies. IE binding to EPCR immobilized on plastic and on human brain endothelial cells was examined in static and flow adhesion assays. Unexpectedly, we found that IEs expressing the DC13 PfEMP1 variant HB3var03 or IT4var07 did not bind to EPCR on plastic and the binding of these variants to brain endothelial cells was not dependent on EPCR. IEs expressing the DC8 variant IT4var19 did bind to EPCR, but this interaction was inhibited if normal human serum or plasma was present, raising the possibility that IE–EPCR interaction may be prevented by plasma components under physiological conditions. These data highlight a discrepancy in EPCR-binding activity between PfEMP1 recombinant proteins and IEs, and indicate the critical need for further research to understand the pathophysiological significance of the PfEMP1–EPCR interaction.
Collapse
|
20
|
Plasmodium falciparum PfEMP1 Modulates Monocyte/Macrophage Transcription Factor Activation and Cytokine and Chemokine Responses. Infect Immun 2017; 86:IAI.00447-17. [PMID: 29038124 PMCID: PMC5736827 DOI: 10.1128/iai.00447-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022] Open
Abstract
Immunity to Plasmodium falciparum malaria is slow to develop, and it is often asserted that malaria suppresses host immunity, although this is poorly understood and the molecular basis for such activity remains unknown. P. falciparum erythrocyte membrane protein 1 (PfEMP1) is a virulence factor that plays a key role in parasite-host interactions. We investigated the immunosuppressive effect of PfEMP1 on monocytes/macrophages, which are central to the antiparasitic innate response. RAW macrophages and human primary monocytes were stimulated with wild-type 3D7 or CS2 parasites or transgenic PfEMP1-null parasites. To study the immunomodulatory effect of PfEMP1, transcription factor activation and cytokine and chemokine responses were measured. The level of activation of NF-κB was significantly lower in macrophages stimulated with parasites that express PfEMP1 at the red blood cell surface membrane than in macrophages stimulated with PfEMP1-null parasites. Modulation of additional transcription factors, including CREB, also occurred, resulting in reduced immune gene expression and decreased tumor necrosis factor (TNF) and interleukin-10 (IL-10) release. Similarly, human monocytes released less IL-1β, IL-6, IL-10, monocyte chemoattractant protein 1 (MCP-1), macrophage inflammatory protein 1α (MIP-1α), MIP-1β, and TNF specifically in response to VAR2CSA PfEMP1-containing parasites than in response to PfEMP1-null parasites, suggesting that this immune regulation by PfEMP1 is important in naturally occurring infections. These results indicate that PfEMP1 is an immunomodulatory molecule that affects the activation of a range of transcription factors, dampening cytokine and chemokine responses. Therefore, these findings describe a potential molecular basis for immune suppression by P. falciparum.
Collapse
|
21
|
Schieck E, Poole EJ, Rippert A, Peshu J, Sasi P, Borrmann S, Bull PC. Plasmodium falciparum variant erythrocyte surface antigens: a pilot study of antibody acquisition in recurrent natural infections. Malar J 2017; 16:450. [PMID: 29115961 PMCID: PMC5678811 DOI: 10.1186/s12936-017-2097-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/28/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During intra-erythrocytic replication Plasmodium falciparum escapes the human host immune system by switching expression of variant surface antigens (VSA). Piecemeal acquisition of variant specific antibody responses to these antigens as a result of exposure to multiple re-infections has been proposed to play a role in acquisition of naturally acquired immunity. METHODS Immunofluorescence was used to explore the dynamics of anti-VSA IgG responses generated by children to (i) primary malaria episodes and (ii) recurrent P. falciparum infections. RESULTS Consistent with previous studies on anti-VSA responses, sera from each child taken at the time of recovery from their respective primary infection tended to recognize their own secondary parasites poorly. Additionally, compared to patients with reinfections by parasites of new merozoite surface protein 2 (MSP2) genotypes, baseline sera sampled from patients with persistent infections (recrudescence) tended to have higher recognition of heterologous parasites. This is consistent with the prediction that anti-VSA IgG responses may play a role in promoting chronic asymptomatic infections. CONCLUSIONS This pilot study validates the utility of recurrent natural malaria infections as a functional readout for examining the incremental acquisition of immunity to malaria.
Collapse
Affiliation(s)
- Elise Schieck
- Kenya Medical Research Institute/Wellcome Trust Research Programme, Center for Geographic Medicine Research-Coast, P. O. Box 428, Kilifi, 80108, Kenya. .,Institute of Hygiene, University of Heidelberg School of Medicine, 69120, Heidelberg, Germany. .,International Livestock Research Institute, Old Naivasha Road, P.O. Box 30709, Nairobi, 00100, Kenya.
| | - E Jane Poole
- International Livestock Research Institute, Old Naivasha Road, Nairobi, Kenya
| | - Anja Rippert
- Institute of Hygiene, University of Heidelberg School of Medicine, 69120, Heidelberg, Germany.,Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Judy Peshu
- Kenya Medical Research Institute/Wellcome Trust Research Programme, Center for Geographic Medicine Research-Coast, P. O. Box 428, Kilifi, 80108, Kenya
| | - Philip Sasi
- Department of Clinical Pharmacology, School of Medicine, Muhimbili University of Health and Allied Sciences, P.O. Box 65010, Dar es Salaam, Tanzania
| | - Steffen Borrmann
- Kenya Medical Research Institute/Wellcome Trust Research Programme, Center for Geographic Medicine Research-Coast, P. O. Box 428, Kilifi, 80108, Kenya.,German Center for Infection Research (DZIF), Wilhelmstraße 27, 72074, Tübingen, Germany.,Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Peter C Bull
- Kenya Medical Research Institute/Wellcome Trust Research Programme, Center for Geographic Medicine Research-Coast, P. O. Box 428, Kilifi, 80108, Kenya.,Nuffield Department of Medicine, Centre for Tropical Medicine, Oxford University, Oxford, OX3 7LJ, UK.,Department of Pathology, Cambridge University, Tennis Court Road, Cambridge, CB2 1QP, UK
| |
Collapse
|
22
|
Kessler A, Dankwa S, Bernabeu M, Harawa V, Danziger SA, Duffy F, Kampondeni SD, Potchen MJ, Dambrauskas N, Vigdorovich V, Oliver BG, Hochman SE, Mowrey WB, MacCormick IJC, Mandala WL, Rogerson SJ, Sather DN, Aitchison JD, Taylor TE, Seydel KB, Smith JD, Kim K. Linking EPCR-Binding PfEMP1 to Brain Swelling in Pediatric Cerebral Malaria. Cell Host Microbe 2017; 22:601-614.e5. [PMID: 29107642 DOI: 10.1016/j.chom.2017.09.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/06/2017] [Accepted: 09/22/2017] [Indexed: 11/16/2022]
Abstract
Brain swelling is a major predictor of mortality in pediatric cerebral malaria (CM). However, the mechanisms leading to swelling remain poorly defined. Here, we combined neuroimaging, parasite transcript profiling, and laboratory blood profiles to develop machine-learning models of malarial retinopathy and brain swelling. We found that parasite var transcripts encoding endothelial protein C receptor (EPCR)-binding domains, in combination with high parasite biomass and low platelet levels, are strong indicators of CM cases with malarial retinopathy. Swelling cases presented low platelet levels and increased transcript abundance of parasite PfEMP1 DC8 and group A EPCR-binding domains. Remarkably, the dominant transcript in 50% of swelling cases encoded PfEMP1 group A CIDRα1.7 domains. Furthermore, a recombinant CIDRα1.7 domain from a pediatric CM brain autopsy inhibited the barrier-protective properties of EPCR in human brain endothelial cells in vitro. Together, these findings suggest a detrimental role for EPCR-binding CIDRα1 domains in brain swelling.
