1
|
Casals E, Gusta MF, Bastus N, Rello J, Puntes V. Silver Nanoparticles and Antibiotics: A Promising Synergistic Approach to Multidrug-Resistant Infections. Microorganisms 2025; 13:952. [PMID: 40284788 PMCID: PMC12029289 DOI: 10.3390/microorganisms13040952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
The escalating threat of antibiotic resistance demands innovative strategies against multidrug-resistant (MDR) microorganisms, particularly in hospital settings where such infections represent a major global health challenge. Since the rapid growth of nanotechnology interdisciplinary research and funding programs in the 2000s, silver ions have re-emerged as potent antimicrobial agents, offering a promising complement to conventional therapies. This therapeutic potential is nowadays explored through the use of silver nanoparticles (AgNPs) as sources for silver ions release. Recent studies have shown that controlled silver ion release enhances the efficacy of common antibiotics. This can be attributed to the energetically demanding nature of the bacterial response to silver, which weakens bacterial metabolism and, in turn, overwhelms bacterial defenses and increases antibiotic effectiveness. Herein, historical insights into the use of colloidal silver and AgNPs are combined with a review of recent research on the exploitation of the synergistic effect between AgNPs and antibiotics as a promising strategy against MDR pathogens.
Collapse
Affiliation(s)
- Eudald Casals
- Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain;
- Premium Research SL, 19003 Guadalajara, Spain
| | - Muriel F. Gusta
- Catalan Institute of Nanoscience & Nanotechnology (ICN2), Consejo Superior de Investigaciones Científicas (CSIC), The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193 Bellaterra, Spain; (M.F.G.); (N.B.)
- Networking Research Centre for Bioengineering Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Neus Bastus
- Catalan Institute of Nanoscience & Nanotechnology (ICN2), Consejo Superior de Investigaciones Científicas (CSIC), The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193 Bellaterra, Spain; (M.F.G.); (N.B.)
- Networking Research Centre for Bioengineering Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Jordi Rello
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Formation, Recherche, Evaluation (FOREVA) Research Unit, CHU Nîmes, 30029 Nîmes, France
| | - Victor Puntes
- Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain;
- Networking Research Centre for Bioengineering Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
2
|
Wang C, Wei X, Zhong L, Chan CL, Li H, Sun H. Metal-Based Approaches for the Fight against Antimicrobial Resistance: Mechanisms, Opportunities, and Challenges. J Am Chem Soc 2025; 147:12361-12380. [PMID: 40063057 PMCID: PMC12007004 DOI: 10.1021/jacs.4c16035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 04/17/2025]
Abstract
The rapid emergency and spread of antimicrobial-resistant (AMR) bacteria and the lack of new antibiotics being developed pose serious threats to the global healthcare system. Therefore, the development of more effective therapies to overcome AMR is highly desirable. Metal ions have a long history of serving as antimicrobial agents, and metal-based compounds are now attracting more interest from scientific communities in the fight against AMR owing to their unique mechanism. Moreover, they may also serve as antibiotic adjuvants to enhance the efficacy of clinically used antibiotics. In this perspective, we highlight important showcase studies in the last 10 years on the development of metal-based strategies to overcome the AMR crisis. Specifically, we categorize these metallo-antimicrobials into five classes based on their modes of action (i.e., metallo-enzymes and metal-binding enzyme inhibitors, membrane perturbants, uptake/efflux system inhibitors/regulators, persisters inhibitors, and oxidative stress inducers). The significant advantages of metallo-antimicrobials over traditional antibiotics lie in their multitargeted mechanisms, which render less likelihood to generate resistance. However, we notice that such modes of action of metallo-antimicrobials may also raise concern over their potential side effects owing to the low selectivity toward pathogens and host, which appears to be the biggest obstacle for downstream translational research. We anticipate that combination therapy through repurposing (metallo)drugs with antibiotics and the optimization of their absorption route through formulation to achieve a target-oriented delivery will be a powerful way to combat AMR. Despite significant challenges, metallo-antimicrobials hold great opportunities for the therapeutic intervention of infection by resistant bacteria.
Collapse
Affiliation(s)
- Chenyuan Wang
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
- CAS-HKU
Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Xueying Wei
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
- Department
of Microbiology, The University of Hong
Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Liang Zhong
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Chun-Lung Chan
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Hongyan Li
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
- CAS-HKU
Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
- State
Key Laboratory of Synthetic Chemistry, The
University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Hongzhe Sun
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
- CAS-HKU
Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
- State
Key Laboratory of Synthetic Chemistry, The
University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| |
Collapse
|
3
|
Escobedo HD, Zawadzki N, Till JKA, Vazquez-Torres A, Wang G, Simberg D, Orlicky DJ, Johnson J, Guess MK, Nair DP, Schurr MJ. Nanogels conjugated with cell-penetrating peptide as drug delivery vehicle for treating urinary tract infections. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2025; 65:102812. [PMID: 40024488 DOI: 10.1016/j.nano.2025.102812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/24/2025] [Accepted: 02/06/2025] [Indexed: 03/04/2025]
Abstract
Among hospital-acquired infections, Pseudomonas aeruginosa-associated urinary tract infections (UTIs) are mainly caused by indwelling urethral catheters (catheter-associated UTIs or CAUTIs) and are difficult to treat, resulting in high rates of morbidity among hospitalized patients. While antibiotics can successfully treat bacteria in the bladder lumen, they are inefficient at crossing stratified urothelium plasma membranes to kill persistent intracellular bacterial communities (IBCs). Herein, we introduce an approach to target UTI IBCs by locally delivering the antibiotic gentamicin via polymeric nanogels conjugated with a cell-penetrating peptide Cys-Gly-Lys-Arg-Lys. This novel approach delivered ~36 % more intracellular gentamicin compared to drug delivered in solution in vitro. In an acute UTI murine model, the nanogel cell-penetrating peptide drug delivery system facilitated the transport of gentamicin into the urothelium and resulted in >90 % clearance of a uropathogenic P. aeruginosa clinical strain in vivo.
Collapse
Affiliation(s)
- Humberto D Escobedo
- Department of Pharmaceutical Science, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nicholas Zawadzki
- Department of Obstetrics and Gynecology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James K A Till
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Campus, Aurora, CO 80045, USA
| | - Andres Vazquez-Torres
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Campus, Aurora, CO 80045, USA; Veterans Affairs Eastern Colorado Health Care System, Denver, CO, USA
| | - Guankui Wang
- Department of Pharmaceutical Science, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dmitri Simberg
- Department of Pharmaceutical Science, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David J Orlicky
- Department of Pathology, School of Medicine, University of Colorado Anschutz Campus, Aurora, CO 80045, USA
| | - Joshua Johnson
- Department of Obstetrics and Gynecology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Marsha K Guess
- Department of Obstetrics and Gynecology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Devatha P Nair
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael J Schurr
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Campus, Aurora, CO 80045, USA.
| |
Collapse
|
4
|
Cao X, Tang Y, Lu Z, Ma X, Li H, Chi X, Li J, Liu Z. Enhanced bacteriostatic effects of phage vB_C4 and cell wall-targeting antibiotic combinations against drug-resistant Aeromonas veronii. Microbiol Spectr 2025; 13:e0190824. [PMID: 39817744 PMCID: PMC11792460 DOI: 10.1128/spectrum.01908-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/12/2024] [Indexed: 01/18/2025] Open
Abstract
Aeromonas veronii is a vital zoonotic pathogen known for its extensive drug resistance and ability to form biofilms, which contribute to its antibiotic resistance. In this study, the phage vB_C4, specifically targeting A. veronii, was isolated and subjected to bioinformatic analysis and bacteriostatic activity assays. The combination of phage vB_C4 with antibiotics such as cephalothin and cefoxitin, which target the bacterial cell wall, resulted in a significantly enhanced bacteriostatic effect compared to either the phage or antibiotics alone. Furthermore, the phage dosage was critical in optimizing the antimicrobial effect when used in conjunction with antibiotics. This combined treatment exhibited a more distinct effect in removing mature biofilms and inhibiting biofilm formation, leading to a considerable decrease in bacterial density within the biofilm. Overall, the synergistic use of phage and antibiotics offers a novel attitude for treating pathogenic bacteria and holds significant potential in preventing the emergence of drug-resistant strains.IMPORTANCEThe combined application of phages and antibiotics not only effectively inhibits the emergence of phage-resistant bacteria but also reduces the required effective concentration of antibiotics. Additionally, this combination therapy demonstrates significant therapeutic effects on clinical infections mediated by biofilms. Consequently, this study establishes a basis for evaluating the parameters essential for utilizing phage-antibiotic combination therapy in the treatment of biofilm-associated infections, thereby offering a novel selection for the clinical management of multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Xin Cao
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Yanqiong Tang
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - ZhenZhang Lu
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Xiang Ma
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Hong Li
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Xue Chi
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Juanjuan Li
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Zhu Liu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
5
|
Ip TKY, Wang Y, Wang S, Pu K, Wang R, Han B, Gao P, Xie Y, Kao RY, Ho PL, Li H, Sun H. Hinokitiol potentiates antimicrobial activity of bismuth drugs: a combination therapy for overcoming antimicrobial resistance. RSC Med Chem 2025:d4md00860j. [PMID: 40027343 PMCID: PMC11865920 DOI: 10.1039/d4md00860j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/17/2025] [Indexed: 03/05/2025] Open
Abstract
Antimicrobial resistance (AMR) poses a significant global health threat, rendering many infections untreatable. To combat AMR, repurposing approved drugs has emerged as a cost-effective strategy. Bismuth drugs, when combined with antibiotics, have been proven to be effective against Helicobacter pylori, including antibiotic-resistant strains. However, bismuth drugs alone exhibit limited antimicrobial activity against a narrow spectrum of pathogens. Therefore, a novel approach to enhance the efficacy and broaden the antimicrobial spectrum of bismuth drugs is highly desirable. Herein, we show that a naturally occurring monoterpenoid, hinokitiol, could potentiate the antimicrobial activity of bismuth drugs. We demonstrate a strong synergy between hinokitiol and colloidal bismuth subcitrate (CBS) against various Gram-positive and Gram-negative bacterial strains, including methicillin-resistant Staphylococcus aureus (MRSA). Moreover, the combination of hinokitiol and CBS exhibits anti-biofilm activity by preventing biofilm formation and eliminating S. aureus persister cells. Importantly, the combination therapy demonstrates promising antimicrobial efficacy in murine infection models including skin wound, gastrointestinal and blood infections. Mechanistic studies reveal that hinokitiol enhances bismuth ion (Bi(iii)) accumulation and reduces intracellular iron levels. By using thermal proteome profiling combined with dynamic quantitative proteomics analysis, we demonstrate that the bismuth-hinokitiol combination propagated the bismuth binding and interfered with ribosome synthesis, the glycolysis process, impaired bacterial cell wall synthesis and pathogenesis in MRSA. Our finding highlights the potential of combinatorial hinokitiol and bismuth drugs in the fight against AMR.
