1
|
Li X, Xu Z. Applications of Matrix Metalloproteinase-9-Related Nanomedicines in Tumors and Vascular Diseases. Pharmaceutics 2025; 17:479. [PMID: 40284474 PMCID: PMC12030376 DOI: 10.3390/pharmaceutics17040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/25/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) is implicated in tumor progression and vascular diseases, contributing to angiogenesis, metastasis, and extracellular matrix degradation. This review comprehensively examines the relationship between MMP-9 and these pathologies, exploring the underlying molecular mechanisms and signaling pathways involved. Specifically, we discuss the contribution of MMP-9 to tumor epithelial-mesenchymal transition, angiogenesis, and metastasis, as well as its involvement in a spectrum of vascular diseases, including macrovascular, cerebrovascular, and ocular vascular diseases. This review focuses on recent advances in MMP-9-targeted nanomedicine strategies, highlighting the design and application of responsive nanoparticles for enhanced drug delivery. These nanotherapeutic strategies leverage MMP-9 overexpression to achieve targeted drug release, improved tumor penetration, and reduced systemic toxicity. We explore various nanoparticle platforms, such as liposomes and polymer nanoparticles, and discuss their mechanisms of action, including degradation, drug release, and targeting specificity. Finally, we address the challenges posed by the heterogeneity of MMP-9 expression and their implications for personalized therapies. Ultimately, this review underscores the diagnostic and therapeutic potential of MMP-9-targeted nanomedicines against tumors and vascular diseases.
Collapse
Affiliation(s)
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
2
|
Clyman RI, Rosenstein MG, Liebowitz MC, Rogers EE, Kramer KP, Hills NK. Betamethasone treatment-to-delivery interval, retreatment, and severe intraventricular hemorrhage in infants <28 weeks' gestation. Am J Obstet Gynecol 2025; 232:400.e1-400.e10. [PMID: 38971464 DOI: 10.1016/j.ajog.2024.06.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Antenatal corticosteroids decrease the incidence of severe intraventricular hemorrhage (grades 3, 4) in preterm infants. It is unclear whether their beneficial effects on intraventricular hemorrhage wane with time (as occurs in neonatal respiratory distress) and if repeat courses can restore this effect. Previous randomized controlled trials of betamethasone retreatment found no benefit on severe intraventricular hemorrhage rates. However, the trials may have included an insufficient number of infants at risk for intraventricular hemorrhage to be able to adequately address this question. Severe intraventricular hemorrhages occur almost exclusively in infants born at <28 weeks' gestation, whereas only 7% (0%-16%) of the retreatment trials' populations were <28 weeks' gestation. OBJECTIVE This study aimed to determine if the risk for severe intraventricular hemorrhage in infants delivered at <28 weeks' gestation increases when the betamethasone treatment-to-delivery interval increases beyond 9 days and to determine if betamethasone retreatment before delivery decreases the rate of hemorrhage. STUDY DESIGN This was an observational study that examined the incidence of intraventricular hemorrhage before (epoch 1) and after (epoch 2) a practice change that encouraged obstetricians to retreat pregnant women still at high risk for delivery before 28 weeks' gestation when >9 days elapsed from the first dose of betamethasone. Multivariable analyses with logistic regression using generalized estimating equation techniques were conducted to examine the rates of intraventricular hemorrhage among 410 infants <28 weeks' gestation who were either delivered between 1 to 9 days (n=290) after the first 2-dose betamethasone course or ≥10 days (and eligible for retreatment) after the first course (n=120). RESULTS After adjusting for potential confounding variables, infants who were delivered ≥10 days after a single betamethasone course had an increased risk for either severe intraventricular hemorrhage alone or the combined outcome severe intraventricular hemorrhage or death before 4 days (odds ratio, 2.8; 95% confidence interval, 1.2-6.6) when compared with infants who were delivered between 1 and 9 days after betamethasone. Among the 120 infants who were delivered ≥10 days after the first dose of betamethasone, 64 (53%) received a second or retreatment course of antenatal betamethasone. The severe intraventricular hemorrhage rate in infants whose mothers received a second or retreatment course of betamethasone was similar to the rate among infants who delivered within 1 to 9 days and significantly lower than among those who delivered ≥10 days without retreatment (odds ratio, 0.10; 95% confidence interval, 0.02-0.65). Following the change in guidelines, the rate of retreatment in infants who were delivered ≥10 days after the first betamethasone course (and before 28 weeks) increased from epoch 1 to epoch 2 (25% to 87%; P<.001) and the rate of severe intraventricular hemorrhage decreased from 22% to 0% (P<.001). In contrast, the rate of severe intraventricular hemorrhage among infants who were delivered 1 to 9 days after the initial betamethasone dose (who were not eligible for retreatment) did not change between epochs 1 and 2 (12% and 11%, respectively). CONCLUSION Although betamethasone's benefits on severe intraventricular hemorrhage appear to wane after the first dose, retreatment with a second course seems to restore its beneficial effects. Encouraging earlier retreatment of women at high risk for delivery before 28 weeks was associated with a lower rate of severe intraventricular hemorrhages among infants delivered at <28 weeks' gestation.
Collapse
Affiliation(s)
- Ronald I Clyman
- Department of Pediatrics, University of California San Francisco, San Francisco, CA; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA.
| | - Melissa G Rosenstein
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA
| | - Melissa C Liebowitz
- Department of Pediatrics, University of California San Francisco, San Francisco, CA
| | - Elizabeth E Rogers
- Department of Pediatrics, University of California San Francisco, San Francisco, CA
| | - Katelin P Kramer
- Department of Pediatrics, University of California San Francisco, San Francisco, CA
| | - Nancy K Hills
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA; Department of Neurology, University of California San Francisco, San Francisco, CA
| |
Collapse
|
3
|
Ducatez F, Tebani A, Abily-Donval L, Snanoudj S, Pilon C, Plichet T, Le Chatelier C, Bekri S, Marret S. New insights and potential biomarkers for intraventricular hemorrhage in extremely premature infant, case-control study. Pediatr Res 2024; 96:395-401. [PMID: 38467704 DOI: 10.1038/s41390-024-03111-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Despite advancements in neonatal care, germinal matrix-intraventricular hemorrhage impacts 20% of very preterm infants, exacerbating their neurological prognosis. Understanding its complex, multifactorial pathophysiology and rapid onset remains challenging. This study aims to link specific cord blood biomolecules at birth with post-natal germinal matrix-intraventricular hemorrhage onset. METHODS A monocentric, prospective case-control study was conducted at Rouen University Hospital from 2015 to 2020. Premature newborns ( < 30 gestational age) were included and cord blood was sampled in the delivery room. A retrospective matching procedure was held in 2021 to select samples for proteomic and metabolomic analysis of 370 biomolecules. RESULTS 26 patients with germinal matrix-intraventricular hemorrhage cases and 60 controls were included. Clinical differences were minimal, except for higher invasive ventilation rates in the germinal matrix-intraventricular hemorrhage group. Germinal matrix-intraventricular hemorrhage newborns exhibited lower phosphatidylcholine levels and elevated levels of four proteins: BOC cell adhesion-associated protein, placental growth factor, Leukocyte-associated immunoglobulin-like receptor 2, and tumor necrosis factor-related apoptosis-inducing ligand receptor 2. CONCLUSION This study identifies biomolecules that may be linked to subsequent germinal matrix-intraventricular hemorrhage, suggesting heightened vascular disruption risk as an independent factor. These results need further validation but could serve as early germinal matrix-intraventricular hemorrhage risk biomarkers for future evaluations. IMPACT Decrease in certain phosphatidylcholines and increase in four proteins in cord blood at birth may be linked to subsequent germinal matrix-intraventricular hemorrhage in premature newborns. The four proteins are BOC cell adhesion-associated protein, placental growth factor, leukocyte-associated immunoglobulin-like receptor 2, and TNF-related apoptosis-inducing ligand receptor 2. This biological imprint could point toward higher vascular disruption risk as an independent risk factor for this complication and with further validations, could be used for better stratification of premature newborns at birth.
Collapse
Affiliation(s)
- Franklin Ducatez
- Normandie Univ, UNIROUEN, INSERM U1245, CHU Rouen, Department of Neonatal Pediatrics, Intensive Care, and Neuropediatrics, 76000, Rouen, France
- Normandie Univ, UNIROUEN, INSERM U1245, CHU Rouen, Department of Metabolic Biochemistry, 76000, Rouen, France
| | - Abdellah Tebani
- Normandie Univ, UNIROUEN, INSERM U1245, CHU Rouen, Department of Metabolic Biochemistry, 76000, Rouen, France
| | - Lenaig Abily-Donval
- Normandie Univ, UNIROUEN, INSERM U1245, CHU Rouen, Department of Neonatal Pediatrics, Intensive Care, and Neuropediatrics, 76000, Rouen, France
| | - Sarah Snanoudj
- Normandie Univ, UNIROUEN, INSERM U1245, CHU Rouen, Department of Metabolic Biochemistry, 76000, Rouen, France
| | - Carine Pilon
- CHU Rouen, Department of Metabolic Biochemistry, 76000, Rouen, France
| | - Thomas Plichet
- CHU Rouen, Department of Metabolic Biochemistry, 76000, Rouen, France
| | - Charlotte Le Chatelier
- Normandie Univ, UNIROUEN, INSERM U1245, CHU Rouen, Department of Neonatal Pediatrics, Intensive Care, and Neuropediatrics, 76000, Rouen, France
| | - Soumeya Bekri
- Normandie Univ, UNIROUEN, INSERM U1245, CHU Rouen, Department of Metabolic Biochemistry, 76000, Rouen, France
| | - Stéphane Marret
- Normandie Univ, UNIROUEN, INSERM U1245, CHU Rouen, Department of Neonatal Pediatrics, Intensive Care, and Neuropediatrics, 76000, Rouen, France.
| |
Collapse
|
4
|
Nour Eldine M, Alhousseini M, Nour-Eldine W, Noureldine H, Vakharia KV, Krafft PR, Noureldine MHA. The Role of Oxidative Stress in the Progression of Secondary Brain Injury Following Germinal Matrix Hemorrhage. Transl Stroke Res 2024; 15:647-658. [PMID: 36930383 DOI: 10.1007/s12975-023-01147-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Germinal matrix hemorrhage (GMH) can be a fatal condition responsible for the death of 1.7% of all neonates in the USA. The majority of GMH survivors develop long-term sequalae with debilitating comorbidities. Higher grade GMH is associated with higher mortality rates and higher prevalence of comorbidities. The pathophysiology of GMH can be broken down into two main titles: faulty hemodynamic autoregulation and structural weakness at the level of tissues and cells. Prematurity is the most significant risk factor for GMH, and it predisposes to both major pathophysiological mechanisms of the condition. Secondary brain injury is an important determinant of survival and comorbidities following GMH. Mechanisms of brain injury secondary to GMH include apoptosis, necrosis, neuroinflammation, and oxidative stress. This review will have a special focus on the mechanisms of oxidative stress following GMH, including but not limited to inflammation, mitochondrial reactive oxygen species, glutamate toxicity, and hemoglobin metabolic products. In addition, this review will explore treatment options of GMH, especially targeted therapy.