Collapse
Affiliation(s)
- Anne Kessler
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Selasi Dankwa
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Maria Bernabeu
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Visopo Harawa
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre BT3, Malawi; University of Malawi, College of Medicine, Biomedical Department, Blantyre BT3, Malawi
| | | | - Fergal Duffy
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | | | - Michael J Potchen
- Department of Imaging Sciences, University of Rochester, Rochester, NY 14642, USA
| | | | | | - Brian G Oliver
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Sarah E Hochman
- Department of Medicine, New York University Langone Health, New York, NY 10016, USA
| | - Wenzhu B Mowrey
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Ian J C MacCormick
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre BT3, Malawi; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Department of Eye and Vision Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Wilson L Mandala
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre BT3, Malawi; University of Malawi, College of Medicine, Biomedical Department, Blantyre BT3, Malawi; Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo BT3, Malawi
| | - Stephen J Rogerson
- Department of Medicine at the Doherty Institute, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - D Noah Sather
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | | | - Terrie E Taylor
- Blantyre Malaria Project, Blantyre BT3, Malawi; Department of Osteopathic Medical Specialities, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Karl B Seydel
- Blantyre Malaria Project, Blantyre BT3, Malawi; Department of Osteopathic Medical Specialities, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA.
| | - Joseph D Smith
- Center for Infectious Disease Research, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA.
| | - Kami Kim
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA.
| |
Collapse
|
23
|
Githinji G, Bull PC. A re-assessment of gene-tag classification approaches for describing var gene expression patterns during human Plasmodium falciparum malaria parasite infections. Wellcome Open Res 2017; 2:86. [PMID: 29062916 PMCID: PMC5635463 DOI: 10.12688/wellcomeopenres.12053.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2017] [Indexed: 11/20/2022] Open
Abstract
PfEMP1 are variant parasite antigens that are inserted on the surface of Plasmodium falciparum infected erythrocytes (IE). Through interactions with various host molecules, PfEMP1 mediate IE sequestration in tissues and play a key role in the pathology of severe malaria. PfEMP1 is encoded by a diverse multi-gene family called var. Previous studies have shown that that expression of specific subsets of var genes are associated with low levels of host immunity and severe malaria. However, in most clinical studies to date, full-length var gene sequences were unavailable and various approaches have been used to make comparisons between var gene expression profiles in different parasite isolates using limited information. Several studies have relied on the classification of a 300 - 500 base-pair "DBLα tag" region in the DBLα domain located at the 5' end of most var genes. We assessed the relationship between various DBLα tag classification methods, and sequence features that are only fully assessable through full-length var gene sequences. We compared these different sequence features in full-length var gene from six fully sequenced laboratory isolates. These comparisons show that despite a long history of recombination, DBLα sequence tag classification can provide functional information on important features of full-length var genes. Notably, a specific subset of DBLα tags previously defined as "group A-like" is associated with CIDRα1 domains proposed to bind to endothelial protein C receptor. This analysis helps to bring together different sources of data that have been used to assess var gene expression in clinical parasite isolates.
Collapse
Affiliation(s)
- George Githinji
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Peter C Bull
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
24
|
Ruybal-Pesántez S, Tiedje KE, Tonkin-Hill G, Rask TS, Kamya MR, Greenhouse B, Dorsey G, Duffy MF, Day KP. Population genomics of virulence genes of Plasmodium falciparum in clinical isolates from Uganda. Sci Rep 2017; 7:11810. [PMID: 28924231 PMCID: PMC5603532 DOI: 10.1038/s41598-017-11814-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/30/2017] [Indexed: 12/18/2022] Open
Abstract
Plasmodium falciparum causes a spectrum of malarial disease from asymptomatic to uncomplicated through to severe. Investigations of parasite virulence have associated the expression of distinct variants of the major surface antigen of the blood stages known as Pf EMP1 encoded by up to 60 var genes per genome. Looking at the population genomics of var genes in cases of uncomplicated malaria, we set out to determine if there was any evidence of a selective sweep of specific var genes or clonal epidemic structure related to the incidence of uncomplicated disease in children. By sequencing the conserved DBLα domain of var genes from six sentinel sites in Uganda we found that the parasites causing uncomplicated P. falciparum disease in children were highly diverse and that every child had a unique var DBLα repertoire. Despite extensive var DBLα diversity and minimal overlap between repertoires, specific DBLα types and groups were conserved at the population level across Uganda. This pattern was the same regardless of the geographic distance or malaria transmission intensity. These data lead us to propose that any parasite can cause uncomplicated malarial disease and that these diverse parasite repertoires are composed of both upsA and non-upsA var gene groups.
Collapse
Affiliation(s)
- Shazia Ruybal-Pesántez
- School of BioSciences, Bio21 Institute/University of Melbourne, Melbourne, Australia
- Department of Microbiology, New York University, New York, USA
| | - Kathryn E Tiedje
- School of BioSciences, Bio21 Institute/University of Melbourne, Melbourne, Australia
- Department of Microbiology, New York University, New York, USA
| | | | - Thomas S Rask
- School of BioSciences, Bio21 Institute/University of Melbourne, Melbourne, Australia
- Department of Microbiology, New York University, New York, USA
| | - Moses R Kamya
- School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, USA
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, USA
| | - Michael F Duffy
- School of BioSciences, Bio21 Institute/University of Melbourne, Melbourne, Australia
| | - Karen P Day
- School of BioSciences, Bio21 Institute/University of Melbourne, Melbourne, Australia.
- Department of Microbiology, New York University, New York, USA.
| |
Collapse
|
25
|
Abdi AI, Hodgson SH, Muthui MK, Kivisi CA, Kamuyu G, Kimani D, Hoffman SL, Juma E, Ogutu B, Draper SJ, Osier F, Bejon P, Marsh K, Bull PC. Plasmodium falciparum malaria parasite var gene expression is modified by host antibodies: longitudinal evidence from controlled infections of Kenyan adults with varying natural exposure. BMC Infect Dis 2017; 17:585. [PMID: 28835215 PMCID: PMC5569527 DOI: 10.1186/s12879-017-2686-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 08/15/2017] [Indexed: 11/10/2022] Open
Abstract
Background The PfEMP1 family of Plasmodium falciparum antigens play a key role in pathogenesis of severe malaria through their insertion into the surface of parasite infected erythrocytes, and adhesion to host cells. Previous studies have suggested that parasites expressing PfEMP1 subclasses group A and DC8, associated with severe malaria, may have a growth advantage in immunologically naïve individuals. However, this idea has not been tested in longitudinal studies. Methods Here we assessed expression of the var genes encoding PfEMP1, in parasites sampled from volunteers with varying prior exposure to malaria, following experimental infection by sporozoites (PfSPZ). Using qPCR, we tested for associations between the expression of various var subgroups in surviving parasite populations from each volunteer and 1) the levels of participants’ antibodies to infected erythrocytes before challenge infection and 2) the apparent in vivo parasite multiplication rate. Results We show that 1) expression of var genes encoding for group A and DC8-like PfEMP1 were associated with low levels of antibodies to infected erythrocytes (αIE) before challenge, and 2) expression of a DC8-like CIDRα1.1 domain was associated with higher apparent parasite multiplication rate in a manner that was independent of levels of prior antibodies to infected erythrocytes. Conclusions This study provides insight into the role of antibodies to infected erythrocytes surface antigens in the development of naturally acquired immunity and may help explain why specific PfEMP1 variants may be associated with severe malaria. Trial registration Pan African Clinical Trial Registry: PACTR201211000433272. Date of registration: 10th October 2012.