Collapse
Affiliation(s)
- Tiffany Ka-Yan Ip
- Department of Chemistry and HKU-CAS Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR P. R. China
| | - Yuchuan Wang
- Department of Chemistry and HKU-CAS Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR P. R. China
- School of Chemistry, Sun Yat-Sen University Guangzhou P. R. China
| | - Suyu Wang
- Department of Chemistry and HKU-CAS Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR P. R. China
| | - Keyuan Pu
- Department of Chemistry and HKU-CAS Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR P. R. China
| | - Runming Wang
- Department of Chemistry and HKU-CAS Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR P. R. China
| | - Bingjie Han
- School of Chemistry, Sun Yat-Sen University Guangzhou P. R. China
| | - Peng Gao
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR P. R. China
| | - Yanxuan Xie
- School of Chemistry, Sun Yat-Sen University Guangzhou P. R. China
| | - Richard Y Kao
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR P. R. China
| | - Pak-Leung Ho
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR P. R. China
| | - Hongyan Li
- Department of Chemistry and HKU-CAS Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR P. R. China
| | - Hongzhe Sun
- Department of Chemistry and HKU-CAS Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR P. R. China
| |
Collapse
|
6
|
Esarev IV, Ott I. Modulation of the mechanism of action of antibacterial silver N-heterocyclic carbene complexes by variation of the halide ligand. RSC Adv 2025; 15:1782-1791. [PMID: 39835216 PMCID: PMC11744769 DOI: 10.1039/d4ra08093a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
The antimicrobial properties of silver and silver complexes have been known in medicine since ancient times. However, limitations in stability and solubility have impaired medicinal chemistry and drug development research. With the advent of N-heterocyclic carbenes (NHC) as ligands, the development of synthesis methods for organometallic silver species of the type (NHC)AgX (where X = halide) has brought significant improvements, and the class of antimicrobial silver NHC complexes has emerged. However, reports studying structure-activity relationships and the mechanism of action of this compound type are still rare. This paper explores the activity of silver NHC complexes with halide (chloride, iodide) ligands and attempts to elucidate their mechanism of antibacterial action in Gram-negative E. coli bacteria in comparison to non-organometallic silver nitrate. In particular, the complexes with an iodide ligand were confirmed to cause stronger antibacterial effects in E. coli than silver nitrate. Moreover, iodide complexes exhibit an enhanced cellular uptake, show signs of DNA condensation, strongly inhibit TrxR in E. coli and cause a strong depolarization of the membrane potential and permeability of the inner cell membrane. In contrast, chloride silver NHC complexes and silver nitrate caused permeability of the outer membranes and also showed a different activity pattern in most of the studied mechanisms. In conclusion, by variation of the halide ligand of silver NHC complexes the mechanism of action and strength of antibacterial activity can be fine-tuned.
Collapse
Affiliation(s)
- Igor V Esarev
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig Beethovenstr. 55 38106 Braunschweig Germany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig Beethovenstr. 55 38106 Braunschweig Germany
| |
Collapse
|
7
|
Fani F, Talebpour C, Leprohon P, Salimnia H, Alamdari H, Ouellette M. Mode of action of silver-based perovskite against Gram-negative bacteria. Microbiol Spectr 2025; 13:e0164824. [PMID: 39656007 PMCID: PMC11705935 DOI: 10.1128/spectrum.01648-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025] Open
Abstract
Although silver is known for its antibacterial activity, its exact mode of action remains unclear. In our previous work, we described AgNbO3 nanoparticles (AgNbO3 NPs) prepared using a ceramic method, followed by high-energy and low-energy ball-milling processes, which exhibited antimicrobial activity with negligible release of Ag+ in deionized water. Here, we investigated thoroughly the mode of action of these AgNbO3 NPs against Escherichia coli. Drastic morphological changes in E. coli were observed after their exposure to AgNbO3 NPs. In addition to cellular damage, AgNbO3 NPs induced the production of reactive oxygen species and lipid peroxidation, likely following the release of small amounts of Ag+. This was concluded from the characterization of mutants resistant to AgNbO3 NPs that showed cross-resistance to AgNO3, impaired reactive oxygen species production and lipid peroxidation, and harbored a key mutation in a two-component regulatory system regulating an Ag+ efflux pump. We calculated, however, that the quantity of Ag+ released from AgNbO3 NPs is not sufficient by itself to lead to bacterial death. We propose that bacterial contact with the AgNbO3 NPs in combination with Ag+ release is necessary for the mode of action of AgNbO3 NPs.IMPORTANCESilver is known for its antibacterial activity, but its exact mode of action remains unclear. Here, we investigated thoroughly the mode of action of AgNbO3 nanoparticles against Escherichia coli. Our data suggest that AgNbO3 nanoparticles have dual effects on the cell and that both are required for its lethal action.
Collapse
Affiliation(s)
- Fereshteh Fani
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Centre de recherche en infectiologie du Centre de Recherche CHU de Québec, Université Laval, Québec, Canada
| | - Cyrus Talebpour
- Department of Mining, Metallurgical and Materials Engineering, Université Laval, Québec, Canada
| | - Philippe Leprohon
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Centre de recherche en infectiologie du Centre de Recherche CHU de Québec, Université Laval, Québec, Canada
| | - Hossein Salimnia
- Department of Pathology, School of Medicine, Children’s Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, Michigan, USA
| | - Houshang Alamdari
- Department of Mining, Metallurgical and Materials Engineering, Université Laval, Québec, Canada
| | - Marc Ouellette
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Centre de recherche en infectiologie du Centre de Recherche CHU de Québec, Université Laval, Québec, Canada
| |
Collapse
|
8
|
Pletts MW, Burrell RE. Clinically relevant evaluation of the antimicrobial and anti-inflammatory properties of nanocrystalline and nanomolecular silver. Wound Repair Regen 2025; 33:e13249. [PMID: 39707715 PMCID: PMC11662198 DOI: 10.1111/wrr.13249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/06/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
Burns and chronic wounds present significant challenges in wound management due to risks of infection, excessive inflammation, and prolonged healing. Silver-based treatments have long been central to burn care, but limitations have prompted the exploration of nanocrystalline silver as an alternative, with its nanoscale properties offering distinct benefits. This paper reviews the structure, properties, mechanisms of action, and clinical applications of nanocrystalline silver in burn and general wound management, with particular emphasis on how wound healing processes inform the application of these dressings. Nanocrystalline silver's high surface area-to-volume ratio and crystal structure enhance its antimicrobial and anti-inflammatory efficacy. Nanocrystalline silver's mechanisms of action are disrupting cellular functions, inducing DNA damage, and inhibiting biofilms. Clinical studies demonstrate accelerated healing and reduced inflammation compared to traditional treatments. Whilst nanocrystalline silver dressings are costly, their effectiveness in lowering drug-resistant infections and minimising complications supports a financial case for their use, potentially reducing overall wound care expenses. Considerations of cytotoxicity, allergic reactions, and accessibility underscore the importance of individualised treatment selection based on wound and patient factors. In conclusion, nanocrystalline silver holds substantial promise in burn wound management, and further research is warranted to optimise its therapeutic potential and economic benefits in clinical practice.
Collapse
Affiliation(s)
- Matthew W. Pletts
- Department of Biomedical EngineeringUniversity of Alberta, Research Transition FacilityEdmontonAlbertaCanada
| | | |
Collapse
|
9
|
Oheix E, Daou TJ, Pieuchot L. Antimicrobial zeolites and metal-organic frameworks. MATERIALS HORIZONS 2024; 11:6222-6256. [PMID: 39291597 DOI: 10.1039/d4mh00259h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The current surge in antibiotic resistance and the emergence of pandemics have created an urgent need for novel antimicrobial strategies. The controlled release of antimicrobial active principles remains the most viable strategy to date, and transition metal ions currently represent the main alternative to antibiotics. In this review, we explore the potential of two types of materials, zeolites and metal-organic frameworks (MOFs), for the controlled release of antimicrobial active principles, notably transition metal ions. These materials have unique crystalline microporous structures that act as reservoirs, enabling sustained bactericidal effects in various applications such as coatings, packaging, and medical devices. However, there are currently no convenient and standardised methods for evaluating their metal ion release and antimicrobial efficacy. This work discusses analytical techniques and the proposed mechanisms of action while highlighting recent advances in film, membrane, and coating technologies. By addressing the current limitations, microporous materials can revolutionise antimicrobial approaches, offering enhanced effectiveness and long-term sustainability.