Collapse
Affiliation(s)
- Mariam Nour Eldine
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | | | - Wared Nour-Eldine
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Hussein Noureldine
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Kunal V Vakharia
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Paul R Krafft
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Mohammad Hassan A Noureldine
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA.
| |
Collapse
|
5
|
Mardhekar V, Yao Y. Causes of Hemorrhagic Stroke: a Cellular Perspective. Transl Stroke Res 2023; 14:640-642. [PMID: 35962239 PMCID: PMC9922789 DOI: 10.1007/s12975-022-01076-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Hemorrhagic stroke (HS) is a major cause of mortality and morbidity worldwide. Unfortunately, there are no effective treatments for HS currently, partially due to an incomplete understanding of the pathophysiology of this devastating disease. Here, we describe potential causes of HS in a cell-specific manner. Specifically, we summarize defects in brain endothelial cells (BECs), pericytes, vascular smooth muscle cells (vSMCs), and astrocytes that may directly or indirectly cause rupture of cerebral blood vessels. Next, key questions that need to be answered in future studies are discussed. We aim to provide a cellular perspective on the causes of HS.
Collapse
Affiliation(s)
- Vishal Mardhekar
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, Tampa, FL, 33612, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, Tampa, FL, 33612, USA.
| |
Collapse
|
6
|
Hăşmăşanu MG, Procopciuc LM, Matyas M, Zonda GI, Zaharie GC. Genetic Polymorphisms of Vascular Endothelial Growth Factor in Neonatal Pathologies: A Systematic Search and Narrative Synthesis of the Literature. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10040744. [PMID: 37189993 DOI: 10.3390/children10040744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
(1) Background: Vascular endothelial growth factor (VEGF) is essential in vasculo- and angiogenesis due to its role in endothelial cell proliferation and migration. As a vascular proliferative factor, VEGF is one of the hallmarks of cancer and, in adult populations, the relationship between genetic polymorphism and neoplasm was widely investigated. For the neonatal population, only a few studies attempted to uncover the link between the genetic polymorphism of VEGF and neonatal pathology, especially related to late-onset complications. Our objective is to evaluate the literature surrounding VEGF genetic polymorphisms and the morbidity of the neonatal period. (2) Methods: A systematic search was initially conducted in December 2022. The PubMed platform was used to explore MEDLINE (1946 to 2022) and PubMed Central (2000 to 2022) by applying the search string ((VEGF polymorphism*) and newborn*). (3) Results: The PubMed search yielded 62 documents. A narrative synthesis of the findings was undertaken considering our predetermined subheadings (infants with low birth weight or preterm birth, heart pathologies, lung diseases, eye conditions, cerebral pathologies, and digestive pathologies). (4) Conclusion: The VEGF polymorphisms seem to be associated with neonatal pathology. The involvement of VEGF and VEGF polymorphism has been demonstrated for retinopathy of prematurity.
Collapse
Affiliation(s)
- Monica G Hăşmăşanu
- Department of Neonatology, Iuliu Haţieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Lucia M Procopciuc
- Department of Medical Biochemistry, Iuliu Haţieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Melinda Matyas
- Department of Neonatology, Iuliu Haţieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Gabriela I Zonda
- Department of Mother and Child Care, "Grigore T. Popa" University of Medicine and Pharmacy Iasi, 700115 Iași, Romania
| | - Gabriela C Zaharie
- Department of Neonatology, Iuliu Haţieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Nadeem T, Bommareddy A, Bolarinwa L, Cuervo H. Pericyte dynamics in the mouse germinal matrix angiogenesis. FASEB J 2022; 36:e22339. [PMID: 35506590 DOI: 10.1096/fj.202200120r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022]
Abstract
Germinal matrix-intraventricular hemorrhage (GM-IVH) is the most devastating neurological complication in premature infants. GM-IVH usually begins in the GM, a highly vascularized region of the developing brain where glial and neuronal precursors reside underneath the lateral ventricular ependyma. Previous studies using human fetal tissue have suggested increased angiogenesis and paucity of pericytes as key factors contributing to GM-IVH pathogenesis. Yet, despite its relevance, the mechanisms underlying the GM vasculature's susceptibility to hemorrhage remain poorly understood. To gain better understanding on the vascular dynamics of the GM, we performed a comprehensive analysis of the mouse GM vascular endothelium and pericytes during development. We hypothesize that vascular development of the mouse GM will provide a good model for studies of human GM vascularization and provide insights into the role of pericytes in GM-IVH pathogenesis. Our findings show that the mouse GM presents significantly greater vascular area and vascular branching compared to the developing cortex (CTX). Analysis of pericyte coverage showed abundance in PDGFRβ-positive and NG2-positive pericyte coverage in the GM similar to the developing CTX. However, we found a paucity in Desmin-positive pericyte coverage of the GM vasculature. Our results underscore the highly angiogenic nature of the GM and reveal that pericytes in the developing mouse GM exhibit distinct phenotypical and likely functional characteristics compared to other brain regions which might contribute to the high susceptibility of the GM vasculature to hemorrhage.
Collapse
Affiliation(s)
- Taliha Nadeem
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Apoorva Bommareddy
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Lolade Bolarinwa
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Henar Cuervo
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
8
|
Bartkevičienė D, Pilypienė I, Serapinas D, Vaigauskaitė B, Vankevičiūtė RA, Bartkevičiūtė A, Narkevičiūtė I, Dumalakienė I. Umbilical Blood Levels of IL-6 and TNF-α as Predictors of the Central Nervous System Damage and Retinopathy in Preterm Infants. Am J Perinatol 2021; 38:1036-1041. [PMID: 32052396 DOI: 10.1055/s-0040-1701508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The aim was to identify the critical levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and vascular endothelial growth factor-A in umbilical cord blood that could be used as markers for predicting the central nervous system (CNS) damage and retinopathy of prematurity (ROP) in preterm infants. STUDY DESIGN A total of 158 preterm infants, born at 22 to 34 weeks of gestation, were evaluated in the first week after birth and at 36 to 37 weeks of postconceptual age. RESULTS A significant relationship between CNS changes and concentrations of IL-6 (p < 0.001) and TNF-α (p < 0.001) in umbilical cord blood at 22 to 34 weeks of gestation was determined. The concentration of IL-6 >13.0 pg/mL predicts significant CNS damages in 36 to 37-week infants (p = 0.013). ROP was diagnosed in 24.8% infants (n = 149). It was detected that the levels of TNF-α >116.4 pg/mL (p < 0.001) and IL-6 >13.0 pg/mL (p < 0.05) in umbilical cord blood could predict 2 to 3/3 to 4 stages of ROP. CONCLUSION Critical values of IL-6 and TNF-α in predicting ≥grade III intraventricular hemorrhage in the early adaptation and in predicting marked CNS damages and severe ROP stages in the later adaptation of preterm infants were determined.
Collapse
Affiliation(s)
- Daiva Bartkevičienė
- Department of Neonatology, Centre of Obstetrics and Gynecology, Clinic of Obstetrics and Gynecology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Ingrida Pilypienė
- Department of Neonatology, Centre of Obstetrics and Gynecology, Clinic of Obstetrics and Gynecology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Danielius Serapinas
- Department of Psychology, Institute of Psychology, Mykolas Romeris University, Vilnius, Lithuania.,Department of Family Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Brigita Vaigauskaitė
- Department of Neonatology, Centre of Obstetrics and Gynecology, Clinic of Obstetrics and Gynecology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Rasa Aurelija Vankevičiūtė
- Department of Dermatovenereology, Clinic of Infectious Diseases and Dermatovenerology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Agnė Bartkevičiūtė
- Department of Dermatovenereology, Clinic of Infectious Diseases and Dermatovenerology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Ieva Narkevičiūtė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Irena Dumalakienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| |
Collapse
|
9
|
Egesa WI, Odoch S, Odong RJ, Nakalema G, Asiimwe D, Ekuk E, Twesigemukama S, Turyasiima M, Lokengama RK, Waibi WM, Abdirashid S, Kajoba D, Kumbakulu PK. Germinal Matrix-Intraventricular Hemorrhage: A Tale of Preterm Infants. Int J Pediatr 2021; 2021:6622598. [PMID: 33815512 PMCID: PMC7987455 DOI: 10.1155/2021/6622598] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/26/2021] [Indexed: 12/15/2022] Open
Abstract
Germinal matrix-intraventricular hemorrhage (GM-IVH) is a common intracranial complication in preterm infants, especially those born before 32 weeks of gestation and very-low-birth-weight infants. Hemorrhage originates in the fragile capillary network of the subependymal germinal matrix of the developing brain and may disrupt the ependymal lining and progress into the lateral cerebral ventricle. GM-IVH is associated with increased mortality and abnormal neurodevelopmental outcomes such as posthemorrhagic hydrocephalus, cerebral palsy, epilepsy, severe cognitive impairment, and visual and hearing impairment. Most affected neonates are asymptomatic, and thus, diagnosis is usually made using real-time transfontanellar ultrasound. The present review provides a synopsis of the pathogenesis, grading, incidence, risk factors, and diagnosis of GM-IVH in preterm neonates. We explore brief literature related to outcomes, management interventions, and pharmacological and nonpharmacological prevention strategies for GM-IVH and posthemorrhagic hydrocephalus.