Collapse
Affiliation(s)
- Abdirahman I Abdi
- KEMRI-Wellcome Trust Research Programme, CGMRC, P.O. Box 230-80108, Kilifi County, Kenya. .,Pwani University, P. O. Box 195-80108, Kilifi, Kenya.
| | | | - Michelle K Muthui
- KEMRI-Wellcome Trust Research Programme, CGMRC, P.O. Box 230-80108, Kilifi County, Kenya
| | - Cheryl A Kivisi
- KEMRI-Wellcome Trust Research Programme, CGMRC, P.O. Box 230-80108, Kilifi County, Kenya.,Pwani University, P. O. Box 195-80108, Kilifi, Kenya
| | - Gathoni Kamuyu
- KEMRI-Wellcome Trust Research Programme, CGMRC, P.O. Box 230-80108, Kilifi County, Kenya
| | - Domtila Kimani
- KEMRI-Wellcome Trust Research Programme, CGMRC, P.O. Box 230-80108, Kilifi County, Kenya
| | | | - Elizabeth Juma
- Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya.,Centre for Research in Therapeutic Sciences, Strathmore University, Nairobi, Kenya
| | - Bernhards Ogutu
- Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya.,Centre for Research in Therapeutic Sciences, Strathmore University, Nairobi, Kenya
| | | | - Faith Osier
- KEMRI-Wellcome Trust Research Programme, CGMRC, P.O. Box 230-80108, Kilifi County, Kenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, CGMRC, P.O. Box 230-80108, Kilifi County, Kenya
| | - Kevin Marsh
- KEMRI-Wellcome Trust Research Programme, CGMRC, P.O. Box 230-80108, Kilifi County, Kenya
| | - Peter C Bull
- Department of Pathology, University of Cambridge, 17 Tennis Court Road, Cambridge, CB2 1QP, UK.
| |
Collapse
|
26
|
Day KP, Artzy-Randrup Y, Tiedje KE, Rougeron V, Chen DS, Rask TS, Rorick MM, Migot-Nabias F, Deloron P, Luty AJF, Pascual M. Evidence of strain structure in Plasmodium falciparum var gene repertoires in children from Gabon, West Africa. Proc Natl Acad Sci U S A 2017; 114:E4103-E4111. [PMID: 28461509 PMCID: PMC5441825 DOI: 10.1073/pnas.1613018114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Existing theory on competition for hosts between pathogen strains has proposed that immune selection can lead to the maintenance of strain structure consisting of discrete, weakly overlapping antigenic repertoires. This prediction of strain theory has conceptual overlap with fundamental ideas in ecology on niche partitioning and limiting similarity between coexisting species in an ecosystem, which oppose the hypothesis of neutral coexistence. For Plasmodium falciparum, strain theory has been specifically proposed in relation to the major surface antigen of the blood stage, known as PfEMP1 and encoded by the multicopy multigene family known as the var genes. Deep sampling of the DBLα domain of var genes in the local population of Bakoumba, West Africa, was completed to define whether patterns of repertoire overlap support a role of immune selection under the opposing force of high outcrossing, a characteristic of areas of intense malaria transmission. Using a 454 high-throughput sequencing protocol, we report extremely high diversity of the DBLα domain and a large parasite population with DBLα repertoires structured into nonrandom patterns of overlap. Such population structure, significant for the high diversity of var genes that compose it at a local level, supports the existence of "strains" characterized by distinct var gene repertoires. Nonneutral, frequency-dependent competition would be at play and could underlie these patterns. With a computational experiment that simulates an intervention similar to mass drug administration, we argue that the observed repertoire structure matters for the antigenic var diversity of the parasite population remaining after intervention.
Collapse
Affiliation(s)
- Karen P Day
- School of Biosciences, The University of Melbourne, Parkville, VIC 3052, Australia;
- Department of Microbiology, New York University, New York, NY 10016
| | - Yael Artzy-Randrup
- Theoretical Ecology Group, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109
| | - Kathryn E Tiedje
- School of Biosciences, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Microbiology, New York University, New York, NY 10016
| | - Virginie Rougeron
- Department of Microbiology, New York University, New York, NY 10016
- Laboratoire Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, UMR 224-5290 CNRS, Institut de Recherche pour le Développement-Université de Montpellier, Centre Institut de Recherche pour le Développement de Montpellier, 34394 Montpellier, France
| | - Donald S Chen
- Department of Microbiology, New York University, New York, NY 10016
- Department of Medicine, New York Medical College, Valhalla, NY 10595
| | - Thomas S Rask
- School of Biosciences, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Microbiology, New York University, New York, NY 10016
| | - Mary M Rorick
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637
| | - Florence Migot-Nabias
- Institut de Recherche pour le Développement, UMR 216 Mère et Enfant Face aux Infections Tropicales, 75006 Paris, France
- Communautés d'Universités et Établissements, Sorbonne Paris Cité, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
| | - Philippe Deloron
- Institut de Recherche pour le Développement, UMR 216 Mère et Enfant Face aux Infections Tropicales, 75006 Paris, France
- Communautés d'Universités et Établissements, Sorbonne Paris Cité, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
| | - Adrian J F Luty
- Institut de Recherche pour le Développement, UMR 216 Mère et Enfant Face aux Infections Tropicales, 75006 Paris, France
- Communautés d'Universités et Établissements, Sorbonne Paris Cité, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637
- Santa Fe Institute, Santa Fe, NM 87501
| |
Collapse
|
27
|
Singh H, Madnani K, Lim YB, Cao J, Preiser PR, Lim CT. Expression dynamics and physiologically relevant functional study of STEVOR in asexual stages of Plasmodium falciparum infection. Cell Microbiol 2017; 19. [PMID: 28030753 DOI: 10.1111/cmi.12715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/11/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022]
Abstract
The extensive modification of Plasmodium falciparum-infected erythrocytes by variant surface antigens plays a major role in immune evasion and malaria-induced pathology. Here, using high-resolution microscopy, we visualize the spatio-temporal expression dynamics of STEVOR, an important variant surface antigens family, in a stage-dependent manner. We demonstrate that it is exported to the cell surface where protein molecules cluster and preferentially localize in proximity to knobs. Quantitative evidence from our force measurements and microfluidic assays reveal that STEVOR can effectively mediate the formation of stable, robust rosettes under static and physiologically relevant flow conditions. Our results extend previously published studies in P. falciparum and emphasize the role of STEVOR in rosetting, an important contributor to disease pathology.
Collapse
Affiliation(s)
- Himanshu Singh
- Department of Biomedical Engineering, National University of Singapore, Singapore.,Infectious Diseases IRG, Singapore-MIT Alliance for Research and Technology, Singapore.,Wellcome Trust Centre for Molecular Parasitoogy, University of Glasgow, Glasgow, UK
| | - Kripa Madnani
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Ying Bena Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore.,Infectious Diseases IRG, Singapore-MIT Alliance for Research and Technology, Singapore
| | - Jianshu Cao
- Infectious Diseases IRG, Singapore-MIT Alliance for Research and Technology, Singapore.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Peter R Preiser
- Infectious Diseases IRG, Singapore-MIT Alliance for Research and Technology, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore.,Infectious Diseases IRG, Singapore-MIT Alliance for Research and Technology, Singapore.,Mechanobiology Institute, National University of Singapore, Singapore
| |
Collapse
|
28
|
Bernabeu M, Smith JD. EPCR and Malaria Severity: The Center of a Perfect Storm. Trends Parasitol 2016; 33:295-308. [PMID: 27939609 DOI: 10.1016/j.pt.2016.11.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 12/20/2022]
Abstract
Severe malaria due to Plasmodium falciparum infection causes nearly half a million deaths per year. The different symptomatology and disease manifestations among patients have hampered understanding of severe malaria pathology and complicated efforts to develop targeted disease interventions. Infected erythrocyte sequestration in the microvasculature plays a critical role in the development of severe disease, and there is increasing evidence that cytoadherent parasites interact with host factors to enhance the damage caused by the parasite. The recent discovery that parasite binding to endothelial protein C receptor (EPCR) is associated with severe disease has suggested new mechanisms of pathology and provided new avenues for severe malaria adjunctive therapy research.