Collapse
Affiliation(s)
- Emmanuel Oheix
- Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute Alsace (UHA), CNRS, UMR 7361, 3 bis rue Alfred Werner, F-68093 Mulhouse, France.
- Université de Strasbourg (UniStra), F-67000 Strasbourg, France
| | - T Jean Daou
- Aptar CSP Technologies, 9 rue du Sandholz, Niederbronn les Bains, France.
| | - Laurent Pieuchot
- Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute Alsace (UHA), CNRS, UMR 7361, 3 bis rue Alfred Werner, F-68093 Mulhouse, France.
- Université de Strasbourg (UniStra), F-67000 Strasbourg, France
| |
Collapse
|
10
|
Tunç T. Synthesis and characterization of silver nanoparticles loaded with carboplatin as a potential antimicrobial and cancer therapy. Cancer Nanotechnol 2024; 15:2. [DOI: 10.1186/s12645-023-00243-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2025] Open
Abstract
AbstractIn recent studies with silver nanoparticles, it has been reported that the use of nanoparticles in carrier drug systems increases tumor suppression and reduces drug-related side effects. At the same time, the combination of traditional medicine with nanotechnology provides the opportunity to develop new antimicrobial agents. The aim of this study was to determine the anticancer, antimicrobial activities and pro-apoptotic effects of silver nanoparticles (AgNPs), and carboplatin-loaded silver nanoparticles (AgNPs-Car). Characterization studies of the synthesized nanoparticles were carried out by DLS, EDX-STEM, and FTIR analysis. The antiproliferative and pro-apoptotic effects of these molecules were evaluated using XTT and Annexin V, respectively. MIC (Minimum Inhibitory Concentration) test was used to determine the antimicrobial activity. The anticancer activity of the AgNPs-Car was high in MCF-7 (human breast adenocarcinoma), A549 (human lung carcinoma), and C6 (brain glioma) cells. The cell group with the most effective selective cytotoxic activity was C6 cells. It was also shown that AgNPs-Car and AgNPs induced DNA fragmentation eventually increasing apoptosis of cells. The antimicrobial activity of AgNPs and AgNPs-Car was evaluated on Gram-positive and Gram-negative pathogenic microorganisms and yeast fungi. Among the nanomaterials that reached effective MIC values according to reference sources, AgNPs-Car achieved better results. As a result, AgNPs-Car was found to be very successful in targeting C6 glioma cells by facilitating cell entry of the drug. In addition, their anticancer activity on MCF-7 and A549 cells was high and their toxicity was low. Silver nanoparticles are preferred for creating a better drug carrier system because of their qualitative properties and effects. Therefore, it is an interesting field for research on targeting cancer cells and pathogenic microorganisms.
Collapse
|
11
|
Molina-Taborda A, Cossio P, Lopez-Acevedo O, Gabrié M. Active Learning of Boltzmann Samplers and Potential Energies with Quantum Mechanical Accuracy. J Chem Theory Comput 2024; 20:8833-8843. [PMID: 39370622 DOI: 10.1021/acs.jctc.4c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Extracting consistent statistics between relevant free energy minima of a molecular system is essential for physics, chemistry, and biology. Molecular dynamics (MD) simulations can aid in this task but are computationally expensive, especially for systems that require quantum accuracy. To overcome this challenge, we developed an approach combining enhanced sampling with deep generative models and active learning of a machine learning potential (MLP). We introduce an adaptive Markov chain Monte Carlo framework that enables the training of one normalizing flow (NF) and one MLP per state, achieving rapid convergence toward the Boltzmann distribution. Leveraging the trained NF and MLP models, we compute thermodynamic observables such as free energy differences and optical spectra. We apply this method to study the isomerization of an ultrasmall silver nanocluster belonging to a set of systems with diverse applications in the fields of medicine and catalysis.
Collapse
Affiliation(s)
- Ana Molina-Taborda
- Biophysics of Tropical Diseases Max Planck Tandem Group, University of Antioquia UdeA, 050010 Medellin, Colombia
- Grupo de Física Atómica y Molecular, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, 050010 Medellin, Colombia
- Center for Computational Biology, Flatiron Institute, 10010 New York, New York, United States
| | - Pilar Cossio
- Center for Computational Biology, Flatiron Institute, 10010 New York, New York, United States
- Center for Computational Mathematics, Flatiron Institute, 10010 New York, New York, United States
| | - Olga Lopez-Acevedo
- Biophysics of Tropical Diseases Max Planck Tandem Group, University of Antioquia UdeA, 050010 Medellin, Colombia
- Grupo de Física Atómica y Molecular, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, 050010 Medellin, Colombia
| | - Marylou Gabrié
- CMAP, CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
12
|
Münter KC, Lázaro-Martínez JL, Kanya S, Sawade L, Schwenke C, Pegalajar-Jurado A, Swanson T, Leaper D. Clinical efficacy and safety of a silver ion-releasing foam dressing on hard-to-heal wounds: a meta-analysis. J Wound Care 2024; 33:726-736. [PMID: 39388210 DOI: 10.12968/jowc.2024.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
OBJECTIVE Delayed or stalled healing in open wounds can result from persisting chronic inflammation related to infection and/or persistent bacterial colonisation and biofilm. Treatment of hard-to-heal wounds focuses on debridement and exudate management, but also on infection prevention and control. Silver dressings have been evaluated in randomised clinical trials (RCTs); this meta-analysis evaluated the efficacy and safety of a silver ion-releasing foam dressing (Biatain Ag; Coloplast A/S, Denmark) to treat hard-to-heal wounds. METHOD Literature databases (PubMed and Cochrane Library) were searched for studies on silver ion-releasing foam dressings in the treatment of hard-to-heal wounds. Individual patient data from four RCTs were obtained and included in the meta-analysis. RESULTS Findings showed that treatment with the silver ion-releasing foam dressing was associated with a significantly higher relative reduction in wound area after four (least squares-mean difference (LS-MD): -12.55%, 95% confidence interval (CI): (-15.95, -9.16); p<0.01) and six weeks of treatment (LS-MD: -11.94%, 95%CI: (-17.21, -6.68); p<0.01) compared with controls. Significant benefits were also observed for time to disappearance of odour (hazard ratio: 1.61, 95%CI: (1.31, 1.98); p<0.01), relative reduction of exudate (LS-MD: -5.15, 95%CI: (-7.36, -2.94); p<0.01), proportion of patients with periwound erythema (relative risk (RR): 0.81, 95%CI: (0.69; 0.94); p<0.01), and less pain at dressing removal (LS-MD: -0.35, 95%CI: (-0.63, -0.06); p=0.02). No differences regarding safety outcomes were identified. CONCLUSION This meta-analysis has demonstrated beneficial outcomes and a good tolerability profile for silver ion-releasing foam dressings in the treatment of moderate-to-highly exuding wounds with delayed healing compared with control dressings.
Collapse
Affiliation(s)
| | | | - Susanne Kanya
- Wound and Skin Care Region DACH, Coloplast GmbH, Hamburg, Germany
| | | | | | | | - Terry Swanson
- South West Healthcare, Warrnambool, Victoria, Australia
| | - David Leaper
- University of Newcastle, UK
- University of Huddersfield, UK
| |
Collapse
|
13
|
Chen C, Li X, Wang Y, Sun Y, Bao Y, Zhang J, Zhang R, Kwok RTK, Lam JWY, Mao D, Hou P, Tang BZ. Exciting Bacteria to a Hypersensitive State for Enhanced Aminoglycoside Therapy by a Rationally Constructed AIE Luminogen. Adv Healthc Mater 2024; 13:e2400362. [PMID: 38768110 DOI: 10.1002/adhm.202400362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/14/2024] [Indexed: 05/22/2024]
Abstract
The diminishing effectiveness of existing aminoglycoside antibiotics (AGs) compels scientists to seek new approaches to enhance the sensitivity of current AGs. Despite ongoing efforts, currently available approaches remain restricted. Herein, a novel strategy involving the rational construction of an aggregation-induced-emission luminogen (AIEgen) is introduced to significantly enhance Gram-positive bacteria's susceptibility to AGs. The application of this approach involves the simple addition of AIEgens to bacteria followed by a 5 min light irradiation. Under light exposure, AIEgens efficiently generate reactive oxygen species (ROS), elevating intrabacterial ROS levels to a nonlethal threshold. Post treatment, the bacteria swiftly enter a hypersensitive state, resulting in a 21.9-fold, 15.5-fold, or 7.2-fold increase in susceptibility to three AGs: kanamycin, gentamycin, and neomycin, respectively. Remarkably, this approach is specific to AGs, and the induced hypersensitivity displays unparalleled longevity and heritability. Further in vivo studies confirm a 7.0-fold enhanced bactericidal ability of AGs against Gram-positive bacteria through this novel approach. This research not only broadens the potential applications of AIEgens but also introduces a novel avenue to bolster the effectiveness of AGs in combating bacterial infections.