Collapse
Affiliation(s)
- Walufu Ivan Egesa
- Department of Paediatrics and Child Health, Faculty of Clinical Medicine and Dentistry, Kampala International University, Uganda
| | - Simon Odoch
- Department of Paediatrics and Child Health, Faculty of Clinical Medicine and Dentistry, Kampala International University, Uganda
| | - Richard Justin Odong
- Department of Paediatrics and Child Health, Faculty of Clinical Medicine and Dentistry, Kampala International University, Uganda
| | - Gloria Nakalema
- Department of Paediatrics and Child Health, Faculty of Clinical Medicine and Dentistry, Kampala International University, Uganda
| | - Daniel Asiimwe
- Department of Surgery, Faculty of Clinical Medicine and Dentistry, Kampala International University, Uganda
| | - Eddymond Ekuk
- Department of Surgery, Faculty of Medicine, Mbarara University of Science and Technology, Uganda
| | - Sabinah Twesigemukama
- Department of Paediatrics and Child Health, Faculty of Clinical Medicine and Dentistry, Kampala International University, Uganda
| | - Munanura Turyasiima
- Department of Paediatrics and Child Health, Faculty of Clinical Medicine and Dentistry, Kampala International University, Uganda
| | - Rachel Kwambele Lokengama
- Department of Paediatrics and Child Health, Faculty of Clinical Medicine and Dentistry, Kampala International University, Uganda
| | - William Mugowa Waibi
- Department of Paediatrics and Child Health, Faculty of Clinical Medicine and Dentistry, Kampala International University, Uganda
| | - Said Abdirashid
- Department of Paediatrics and Child Health, Faculty of Clinical Medicine and Dentistry, Kampala International University, Uganda
| | - Dickson Kajoba
- Department of Paediatrics and Child Health, Faculty of Clinical Medicine and Dentistry, Kampala International University, Uganda
| | - Patrick Kumbowi Kumbakulu
- Department of Paediatrics and Child Health, Faculty of Clinical Medicine and Dentistry, Kampala International University, Uganda
| |
Collapse
|
10
|
Payne LB, Darden J, Suarez-Martinez AD, Zhao H, Hendricks A, Hartland C, Chong D, Kushner EJ, Murfee WL, Chappell JC. Pericyte migration and proliferation are tightly synchronized to endothelial cell sprouting dynamics. Integr Biol (Camb) 2021; 13:31-43. [PMID: 33515222 DOI: 10.1093/intbio/zyaa027] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/13/2020] [Accepted: 12/26/2020] [Indexed: 01/17/2023]
Abstract
Pericytes are critical for microvascular stability and maintenance, among other important physiological functions, yet their involvement in vessel formation processes remains poorly understood. To gain insight into pericyte behaviors during vascular remodeling, we developed two complementary tissue explant models utilizing 'double reporter' animals with fluorescently-labeled pericytes and endothelial cells (via Ng2:DsRed and Flk-1:eGFP genes, respectively). Time-lapse confocal imaging of active vessel remodeling within adult connective tissues and embryonic skin revealed a subset of pericytes detaching and migrating away from the vessel wall. Vessel-associated pericytes displayed rapid filopodial sampling near sprouting endothelial cells that emerged from parent vessels to form nascent branches. Pericytes near angiogenic sprouts were also more migratory, initiating persistent and directional movement along newly forming vessels. Pericyte cell divisions coincided more frequently with elongating endothelial sprouts, rather than sprout initiation sites, an observation confirmed with in vivo data from the developing mouse brain. Taken together, these data suggest that (i) pericyte detachment from the vessel wall may represent an important physiological process to enhance endothelial cell plasticity during vascular remodeling, and (ii) pericyte migration and proliferation are highly synchronized with endothelial cell behaviors during the coordinated expansion of a vascular network.
Collapse
Affiliation(s)
- Laura Beth Payne
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute, Roanoke, VA 24014, USA
| | - Jordan Darden
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute, Roanoke, VA 24014, USA.,Graduate Program in Translational Biology, Medicine, & Health, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Ariana D Suarez-Martinez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Huaning Zhao
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute, Roanoke, VA 24014, USA.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Alissa Hendricks
- Graduate Program in Translational Biology, Medicine, & Health, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Caitlin Hartland
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute, Roanoke, VA 24014, USA
| | - Diana Chong
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Erich J Kushner
- Department of Biological Sciences, University of Denver, Denver, CO 80208 USA
| | - Walter L Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - John C Chappell
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute, Roanoke, VA 24014, USA.,Graduate Program in Translational Biology, Medicine, & Health, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.,Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| |
Collapse
|
11
|
Germinal Matrix-Intraventricular Hemorrhage of the Preterm Newborn and Preclinical Models: Inflammatory Considerations. Int J Mol Sci 2020; 21:ijms21218343. [PMID: 33172205 PMCID: PMC7664434 DOI: 10.3390/ijms21218343] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
The germinal matrix-intraventricular hemorrhage (GM-IVH) is one of the most important complications of the preterm newborn. Since these children are born at a critical time in brain development, they can develop short and long term neurological, sensory, cognitive and motor disabilities depending on the severity of the GM-IVH. In addition, hemorrhage triggers a microglia-mediated inflammatory response that damages the tissue adjacent to the injury. Nevertheless, a neuroprotective and neuroreparative role of the microglia has also been described, suggesting that neonatal microglia may have unique functions. While the implication of the inflammatory process in GM-IVH is well established, the difficulty to access a very delicate population has lead to the development of animal models that resemble the pathological features of GM-IVH. Genetically modified models and lesions induced by local administration of glycerol, collagenase or blood have been used to study associated inflammatory mechanisms as well as therapeutic targets. In the present study we review the GM-IVH complications, with special interest in inflammatory response and the role of microglia, both in patients and animal models, and we analyze specific proteins and cytokines that are currently under study as feasible predictors of GM-IVH evolution and prognosis.
Collapse
|
12
|
Romantsik O, Bruschettini M, Ley D. Intraventricular Hemorrhage and White Matter Injury in Preclinical and Clinical Studies. Neoreviews 2020; 20:e636-e652. [PMID: 31676738 DOI: 10.1542/neo.20-11-e636] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Germinal matrix-intraventricular hemorrhage (IVH) occurs in nearly half of infants born at less than 26 weeks' gestation. Up to 50% of survivors with IVH develop cerebral palsy, cognitive deficits, behavioral disorders, posthemorrhagic ventricular dilatation, or a combination of these sequelae. After the initial bleeding and the primary brain injury, inflammation and secondary brain injury might lead to periventricular leukomalacia or diffuse white matter injury. Potential factors that are involved include microglia and astrocyte activation, degradation of blood components with release of "toxic" products, infiltration of the brain by systemic immune cells, death of neuronal and glial cells, and arrest of preoligodendrocyte maturation. In addition, impairment of the blood-brain barrier may play a major role in the pathophysiology. A wide range of animal models has been used to explore causes and mechanisms leading to IVH-induced brain injury. Preclinical studies have identified potential targets for enhancing brain repair. However, little has been elucidated about the effectiveness of potential interventions in clinical studies. A systematic review of available preclinical and clinical studies might help identify research gaps and which types of interventions may be prioritized. Future trials should report clinically robust and long-term outcomes after IVH.
Collapse
Affiliation(s)
- Olga Romantsik
- Department of Clinical Sciences Lund, Pediatrics, Lund University, Skane University Hospital, Lund, Sweden
| | - Matteo Bruschettini
- Department of Clinical Sciences Lund, Pediatrics, Lund University, Skane University Hospital, Lund, Sweden
| | - David Ley
- Department of Clinical Sciences Lund, Pediatrics, Lund University, Skane University Hospital, Lund, Sweden
| |
Collapse
|
13
|
Santander N, Lizama CO, Meky E, McKinsey GL, Jung B, Sheppard D, Betsholtz C, Arnold TD. Lack of Flvcr2 impairs brain angiogenesis without affecting the blood-brain barrier. J Clin Invest 2020; 130:4055-4068. [PMID: 32369453 PMCID: PMC7410045 DOI: 10.1172/jci136578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/22/2020] [Indexed: 12/21/2022] Open
Abstract
Fowler syndrome is a rare autosomal recessive brain vascular disorder caused by mutation in FLVCR2 in humans. The disease occurs during a critical period of brain vascular development, is characterized by glomeruloid vasculopathy and hydrocephalus, and is almost invariably prenatally fatal. Here, we sought to gain insights into the process of brain vascularization and the pathogenesis of Fowler syndrome by inactivating Flvcr2 in mice. We showed that Flvcr2 was necessary for angiogenic sprouting in the brain, but surprisingly dispensable for maintaining the blood-brain barrier. Endothelial cells lacking Flvcr2 had altered expression of angiogenic factors, failed to adopt tip cell properties, and displayed reduced sprouting, leading to vascular malformations similar to those seen in humans with Fowler syndrome. Brain hypovascularization was associated with hypoxia and tissue infarction, ultimately causing hydrocephalus and death of mutant animals. Strikingly, despite severe vascular anomalies and brain tissue infarction, the blood-brain barrier was maintained in Flvcr2 mutant mice. Our Fowler syndrome model therefore defined the pathobiology of this disease and provided new insights into brain angiogenesis by showing uncoupling of vessel morphogenesis and blood-brain barrier formation.