Collapse
Affiliation(s)
- Maria Bernabeu
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Joseph D Smith
- Center for Infectious Disease Research, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
29
|
Fougère A, Jackson AP, Paraskevi Bechtsi D, Braks JAM, Annoura T, Fonager J, Spaccapelo R, Ramesar J, Chevalley-Maurel S, Klop O, van der Laan AMA, Tanke HJ, Kocken CHM, Pasini EM, Khan SM, Böhme U, van Ooij C, Otto TD, Janse CJ, Franke-Fayard B. Variant Exported Blood-Stage Proteins Encoded by Plasmodium Multigene Families Are Expressed in Liver Stages Where They Are Exported into the Parasitophorous Vacuole. PLoS Pathog 2016; 12:e1005917. [PMID: 27851824 PMCID: PMC5113031 DOI: 10.1371/journal.ppat.1005917] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/06/2016] [Indexed: 01/05/2023] Open
Abstract
Many variant proteins encoded by Plasmodium-specific multigene families are exported into red blood cells (RBC). P. falciparum-specific variant proteins encoded by the var, stevor and rifin multigene families are exported onto the surface of infected red blood cells (iRBC) and mediate interactions between iRBC and host cells resulting in tissue sequestration and rosetting. However, the precise function of most other Plasmodium multigene families encoding exported proteins is unknown. To understand the role of RBC-exported proteins of rodent malaria parasites (RMP) we analysed the expression and cellular location by fluorescent-tagging of members of the pir, fam-a and fam-b multigene families. Furthermore, we performed phylogenetic analyses of the fam-a and fam-b multigene families, which indicate that both families have a history of functional differentiation unique to RMP. We demonstrate for all three families that expression of family members in iRBC is not mutually exclusive. Most tagged proteins were transported into the iRBC cytoplasm but not onto the iRBC plasma membrane, indicating that they are unlikely to play a direct role in iRBC-host cell interactions. Unexpectedly, most family members are also expressed during the liver stage, where they are transported into the parasitophorous vacuole. This suggests that these protein families promote parasite development in both the liver and blood, either by supporting parasite development within hepatocytes and erythrocytes and/or by manipulating the host immune response. Indeed, in the case of Fam-A, which have a steroidogenic acute regulatory-related lipid transfer (START) domain, we found that several family members can transfer phosphatidylcholine in vitro. These observations indicate that these proteins may transport (host) phosphatidylcholine for membrane synthesis. This is the first demonstration of a biological function of any exported variant protein family of rodent malaria parasites. Malaria-parasites invade and multiply in hepatocytes and erythrocytes. The human parasite P. falciparum transports proteins encoded by multigene families onto the surface of erythrocytes, mediating interactions between infected red blood cells (iRBCs) and other host-cells and are thought to play a key role in parasite survival during blood-stage development. The function of other exported Plasmodium protein families remains largely unknown. We provide novel insights into expression and cellular location of proteins encoded by three large multigene families of rodent malaria parasites (Fam-a, Fam-b and PIR). Multiple members of the same family are expressed in a single iRBC, unlike P. falciparum PfEMP1 proteins where individual iRBCs express only a single member. Most proteins we examined are located in the RBC cytoplasm and are not transported onto the iRBC surface membrane, indicating that these proteins are unlikely to mediate interactions between iRBCs and host-cells. Unexpectedly, liver stages also express many of these proteins, where they locate to the vacuole surrounding the parasite inside the hepatocyte. In support of a role of these proteins for parasite growth within their host cells we provide evidence that Fam-A proteins have a role in uptake and transport of (host) phosphatidylcholine for parasite-membrane synthesis.
Collapse
Affiliation(s)
- Aurélie Fougère
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Experimental Medicine, University of Perugia, Italy
| | - Andrew P. Jackson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UnitedKingdom
| | | | - Joanna A. M. Braks
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Takeshi Annoura
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Department of Parasitology, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Jannik Fonager
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Microbiological Diagnostics and Virology, Statens Serum Institute, Copenhagen, Denmark
| | | | - Jai Ramesar
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Séverine Chevalley-Maurel
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Onny Klop
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | | | - Hans J. Tanke
- Department of Molecular Cell Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | | | - Erica M. Pasini
- Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Shahid M. Khan
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Ulrike Böhme
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UnitedKingdom
| | - Christiaan van Ooij
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London, UnitedKingdom
| | - Thomas D. Otto
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UnitedKingdom
| | - Chris J. Janse
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Blandine Franke-Fayard
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
30
|
Severe adult malaria is associated with specific PfEMP1 adhesion types and high parasite biomass. Proc Natl Acad Sci U S A 2016; 113:E3270-9. [PMID: 27185931 DOI: 10.1073/pnas.1524294113] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The interplay between cellular and molecular determinants that lead to severe malaria in adults is unexplored. Here, we analyzed parasite virulence factors in an infected adult population in India and investigated whether severe malaria isolates impair endothelial protein C receptor (EPCR), a protein involved in coagulation and endothelial barrier permeability. Severe malaria isolates overexpressed specific members of the Plasmodium falciparum var gene/PfEMP1 (P. falciparum erythrocyte membrane protein 1) family that bind EPCR, including DC8 var genes that have previously been linked to severe pediatric malaria. Machine learning analysis revealed that DC6- and DC8-encoding var transcripts in combination with high parasite biomass were the strongest indicators of patient hospitalization and disease severity. We found that DC8 CIDRα1 domains from severe malaria isolates had substantial differences in EPCR binding affinity and blockade activity for its ligand activated protein C. Additionally, even a low level of inhibition exhibited by domains from two cerebral malaria isolates was sufficient to interfere with activated protein C-barrier protective activities in human brain endothelial cells. Our findings demonstrate an interplay between parasite biomass and specific PfEMP1 adhesion types in the development of adult severe malaria, and indicate that low impairment of EPCR function may contribute to parasite virulence.
Collapse
|
31
|
Duffy MF, Noviyanti R, Tsuboi T, Feng ZP, Trianty L, Sebayang BF, Takashima E, Sumardy F, Lampah DA, Turner L, Lavstsen T, Fowkes FJI, Siba P, Rogerson SJ, Theander TG, Marfurt J, Price RN, Anstey NM, Brown GV, Papenfuss AT. Differences in PfEMP1s recognized by antibodies from patients with uncomplicated or severe malaria. Malar J 2016; 15:258. [PMID: 27149991 PMCID: PMC4858840 DOI: 10.1186/s12936-016-1296-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) variants are encoded by var genes and mediate pathogenic cytoadhesion and antigenic variation in malaria. PfEMP1s can be broadly divided into three principal groups (A, B and C) and they contain conserved arrangements of functional domains called domain cassettes. Despite their tremendous diversity there is compelling evidence that a restricted subset of PfEMP1s is expressed in severe disease. In this study antibodies from patients with severe and uncomplicated malaria were compared for differences in reactivity with a range of PfEMP1s to determine whether antibodies to particular PfEMP1 domains were associated with severe or uncomplicated malaria. METHODS Parts of expressed var genes in a severe malaria patient were identified by RNAseq and several of these partial PfEMP1 domains were expressed together with others from laboratory isolates. Antibodies from Papuan patients to these parts of multiple PfEMP1 proteins were measured. RESULTS Patients with uncomplicated malaria were more likely to have antibodies that recognized PfEMP1 of Group C type and recognized a broader repertoire of group A and B PfEMP1s than patients with severe malaria. CONCLUSION These data suggest that exposure to a broad range of group A and B PfEMP1s is associated with protection from severe disease in Papua, Indonesia.
Collapse
Affiliation(s)
- Michael F. Duffy
- />Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Rintis Noviyanti
- />The Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Takafumi Tsuboi
- />Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime Japan
| | - Zhi-Ping Feng
- />Bioinformatics Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- />Department of Medical Biology, University of Melbourne, Parkville, Victoria Australia
| | - Leily Trianty
- />The Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Boni F. Sebayang
- />The Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Eizo Takashima
- />Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime Japan
| | - Fransisca Sumardy
- />Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Daniel A. Lampah
- />Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua Indonesia
| | - Louise Turner
- />Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Lavstsen
- />Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| | | | - Peter Siba
- />The Papua New Guinea Institute for Medical Research, Madang, Papua New Guinea
| | - Stephen J. Rogerson
- />Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Thor G. Theander
- />Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| | - Jutta Marfurt
- />Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT Australia
| | - Ric N. Price
- />Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT Australia
- />Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Nicholas M. Anstey
- />Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT Australia
| | - Graham V. Brown
- />The Nossal Institute for Global Health, The University of Melbourne, Parkville, Victoria Australia
| | - Anthony T. Papenfuss
- />Bioinformatics Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- />Department of Medical Biology, University of Melbourne, Parkville, Victoria Australia
- />Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- />Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria Australia
| |
Collapse
|
32
|
Serological Conservation of Parasite-Infected Erythrocytes Predicts Plasmodium falciparum Erythrocyte Membrane Protein 1 Gene Expression but Not Severity of Childhood Malaria. Infect Immun 2016; 84:1331-1335. [PMID: 26883585 PMCID: PMC4862716 DOI: 10.1128/iai.00772-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 02/08/2016] [Indexed: 11/27/2022] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), expressed on P. falciparum-infected erythrocytes, is a major family of clonally variant targets of naturally acquired immunity to malaria. Previous studies have demonstrated that in areas where malaria is endemic, antibodies to infected erythrocytes from children with severe malaria tend to be more seroprevalent than antibodies to infected erythrocytes from children with nonsevere malaria. These data have led to a working hypothesis that PfEMP1 variants associated with parasite virulence are relatively conserved in structure. However, the longevity of such serologically conserved variants in the parasite population is unknown. Here, using infected erythrocytes from recently sampled clinical P. falciparum samples, we measured serological conservation using pools of antibodies in sera that had been sampled 10 to 12 years earlier. The serological conservation of infected erythrocytes strongly correlated with the expression of specific PfEMP1 subsets previously found to be associated with severe malaria. However, we found no association between serological conservation per se and disease severity within these data. This contrasts with the simple hypothesis that P. falciparum isolates with a serologically conserved group of PfEMP1 variants cause severe malaria. The data are instead consistent with periodic turnover of the immunodominant epitopes of PfEMP1 associated with severe malaria.