Collapse
Affiliation(s)
- Chao Chen
- Department of Endocrinology, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Department of Chemistry, Department of Chemical and Biological Engineering and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Xing Li
- Department of Endocrinology, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yilin Wang
- Department of Endocrinology, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yingshu Sun
- Department of Endocrinology, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yixuan Bao
- Department of Endocrinology, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Jianyu Zhang
- Department of Chemistry, Department of Chemical and Biological Engineering and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Ruoyao Zhang
- School of Medical Technology, Institute of Engineering Medicine, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, 100081, China
| | - Ryan T K Kwok
- Department of Chemistry, Department of Chemical and Biological Engineering and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Jacky W Y Lam
- Department of Chemistry, Department of Chemical and Biological Engineering and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Duo Mao
- Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Peng Hou
- Department of Endocrinology, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Ben Zhong Tang
- Department of Chemistry, Department of Chemical and Biological Engineering and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, P. R. China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| |
Collapse
|
14
|
Garry B, Samdavid Thanapaul RJR, Werner LM, Pavlovic R, Rios KE, Antonic V, Bobrov AG. Antibacterial Activity of Ag+ on ESKAPEE Pathogens In Vitro and in Blood. Mil Med 2024; 189:493-500. [PMID: 39160817 DOI: 10.1093/milmed/usae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/07/2024] [Accepted: 03/26/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Bloodstream infections are a significant threat to soldiers wounded in combat and contribute to preventable deaths. Novel and combination therapies that can be delivered on the battlefield or in lower roles of care are urgently needed to address the threat of bloodstream infection among military personnel. In this manuscript, we tested the antibacterial capability of silver ions (Ag+), with long-appreciated antibacterial properties, against ESKAPEE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species, and Escherichia coli) pathogens. MATERIALS AND METHODS We used the GENESYS (RAIN LLC) device to deliver Ag+ to Gram-positive and Gram-negative ESKAPEE organisms grown in broth, human blood, and serum. Following the Ag+ treatment, we quantified the antibacterial effects by quantifying colony-forming units. RESULTS We found that Ag+ was bactericidal against 5 Gram-negative organisms, K pneumoniae, A baumannii, P aeruginosa, E cloacae, and E coli, and bacteriostatic against 2 Gram-positive organisms, E faecium and S aureus. The whole blood and serum inhibited the bactericidal activity of Ag+ against a common agent of bloodstream infection, P aeruginosa. Finally, when Ag+ was added in conjunction with antibiotic in the presence of whole blood, there was no significant effect of Ag+ over antibiotic alone. CONCLUSIONS Our results confirmed that Ag+ has broad-spectrum antibacterial properties. However, the therapeutic value of Ag+ may not extend to the treatment of bloodstream infections because of the inhibition of Ag+ activity in blood and serum.
Collapse
Affiliation(s)
- Brittany Garry
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Rex J R Samdavid Thanapaul
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- NRC Research Associateship Programs, National Academies of Sciences, Engineering, and Medicine, Washington, DC 20001, USA
| | - Lacie M Werner
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Radmila Pavlovic
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Kariana E Rios
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Vlado Antonic
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Alexander G Bobrov
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| |
Collapse
|
15
|
Heredia-Rivera U, Krishnakumar A, Kasi V, Rana MM, Gopalakrishnan S, Nejati S, Gundala G, Barnard JP, Wang H, Rahimi R. Cold atmospheric plasma deposition of antibacterial polypyrrole-silver nanocomposites on wearable electronics for prolonged performance. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:11861-11876. [PMID: 39132258 PMCID: PMC11308805 DOI: 10.1039/d4tc00844h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/09/2024] [Indexed: 08/13/2024]
Abstract
Wearable electronics have become integral for monitoring physiological parameters in diverse applications, particularly in medical and military fields. e-Textiles, featuring integrated conductive threads or fabrics, offer seamless integration and comfort for prolonged contact with the body. Despite their potential, the biofouling of textile-based electrode systems by skin microbes remains a significant challenge, limiting their operational lifespan. Recent studies have highlighted the efficacy of conductive nanocomposites with antibacterial agents, such as silver nanoparticles (AgNPs), in addressing biofouling concerns. However, implementing such systems on 3D fibrous structures and textile surfaces often proves complex and inefficient. To overcome these challenges, we explored cold atmospheric plasma (CAP)-based in situ polymerization for the direct deposition of functional conductive polypyrrole-silver (PPy-Ag) nanocomposites onto conductive textile surfaces. For this process, a customized CAP deposition system was engineered, enabling precise material deposition through robotic control of the plasma jet. This process achieved direct, conformal attachment onto textile fibrous structures, ensuring uniform distribution of conductive polypyrrole and silver in the form of AgNPs throughout the polymer polypyrrole matrix without compromising fabric flexibility and breathability, which was validated through different surface electron microscopy and chemical analysis (e.g., EDX, FTIR, Raman, and XRD). Systematic studies with various precursor mixtures identified an optimized PPy-Ag composition that demonstrated stable antibacterial properties and biocompatibility against common skin microbes and epithelial cells. Systematic studies with various precursor mixtures identified an optimized PPy-Ag composition, with the precursor mixture containing 96 wt% pyrrole and 4 wt% AgNO3 weight ratios as the optimal surface coating process, demonstrating stable antibacterial properties and biocompatibility against common skin microbes and epithelial cells respectively. As a proof of concept, the nanocomposite coating was applied to conductive carbon fabric surfaces as dry electrodes in a wearable garment for continues electrocardiography (ECG) monitoring over 10 days. Results revealed a significantly longer performance of the dry electrodes as comparable to standard gel-based Ag/AgCl electrodes (1 day) while providing less noise in ECG signal measurements from the subject, showcasing the potential of this technology for practical wearable applications. Envisioned as a groundbreaking solution, this technology opens new avenues for the scalable and effective integration of functional conductive circuits and sensors into everyday garments, ensuring prolonged and efficient performance in wearable electronics.
Collapse
Affiliation(s)
- Ulisses Heredia-Rivera
- School of Materials Engineering, Purdue University West Lafayette IN 47907 USA
- Birck Nanotechnology Centre, Purdue University West Lafayette IN 47907 USA
| | - Akshay Krishnakumar
- Birck Nanotechnology Centre, Purdue University West Lafayette IN 47907 USA
- School of Electrical and Computer Engineering, Purdue University West Lafayette IN 47907 USA
| | - Venkat Kasi
- School of Materials Engineering, Purdue University West Lafayette IN 47907 USA
- Birck Nanotechnology Centre, Purdue University West Lafayette IN 47907 USA
| | - Muhammad Masud Rana
- Birck Nanotechnology Centre, Purdue University West Lafayette IN 47907 USA
- School of Electrical and Computer Engineering, Purdue University West Lafayette IN 47907 USA
| | - Sarath Gopalakrishnan
- Birck Nanotechnology Centre, Purdue University West Lafayette IN 47907 USA
- School of Electrical and Computer Engineering, Purdue University West Lafayette IN 47907 USA
| | - Sina Nejati
- School of Materials Engineering, Purdue University West Lafayette IN 47907 USA
- Birck Nanotechnology Centre, Purdue University West Lafayette IN 47907 USA
| | - Gagan Gundala
- Birck Nanotechnology Centre, Purdue University West Lafayette IN 47907 USA
- School of Electrical and Computer Engineering, Purdue University West Lafayette IN 47907 USA
| | - James P Barnard
- School of Materials Engineering, Purdue University West Lafayette IN 47907 USA
- Birck Nanotechnology Centre, Purdue University West Lafayette IN 47907 USA
| | - Haiyan Wang
- School of Materials Engineering, Purdue University West Lafayette IN 47907 USA
- Birck Nanotechnology Centre, Purdue University West Lafayette IN 47907 USA
| | - Rahim Rahimi
- School of Materials Engineering, Purdue University West Lafayette IN 47907 USA
- Birck Nanotechnology Centre, Purdue University West Lafayette IN 47907 USA
- School of Electrical and Computer Engineering, Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
16
|
Zhao L, Li W, Liu Y, Qi Y, An N, Yan M, Wang Z, Zhou M, Yang S. Designing Fast-Moving Antibacterial Microtorpedoes to Treat Lethal Bacterial Biofilm Infections. ACS NANO 2024. [PMID: 39023225 DOI: 10.1021/acsnano.4c04995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Engineering fast-moving microrobot swarms that can physically disassemble bacterial biofilms and kill the bacteria released from the biofilms is a promising way to combat bacterial biofilm infections. Here, we report electrochemical design of Ag7O8NO3 microtorpedoes with outstanding antibacterial performance and meanwhile capable of moving at speeds of hundreds of body lengths per second in clinically used H2O2 aqueous solutions. These fast-moving antibacterial Ag7O8NO3 microtorpedoes could penetrate into and disintegrate the bacterial biofilms and, in turn, kill the bacteria released from the biofilms. Based on the understanding of the growth behavior of the microtorpedoes, we could fine-tune the morphology of the microtorpedoes to accelerate the moving speed and increase their penetration depth into the biofilms simply via controlling the potential waveforms. We further developed an automatic shaking method to selectively peel off the uniformly structured microtorpedoes from the electrode surface, realizing continuous electrochemical production of the microtorpedoes. Animal experiments proved that the microtorpedo swarms greatly increased the survival rate of the mice infected by lethal biofilms to >90%. We used the electrochemical method to design and massively produce uniformly structured fast-moving antibacterial microtorpedo swarms with application potentials in treatment of lethal bacterial biofilm infections.