Collapse
Affiliation(s)
| | - Carlos O. Lizama
- Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| | | | | | - Bongnam Jung
- Integrated Cardiometabolic Center, Department of Medicine, Huddinge, Karolinska Institutet, Solna, Sweden
| | - Dean Sheppard
- Department of Cell Biology, UCSF, San Francisco, California, USA
| | - Christer Betsholtz
- Integrated Cardiometabolic Center, Department of Medicine, Huddinge, Karolinska Institutet, Solna, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
14
|
Gilard V, Tebani A, Bekri S, Marret S. Intraventricular Hemorrhage in Very Preterm Infants: A Comprehensive Review. J Clin Med 2020; 9:E2447. [PMID: 32751801 PMCID: PMC7465819 DOI: 10.3390/jcm9082447] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 11/30/2022] Open
Abstract
Germinal matrix-intraventricular-intraparenchymal hemorrhage (GMH-IVH-IPH) is a major complication of very preterm births before 32 weeks of gestation (WG). Despite progress in clinical management, its incidence remains high before 27 WG. In addition, severe complications may occur such as post-hemorrhagic hydrocephalus and/or periventricular intraparenchymal hemorrhage. IVH is strongly associated with subsequent neurodevelopmental disabilities. For this review, an automated literature search and a clustering approach were applied to allow efficient filtering as well as topic clusters identification. We used a programmatic literature search for research articles related to intraventricular hemorrhage in preterms that were published between January 1990 and February 2020. Two queries ((Intraventricular hemorrhage) AND (preterm)) were used in PubMed. This search resulted in 1093 articles. The data manual curation left 368 documents that formed 12 clusters. The presentation and discussion of the clusters provide a comprehensive overview of existing data on the pathogenesis, complications, neuroprotection and biomarkers of GMH-IVH-IPH in very preterm infants. Clinicians should consider that the GMH-IVH-IPH pathogenesis is mainly due to developmental immaturity of the germinal matrix and cerebral autoregulation impairment. New multiomics investigations of intraventricular hemorrhage could foster the development of predictive biomarkers for the benefit of very preterm newborns.
Collapse
Affiliation(s)
- Vianney Gilard
- Department of Pediatric Neurosurgery, Rouen University Hospital, 76000 Rouen, France;
- Department of Metabolic Biochemistry, Rouen University Hospital, 76000 Rouen, France;
| | - Abdellah Tebani
- Department of Metabolic Biochemistry, Rouen University Hospital, 76000 Rouen, France;
| | - Soumeya Bekri
- Department of Metabolic Biochemistry, Rouen University Hospital, 76000 Rouen, France;
- Normandie University, UNIROUEN, CHU Rouen, INSERM U1245, 76000 Rouen, France;
| | - Stéphane Marret
- Normandie University, UNIROUEN, CHU Rouen, INSERM U1245, 76000 Rouen, France;
- Department of Neonatal Pediatrics, Intensive Care and Neuropediatrics, Rouen University Hospital, 76000 Rouen, France
| |
Collapse
|
15
|
Santhosh D, Sherman J, Chowdhury S, Huang Z. Harnessing region-specific neurovascular signaling to promote germinal matrix vessel maturation and hemorrhage prevention. Dis Model Mech 2019; 12:dmm.041228. [PMID: 31601549 PMCID: PMC6899033 DOI: 10.1242/dmm.041228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/06/2019] [Indexed: 12/13/2022] Open
Abstract
Germinal matrix hemorrhage (GMH), affecting about 1 in 300 births, is a major perinatal disease with lifelong neurological consequences. Yet despite advances in neonatal medicine, there is no effective intervention. GMH is characterized by localized bleeding in the germinal matrix (GM), due to inherent vessel fragility unique to this developing brain region. Studies have shown that reduced TGFβ signaling contributes to this vascular immaturity. We have previously shown that a region-specific G-protein-coupled receptor pathway in GM neural progenitor cells regulates integrin β8, a limiting activator of pro-TGFβ. In this study, we use mice to test whether this regional pathway can be harnessed for GMH intervention. We first examined the endogenous dynamics of this pathway and found that it displays specific patterns of activation. We then investigated the functional effects of altering these dynamics by chemogenetics and found that there is a narrow developmental window during which this pathway is amenable to manipulation. Although high-level activity in this time window interferes with vessel growth, moderate enhancement promotes vessel maturation without compromising growth. Furthermore, we found that enhancing the activity of this pathway in a mouse model rescues all GMH phenotypes. Altogether, these results demonstrate that enhancing neurovascular signaling through pharmacological targeting of this pathway may be a viable approach for tissue-specific GMH intervention. They also demonstrate that timing and level are likely two major factors crucial for success. These findings thus provide critical new insights into both brain neurovascular biology and the intervention of GMH.
Collapse
Affiliation(s)
- Devi Santhosh
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI 53705, USA.,Program in Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Joe Sherman
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Shafi Chowdhury
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhen Huang
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI 53705, USA .,Program in Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
16
|
Payne LB, Zhao H, James CC, Darden J, McGuire D, Taylor S, Smyth JW, Chappell JC. The pericyte microenvironment during vascular development. Microcirculation 2019; 26:e12554. [PMID: 31066166 PMCID: PMC6834874 DOI: 10.1111/micc.12554] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 12/22/2022]
Abstract
Vascular pericytes provide critical contributions to the formation and integrity of the blood vessel wall within the microcirculation. Pericytes maintain vascular stability and homeostasis by promoting endothelial cell junctions and depositing extracellular matrix (ECM) components within the vascular basement membrane, among other vital functions. As their importance in sustaining microvessel health within various tissues and organs continues to emerge, so does their role in a number of pathological conditions including cancer, diabetic retinopathy, and neurological disorders. Here, we review vascular pericyte contributions to the development and remodeling of the microcirculation, with a focus on the local microenvironment during these processes. We discuss observations of their earliest involvement in vascular development and essential cues for their recruitment to the remodeling endothelium. Pericyte involvement in the angiogenic sprouting context is also considered with specific attention to crosstalk with endothelial cells such as through signaling regulation and ECM deposition. We also address specific aspects of the collective cell migration and dynamic interactions between pericytes and endothelial cells during angiogenic sprouting. Lastly, we discuss pericyte contributions to mechanisms underlying the transition from active vessel remodeling to the maturation and quiescence phase of vascular development.
Collapse
Affiliation(s)
- Laura Beth Payne
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
| | - Huaning Zhao
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic State Institute and State University, Blacksburg, VA 24061, USA
| | - Carissa C. James
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Jordan Darden
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - David McGuire
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sarah Taylor
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
| | - James W. Smyth
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
- Department of Biological Sciences, College of Science, Virginia Polytechnic State Institute and State University, Blacksburg, VA 24061, USA
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - John C. Chappell
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic State Institute and State University, Blacksburg, VA 24061, USA
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| |
Collapse
|
17
|
He L, Zhou W, Zhao X, Liu X, Rong X, Song Y. Development and validation of a novel scoring system to predict severe intraventricular hemorrhage in very low birth weight infants. Brain Dev 2019; 41:671-677. [PMID: 31053343 DOI: 10.1016/j.braindev.2019.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We sought to develop and validate a novel scoring system for the prediction of severe intraventricular hemorrhage (SIVH) in very low birth weight infants (VLBWI). METHODS This retrospective cohort multicenter study included 615 VLBWI born between 24 and 32 weeks gestational age (GA). Multivariable logistic regression analyses were used to determine which factors evaluated within the first 5 days of life were associated with SIVH and the weights of these variables. The accuracy of the predictive scoring system was prospectively tested in the same units. RESULTS The final SIVH scoring system included the following variables: antenatal steroid therapy, GA, birth weight (BW), 1-min Apgar score, mechanical ventilation and hypotension. The SIVH scores used to divide the subjects into three tiers (low-risk (<5), moderate-risk (5-8) and high-risk (>8)) were developed based on these variables. Of infants with a score below 5, 1.2% (4/339) developed SIVH. Of those with a score above 8, 42.5% (17/40) developed SIVH. The scores were successfully verified in 99 VLBWI. CONCLUSIONS These findings suggest that among infants with a score >8, the incidence of SIVH is significantly higher. This scoring system can be used to predict the incidence of SIVH during the first 5 days after birth and may contribute to the early intervention in and prevention of SIVH.
Collapse
Affiliation(s)
- Longkai He
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Zhou
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaopeng Zhao
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaoping Liu
- Department of Hematology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiao Rong
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yanyan Song
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
18
|
Li H, Miki T, Almeida GMD, Hanashima C, Matsuzaki T, Kuo CJ, Watanabe N, Noda M. RECK in Neural Precursor Cells Plays a Critical Role in Mouse Forebrain Angiogenesis. iScience 2019; 19:559-571. [PMID: 31445376 PMCID: PMC6713797 DOI: 10.1016/j.isci.2019.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/28/2019] [Accepted: 08/05/2019] [Indexed: 01/10/2023] Open
Abstract
RECK in neural precursor cells (NPCs) was previously found to support Notch-dependent neurogenesis in mice. On the other hand, recent studies implicate RECK in endothelial cells (ECs) in WNT7-triggered canonical WNT signaling essential for brain angiogenesis. Here we report that RECK in NPCs is also critical for brain angiogenesis. When Reck is inactivated in Foxg1-positive NPCs, mice die shortly after birth with hemorrhage in the forebrain, with angiogenic sprouts stalling at the periphery and forming abnormal aggregates reminiscent of those in EC-selective Reck knockout mice and Wnt7a/b-deficient mice. The hemorrhage can be pharmacologically suppressed by lithium chloride. An effect of RECK in WNT7-producing cells to enhance canonical WNT-signaling in reporter cells is detectable in mixed culture but not with conditioned medium. Our findings suggest that NPC-expressed RECK has a non-cell-autonomous function to promote forebrain angiogenesis through contact-dependent enhancement of WNT signaling in ECs, implying possible involvement of RECK in neurovascular coupling. Mice lacking RECK in Foxg1-positive neural precursor cells die shortly after birth These mice show vascular defects similar to those in mice lacking endothelial RECK The vascular phenotype can be suppressed by LiCl, an activator of WNT signaling RECK in WNT7-producing cell enhances contact-dependent WNT signaling in adjacent cells
Collapse
Affiliation(s)
- Huiping Li
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takao Miki
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Glícia Maria de Almeida
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Carina Hanashima
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Tomoko Matsuzaki
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Calvin J Kuo
- Stanford University School of Medicine, Department of Medicine, Division of Hematology, Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305, USA
| | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Pharmacology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Makoto Noda
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
19
|
Howe MD, Furr JW, Zhu L, Edwards NJ, McCullough LD, Gonzales NR. Sex-specific Association of Matrix Metalloproteinases with Secondary Injury and Outcomes after Intracerebral Hemorrhage. J Stroke Cerebrovasc Dis 2019; 28:1718-1725. [PMID: 30922669 DOI: 10.1016/j.jstrokecerebrovasdis.2019.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/02/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Intracerebral hemorrhage affects approximately 2 million individuals per year. While the incidence is roughly equal in men and women, few studies have examined the influence of sex on secondary injury and associated long-term functional outcomes. Matrix metalloproteinases (MMPs) promote vessel rupture and worsen outcomes by potentiating blood-brain barrier breakdown after injury. We hypothesized that different MMP isoform levels would be predictive of injury severity, secondary injury, and long-term functional outcomes in males and females, respectively. METHODS We examined the levels of MMP isoforms in serum samples from a prospective patient biobank (n = 55). Baseline clinical, radiographic, and laboratory data were also analyzed. RESULTS We found that MMP-1 (P = .036), MMP-2 (P = .014), MMP-3 (P < .001), and MMP-9 (P = .02) levels gradually increased over time in male patients until 10 DPI. In female patients, we found a different pattern of activation: MMP-8 (P = .02) was the only isoform that significantly changed with time, which reached a peak at 3-5 days postinjury. Several MMP isoforms correlated with markers of secondary injury in female patients (all P < .05). Additionally, serum levels of MMP-3 (P = .011) in males and MMP-10 (P = .044) in females were significantly associated with long-term functional outcomes in a sex-specific manner. CONCLUSIONS This is the first sex-specific study to examine serum MMP levels and their correlation with clinicoradiologic measures after intracerebral hemorrhage, and identifies potential biomarkers of secondary injury and long-term outcomes in both sexes.