Collapse
|
33
|
Church JA, Nyamako L, Olupot-Olupot P, Maitland K, Urban BC. Increased adhesion of Plasmodium falciparum infected erythrocytes to ICAM-1 in children with acute intestinal injury. Malar J 2016; 15:54. [PMID: 26830671 PMCID: PMC4736236 DOI: 10.1186/s12936-016-1110-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 01/18/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Children with severe malaria are at increased risk of invasive bacterial disease particularly infection with enteric gram-negative organisms. These organisms are likely to originate from the gut, however, how and why they breach the intestinal interface in the context of malaria infection remains unclear. One explanation is that accumulation of infected red blood cells (iRBCs) in the intestinal microvasculature contributes to tissue damage and subsequent microbial translocation which can be addressed through investigation of the impact of cytoadhesion in patients with malaria and intestinal damage. METHODS Using a static adhesion assay, cytoadhesion of iRBCs was quantified in 48 children with malaria to recombinant proteins constitutively expressed on endothelial cell surfaces. Cytoadhesive phenotypes between children with and without biochemical evidence of intestinal damage [defined as endotoxemia or elevated plasma intestinal fatty acid binding protein (I-FABP)] was compared. RESULTS The majority of parasites demonstrated binding to the endothelial receptors CD36 and to a lesser extent to ICAM-1. Reduced adhesion to CD36 but not adhesion to ICAM-1 or rosetting was associated with malarial anaemia (p = 0.004). Increased adhesion of iRBCs to ICAM-1 in children who had evidence of elevated I-FABP (p = 0.022), a marker of intestinal ischaemia was observed. There was no correlation between the presence of endotoxemia and increased adhesion to any of the recombinant proteins. CONCLUSION Increased parasite adhesion to ICAM-1 in children with evidence of intestinal ischaemia lends further evidence to a link between the cytoadherence of iRBCs in gut microvasculature and intestinal damage.
Collapse
Affiliation(s)
- James A Church
- Centre for Paediatrics, Blizard Institute, Queen Mary University of London, London, UK. .,KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
| | - Lydia Nyamako
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
| | - Peter Olupot-Olupot
- Mbale Regional Referral Hospital Clinical Research Unit (MCRU), Mbale, Uganda. .,Busitema University Faculty of Health Sciences, Mbale Campus, Mbale, Uganda.
| | - Kathryn Maitland
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya. .,Wellcome Centre for Clinical Tropical Medicine, Imperial College, London, UK.
| | - Britta C Urban
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya. .,Parasitology Department, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
34
|
Global selection of Plasmodium falciparum virulence antigen expression by host antibodies. Sci Rep 2016; 6:19882. [PMID: 26804201 PMCID: PMC4726288 DOI: 10.1038/srep19882] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 12/21/2015] [Indexed: 12/22/2022] Open
Abstract
Parasite proteins called PfEMP1 that are inserted on the surface of infected erythrocytes, play a key role in the severe pathology associated with infection by the Plasmodium falciparum malaria parasite. These proteins mediate binding of infected cells to the endothelial lining of blood vessels as a strategy to avoid clearance by the spleen and are major targets of naturally acquired immunity. PfEMP1 is encoded by a large multi-gene family called var. Mutually-exclusive transcriptional switching between var genes allows parasites to escape host antibodies. This study examined in detail the patterns of expression of var in a well-characterized sample of parasites from Kenyan Children. Instead of observing clear inverse relationships between the expression of broad sub-classes of PfEMP1, we found that expression of different PfEMP1 groups vary relatively independently. Parasite adaptation to host antibodies also appears to involve a general reduction in detectable var gene expression. We suggest that parasites switch both between different PfEMP1 variants and between high and low expression states. Such a strategy could provide a means of avoiding immunological detection and promoting survival under high levels of host immunity.
Collapse
|
35
|
Abstract
The Plasmodium falciparum erythrocyte membrane protein 1 antigens that are inserted onto the surface of P. falciparum infected erythrocytes play a key role both in the pathology of severe malaria and as targets of naturally acquired immunity. They might be considered unlikely vaccine targets because they are extremely diverse. However, several lines of evidence suggest that underneath this molecular diversity there are a restricted set of epitopes which may act as effective targets for a vaccine against severe malaria. Here we review some of the recent developments in this area of research, focusing on work that has assessed the potential of these molecules as possible vaccine targets.
Collapse
|
36
|
Differential Plasmodium falciparum surface antigen expression among children with Malarial Retinopathy. Sci Rep 2015; 5:18034. [PMID: 26657042 PMCID: PMC4677286 DOI: 10.1038/srep18034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/10/2015] [Indexed: 11/08/2022] Open
Abstract
Retinopathy provides a window into the underlying pathology of life-threatening malarial coma ("cerebral malaria"), allowing differentiation between 1) coma caused by sequestration of Plasmodium falciparum-infected erythrocytes in the brain and 2) coma with other underlying causes. Parasite sequestration in the brain is mediated by PfEMP1; a diverse parasite antigen that is inserted into the surface of infected erythrocytes and adheres to various host receptors. PfEMP1 sub-groups called "DC8" and "DC13" have been proposed to cause brain pathology through interactions with endothelial protein C receptor. To test this we profiled PfEMP1 gene expression in parasites from children with clinically defined cerebral malaria, who either had or did not have accompanying retinopathy. We found no evidence for an elevation of DC8 or DC13 PfEMP1 expression in children with retinopathy. However, the proportional expression of a broad subgroup of PfEMP1 called "group A" was elevated in retinopathy patients suggesting that these variants may play a role in the pathology of cerebral malaria. Interventions targeting group A PfEMP1 may be effective at reducing brain pathology.
Collapse
|
37
|
Abstract
Plasmodium falciparum is the protozoan parasite that causes most malaria-associated morbidity and mortality in humans with over 500,000 deaths annually. The disease symptoms are associated with repeated cycles of invasion and asexual multiplication inside red blood cells of the parasite. Partial, non-sterile immunity to P. falciparum malaria develops only after repeated infections and continuous exposure. The successful evasion of the human immune system relies on the large repertoire of antigenically diverse parasite proteins displayed on the red blood cell surface and on the merozoite membrane where they are exposed to the human immune system. Expression switching of these polymorphic proteins between asexual parasite generations provides an efficient mechanism to adapt to the changing environment in the host and to maintain chronic infection. This chapter discusses antigenic diversity and variation in the malaria parasite and our current understanding of the molecular mechanisms that direct the expression of these proteins.