Collapse
Affiliation(s)
- Liyan Zhao
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wanlin Li
- Eye Center & Key Laboratory of Cancer Prevention and Intervention, MOE, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Yue Liu
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuchen Qi
- Eye Center & Key Laboratory of Cancer Prevention and Intervention, MOE, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Ning An
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mi Yan
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institution of Rare Earths, Baotou 014030, China
| | - Zuankai Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Min Zhou
- Eye Center & Key Laboratory of Cancer Prevention and Intervention, MOE, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310029, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining 314400, China
- State Key Laboratory (SKL) of Biobased Transportation Fuel Technology, Zhejiang University, Hangzhou 310027, China
| | - Shikuan Yang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institution of Rare Earths, Baotou 014030, China
| |
Collapse
|
17
|
Niu H, Gu J, Zhang Y. Bacterial persisters: molecular mechanisms and therapeutic development. Signal Transduct Target Ther 2024; 9:174. [PMID: 39013893 PMCID: PMC11252167 DOI: 10.1038/s41392-024-01866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 07/18/2024] Open
Abstract
Persisters refer to genetically drug susceptible quiescent (non-growing or slow growing) bacteria that survive in stress environments such as antibiotic exposure, acidic and starvation conditions. These cells can regrow after stress removal and remain susceptible to the same stress. Persisters are underlying the problems of treating chronic and persistent infections and relapse infections after treatment, drug resistance development, and biofilm infections, and pose significant challenges for effective treatments. Understanding the characteristics and the exact mechanisms of persister formation, especially the key molecules that affect the formation and survival of the persisters is critical to more effective treatment of chronic and persistent infections. Currently, genes related to persister formation and survival are being discovered and confirmed, but the mechanisms by which bacteria form persisters are very complex, and there are still many unanswered questions. This article comprehensively summarizes the historical background of bacterial persisters, details their complex characteristics and their relationship with antibiotic tolerant and resistant bacteria, systematically elucidates the interplay between various bacterial biological processes and the formation of persister cells, as well as consolidates the diverse anti-persister compounds and treatments. We hope to provide theoretical background for in-depth research on mechanisms of persisters and suggest new ideas for choosing strategies for more effective treatment of persistent infections.
Collapse
Affiliation(s)
- Hongxia Niu
- School of Basic Medical Science and Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Jiaying Gu
- School of Basic Medical Science and Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250022, Shandong, China.
| |
Collapse
|
18
|
Molina GF, Cabalén MB, Aranguren JP, Pino GA, Burrow MF. Biological properties of a novel solution based on silver nanoclusters for arresting dentin caries. FRONTIERS IN ORAL HEALTH 2024; 5:1408181. [PMID: 39071245 PMCID: PMC11272654 DOI: 10.3389/froh.2024.1408181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Objectives To test the biological properties of a novel non-restorative treatment method for arresting dentin caries based on silver nanoclusters (AgNCls) synthesized in polymethacrylic acid (PMAA). Methods Synthesis of AgNCls was performed by photoreduction of AgNO3 in PMAA with 355 nm/wavelength light. AgNCls/PMAA was characterized by absorption/fluorescence spectroscopy and optical and atomic force microscopy. The stability of the clusters in an aerated PMAA solution was evaluated by means of fluorescence spectroscopy. Cytotoxicity was assessed using the MTT assay and antibacterial effect was determined for minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and colony forming (CFU) of Streptococcus mutans (S. mutans) and Lactobacillus acidophilus (L. acidophilus). 38% Silver Diammine Fluoride (SDF) was used for the control groups. Results Chemical and structural identity of the clusters did not change within 9 months; Cell viability of 92%-89% was found after 24-48 h respectively. MIC and MBC were determined from 1:16 and 1:8 dilutions, respectively. Log CFU counts of S. mutans, and L. acidophilus treated with AgNCls/PMAA (3.4 ppm of silver) were significantly lower than in the control groups and even lower than when the same bacterial strains were treated with SDF (15,525 ppm of silver). Conclusions AgNCls/PMAA presented chemical stability, acceptable cytotoxicity, and a potential antibacterial effect for strains associated with caries lesions at very low concentrations of silver.
Collapse
Affiliation(s)
- Gustavo Fabián Molina
- Facultad de Ciencias de la Salud, Universidad Católica de Córdoba, Córdoba, Argentina
- Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Haya de la Torre s/n, Pabellón Argentina, Ciudad Universitaria, Córdoba, Argentina
- The Faculty of Dentistry, University of Hong Kong, Hong Kong, Hong Kong SAR China
| | - María Belén Cabalén
- Becaria CONICET, Facultad de Ciencias de la Salud, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Juan Pablo Aranguren
- Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Haya de la Torre s/n, Pabellón Argentina, Ciudad Universitaria, Córdoba, Argentina
- INFIQC: Instituto de Investigaciones en Fisicoquímica de Córdoba (CONICET – UNC), Universidad Nacional de Córdoba, Haya de la Torre s/n, Pabellón Argentina, Ciudad Universitaria, Córdoba, Argentina
- Departamento de Fisicoquímicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Pabellón Argentina, Ciudad Universitaria, Córdoba, Argentina
| | - Gustavo Ariel Pino
- Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Haya de la Torre s/n, Pabellón Argentina, Ciudad Universitaria, Córdoba, Argentina
- INFIQC: Instituto de Investigaciones en Fisicoquímica de Córdoba (CONICET – UNC), Universidad Nacional de Córdoba, Haya de la Torre s/n, Pabellón Argentina, Ciudad Universitaria, Córdoba, Argentina
- Departamento de Fisicoquímicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Pabellón Argentina, Ciudad Universitaria, Córdoba, Argentina
| | | |
Collapse
|
19
|
Pormohammad A, Moradi M, Hommes JW, Pujol E, Naesens L, Vázquez S, Surewaard BGJ, Zarei M, Vazquez-Carrera M, Turner RJ. Novel pentafluorosulfanyl-containing triclocarban analogs selectively kill Gram-positive bacteria. Microbiol Spectr 2024; 12:e0007124. [PMID: 38700321 PMCID: PMC11237694 DOI: 10.1128/spectrum.00071-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/28/2024] [Indexed: 05/05/2024] Open
Abstract
Novel antimicrobial agents are needed to combat antimicrobial resistance. This study tested novel pentafluorosulfanyl-containing triclocarban analogs for their potential antibacterial efficacy. Standard procedures were used to produce pentafluorosulfanyl-containing triclocarban analogs. Twenty new compounds were tested against seven Gram-positive and Gram-negative indicator strains as well as 10 clinical isolates for their antibacterial and antibiofilm activity. Mechanistic investigations focused on damage to cell membrane, oxidizing reduced thiols, iron-sulfur clusters, and oxidative stress to explain the compounds' activity. Safety profiles were assessed using cytotoxicity experiments in eukaryotic cell lines. Following screening, selected components had significantly better antibacterial and antibiofilm activity against Gram-positive bacteria in lower concentrations in comparison to ciprofloxacin and gentamycin. For instance, one compound had a minimum inhibitory concentration of <0.0003 mM, but ciprofloxacin had 0.08 mM. Mechanistic studies show that these novel compounds do not affect reduced thiol content, iron-sulfur clusters, or hydrogen peroxide pathways. Their impact comes from Gram-positive bacterial cell membrane damage. Tests on cell culture toxicity and host component safety showed promise. Novel diarylurea compounds show promise as Gram-positive antimicrobials. These compounds offer prospects for study and optimization. IMPORTANCE The rise of antibiotic resistance among bacterial pathogens poses a significant threat to global health, underscoring the urgent need for novel antimicrobial agents. This study presents research on a promising class of novel compounds with potent antibacterial properties against Gram-positive bacteria, notably Staphylococcus aureus and MRSA. What sets these novel analogs apart is their superior efficacy at substantially lower concentrations compared with commonly used antibiotics like ciprofloxacin and gentamycin. Importantly, these compounds act by disrupting the bacterial cell membrane, offering a unique mechanism that could potentially circumvent existing resistance mechanisms. Preliminary safety assessments also highlight their potential for therapeutic use. This study not only opens new avenues for combating antibiotic-resistant infections but also underscores the importance of innovative chemical approaches in addressing the global antimicrobial resistance crisis.
Collapse
Affiliation(s)
- Ali Pormohammad
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- MHCombiotic Inc., Calgary, Alberta, Canada
| | - Melika Moradi
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Josefien W. Hommes
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Eugènia Pujol
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Lieve Naesens
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Bas G. J. Surewaard
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mohammad Zarei
- Renal Division, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Manuel Vazquez-Carrera
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
- Pharmacology Unit, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
| | - Raymond J. Turner
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
20
|
Cheng D, Tian R, Pan T, Yu Q, Wei L, Liyin J, Dai Y, Wang X, Tan R, Qu H, Lu M. High-performance lung-targeted bio-responsive platform for severe colistin-resistant bacterial pneumonia therapy. Bioact Mater 2024; 35:517-533. [PMID: 38404643 PMCID: PMC10885821 DOI: 10.1016/j.bioactmat.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/27/2024] Open
Abstract
Polymyxins are the last line of defense against multidrug-resistant (MDR) Gram-negative bacterial infections. However, this last resort has been threatened by the emergence of superbugs carrying the mobile colistin resistance gene-1 (mcr-1). Given the high concentration of matrix metalloproteinase 3 (MMP-3) in bacterial pneumonia, limited plasma accumulation of colistin (CST) in the lung, and potential toxicity of ionic silver (Ag+), we designed a feasible clinical transformation platform, an MMP-3 high-performance lung-targeted bio-responsive delivery system, which we named "CST&Ag@CNMS". This system exhibited excellent lung-targeting ability (>80% in lungs), MMP-3 bio-responsive release property (95% release on demand), and synergistic bactericidal activity in vitro (2-4-fold minimum inhibitory concentration reduction). In the mcr-1+ CST-resistant murine pneumonia model, treatment with CST&Ag@CNMS improved survival rates (70% vs. 20%), reduced bacteria burden (2-3 log colony-forming unit [CFU]/g tissue), and considerably mitigated inflammatory response. In this study, CST&Ag@CNMS performed better than the combination of free CST and AgNO3. We also demonstrated the superior biosafety and biodegradability of CST&Ag@CNMS both in vitro and in vivo. These findings indicate the clinical translational potential of CST&Ag@CNMS for the treatment of lung infections caused by CST-resistant bacteria carrying mcr-1.