Collapse
Affiliation(s)
- Matthew D Howe
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, Texas.
| | - J Weldon Furr
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Liang Zhu
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Nancy J Edwards
- Neuroscience, Kaiser Permanente Redwood City Medical Center, Redwood City, California
| | - Louise D McCullough
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Nicole R Gonzales
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
20
|
Luo J, Luo Y, Zeng H, Reis C, Chen S. Research Advances of Germinal Matrix Hemorrhage: An Update Review. Cell Mol Neurobiol 2019; 39:1-10. [PMID: 30361892 PMCID: PMC11469802 DOI: 10.1007/s10571-018-0630-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/19/2018] [Indexed: 02/02/2023]
Abstract
Germinal matrix hemorrhage (GMH) refers to bleeding that derives from the subependymal (or periventricular) germinal region of the premature brain. GMH can induce severe and irreversible damage attributing to the vulnerable structure of germinal matrix and deleterious circumstances. Molecular mechanisms remain obscure so far. In this review, we summarized the newest preclinical discoveries recent years about GMH to distill a deeper understanding of the neuropathology, and then discuss the potential diagnostic or therapeutic targets among these pathways. GMH studies mostly in recent 5 years were sorted out and the authors generalized the newest discoveries and ideas into four parts of this essay. Intrinsic fragile structure of preterm germinal matrix is the fundamental cause leading to GMH. Many molecules have been found effective in the pathophysiological courses. Some of these molecules like minocycline are suggested active to reduce the damage in animal GMH model. However, researchers are still trying to find efficient diagnostic methods and remedies that are available in preterm infants to rehabilitate or cure the sequent injury. Merits have been obtained in the last several years on molecular pathways of GMH, but more work is required to further unravel the whole pathophysiology.
Collapse
Affiliation(s)
- Jinqi Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Rd, Hangzhou, 310009, Zhejiang, China
| | - Yujie Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Rd, Hangzhou, 310009, Zhejiang, China
| | - Hanhai Zeng
- Department of Neurological Surgery, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cesar Reis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Rd, Hangzhou, 310009, Zhejiang, China.
- Department of Neurosurgery, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang, China.
| |
Collapse
|
21
|
Prasun P, Madan R, Puthuraya S, Subramanian D, Datta I, Kalra V, Thomas R, Stockton DW, Sundaram S, Callaghan J, Callaghan M, Chouthai N. Can Functional Polymorphisms in VEGF and MMP Predict Intraventricular Hemorrhage in Extremely Preterm Newborns? Dev Neurosci 2018; 40:337-343. [PMID: 30391947 DOI: 10.1159/000493788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 09/14/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The pathophysiology of intraventricular hemorrhage (IVH) is multifactorial. This study attempts to identify genetic and clinical factors contributing to IVH in newborns with a focus on those born ≤28 weeks of gestation. METHODS This was a prospective study of 382 consecutive newborns admitted to the neonatal intensive care unit. DNA purification was conducted using standard methods. TaqMan SNP assays were conducted for functional polymorphisms in VEGF (RS699947, RS2010963, RS3025039, and RS1570360) and MMP2 (RS243685 and RS2285053) genes. An RFLP assay was done for a polymorphism in MMP9 (RS3918242). RESULTS The GG genotype in VEGF RS1570360 (p = 0.013) and the CC genotype in VEGF RS699947 (p = 0.036) were associated with a lower incidence of IVH amongst newborns ≤28 weeks of gestation. Chorioamnionitis, Caucasian race, and patent ductus arteriosus were associated with a higher incidence of IVH. A binary logistic regression analysis of clinical and SNP data that was significant from bivariate analysis demonstrated that VEGF RS1570360 was significantly associated with IVH (p = 0.017). CONCLUSION This study demonstrated that the GA/AA genotype in VEGF RS1570360 and the AA/AC genotype in VEGF RS699947 were associated with higher incidence rates of IVH in newborns ≤28 weeks of gestation. A future study is warranted to comprehensively examine VEGF polymorphisms in association with IVH.
Collapse
Affiliation(s)
- Pankaj Prasun
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, New York, New York, USA
| | - Raghav Madan
- School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Subhash Puthuraya
- Division of Neonatology, Cleveland Clinic Children's Hospital, Cleveland, Ohio, USA
| | | | - Ishita Datta
- Division of Pediatric Hematology/Oncology, Carman and Ann Adams Department of Pediatrics, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Vaneet Kalra
- Division of Neonatology, UCSF Benioff Children's Hospital, Oakland, California, USA
| | - Ronald Thomas
- Division of Pediatric Hematology/Oncology, Carman and Ann Adams Department of Pediatrics, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - David W Stockton
- Division of Genetic, Genomic, and Metabolic Disorders, Carman and Ann Adams Department of Pediatrics, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Senthil Sundaram
- Division of Pediatric Hematology/Oncology, Carman and Ann Adams Department of Pediatrics, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Joseph Callaghan
- Division of Accounting, Oakland University, Rochester, Michigan, USA
| | - Michael Callaghan
- Division of Pediatric Hematology/Oncology, Carman and Ann Adams Department of Pediatrics, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Nitin Chouthai
- Division of Pediatric Hematology/Oncology, Carman and Ann Adams Department of Pediatrics, Children's Hospital of Michigan, Detroit, Michigan, USA,
| |
Collapse
|
22
|
Zhao H, Darden J, Chappell JC. Establishment and characterization of an embryonic pericyte cell line. Microcirculation 2018; 25:e12461. [PMID: 29770525 DOI: 10.1111/micc.12461] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/07/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Pericytes are specialized perivascular cells embedded within the basement membrane. These cells envelope the abluminal surface of endothelial cells and promote microvessel homeostasis. Recent discoveries of unique pericyte functions, particularly in neural tissues, underscore the need for overcoming existing challenges in establishing a functionally validated pericyte cell line. Here, we present methodologies for addressing these challenges as well as an embryonic pericyte cell line for use with in vitro and ex vivo experimental models. METHODS We isolated an enriched population of NG2:DsRed+ pericytes from E12.5 mice. This pericyte cell line was compared to MEFs with respect to gene expression, cell morphology and migration, and engagement with endothelial cells during junction stabilization and angiogenesis. RESULTS NG2+ pericytes displayed gene expression patterns, cell morphology, and 2D migration behaviors distinct from MEFs. In three different vessel formation models, pericytes from this line migrated to and incorporated into developing vessels. When co-cultured with HUVECs, these pericytes stimulated more robust VE-Cadherin junctions between HUVECs as compared to MEFs, as well as contributed to HUVEC organization into primitive vascular structures. CONCLUSIONS Our data support use of this pericyte cell line in a broad range of models to further understand pericyte functionality during normal and pathological conditions.
Collapse
Affiliation(s)
- Huaning Zhao
- Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, Roanoke, VA, USA.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jordan Darden
- Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, Roanoke, VA, USA.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - John C Chappell
- Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, Roanoke, VA, USA.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| |
Collapse
|
23
|
Dave JM, Mirabella T, Weatherbee SD, Greif DM. Pericyte ALK5/TIMP3 Axis Contributes to Endothelial Morphogenesis in the Developing Brain. Dev Cell 2018; 44:665-678.e6. [PMID: 29456135 DOI: 10.1016/j.devcel.2018.01.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 12/22/2017] [Accepted: 01/22/2018] [Indexed: 12/16/2022]
Abstract
The murine embryonic blood-brain barrier (BBB) consists of endothelial cells (ECs), pericytes (PCs), and basement membrane. Although PCs are critical for inducing vascular stability, signaling pathways in PCs that regulate EC morphogenesis during BBB development remain unexplored. Herein, we find that murine embryos lacking the transforming growth factor β (TGF-β) receptor activin receptor-like kinase 5 (Alk5) in brain PCs (mutants) develop gross germinal matrix hemorrhage-intraventricular hemorrhage (GMH-IVH). The germinal matrix (GM) is a highly vascularized structure rich in neuronal and glial precursors. We show that GM microvessels of mutants display abnormal dilation, reduced PC coverage, EC hyperproliferation, reduced basement membrane collagen, and enhanced perivascular matrix metalloproteinase activity. Furthermore, ALK5-depleted PCs downregulate tissue inhibitor of matrix metalloproteinase 3 (TIMP3), and TIMP3 administration to mutants improves endothelial morphogenesis and attenuates GMH-IVH. Overall, our findings reveal a key role for PC ALK5 in regulating brain endothelial morphogenesis and a substantial therapeutic potential for TIMP3 during GMH-IVH.