Collapse
Affiliation(s)
- Michaela Petter
- Department of Medicine Royal Melbourne Hospital, Peter Doherty Institute, University of Melbourne, 792 Elizabeth Street, Melbourne, VIC, 3010, Australia.
| | - Michael F Duffy
- Department of Medicine Royal Melbourne Hospital, Peter Doherty Institute, University of Melbourne, 792 Elizabeth Street, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
38
|
Larremore DB, Sundararaman SA, Liu W, Proto WR, Clauset A, Loy DE, Speede S, Plenderleith LJ, Sharp PM, Hahn BH, Rayner JC, Buckee CO. Ape parasite origins of human malaria virulence genes. Nat Commun 2015; 6:8368. [PMID: 26456841 PMCID: PMC4633637 DOI: 10.1038/ncomms9368] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 08/14/2015] [Indexed: 12/22/2022] Open
Abstract
Antigens encoded by the var gene family are major virulence factors of the human malaria parasite Plasmodium falciparum, exhibiting enormous intra- and interstrain diversity. Here we use network analysis to show that var architecture and mosaicism are conserved at multiple levels across the Laverania subgenus, based on var-like sequences from eight single-species and three multi-species Plasmodium infections of wild-living or sanctuary African apes. Using select whole-genome amplification, we also find evidence of multi-domain var structure and synteny in Plasmodium gaboni, one of the ape Laverania species most distantly related to P. falciparum, as well as a new class of Duffy-binding-like domains. These findings indicate that the modular genetic architecture and sequence diversity underlying var-mediated host-parasite interactions evolved before the radiation of the Laverania subgenus, long before the emergence of P. falciparum. Antigens encoded by var genes are major virulence factors of the human malaria parasite Plasmodium falciparum. Here, Larremore et al. identify var-like genes in distantly related Plasmodium species infecting African apes, indicating that these genes already existed in an ancestral ape parasite many millions of years ago.
Collapse
Affiliation(s)
- Daniel B Larremore
- Center for Communicable Disease Dynamics, Harvard School of Public Health, Boston, Massachusetts 02115, USA.,Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Sesh A Sundararaman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Weimin Liu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - William R Proto
- Sanger Institute Malaria Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Aaron Clauset
- Department of Computer Science, University of Colorado, Boulder, Colorado 80309, USA.,Santa Fe Institute, Santa Fe, New Mexico 87501, USA.,BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, USA
| | - Dorothy E Loy
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Sheri Speede
- Sanaga-Yong Chimpanzee Rescue Center, IDA-Africa, Portland, Oregon 97204, USA
| | - Lindsey J Plenderleith
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Paul M Sharp
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Julian C Rayner
- Sanger Institute Malaria Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Caroline O Buckee
- Center for Communicable Disease Dynamics, Harvard School of Public Health, Boston, Massachusetts 02115, USA.,Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
39
|
Mastering malaria: What helps and what hurts. Proc Natl Acad Sci U S A 2015; 112:2925-6. [DOI: 10.1073/pnas.1501786112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
40
|
Conway DJ. Paths to a malaria vaccine illuminated by parasite genomics. Trends Genet 2015; 31:97-107. [PMID: 25620796 PMCID: PMC4359294 DOI: 10.1016/j.tig.2014.12.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 11/24/2022]
Abstract
Discovery of vaccine candidate antigens by parasite genome sequence analyses. Genetic crosses, linkage group selection, and functional studies on parasites. Characterizing developmental and epigenetic variation alongside allelic polymorphism. Selection by naturally acquired immune responses helps to focus vaccine design.
More human death and disease is caused by malaria parasites than by all other eukaryotic pathogens combined. As early as the sequencing of the first human genome, malaria parasite genomics was prioritized to fuel the discovery of vaccine candidate antigens. This stimulated increased research on malaria, generating new understanding of the cellular and molecular mechanisms of infection and immunity. This review of recent developments illustrates how new approaches in parasite genomics, and increasingly large amounts of data from population studies, are helping to identify antigens that are promising lead targets. Although these results have been encouraging, effective discovery and characterization need to be coupled with more innovation and funding to translate findings into newly designed vaccine products for clinical trials.
Collapse
Affiliation(s)
- David J Conway
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| |
Collapse
|
41
|
Tembo DL, Nyoni B, Murikoli RV, Mukaka M, Milner DA, Berriman M, Rogerson SJ, Taylor TE, Molyneux ME, Mandala WL, Craig AG, Montgomery J. Differential PfEMP1 expression is associated with cerebral malaria pathology. PLoS Pathog 2014; 10:e1004537. [PMID: 25473835 PMCID: PMC4256257 DOI: 10.1371/journal.ppat.1004537] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/23/2014] [Indexed: 11/23/2022] Open
Abstract
Plasmodium falciparum is unique among human malarias in its ability to sequester in post-capillary venules of host organs. The main variant antigens implicated are the P. falciparum erythrocyte membrane protein 1 (PfEMP1), which can be divided into three major groups (A–C). Our study was a unique examination of sequestered populations of parasites for genetic background and expression of PfEMP1 groups. We collected post-mortem tissue from twenty paediatric hosts with pathologically different forms of cerebral malaria (CM1 and CM2) and parasitaemic controls (PC) to directly examine sequestered populations of parasites in the brain, heart and gut. Use of two different techniques to investigate this question produced divergent results. By quantitative PCR, group A var genes were upregulated in all three organs of CM2 and PC cases. In contrast, in CM1 infections displaying high levels of sequestration but negligible vascular pathology, there was high expression of group B var. Cloning and sequencing of var transcript tags from the same samples indicated a uniformly low expression of group A-like var. Generally, within an organ sample, 1–2 sequences were expressed at dominant levels. 23% of var tags were detected in multiple patients despite the P. falciparum infections being genetically distinct, and two tags were observed in up to seven hosts each with high expression in the brains of 3–4 patients. This study is a novel examination of the sequestered parasites responsible for fatal cerebral malaria and describes expression patterns of the major cytoadherence ligand in three organ-derived populations and three pathological states. One of the most severe forms of malarial disease is cerebral malaria, which disproportionally affects young children. In this disease, the parasite places proteins on the red blood cell surface, providing a “smokescreen” by which they evade host immunity and hide in organ blood vessels, blocking them and causing tissue damage. It is impossible to study parasites in the organs during life and autopsy studies on children with malaria are exceedingly rare. In Malawi, we examined parasites from the brain, heart and intestine of twenty cases of fatal malaria including controls with low numbers of malaria parasites but another identified cause of death. We found little difference in the category of proteins the parasites used in controls and cerebral malaria, although a small number of specific proteins were detected in multiple infections. In an alternative form of malaria in which the brain is heavily infected but shows no evidence of damage, we found a different set of proteins at high proportion. However, as these children were typically older and most were infected with HIV, we could not determine which of these factors was most important. Interactions between host and parasite have the potential to influence disease outcomes.
Collapse
Affiliation(s)
- Dumizulu L. Tembo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre, Malawi
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Benjamin Nyoni
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre, Malawi
| | - Rekah V. Murikoli
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre, Malawi
| | - Mavuto Mukaka
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre, Malawi
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Danny A. Milner
- Blantyre Malaria Project, College of Medicine, Blantyre, Malawi
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Matthew Berriman
- Pathogen Sequencing Unit, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Terrie E. Taylor
- Blantyre Malaria Project, College of Medicine, Blantyre, Malawi
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Malcolm E. Molyneux
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre, Malawi
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Wilson L. Mandala
- Department of Basic Medical Sciences, College of Medicine, Blantyre, Malawi
| | - Alister G. Craig
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jacqui Montgomery
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre, Malawi
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Warimwe GM, Fegan G, Kiragu EW, Musyoki JN, Macharia AW, Marsh K, Williams TN, Bull PC. An assessment of the impact of host polymorphisms on Plasmodium falciparum var gene expression patterns among Kenyan children. BMC Infect Dis 2014; 14:524. [PMID: 25267261 PMCID: PMC4262213 DOI: 10.1186/1471-2334-14-524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 09/24/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Host genotype accounts for a component of the variability in susceptibility to childhood Plasmodium falciparum malaria. However, despite numerous examples of host polymorphisms associated with tolerance or resistance to infection, direct evidence for an impact of host genetic polymorphisms on the in vivo parasite population is difficult to obtain. Parasite molecules whose expression is most likely to be associated with such adaptation are those that are directly involved in the host-parasite interaction. A prime candidate is the family of parasite var gene-encoded molecules on P. falciparum-infected erythrocytes, PfEMP1, which binds various host molecules and facilitates parasite sequestration in host tissues to avoid clearance by the spleen. METHODS To assess the impact of host genotype on the infecting parasite population we used a published parasite var gene sequence dataset to compare var gene expression patterns between parasites from children with polymorphisms in molecules thought to interact with or modulate display of PfEMP1 on the infected erythrocyte surface: ABO blood group, haemoglobin S, alpha-thalassaemia, the T188G polymorphism of CD36 and the K29M polymorphism of ICAM1. RESULTS Expression levels of 'group A-like' var genes, which encode a specific group of PfEMP1 variants previously associated with low host immunity and severe malaria, showed signs of elevation among children of blood group AB. No other host factor tested showed evidence for an association with var expression. CONCLUSIONS Our preliminary findings suggest that host ABO blood group may have a measurable impact on the infecting parasite population. This needs to be verified in larger studies.