Collapse
Affiliation(s)
- Decui Cheng
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui Tian
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tingting Pan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Qiang Yu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Wei
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiaozhi Liyin
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Yunqi Dai
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Xiaoli Wang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Ruoming Tan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
21
|
Firdaus N, Altaf I, Iqubal Z, Sherwani OAK, Khan S, Kashif M, Kumar B, Owais M. Green synthesis of silver nanoparticles employing hamdard joshanda extract: putative antimicrobial potential against gram positive and gram negative bacteria. Biometals 2024; 37:389-403. [PMID: 38055071 DOI: 10.1007/s10534-023-00556-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/21/2023] [Indexed: 12/07/2023]
Abstract
The bio-mediated synthesis of nanoparticles offers a sustainable and eco-friendly approach. In the present study, silver nanoparticles (AgNPs) were synthesized using Joshanda extract, a commercially available herbal formulation derived from a traditional medicinal plant, as a reducing and stabilizing agent. The as-synthesized AgNPs were characterized using UV-Vis spectroscopy, dynamic light scattering (DLS), X-ray Diffraction (XRD) study, and Fourier-transform infrared (FTIR) analysis. UV-Vis spectroscopy exhibited a prominent absorption peak at 430 nm, confirming the formation of AgNPs. DLS analysis revealed the size distribution of the nanoparticles, ranging from 80 to 100 nm, and zeta potential measurements indicated a surface charge of - 14.4 mV. The XRD analysis provide evidence for the presence of a face-centered cubic structure within the silver nanoparticles. FTIR analysis further elucidated the interaction of bioactive compounds from the Joshanda extract with the AgNPs' surface. Strong peaks at 765-829 cm-1 indicated C-Cl stretching vibrations of alkyl halides, while the stretching of alkenes C=C was observed at 1641 cm-1. Moreover, the presence of alcohols and phenol (OH) groups was identified at 3448 cm-1, suggesting their involvement in nanoparticle stabilization. The antimicrobial potential of the synthesized AgNPs was evaluated against both gram-negative Pseudomonas aeruginosa and gram-positive Streptococcus mutans using zone of inhibition assays. The AgNPs exhibited remarkable inhibitory effects against both types of bacteria. Additionally, AgNPs-treated groups demonstrated a significant increase in reactive oxygen species (ROS) levels, indicating potential of as-synthesized AgNPs in disruption of the target microbial membranes. Furthermore, the as-synthesized AgNPs exhibited notable anti-biofilm properties by effectively hindering the development of mature biofilms. This study highlights the efficient green synthesis of AgNPs using Joshanda extract and also provides insights into their physico-chemical properties of as-synthesized nanoparticles. The demonstrated antimicrobial activity against both gram-negative and gram-positive bacteria, along with biofilm inhibition potential, underscores the promising applications of the as-synthesized AgNPs in the field of biomedical and environmental sciences. The study bridges traditional knowledge with contemporary nanotechnology, offering a novel avenue for the development of eco-friendly antimicrobial agents.
Collapse
Affiliation(s)
- Nikhat Firdaus
- Interdiciplinary Biotechnology Unit, AMU, Aligarh, India
| | - Ishrat Altaf
- Interdiciplinary Biotechnology Unit, AMU, Aligarh, India
| | - Zafar Iqubal
- Interdiciplinary Biotechnology Unit, AMU, Aligarh, India
| | | | | | - Mohd Kashif
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Bhupendra Kumar
- Center for Plant Molecular Biology and Biotechnology Division, CSIR- National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
| | - Mohammad Owais
- Interdiciplinary Biotechnology Unit, AMU, Aligarh, India.
| |
Collapse
|
22
|
Yu H, Zhang H, Zhang C, Sun W, Han M, Wang R, Wei X, Li S. Adsorption characteristics of Ag + on sphalerite surface: a combined experimental and first-principle study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23822-23838. [PMID: 38430440 DOI: 10.1007/s11356-024-32512-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/13/2024] [Indexed: 03/03/2024]
Abstract
The rapid development of industrial society is also accompanied by the generation of a large amount of heavy metal wastewater, which has caused serious harm to the ecological environment and human society. Natural sphalerite has an important value in the environmental field due to its own semiconducting properties. In order to effectively remove Ag+ from wastewater containing silver, this study develops a natural mineral-based Ag+ adsorbent material (sphalerite) based on elemental affinity qualities and mineralization principles. The results of batch experiments showed that the initial Ag+ concentration of 50 mg/L reduced to 0.094 mg/L with a reaction duration of 15 min, a sphalerite dose of 5 g/L, an initial particle size of -400 mesh (38 μm), a reaction temperature of 25 °C, and a pH of 5. The highest adsorption capacity is 19.77 mg/g, and the adsorption behavior is consistent with the Freundlich isotherm model and pseudo-second-order adsorption kinetics. The results of solution chemical analysis indicate that the presence of Ag+ is primarily influenced by the presence of S2-. Further analysis using SEM-EDS, FTIR, and XPS techniques reveals that Ag+ is chemically adsorb onto the mineral surface, resulting in the formation of Ag2S. DFT calculations further confirm the overlap between the Ag 4d orbitals and the S 3p orbitals on the surface of sphalerite, further confirming its chemical adsorption. Mulliken populations suggest that charge transfer occurs between Ag+ and S atoms in the sphalerite surface. This research systematically reveals the Ag+ adsorption mechanism on sphalerite surface and expands research ideas for treating heavy metal wastewater.
Collapse
Affiliation(s)
- Heng Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Hongliang Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Chenyang Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming, 650093, China.
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Mingjun Han
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Rong Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Xin Wei
- Suzhou Dongfang Environmental Engineering Co. LTD, Suzhou, 215138, Jiangsu, China
| | - Songjiang Li
- China Railway Resources Group Co. LTD, Beijing, 100000, China
| |
Collapse
|
23
|
Alves de Lima e Silva A, Rio-Tinto A. Ebselen: A Promising Repurposing Drug to Treat Infections Caused by Multidrug-Resistant Microorganisms. Interdiscip Perspect Infect Dis 2024; 2024:9109041. [PMID: 38586592 PMCID: PMC10998725 DOI: 10.1155/2024/9109041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 04/09/2024] Open
Abstract
Bacterial multiresistance to drugs is a rapidly growing global phenomenon. New resistance mechanisms have been described in different bacterial pathogens, threatening the effective treatment of even common infectious diseases. The problem worsens in infections associated with biofilms because, in addition to the pathogen's multiresistance, the biofilm provides a barrier that prevents antimicrobial access. Several "non-antibiotic" drugs have antimicrobial activity, even though it is not their primary therapeutic purpose. However, due to the urgent need to develop effective antimicrobials to treat diseases caused by multidrug-resistant pathogens, there has been an increase in research into "non-antibiotic" drugs to offer an alternative therapy through the so-called drug repositioning or repurposing. The prospect of new uses for existing drugs has the advantage of reducing the time and effort required to develop new compounds. Moreover, many drugs are already well characterized regarding toxicity and pharmacokinetic/pharmacodynamic properties. Ebselen has shown promise for use as a repurposing drug for antimicrobial purposes. It is a synthetic organoselenium with anti-inflammatory, antioxidant, and cytoprotective activity. A very attractive factor for using ebselen is that, in addition to potent antimicrobial activity, its minimum inhibitory concentration is very low for microbial pathogens.
Collapse
Affiliation(s)
- Agostinho Alves de Lima e Silva
- Laboratory of Biology and Physiology of Microorganisms, Biomedical Institute, DMP, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro 20211-030, Brazil
| | - André Rio-Tinto
- Laboratory of Pathogenic Cocci and Microbiota, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-853, Brazil
| |
Collapse
|
24
|
Jackson J, Dietrich CH. Synergistic Antibacterial Effects of Gallate Containing Compounds with Silver Nanoparticles in Gallate Crossed Linked PVA Hydrogel Films. Antibiotics (Basel) 2024; 13:312. [PMID: 38666988 PMCID: PMC11047530 DOI: 10.3390/antibiotics13040312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024] Open
Abstract
Currently available silver-based antiseptic wound dressings have limited patient effectiveness. There exists a need for wound dressings that behave as comfortable degradable hydrogels with a strong antibiotic potential. The objectives of this project were to investigate the combined use of gallates (either epi gallo catechin gallate (EGCG), Tannic acid, or Quercetin) as both PVA crosslinking agents and as potential synergistic antibiotics in combination with silver nanoparticles. Crosslinking was assessed gravimetrically, silver and gallate release was measured using inductively coupled plasma and HPLC methods, respectively. Synergy was measured using 96-well plate FICI methods and in-gel antibacterial effects were measured using planktonic CFU assays. All gallates crosslinked PVA with optimal extended swelling obtained using EGCG or Quercetin at 14% loadings (100 mg in 500 mg PVA with glycerol). All three gallates were synergistic in combination with silver nanoparticles against both gram-positive and -negative bacteria. In PVA hydrogel films, silver nanoparticles with EGCG or Quercetin more effectively inhibited bacterial growth in CFU counts over 24 h as compared to films containing single agents. These biocompatible natural-product antibiotics, EGCG or Quercetin, may play a dual role of providing stable PVA hydrogel films and a powerful synergistic antibiotic effect in combination with silver nanoparticles.