Collapse
Affiliation(s)
- Jui M Dave
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 773J, New Haven, CT 06511, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Teodelinda Mirabella
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 773J, New Haven, CT 06511, USA
| | - Scott D Weatherbee
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Daniel M Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 773J, New Haven, CT 06511, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
24
|
Garton T, Hua Y, Xiang J, Xi G, Keep RF. Challenges for intraventricular hemorrhage research and emerging therapeutic targets. Expert Opin Ther Targets 2017; 21:1111-1122. [PMID: 29067856 PMCID: PMC6097191 DOI: 10.1080/14728222.2017.1397628] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Intraventricular hemorrhage (IVH) affects both premature infants and adults. In both demographics, it has high mortality and morbidity. There is no FDA approved therapy that improves neurological outcome in either population highlighting the need for additional focus on therapeutic targets and treatments emerging from preclinical studies. Areas covered: IVH induces both initial injury linked to the physical effects of the blood (mass effect) and secondary injury linked to the brain response to the hemorrhage. Preclinical studies have identified multiple secondary injury mechanisms following IVH, and particularly the role of blood components (e.g. hemoglobin, iron, thrombin). This review, with an emphasis on pre-clinical IVH research, highlights therapeutic targets and treatments that may be of use in prevention, acute care, or repair of damage. Expert opinion: An IVH is a potentially devastating event. Progress has been made in elucidating injury mechanisms, but this has still to translate to the clinic. Some pathways involved in injury also have beneficial effects (coagulation cascade/inflammation). A greater understanding of the downstream pathways involved in those pathways may allow therapeutic development. Iron chelation (deferoxamine) is in clinical trial for intracerebral hemorrhage and preclinical data suggest it may be a potential treatment for IVH.
Collapse
Affiliation(s)
- Thomas Garton
- a Department of Neurosurgery , University of Michigan , Ann Arbor , MI , USA
| | - Ya Hua
- a Department of Neurosurgery , University of Michigan , Ann Arbor , MI , USA
| | - Jianming Xiang
- a Department of Neurosurgery , University of Michigan , Ann Arbor , MI , USA
| | - Guohua Xi
- a Department of Neurosurgery , University of Michigan , Ann Arbor , MI , USA
| | - Richard F Keep
- a Department of Neurosurgery , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
25
|
Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV, Orekhov AN. Role of lipids and intraplaque hypoxia in the formation of neovascularization in atherosclerosis. Ann Med 2017; 49:661-677. [PMID: 28797175 DOI: 10.1080/07853890.2017.1366041] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
According to the current paradigm, chronic vascular inflammation plays a central role in the pathogenesis of atherosclerosis. The plaque progression is typically completed with rupture and subsequent acute cardiovascular complications. Previously, the role of adventitial vasa vasorum in atherogenesis was underestimated. However, investigators then revealed that vasa vasorum neovascularization can be observed when no clinical manifestation of atherosclerosis is present. Vasa vasorum is involved in various proatherogenic processes such as intimal accumulation of inflammatory leukocytes, intimal thickening, necrotic core formation, intraplaque haemorrhage, lesion rupture and atherothrombosis. Due to the destabilizing action of the intraplaque microenvironment, lesional vasa vasorum neovessels experience serious defects and abnormalities during development that leads to their immaturity, fragility and leakage. Indeed, intraplaque neovessels are a main cause of intraplaque haemorrhage. Visualization techniques showed that presence of neovascularization/haemorrhage can serve as a good indicator of lesion instability and higher risk of rupture. Vasa vasorum density is a strong predictor of acute cardiovascular events such as sudden death, myocardial infarction and stroke. At present, arterial vasa vasorum neovascularization is under intensive investigation along with development of therapeutic tools focused on the control of formation of vasa vasorum neovessels in order to prevent plaque haemorrhage/rupture and thromboembolism. KEY MESSAGE Neovascularization plays an important role in atherosclerosis, being involved in unstable plaque formation. Presence of neovascularization and haemorrhage indicates plaque instability and risk of rupture. Various imaging techniques are available to study neovascularization.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- a Department of Neurochemistry, Division of Basic and Applied Neurobiology , Serbsky Federal Medical Research Center of Psychiatry and Narcology , Moscow , Russia
| | - Alexandra A Melnichenko
- b Laboratory of Angiopathology , Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences , Moscow , Russia
| | - Veronika A Myasoedova
- b Laboratory of Angiopathology , Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences , Moscow , Russia
| | - Andrey V Grechko
- c Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology , Moscow , Russia
| | - Alexander N Orekhov
- b Laboratory of Angiopathology , Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences , Moscow , Russia.,d Institute for Atherosclerosis Research, Skolkovo Innovative Center , Moscow , Russia
| |
Collapse
|
26
|
Klebe D, Flores JJ, McBride DW, Krafft PR, Rolland WB, Lekic T, Zhang JH. Dabigatran ameliorates post-haemorrhagic hydrocephalus development after germinal matrix haemorrhage in neonatal rat pups. J Cereb Blood Flow Metab 2017; 37:3135-3149. [PMID: 28155585 PMCID: PMC5584693 DOI: 10.1177/0271678x16684355] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 11/09/2016] [Indexed: 11/15/2022]
Abstract
We aim to determine if direct thrombin inhibition by dabigatran will improve long-term brain morphological and neurofunctional outcomes and if potential therapeutic effects are dependent upon reduced PAR-1 stimulation and consequent mTOR activation. Germinal matrix haemorrhage was induced by stereotaxically injecting 0.3 U type VII-S collagenase into the germinal matrix of P7 rat pups. Animals were divided into five groups: sham, vehicle (5% DMSO), dabigatran intraperitoneal, dabigatran intraperitoneal + TFLLR-NH2 (PAR-1 agonist) intranasal, SCH79797 (PAR-1 antagonist) intraperitoneal, and dabigatran intranasal. Neurofunctional outcomes were determined by Morris water maze, rotarod, and foot fault evaluations at three weeks. Brain morphological outcomes were determined by histological Nissl staining at four weeks. Expression levels of p-mTOR/p-p70s6k at three days and vitronectin/fibronectin at 28 days were quantified. Intranasal and intraperitoneal dabigatran promoted long-term neurofunctional recovery, improved brain morphological outcomes, and reduced intracranial pressure at four weeks after GMH. PAR-1 stimulation tended to reverse dabigatran's effects on post-haemorrhagic hydrocephalus development. Dabigatran also reduced expression of short-term p-mTOR and long-term extracellular matrix proteins, which tended to be reversed by PAR-1 agonist co-administration. PAR-1 inhibition alone, however, did not achieve the same therapeutic effects as dabigatran administration.
Collapse
Affiliation(s)
- Damon Klebe
- 1 Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Jerry J Flores
- 1 Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Devin W McBride
- 1 Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Paul R Krafft
- 1 Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - William B Rolland
- 1 Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Tim Lekic
- 1 Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - John H Zhang
- 1 Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
- 2 Department of Anaesthesiology and Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
27
|
Diverse Functions of Retinoic Acid in Brain Vascular Development. J Neurosci 2017; 36:7786-801. [PMID: 27445154 DOI: 10.1523/jneurosci.3952-15.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 06/15/2016] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED As neural structures grow in size and increase metabolic demand, the CNS vasculature undergoes extensive growth, remodeling, and maturation. Signals from neural tissue act on endothelial cells to stimulate blood vessel ingression, vessel patterning, and acquisition of mature brain vascular traits, most notably the blood-brain barrier. Using mouse genetic and in vitro approaches, we identified retinoic acid (RA) as an important regulator of brain vascular development via non-cell-autonomous and cell-autonomous regulation of endothelial WNT signaling. Our analysis of globally RA-deficient embryos (Rdh10 mutants) points to an important, non-cell-autonomous function for RA in the development of the vasculature in the neocortex. We demonstrate that Rdh10 mutants have severe defects in cerebrovascular development and that this phenotype correlates with near absence of endothelial WNT signaling, specifically in the cerebrovasculature, and substantially elevated expression of WNT inhibitors in the neocortex. We show that RA can suppress the expression of WNT inhibitors in neocortical progenitors. Analysis of vasculature in non-neocortical brain regions suggested that RA may have a separate, cell-autonomous function in brain endothelial cells to inhibit WNT signaling. Using both gain and loss of RA signaling approaches, we show that RA signaling in brain endothelial cells can inhibit WNT-β-catenin transcriptional activity and that this is required to moderate the expression of WNT target Sox17. From this, a model emerges in which RA acts upstream of the WNT pathway via non-cell-autonomous and cell-autonomous mechanisms to ensure the formation of an adequate and stable brain vascular plexus. SIGNIFICANCE STATEMENT Work presented here provides novel insight into important yet little understood aspects of brain vascular development, implicating for the first time a factor upstream of endothelial WNT signaling. We show that RA is permissive for cerebrovascular growth via suppression of WNT inhibitor expression in the neocortex. RA also functions cell-autonomously in brain endothelial cells to modulate WNT signaling and its downstream target, Sox17. The significance of this is although endothelial WNT signaling is required for neurovascular development, too much endothelial WNT signaling, as well as overexpression of its target Sox17, are detrimental. Therefore, RA may act as a "brake" on endothelial WNT signaling and Sox17 to ensure normal brain vascular development.
Collapse
|
28
|
Porte B, Hardouin J, Zerdoumi Y, Derambure C, Hauchecorne M, Dupre N, Obry A, Lequerre T, Bekri S, Gonzalez B, Flaman JM, Marret S, Cosette P, Leroux P. Major remodeling of brain microvessels during neonatal period in the mouse: A proteomic and transcriptomic study. J Cereb Blood Flow Metab 2017; 37:495-513. [PMID: 26873886 PMCID: PMC5381447 DOI: 10.1177/0271678x16630557] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Preterm infants born before 29 gestation weeks incur major risk of subependymal/intracerebral/intraventricular hemorrhage. In mice, neonate brain endothelial cells are more prone than adult cells to secrete proteases under glutamate challenge, and invalidation of the Serpine 1 gene is accompanied by high brain hemorrhage risk up to five days after birth. We hypothesized that the structural and functional states of microvessels might account for age-dependent vulnerability in mice up to five days after birth and might represent a pertinent paradigm to approach the hemorrhage risk window observed in extreme preterms. Mass spectrometry proteome analyses of forebrain microvessels at days 5, 10 and in adult mice revealed 899 proteins and 36 enriched pathways. Microarray transcriptomic study identified 5873 genes undergoing at least two-fold change between ages and 93 enriched pathways. Both approaches pointed towards extracellular matrix, cell adhesion and junction pathways, indicating delayed microvascular strengthening after P5. Furthermore, glutamate receptors, proteases and their inhibitors exhibited convergent evolutions towards excitatory aminoacid sensitivity and low proteolytic control likely accounting for vascular vulnerability in P5 mice. Thus, age vascular specificities must be considered in future therapeutic interventions in preterms. Data are available on ProteomeXchange (identifier PXD001718) and NCBI Gene-Expression-Omnibus repository (identification GSE67870).