Collapse
Affiliation(s)
- George M Warimwe
- />Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- />The Jenner Institute, University of Oxford, Oxford, UK
| | - Gregory Fegan
- />Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- />Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Esther W Kiragu
- />Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Jennifer N Musyoki
- />Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Alexander W Macharia
- />Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kevin Marsh
- />Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- />Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Thomas N Williams
- />Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- />Department of Medicine, Imperial College, London, UK
| | - Peter C Bull
- />Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- />Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Coleman BI, Skillman KM, Jiang RHY, Childs LM, Altenhofen LM, Ganter M, Leung Y, Goldowitz I, Kafsack BF, Marti M, Llinás M, Buckee CO, Duraisingh MT. A Plasmodium falciparum histone deacetylase regulates antigenic variation and gametocyte conversion. Cell Host Microbe 2014; 16:177-186. [PMID: 25121747 PMCID: PMC4188636 DOI: 10.1016/j.chom.2014.06.014] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 05/06/2014] [Accepted: 06/06/2014] [Indexed: 01/20/2023]
Abstract
The asexual forms of the malaria parasite Plasmodium falciparum are adapted for chronic persistence in human red blood cells, continuously evading host immunity using epigenetically regulated antigenic variation of virulence-associated genes. Parasite survival on a population level also requires differentiation into sexual forms, an obligatory step for further human transmission. We reveal that the essential nuclear gene, P. falciparum histone deacetylase 2 (PfHda2), is a global silencer of virulence gene expression and controls the frequency of switching from the asexual cycle to sexual development. PfHda2 depletion leads to dysregulated expression of both virulence-associated var genes and PfAP2-g, a transcription factor controlling sexual conversion, and is accompanied by increases in gametocytogenesis. Mathematical modeling further indicates that PfHda2 has likely evolved to optimize the parasite's infectious period by achieving low frequencies of virulence gene expression switching and sexual conversion. This common regulation of cellular transcriptional programs mechanistically links parasite transmissibility and virulence.
Collapse
Affiliation(s)
- Bradley I. Coleman
- Department of Immunology & Infectious Diseases Harvard School of Public Health, Boston, MA 02115 USA
| | - Kristen M. Skillman
- Department of Immunology & Infectious Diseases Harvard School of Public Health, Boston, MA 02115 USA
| | - Rays H. Y. Jiang
- Department of Immunology & Infectious Diseases Harvard School of Public Health, Boston, MA 02115 USA
| | - Lauren M. Childs
- Department of Epidemiology and Center for Communicable Disease Dynamics, Harvard School of Public Health, Boston MA 02115 USA
| | - Lindsey M. Altenhofen
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton NJ 08544 USA
| | - Markus Ganter
- Department of Immunology & Infectious Diseases Harvard School of Public Health, Boston, MA 02115 USA
| | - Yvette Leung
- Department of Immunology & Infectious Diseases Harvard School of Public Health, Boston, MA 02115 USA
| | - Ilana Goldowitz
- Department of Immunology & Infectious Diseases Harvard School of Public Health, Boston, MA 02115 USA
| | - Björn F.C. Kafsack
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton NJ 08544 USA
| | - Matthias Marti
- Department of Immunology & Infectious Diseases Harvard School of Public Health, Boston, MA 02115 USA
| | - Manuel Llinás
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton NJ 08544 USA
| | - Caroline O. Buckee
- Department of Epidemiology and Center for Communicable Disease Dynamics, Harvard School of Public Health, Boston MA 02115 USA
| | - Manoj T. Duraisingh
- Department of Immunology & Infectious Diseases Harvard School of Public Health, Boston, MA 02115 USA
| |
Collapse
|
44
|
Storm J, Craig AG. Pathogenesis of cerebral malaria--inflammation and cytoadherence. Front Cell Infect Microbiol 2014; 4:100. [PMID: 25120958 PMCID: PMC4114466 DOI: 10.3389/fcimb.2014.00100] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/07/2014] [Indexed: 01/08/2023] Open
Abstract
Despite decades of research on cerebral malaria (CM) there is still a paucity of knowledge about what actual causes CM and why certain people develop it. Although sequestration of P. falciparum infected red blood cells has been linked to pathology, it is still not clear if this is directly or solely responsible for this clinical syndrome. Recent data have suggested that a combination of parasite variant types, mainly defined by the variant surface antigen, P. falciparum erythrocyte membrane protein 1 (PfEMP1), its receptors, coagulation and host endothelial cell activation (or inflammation) are equally important. This makes CM a multi-factorial disease and a challenge to unravel its causes to decrease its detrimental impact.
Collapse
Affiliation(s)
- Janet Storm
- Department of Parasitology, Liverpool School of Tropical Medicine Liverpool, UK ; Malawi Liverpool Wellcome Trust Clinical Research Programme (MLW), University of Malawi College of Medicine Blantyre, Malawi
| | - Alister G Craig
- Department of Parasitology, Liverpool School of Tropical Medicine Liverpool, UK
| |
Collapse
|
45
|
The role of PfEMP1 adhesion domain classification in Plasmodium falciparum pathogenesis research. Mol Biochem Parasitol 2014; 195:82-7. [PMID: 25064606 DOI: 10.1016/j.molbiopara.2014.07.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/14/2014] [Accepted: 07/14/2014] [Indexed: 11/24/2022]
Abstract
The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family has a key role in parasite survival, transmission, and virulence. PfEMP1 are exported to the erythrocyte membrane and mediate binding of infected erythrocytes to the endothelial lining of blood vessels. This process aids parasite survival by avoiding spleen-dependent killing mechanisms, but it is associated with adhesion-based disease complications. Switching between PfEMP1 proteins enables parasites to evade host immunity and modifies parasite tropism for different microvascular beds. The PfEMP1 protein family is one of the most diverse adhesion modules in nature. This review covers PfEMP1 adhesion domain classification and the significant role it is playing in deciphering and deconvoluting P. falciparum cytoadhesion and disease.
Collapse
|
46
|
Gonçalves BP, Huang CY, Morrison R, Holte S, Kabyemela E, Prevots DR, Fried M, Duffy PE. Parasite burden and severity of malaria in Tanzanian children. N Engl J Med 2014; 370:1799-808. [PMID: 24806160 PMCID: PMC4091983 DOI: 10.1056/nejmoa1303944] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Severe Plasmodium falciparum malaria is a major cause of death in children. The contribution of the parasite burden to the pathogenesis of severe malaria has been controversial. METHODS We documented P. falciparum infection and disease in Tanzanian children followed from birth for an average of 2 years and for as long as 4 years. RESULTS Of the 882 children in our study, 102 had severe malaria, but only 3 had more than two episodes. More than half of first episodes of severe malaria occurred after a second infection. Although parasite levels were higher on average when children had severe rather than mild disease, most children (67 of 102) had high-density infection (>2500 parasites per 200 white cells) with only mild symptoms before severe malaria, after severe malaria, or both. The incidence of severe malaria decreased considerably after infancy, whereas the incidence of high-density infection was similar among all age groups. Infections before and after episodes of severe malaria were associated with similar parasite densities. Nonuse of bed nets, placental malaria at the time of a woman's second or subsequent delivery, high-transmission season, and absence of the sickle cell trait increased severe-malaria risk and parasite density during infections. CONCLUSIONS Resistance to severe malaria was not acquired after one or two mild infections. Although the parasite burden was higher on average during episodes of severe malaria, a high parasite burden was often insufficient to cause severe malaria even in children who later were susceptible. The diverging rates of severe disease and high-density infection after infancy, as well as the similar parasite burdens before and after severe malaria, indicate that naturally acquired resistance to severe malaria is not explained by improved control of parasite density. (Funded by the National Institute of Allergy and Infectious Diseases and others.).