Collapse
Affiliation(s)
- John Jackson
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T1Z3, Canada
| | - Claudia Helena Dietrich
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z7, Canada;
| |
Collapse
|
25
|
Li H, Duan S, Li L, Zhao G, Wei L, Zhang B, Ma Y, Wu MX, Mao Y, Lu M. Bio-Responsive Sliver Peroxide-Nanocarrier Serves as Broad-Spectrum Metallo-β-lactamase Inhibitor for Combating Severe Pneumonia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310532. [PMID: 38095435 DOI: 10.1002/adma.202310532] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Indexed: 12/22/2023]
Abstract
Metallo-β-lactamases (MBLs) represent a prevalent resistance mechanism in Gram-negative bacteria, rendering last-line carbapenem-related antibiotics ineffective. Here, a bioresponsive sliver peroxide (Ag2 O2 )-based nanovesicle, named Ag2 O2 @BP-MT@MM, is developed as a broad-spectrum MBL inhibitor for combating MBL-producing bacterial pneumonia. Ag2 O2 nanoparticle is first orderly modified with bovine serum albumin and polydopamine to co-load meropenem (MER) and [5-(p-fluorophenyl)-2-ureido]-thiophene-3-carboxamide (TPCA-1) and then encapsulated with macrophage membrane (MM) aimed to target inflammatory lung tissue specifically. The resultant Ag2 O2 @BP-MT@MM effectively abrogates MBL activity by displacing the Zn2+ cofactor in MBLs with Ag+ and displays potent bactericidal and anti-inflammatory properties, specific targeting abilities, and great bioresponsive characteristics. After intravenous injection, the nanoparticles accumulate prominently at infection sites through MM-mediated targeting . Ag+ released from Ag2 O2 decomposition at the infection sites effectively inhibits MBL activity and overcomes the resistance of MBL-producing bacteria to MER, resulting in synergistic elimination of bacteria in conjunction with MER. In two murine infection models of NDM-1+ Klebsiella pneumoniae-induced severe pneumonia and NDM-1+ Escherichia coli-induced sepsis-related bacterial pneumonia, the nanoparticles significantly reduce bacterial loading, pro-inflammatory cytokine levels locally and systemically, and the recruitment and activation of neutrophils and macrophages. This innovative approach presents a promising new strategy for combating infections caused by MBL-producing carbapenem-resistant bacteria.
Collapse
Affiliation(s)
- Hanqing Li
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuxian Duan
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Lixia Li
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Gang Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Wei
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bohan Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yingying Ma
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA
| | - Yanfei Mao
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
26
|
Lang M, Carvalho A, Baharoglu Z, Mazel D. Aminoglycoside uptake, stress, and potentiation in Gram-negative bacteria: new therapies with old molecules. Microbiol Mol Biol Rev 2023; 87:e0003622. [PMID: 38047635 PMCID: PMC10732077 DOI: 10.1128/mmbr.00036-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
SUMMARYAminoglycosides (AGs) are long-known molecules successfully used against Gram-negative pathogens. While their use declined with the discovery of new antibiotics, they are now classified as critically important molecules because of their effectiveness against multidrug-resistant bacteria. While they can efficiently cross the Gram-negative envelope, the mechanism of AG entry is still incompletely understood, although this comprehension is essential for the development of new therapies in the face of the alarming increase in antibiotic resistance. Increasing antibiotic uptake in bacteria is one strategy to enhance effective treatments. This review aims, first, to consolidate old and recent knowledge about AG uptake; second, to explore the connection between AG-dependent bacterial stress and drug uptake; and finally, to present new strategies of potentiation of AG uptake for more efficient antibiotic therapies. In particular, we emphasize on the connection between sugar transport and AG potentiation.
Collapse
Affiliation(s)
- Manon Lang
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - André Carvalho
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - Zeynep Baharoglu
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| |
Collapse
|
27
|
Li R, Wang C, Gou L, Zhou Y, Peng L, Liu F, Zhang Y. Potential mechanism of the AgNCs-hydrogel in promoting the regeneration of diabetic infectious wounds. Analyst 2023; 148:5873-5881. [PMID: 37908193 DOI: 10.1039/d3an01569f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Diabetic infectious wound treatment is challenging due to insistent wound infections. To treat such complicated pathological diabetic infectious wounds, multifunctional materials need to be developed, and their mechanisms need to be understood. Here, we developed a material termed AgNCs-hydrogel, which is a multifunctional DNA hydrogel used as dressings by integrating it with antibacterial silver nanoclusters. The AgNCs-hydrogel was applied to promote the regeneration of diabetic infectious wounds in mice because it exhibited superior antibacterial activity and effective ROS-scavenging properties. Based on skin proteomics, we explored the potential mechanism of the AgNCs-hydrogel in treating mouse skin wounds. We found that the AgNCs-hydrogel can regulate some key proteins located primarily in the extracellular exosomes, involved in the negative regulation of the apoptotic process, and perform ATP binding to accelerate diabetic infected wound closure. Therefore, this study provided a multifunctional AgNCs-hydrogel and revealed its potential mechanism in promoting the regeneration of diabetic infectious wounds.
Collapse
Affiliation(s)
- Ruoqing Li
- Department of General Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing, 400014, China
| | - Chengshi Wang
- Department of General Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing, 400014, China
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liping Gou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ye Zhou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linrui Peng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fang Liu
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yong Zhang
- Department of General Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing, 400014, China
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
28
|
Ge S, Han Y, Sun M, Zhao J, Ma G. Functionalization of Polymer-Wrapped Silver Nanoclusters and Potential Applications as Antimicrobial Mask Materials. ACS OMEGA 2023; 8:42678-42688. [PMID: 38024676 PMCID: PMC10652370 DOI: 10.1021/acsomega.3c05454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
The poly(methacrylic acid) (PMAA) polymer stabilized silver nanoclusters Agn (n = 2-9), synthesized in aqueous solution by the selected light wavelength irradiation photolysis approach, have been functionalized with thiol and amine ligands and successfully transferred from aqueous to organic media. Low- or high-resolution positive mass spectra showed constant species composites with the molecular formula AgnLn-1 [n = 2 to ∼9, L = butylmercaptan (C4H9S), thiolphenol (C6H5S), or dodecanethiol (C12H25S)] and proved that the molecules consist of deprotonated sulfur ligands in each species with one positive charge. Fourier transform infrared and X-ray photoelectron spectroscopy are consistent, indicating deprotonated sulfur, while silver has a zero valence value. The composition of the functionalized silver clusters is in agreement with that observed from polymer-wrapped "naked" silver clusters, which strongly indicates their real existence. For the silver cluster amine systems (heptylamine, dodecylamine, and oleylamine), only "naked" silver cluster species were detected from mass spectroscopy, similar to the polymer-wrapped case, indicating they are not stable enough in the gas phase. The development of a new antibacterial mask material is very important. The dodecylamine-capping silver nanoclusters were selected by coating the coffee filter surface to conduct antibacterial tests with Staphylococcus aureus and Escherichia coli, demonstrating very efficient antimicrobial properties even with organic capping ligands. Experiments also show that they work on mask material. One nanowire assembly with polystyrene and dodecylamine-capping silver nanoclusters was prepared, showing uniform nanofibers generated via the electrospray technique.
Collapse
Affiliation(s)
- Sai Ge
- Engineering
Research Center of Coal-based Ecological Carbon Sequestration Technology
of the Ministry of Education, Shanxi Datong
University, Datong, Shanxi Province 037009, PR China
- Key
Laboratory of National Forest and Grass Administration for the Application
of Graphene in Forestry, Shanxi Datong University, Datong, Shanxi Province 037009, PR China
| | - Yamei Han
- Engineering
Research Center of Coal-based Ecological Carbon Sequestration Technology
of the Ministry of Education, Shanxi Datong
University, Datong, Shanxi Province 037009, PR China
- Key
Laboratory of National Forest and Grass Administration for the Application
of Graphene in Forestry, Shanxi Datong University, Datong, Shanxi Province 037009, PR China
| | - Manluan Sun
- Engineering
Research Center of Coal-based Ecological Carbon Sequestration Technology
of the Ministry of Education, Shanxi Datong
University, Datong, Shanxi Province 037009, PR China
- Key
Laboratory of National Forest and Grass Administration for the Application
of Graphene in Forestry, Shanxi Datong University, Datong, Shanxi Province 037009, PR China
- School
of Chemistry and Chemical Engineering, Shanxi
Datong University, Datong, Shanxi Province 037009, PR China
| | - Jianguo Zhao
- Engineering
Research Center of Coal-based Ecological Carbon Sequestration Technology
of the Ministry of Education, Shanxi Datong
University, Datong, Shanxi Province 037009, PR China
- Key
Laboratory of National Forest and Grass Administration for the Application
of Graphene in Forestry, Shanxi Datong University, Datong, Shanxi Province 037009, PR China
| | - Guibin Ma
- Engineering
Research Center of Coal-based Ecological Carbon Sequestration Technology
of the Ministry of Education, Shanxi Datong
University, Datong, Shanxi Province 037009, PR China
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
29
|
Shaikh SA, Patel B, Priyadarsini IK, Vavilala SL. Combating planktonic and biofilm growth of Serratia marcescens by repurposing ebselen. Int Microbiol 2023; 26:693-704. [PMID: 36507979 DOI: 10.1007/s10123-022-00301-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/21/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
AIM OF THE STUDY The rising instances of multidrug-resistant pathogens are rapidly evolving into a global healthcare crisis. Identifying new ways of synthesis of antibiotics is both time-consuming and expensive. Repurposing existing drugs for the treatment of such antimicrobial-resistant pathogens has also been explored. METHODS AND RESULTS In the current study, ebselen was screened for antibacterial and antibiofilm activity against Serratia marcescens. Various antibacterial studies such as minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), time-kill curves, intracellular reactive oxygen species (ROS) quantification, and colony-forming unit assays were performed. The antibiofilm potential was assayed by biofilm inhibition, cell surface hydrophobicity assay, eradication, quantification of extracellular DNA (eDNA), and extracellular polymeric substance (EPS) layer and scanning electron microscopy (SEM) analysis were performed. Anti-quorum sensing assay was validated by quantifying the virulence factors production. Further molecular docking of ebselen with two quorum sensing (QS) specific proteins was also carried out. Antibacterial susceptibility tests showed potent antimicrobial activity of ebselen against S. marcescens with MIC50 of 14 μg/mL. Ebselen's ability to disturb the redox environment by inducing significant ROS generation led to bacterial death. It also showed concentration-dependent bactericidal activity as indicated by reduced bacterial growth and colony-forming unit propagation. Ebselen was also found to prevent biofilm attachment by altering the cell surface hydrophobicity while also being effective against preformed biofilms as validated by scanning electron microscopy (SEM) analysis. Additionally, ebselen showed reduced virulence factors like urease enzyme activity and prodigiosin pigment production indicating its promising anti-quorum sensing potential. Molecular docking analysis validated the strong binding of ebselen with QS-specific proteins (1Joe and PigG) with binding energies of - 6.6 and - 8.1kj/mol through hydrogen bonds and aromatic interactions. These results show that ebselen has potent antibiofilm potential that can be explored to identify treatment against bacterial infections.