Collapse
Affiliation(s)
- Baptiste Porte
- 1 INSERM-ERI28, NeoVasc Laboratory, Microvascular Endothelium and Neonate Brain Lesions, Normandie Université, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Julie Hardouin
- 2 UMR-6270, CNRS, Polymers, Biopolymers, Surfaces, Biofilm Resistance, Cell Surfaces Interactions Group (PBS), CNRS, IRIB, Normandie Université, Mont-Saint-Aignan, France.,3 Proteomic Facility PISSARO, IRIB, Normandie Université, Mont-Saint-Aignan, France
| | - Yasmine Zerdoumi
- 4 UMR-S1079, INSERM, Genetic of Cancer and Neurogenetics (GCM), IRIB, Normandie Université, Rouen, France
| | - Céline Derambure
- 5 UMR-S905, INSERM, Pathophysiology and Biotherapy of Inflammatory and Autoimmune Diseases, IRIB, Normandie Université, Rouen, France
| | - Michèle Hauchecorne
- 1 INSERM-ERI28, NeoVasc Laboratory, Microvascular Endothelium and Neonate Brain Lesions, Normandie Université, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Nicolas Dupre
- 1 INSERM-ERI28, NeoVasc Laboratory, Microvascular Endothelium and Neonate Brain Lesions, Normandie Université, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Antoine Obry
- 3 Proteomic Facility PISSARO, IRIB, Normandie Université, Mont-Saint-Aignan, France
| | - Thierry Lequerre
- 5 UMR-S905, INSERM, Pathophysiology and Biotherapy of Inflammatory and Autoimmune Diseases, IRIB, Normandie Université, Rouen, France
| | - Soumeya Bekri
- 1 INSERM-ERI28, NeoVasc Laboratory, Microvascular Endothelium and Neonate Brain Lesions, Normandie Université, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.,6 Metabolic Biochemistry, Rouen University Hospital, Rouen, France
| | - Bruno Gonzalez
- 1 INSERM-ERI28, NeoVasc Laboratory, Microvascular Endothelium and Neonate Brain Lesions, Normandie Université, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Jean M Flaman
- 4 UMR-S1079, INSERM, Genetic of Cancer and Neurogenetics (GCM), IRIB, Normandie Université, Rouen, France
| | - Stéphane Marret
- 1 INSERM-ERI28, NeoVasc Laboratory, Microvascular Endothelium and Neonate Brain Lesions, Normandie Université, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.,7 Neonatal Pediatrics and Intensive Care, Rouen University Hospital, Rouen, France
| | - Pascal Cosette
- 2 UMR-6270, CNRS, Polymers, Biopolymers, Surfaces, Biofilm Resistance, Cell Surfaces Interactions Group (PBS), CNRS, IRIB, Normandie Université, Mont-Saint-Aignan, France.,3 Proteomic Facility PISSARO, IRIB, Normandie Université, Mont-Saint-Aignan, France
| | - Philippe Leroux
- 1 INSERM-ERI28, NeoVasc Laboratory, Microvascular Endothelium and Neonate Brain Lesions, Normandie Université, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| |
Collapse
|
29
|
Kong F, Zhou J, Zhou W, Guo Y, Li G, Yang L. Protective role of microRNA-126 in intracerebral hemorrhage. Mol Med Rep 2017; 15:1419-1425. [PMID: 28112373 DOI: 10.3892/mmr.2017.6134] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/01/2016] [Indexed: 11/05/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a disease associated with high mortality and morbidity. MicroRNAs (miRNAs) are important regulators of translation and have been reported to be associated with the pathogenesis of numerous cerebrovascular diseases, including ICH. The present study explored the role of miRNA (miR)‑126 in ICH. Adult male Wistar rats were randomly assigned to ICH model and sham groups. ICH was induced by intracerebral injection of collagenase. The mRNA expression levels of miR‑126 in the two groups were determined. The miR‑126 lentivirus expression vector pWPXL‑miR‑126 or negative control vector was then constructed and delivered via intraparenchymal injection. Following transduction, behavioral testing (rotarod and limb placement tests), relative hemorrhagic lesion size, apoptotic cells and protein levels of vascular endothelial growth factor (VEGF)‑A and caspase‑3 were determined. The relative expression levels of miR‑126 were significantly decreased in the ICH group compared to the sham group (P=0.026). Overexpression of miR‑126 significantly improved the relative duration of stay on the rotarod at day 2 (P=0.029) and 3 (P=0.033), and statistically reduced the deficit score (P=0.036), the relative size of hemorrhagic lesion (P=0.019) and the number of apoptotic cortical neurons (P=0.024) compared with the sham group. Additionally, the protein levels of VEGF‑A were significantly elevated, however levels of caspase‑3 were downregulated by overexpression of miR‑126 compared with the negative control group. MiR‑126 therefore exhibits a protective role in ICH. Overexpression of miR‑126 protects against ICH, and may be involved in the process of angiogenesis and exhibit an anti-apoptotic effect.
Collapse
Affiliation(s)
- Fangen Kong
- Department of Neurosurgery, Fifth Affiliated Hospital of Sun Yat‑Sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Jianhui Zhou
- Department of Clinical Laboratory, Fifth Affiliated Hospital of Sun Yat‑Sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Wenying Zhou
- Department of Central Laboratory, Fifth Affiliated Hospital of Sun Yat‑Sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Yuanqing Guo
- Department of Orthopaedics, Fifth Affiliated Hospital of Sun Yat‑Sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Guowei Li
- Department of Orthopaedics, Fifth Affiliated Hospital of Sun Yat‑Sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Lukun Yang
- Department of Anesthesiology, Fifth Affiliated Hospital of Sun Yat‑Sen University, Zhuhai, Guangdong 519000, P.R. China
| |
Collapse
|
30
|
Mazurek R, Dave JM, Chandran RR, Misra A, Sheikh AQ, Greif DM. Vascular Cells in Blood Vessel Wall Development and Disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:323-350. [PMID: 28212800 DOI: 10.1016/bs.apha.2016.08.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The vessel wall is composed of distinct cellular layers, yet communication among individual cells within and between layers results in a dynamic and versatile structure. The morphogenesis of the normal vascular wall involves a highly regulated process of cell proliferation, migration, and differentiation. The use of modern developmental biological and genetic approaches has markedly enriched our understanding of the molecular and cellular mechanisms underlying these developmental events. Additionally, the application of similar approaches to study diverse vascular diseases has resulted in paradigm-shifting insights into pathogenesis. Further investigations into the biology of vascular cells in development and disease promise to have major ramifications on therapeutic strategies to combat pathologies of the vasculature.
Collapse
Affiliation(s)
- R Mazurek
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - J M Dave
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - R R Chandran
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - A Misra
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - A Q Sheikh
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - D M Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
31
|
Liebowitz M, Clyman RI. Antenatal Betamethasone: A Prolonged Time Interval from Administration to Delivery Is Associated with an Increased Incidence of Severe Intraventricular Hemorrhage in Infants Born before 28 Weeks Gestation. J Pediatr 2016; 177:114-120.e1. [PMID: 27514239 PMCID: PMC5037021 DOI: 10.1016/j.jpeds.2016.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/08/2016] [Accepted: 07/05/2016] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To examine the effects of antenatal steroids on severe intraventricular hemorrhage (IVH) in infants born during the IVH vulnerable period (<28 weeks gestational age) and to evaluate rates of IVH correlated with the time interval between treatment or retreatment and birth. STUDY DESIGN A total of 429 infants (<28 weeks gestation), who delivered ≥24 hours after the first betamethasone (BMZ) course (2 doses), were divided into groups based on the interval between the first course of BMZ and delivery: <10 days or ≥10 days. The primary outcome was severe IVH. Multiple regression analyses were performed to adjust for potential confounders. RESULTS Three hundred ninety-two infants delivered after a single BMZ course (312 delivered <10 days; 80 ≥10 days). The incidence of severe IVH was 17% for infants delivered ≥10 days and 7% for those delivered <10 days after a single BMZ course (aOR 4.16; 95% CI 1.59-10.87, P = .004); 37 infants (born ≥10 days from the first BMZ course) received a second/rescue BMZ course. The incidence of severe IVH among infants receiving a second/rescue course was 8%, which was similar to the incidence among infants born <10 days (aOR 1.7; 95% CI 0.41-6.6, P = .48). CONCLUSIONS In infants born before 28 weeks gestation, delivery ≥10 days from the first BMZ course is associated with a higher incidence of severe IVH; a second/rescue course may reverse this effect.
Collapse
Affiliation(s)
- Melissa Liebowitz
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA
| | - Ronald I Clyman
- Cardiovascular Research Institute and Department of Pediatrics, University of California San Francisco, San Francisco, CA.
| |
Collapse
|
32
|
Mishra S, Choe Y, Pleasure SJ, Siegenthaler JA. Cerebrovascular defects in Foxc1 mutants correlate with aberrant WNT and VEGF-A pathways downstream of retinoic acid from the meninges. Dev Biol 2016; 420:148-165. [PMID: 27671872 DOI: 10.1016/j.ydbio.2016.09.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 12/28/2022]
Abstract
Growth and maturation of the cerebrovasculature is a vital event in neocortical development however mechanisms that control cerebrovascular development remain poorly understood. Mutations in or deletions that include the FOXC1 gene are associated with congenital cerebrovascular anomalies and increased stroke risk in patients. Foxc1 mutant mice display severe cerebrovascular hemorrhage at late gestational ages. While these data demonstrate Foxc1 is required for cerebrovascular development, its broad expression in the brain vasculature combined with Foxc1 mutant's complex developmental defects have made it difficult to pinpoint its function(s). Using global and conditional Foxc1 mutants, we find 1) significant cerebrovascular growth defects precede cerebral hemorrhage and 2) expression of Foxc1 in neural crest-derived meninges and brain pericytes, though not endothelial cells, is required for normal cerebrovascular development. We provide evidence that reduced levels of meninges-derived retinoic acid (RA), caused by defects in meninges formation in Foxc1 mutants, is a major contributing factor to the cerebrovascular growth defects in Foxc1 mutants. We provide data that suggests that meninges-derived RA ensures adequate growth of the neocortical vasculature via regulating expression of WNT pathway proteins and neural progenitor derived-VEGF-A. Our findings offer the first evidence for a role of the meninges in brain vascular development and provide new insight into potential causes of cerebrovascular defects in patients with FOXC1 mutations.