Collapse
Affiliation(s)
- Bronner P Gonçalves
- From the Laboratory of Malaria Immunology and Vaccinology (B.P.G., M.F., P.E.D.), Laboratory of Clinical Infectious Diseases-Epidemiology Unit (B.P.G., D.R.P.), and Biostatistics Research Branch (C.-Y.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD; the Seattle Biomedical Research Institute (R.M., M.F., P.E.D.) and the Fred Hutchinson Cancer Research Center (S.H.) - both in Seattle; and the Mother-Offspring Malaria Studies Project, Muheza Designated District Hospital, Muheza, Tanzania (E.K., M.F., P.E.D.)
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhang Y, Jiang N, Chang Z, Wang H, Lu H, Wahlgren M, Chen Q. The var3 genes of Plasmodium falciparum 3D7 strain are differentially expressed in infected erythrocytes. ACTA ACUST UNITED AC 2014; 21:19. [PMID: 24759654 PMCID: PMC3996964 DOI: 10.1051/parasite/2014019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/08/2014] [Indexed: 11/14/2022]
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is an important virulence factor encoded by a family of 59 var genes, including 56 var genes plus 3 small var3 genes. The var genes are among the most diverse sequences in the P. falciparum genome, but the var3 genes are found conserved in most P. falciparum strains. Previous studies have been mainly focused on the typical var genes, while the biological characteristics of the var3 genes remain unknown. In this study, the three var3 genes, PF3D7_0100300, PF3D7_0600400, and PF3D7_0937600, were found to be transcribed in the erythrocytic stages of P. falciparum, with a peak in the transcription level at 16 h post-invasion, but terminated immediately after 16 h post-invasion. The encoded protein of PF3D7_0600400 could be detected in both the late trophozoite stage and schizont stage, while the encoded proteins of PF3D7_0100300 and PF3D7_0937600 could only be detected in the late trophozoite stage and schizont stage, respectively. Thus, the var3 genes of the P. falciparum 3D7 strain were differentially expressed during the erythrocytic development of the parasite.
Collapse
Affiliation(s)
- Yana Zhang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, PR China
| | - Ning Jiang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, PR China
| | - Zhiguang Chang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, PR China
| | - Henan Wang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, PR China
| | - Huijun Lu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, PR China
| | - Mats Wahlgren
- Department of Microbiology, Tumour- and Cellular Biology, Karolinska Institutet, S-171 71, Stockholm, Sweden
| | - Qijun Chen
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, PR China - Department of Microbiology, Tumour- and Cellular Biology, Karolinska Institutet, S-171 71, Stockholm, Sweden
| |
Collapse
|
48
|
Chan JA, Fowkes FJI, Beeson JG. Surface antigens of Plasmodium falciparum-infected erythrocytes as immune targets and malaria vaccine candidates. Cell Mol Life Sci 2014; 71:3633-57. [PMID: 24691798 PMCID: PMC4160571 DOI: 10.1007/s00018-014-1614-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/04/2014] [Accepted: 03/17/2014] [Indexed: 12/19/2022]
Abstract
Understanding the targets and mechanisms of human immunity to malaria caused by Plasmodium falciparum is crucial for advancing effective vaccines and developing tools for measuring immunity and exposure in populations. Acquired immunity to malaria predominantly targets the blood stage of infection when merozoites of Plasmodium spp. infect erythrocytes and replicate within them. During the intra-erythrocytic development of P. falciparum, numerous parasite-derived antigens are expressed on the surface of infected erythrocytes (IEs). These antigens enable P. falciparum-IEs to adhere in the vasculature and accumulate in multiple organs, which is a key process in the pathogenesis of disease. IE surface antigens, often referred to as variant surface antigens, are important targets of acquired protective immunity and include PfEMP1, RIFIN, STEVOR and SURFIN. These antigens are highly polymorphic and encoded by multigene families, which generate substantial antigenic diversity to mediate immune evasion. The most important immune target appears to be PfEMP1, which is a major ligand for vascular adhesion and sequestration of IEs. Studies are beginning to identify specific variants of PfEMP1 linked to disease pathogenesis that may be suitable for vaccine development, but overcoming antigenic diversity in PfEMP1 remains a major challenge. Much less is known about other surface antigens, or antigens on the surface of gametocyte-IEs, the effector mechanisms that mediate immunity, and how immunity is acquired and maintained over time; these are important topics for future research.
Collapse
|
49
|
Abdi AI, Fegan G, Muthui M, Kiragu E, Musyoki JN, Opiyo M, Marsh K, Warimwe GM, Bull PC. Plasmodium falciparum antigenic variation: relationships between widespread endothelial activation, parasite PfEMP1 expression and severe malaria. BMC Infect Dis 2014; 14:170. [PMID: 24674301 PMCID: PMC3986854 DOI: 10.1186/1471-2334-14-170] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 03/19/2014] [Indexed: 12/01/2022] Open
Abstract
Background Plasmodium falciparum erythrocyte membrane protein 1(PfEMP1) is a family of variant surface antigens (VSA) that mediate the adhesion of parasite infected erythrocytes to capillary endothelial cells within host tissues. Opinion is divided over the role of PfEMP1 in the widespread endothelial activation associated with severe malaria. In a previous study we found evidence for differential associations between defined VSA subsets and specific syndromes of severe malaria: group A-like PfEMP1 expression and the “rosetting” phenotype were associated with impaired consciousness and respiratory distress, respectively. This study explores the involvement of widespread endothelial activation in these associations. Methods We used plasma angiopoietin-2 as a marker of widespread endothelial activation. Using logistic regression analysis, we explored the relationships between plasma angiopoietin-2 levels, parasite VSA expression and the two syndromes of severe malaria, impaired consciousness and respiratory distress. Results Plasma angiopoietin-2 was associated with both syndromes. The rosetting phenotype did not show an independent association with respiratory distress when adjusted for angiopoietin-2, consistent with a single pathogenic mechanism involving widespread endothelial activation. In contrast, group A-like PfEMP1 expression and angiopoietin-2 maintained independent associations with impaired consciousness when adjusted for each other. Conclusion The results are consistent with multiple pathogenic mechanisms leading to severe malaria and heterogeneity in the pathophysiology of impaired consciousness. The observed association between group A-like PfEMP1 and impaired consciousness does not appear to involve widespread endothelial activation.
Collapse
Affiliation(s)
- Abdirahman I Abdi
- KEMRI-Wellcome Trust Research Programme, P,O, Box 230-80108, Kilifi, Kenya.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gitau EN, Tuju J, Karanja H, Stevenson L, Requena P, Kimani E, Olotu A, Kimani D, Marsh K, Bull P, Urban BC. CD4+ T cell responses to the Plasmodium falciparum erythrocyte membrane protein 1 in children with mild malaria. THE JOURNAL OF IMMUNOLOGY 2014; 192:1753-61. [PMID: 24453249 PMCID: PMC3918862 DOI: 10.4049/jimmunol.1200547] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The immune response against the variant surface Ag Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a key component of clinical immunity against malaria. We have investigated the development and maintenance of CD4+ T cell responses to a small semiconserved area of the Duffy binding–like domain (DBL)α–domain of PfEMP1, the DBLα-tag. Young children were followed up longitudinally, and parasites and PBMCs were isolated from 35 patients presenting with an acute case of uncomplicated malaria. The DBLα-tag from the PfEMP1 dominantly expressed by the homologous parasite isolate was cloned and expressed as recombinant protein. The recombinant DBLα-tag was used to activate PBMCs collected from each acute episode and from an annual cross-sectional survey performed after the acute malaria episode. In this article, we report that CD4+ T cell responses to the homologous DBLα-tag were induced in 75% of the children at the time of the acute episode and in 62% of the children at the following cross-sectional survey on average 235 d later. Furthermore, children who had induced DBLα-tag–specific CD4+IL-4+ T cells at the acute episode remained episode free for longer than children who induced other types of CD4+ T cell responses. These results suggest that a wide range of DBLα-tag–specific CD4+ T cell responses were induced in children with mild malaria and, in the case of CD4+IL-4+ T cell responses, were associated with protection from clinical episodes.
Collapse
Affiliation(s)
- Evelyn N Gitau
- KEMRI-Wellcome Trust Collaborative Programme, Centre for Geographic Medicine Coast, 80108 Kilifi, Kenya
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|