Collapse
Affiliation(s)
- Swati Mishra
- Department of Pediatrics, Section of Developmental Biology, University of Colorado, School of Medicine Aurora, CO 80045, USA
| | - Youngshik Choe
- Department of Neurology, Programs in Neuroscience and Developmental Biology, Institute for Regenerative Medicine, UC San Francisco, San Francisco, CA 94158, USA
| | - Samuel J Pleasure
- Department of Neurology, Programs in Neuroscience and Developmental Biology, Institute for Regenerative Medicine, UC San Francisco, San Francisco, CA 94158, USA
| | - Julie A Siegenthaler
- Department of Pediatrics, Section of Developmental Biology, University of Colorado, School of Medicine Aurora, CO 80045, USA.
| |
Collapse
|
33
|
Miyagawa M, Yamaguchi M. Material Clocking by Silica Nanoparticle Precipitation in Solution Phase that is Tunable by Organic Molecules. Chempluschem 2015; 80:1502-1507. [DOI: 10.1002/cplu.201500300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Indexed: 01/24/2023]
Affiliation(s)
- Masamichi Miyagawa
- Department of Organic Chemistry; Graduate School of Pharmaceutical Sciences; Tohoku University; Aoba Sendai 980-8578 Japan
| | - Masahiko Yamaguchi
- Department of Organic Chemistry; Graduate School of Pharmaceutical Sciences; Tohoku University; Aoba Sendai 980-8578 Japan
| |
Collapse
|
34
|
Arnold TD, Niaudet C, Pang MF, Siegenthaler J, Gaengel K, Jung B, Ferrero GM, Mukouyama YS, Fuxe J, Akhurst R, Betsholtz C, Sheppard D, Reichardt LF. Excessive vascular sprouting underlies cerebral hemorrhage in mice lacking αVβ8-TGFβ signaling in the brain. Development 2014; 141:4489-99. [PMID: 25406396 DOI: 10.1242/dev.107193] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Vascular development of the central nervous system and blood-brain barrier (BBB) induction are closely linked processes. The role of factors that promote endothelial sprouting and vascular leak, such as vascular endothelial growth factor A, are well described, but the factors that suppress angiogenic sprouting and their impact on the BBB are poorly understood. Here, we show that integrin αVβ8 activates angiosuppressive TGFβ gradients in the brain, which inhibit endothelial cell sprouting. Loss of αVβ8 in the brain or downstream TGFβ1-TGFBR2-ALK5-Smad3 signaling in endothelial cells increases vascular sprouting, branching and proliferation, leading to vascular dysplasia and hemorrhage. Importantly, BBB function in Itgb8 mutants is intact during early stages of vascular dysgenesis before hemorrhage. By contrast, Pdgfb(ret/ret) mice, which exhibit severe BBB disruption and vascular leak due to pericyte deficiency, have comparatively normal vascular morphogenesis and do not exhibit brain hemorrhage. Our data therefore suggest that abnormal vascular sprouting and patterning, not BBB dysfunction, underlie developmental cerebral hemorrhage.
Collapse
Affiliation(s)
- Thomas D Arnold
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-177 77 Stockholm, Sweden
| | - Colin Niaudet
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-177 77 Stockholm, Sweden
| | - Mei-Fong Pang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-177 77 Stockholm, Sweden
| | - Julie Siegenthaler
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Konstantin Gaengel
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-177 77 Stockholm, Sweden
| | - Bongnam Jung
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-177 77 Stockholm, Sweden
| | - Gina M Ferrero
- Department of Physiology and Neuroscience Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yoh-suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Jonas Fuxe
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-177 77 Stockholm, Sweden
| | - Rosemary Akhurst
- Helen Diller Cancer Center and Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christer Betsholtz
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-177 77 Stockholm, Sweden
| | - Dean Sheppard
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Louis F Reichardt
- Department of Physiology and Neuroscience Program, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
35
|
Age-dependent neonatal intracerebral hemorrhage in plasminogen activator inhibitor 1 knockout mice. J Neuropathol Exp Neurol 2014; 73:387-402. [PMID: 24709679 DOI: 10.1097/nen.0000000000000062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Intracerebral-intraventricular hemorrhages (ICH/IVH) in very preterm neonates are responsible for high mortality and subsequent disabilities. In humans, tissue plasminogen activator (t-PA) initiates fibrinolysis and activates endoluminal-endothelial receptors; dysfunction of the t-PA inhibitor (PAI-1) results in recurrent hemorrhages. We used PAI-1 knockout (PAI-1) mice to examine the role of t-PA in age-dependent intracranial hemorrhages as a possible model of preterm ICH/IVH. Intracortical injection of 2 μL of phosphate-buffered saline produced a small traumatic injury and a high rate of hemorrhage in PAI-1 pups at postnatal day 3 (P3) or P5, whereas it had no effect in wild-type neonates. This resulted in white matter and cortical lesions, ventricle enlargement, hyperlocomotion, and altered cortical levels of serotonin and dopamine in the adult PAI mice. N-methyl-D-aspartate receptor blockers, plasmin- and matrix metalloproteinases inhibitors reduced hemorrhage and tissue lesions. In contrast to P3 to P5, no significant hemorrhages were induced in P10 PAI-1 pups and there were no behavioral or neurochemical alterations in adulthood. These data suggest that microvascular immaturity up to P5 in mice is a determinant factor required for t-PA-dependent vascular rupture. Neonatal PAI-1 mice could be a useful ICH/IVH model for studying the ontogenic window of vascular immaturity and vascular protection against later neurodisabilities.
Collapse
|
36
|
Manaenko A, Lekic T, Barnhart M, Hartman R, Zhang JH. Inhibition of transforming growth factor-β attenuates brain injury and neurological deficits in a rat model of germinal matrix hemorrhage. Stroke 2014; 45:828-34. [PMID: 24425124 DOI: 10.1161/strokeaha.113.003754] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Transforming growth factor-β (TGF-β) overproduction and activation of the TGF-β pathway are associated with the development of brain injury following germinal matrix hemorrhage (GMH) in premature infants. We examined the effects of GMH on the level of TGF-β1 in a novel rat collagenase-induced GMH model and determined the effect of inhibition of the TGF receptor I. METHODS In total, 92 seven-day old (P7) rats were used. Time-dependent effects of GMH on the level of TGF-β1 and TGF receptor I were evaluated by Western blot. A TGF receptor I inhibitor (SD208) was administered daily for 3 days, starting either 1 hour or 3 days after GMH induction. The effects of GMH and SD208 on the TGF-β pathway were evaluated by Western blot at day 3. The effects of GMH and SD208 on cognitive and motor function were also assessed. The effects of TGF receptor I inhibition by SD208 on GMH-induced brain injury and underlying molecular pathways were investigated by Western blot, immunofluorescence, and morphology studies 24 days after GMH. RESULTS GMH induced significant delay in development, caused impairment in both cognitive and motor functions, and resulted in brain atrophy in rat subjects. GMH also caused deposition of both vitronectin (an extracellular matrix protein) and glial fibrillary acidic protein in perilesion areas, associated with development of hydrocephalus. SD208 ameliorated GMH-induced developmental delay, improved cognitive and motor functions, and attenuated body weight loss. SD208 also decreased vitronectin and glial fibrillary acidic protein deposition and decreased GMH-induced brain injury. CONCLUSIONS Increased level of TGF-β1 and activation of the TGF-β pathway associate with the development of brain injury after GMH. SD208 inhibits GMH-induced activation of the TGF-β pathway and leads to an improved developmental profile, partial recovery of cognitive and motor functions, and attenuation of GMH-induced brain atrophy and hydrocephalus.
Collapse
Affiliation(s)
- Anatol Manaenko
- From the Departments of Basic Science (A.M., T.L., J.H.Z.), Neurosurgery (J.H.Z.), Anesthesiology (M.B., J.H.Z.), and Psychology (R.H.), Loma Linda University, CA
| | | | | | | | | |
Collapse
|
37
|
Zorena K, Raczyńska D, Raczyńska K. Biomarkers in diabetic retinopathy and the therapeutic implications. Mediators Inflamm 2013; 2013:193604. [PMID: 24311895 PMCID: PMC3839118 DOI: 10.1155/2013/193604] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/09/2013] [Indexed: 02/06/2023] Open
Abstract
The main problem both in type 1 (T1DM) and type 2 (T2DM) diabetes is the development of chronic vascular complications encompassing micro- as well as macrocirculation. Chronic complications lower the quality of life, lead to disability, and are the cause of premature death in DM patients. One of the chronic vascular complications is a diabetic retinopathy (DR) which leads to a complete loss of sight in DM patients. Recent trials show that the primary cause of diabetic retinopathy is retinal neovascularization caused by disequilibrium between pro- and antiangiogenic factors. Gaining knowledge of the mechanisms of action of factors influencing retinal neovascularization as well as the search for new, effective treatment methods, especially in advanced stages of DR, puts special importance on research concentrating on the implementation of biological drugs in DR therapy. At present, it is antivascular endothelial growth factor and antitumor necrosis factor that gain particular significance.
Collapse
Affiliation(s)
- Katarzyna Zorena
- Department of Clinical and Experimental Endocrinology, Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, Powstania Styczniowego 9b, 81-519 Gdynia, Poland
| | - Dorota Raczyńska
- Department of Anesthesiology and Intensive Care Medicine, Medical University of Gdańsk, Poland
- Department and Clinic of Ophthalmology, Medical University of Gdańsk, Poland
| | - Krystyna Raczyńska
- Department and Clinic of Ophthalmology, Medical University of Gdańsk, Poland
| |
Collapse
|