Collapse
Affiliation(s)
- Shaukat Ali Shaikh
- School of Chemical Sciences, UM DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Mumbai, India
| | - Bharti Patel
- School of Biological Sciences, UM DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Mumbai, India
| | - Indira K Priyadarsini
- School of Chemical Sciences, UM DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Mumbai, India.
| | - Sirisha L Vavilala
- School of Biological Sciences, UM DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Mumbai, India.
| |
Collapse
|
30
|
Li L, Short FL, Hassan KA, Naidu V, Pokhrel A, Nagy SS, Prity FT, Shah BS, Afrin N, Baker S, Parkhill J, Cain AK, Paulsen IT. Systematic analyses identify modes of action of ten clinically relevant biocides and antibiotic antagonism in Acinetobacter baumannii. Nat Microbiol 2023; 8:1995-2005. [PMID: 37814070 DOI: 10.1038/s41564-023-01474-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/11/2023] [Indexed: 10/11/2023]
Abstract
Concerns exist that widespread use of antiseptic or disinfectant biocides could contribute to the emergence and spread of multidrug-resistant bacteria. To investigate this, we performed transposon-directed insertion-site sequencing (TraDIS) on the multidrug-resistant pathogen, Acinetobacter baumannii, exposed to a panel of ten structurally diverse and clinically relevant biocides. Multiple gene targets encoding cell envelope or cytoplasmic proteins involved in processes including fatty acid biogenesis, multidrug efflux, the tricarboxylic acid cycle, cell respiration and cell division, were identified to have effects on bacterial fitness upon biocide exposure, suggesting that these compounds may have intracellular targets in addition to their known effects on the cell envelope. As cell respiration genes are required for A. baumannii fitness in biocides, we confirmed that sub-inhibitory concentrations of the biocides that dissipate membrane potential can promote A. baumannii tolerance to antibiotics that act intracellularly. Our results support the concern that residual biocides might promote antibiotic resistance in pathogenic bacteria.
Collapse
Affiliation(s)
- Liping Li
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Francesca L Short
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Karl A Hassan
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Varsha Naidu
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Alaska Pokhrel
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
- Australian Institute for Microbiology and Infection (AIMI), University of Technology, Sydney, New South Wales, Australia
| | - Stephanie S Nagy
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Farzana T Prity
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Bhumika S Shah
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Nusrat Afrin
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Cambridge, UK
| | - Julian Parkhill
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Amy K Cain
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia.
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia.
| | - Ian T Paulsen
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia.
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia.
| |
Collapse
|
31
|
Singer L, Karacic S, Szekat C, Bierbaum G, Bourauel C. Biological properties of experimental dental alginate modified for self-disinfection using green nanotechnology. Clin Oral Investig 2023; 27:6677-6688. [PMID: 37775587 PMCID: PMC10630233 DOI: 10.1007/s00784-023-05277-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
OBJECTIVES Disinfection of alginate impression materials is a mandatory step to prevent cross-infection in dental clinics. However, alginate disinfection methods are time-consuming and exert a negative impact on accuracy and mechanical properties. Thus, this study aimed to prepare disinfecting agents (CHX and AgNO3) and silver nanoparticles reduced by a natural plant extract to produce a self-disinfecting dental alginate. METHODS Conventional alginate impression material was used in this study. Silver nitrate (0.2% AgNO3 group) and chlorohexidine (0.2% CHX group) solutions were prepared using distilled water, and these solutions were later employed for alginate preparation. Moreover, a 90% aqueous plant extract was prepared from Boswellia sacra (BS) oleoresin and used to reduce silver nitrate to form silver nanoparticles that were incorporated in the dental alginate preparation (BS+AgNPs group). The plant extract was characterized by gas chromatography/mass spectrometry (GC/MS) analysis while green-synthesized silver nanoparticles (AgNPs) were characterized by UV-visible (UV-vis) spectroscopy and scanning electron microscopy (SEM). An agar disc diffusion assay was used to test the antimicrobial activity against Candida albicans, Streptococcus mutans, Escherichia coli, methicillin-resistant and susceptible Staphylococcus aureus strains, and Micrococcus luteus. Agar plates were incubated at 37 ± 1 °C for 24 h to allow microbial growth. Diameters of the circular inhibition zones formed around each specimen were measured digitally by using ImageJ software. RESULTS Chemical analysis of the plant extract revealed the presence of 41 volatile and semi-volatile active compounds. UV-Vis spectrophotometry, SEM, and EDX confirmed the formation of spherical silver nanoparticles using the BS extract. CHX, AgNO3, and the BS+AgNPs modified groups showed significantly larger inhibition zones than the control group against all tested strains. BS+AgNPs and CHX groups showed comparable efficacy against all tested strains except for Staphylococcus aureus, where the CHX-modified alginate had a significantly higher effect. CONCLUSIONS AND CLINICAL RELEVANCE CHX, silver nitrate, and biosynthesized silver nanoparticles could be promising inexpensive potential candidates for the preparation of a self-disinfecting alginate impression material without affecting its performance. Green synthesis of metal nanoparticles using Boswellia sacra extract could be a very safe, efficient, and nontoxic way with the additional advantage of a synergistic action between metal ions and the phytotherapeutic agents of the plant extract.
Collapse
Affiliation(s)
- Lamia Singer
- Oral Technology, Medical Faculty, University Hospital Bonn, Bonn, Germany.
- Department of Orthodontics, Medical Faculty, University Hospital Bonn, Bonn, Germany.
| | - Sabina Karacic
- Institute of Medical Microbiology, Immunology, and Parasitology, Medical Faculty, University Hospital Bonn, 53127, Bonn, North Rhine-Westphalia, Germany
| | - Christiane Szekat
- Institute of Medical Microbiology, Immunology, and Parasitology, Medical Faculty, University Hospital Bonn, 53127, Bonn, North Rhine-Westphalia, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology, and Parasitology, Medical Faculty, University Hospital Bonn, 53127, Bonn, North Rhine-Westphalia, Germany
| | - Christoph Bourauel
- Oral Technology, Medical Faculty, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
32
|
Donkor GY, Anderson GM, Stadler M, Tawiah PO, Orellano CD, Edwards KA, Dahl JU. A novel ruthenium-silver based antimicrobial potentiates aminoglycoside activity against Pseudomonas aeruginosa. mSphere 2023; 8:e0019023. [PMID: 37646510 PMCID: PMC10597350 DOI: 10.1128/msphere.00190-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/05/2023] [Indexed: 09/01/2023] Open
Abstract
The rapid dissemination of antibiotic resistance combined with the decline in the discovery of novel antibiotics represents a major challenge for infectious disease control that can only be mitigated by investments in novel treatment strategies. Alternative antimicrobials, including silver, have regained interest due to their diverse mechanisms of inhibiting microbial growth. One such example is AGXX, a broad-spectrum antimicrobial that produces highly cytotoxic reactive oxygen species (ROS) to inflict extensive macromolecular damage. Due to the connections identified between ROS production and antibiotic lethality, we hypothesized that AGXX could potentially increase the activity of conventional antibiotics. Using the gram-negative pathogen Pseudomonas aeruginosa, we screened possible synergistic effects of AGXX on several antibiotic classes. We found that the combination of AGXX and aminoglycosides tested at sublethal concentrations led to a rapid exponential decrease in bacterial survival and restored the sensitivity of a kanamycin-resistant strain. ROS production contributes significantly to the bactericidal effects of AGXX/aminoglycoside treatments, which is dependent on oxygen availability and can be reduced by the addition of ROS scavengers. Additionally, P. aeruginosa strains deficient in ROS detoxifying/repair genes were more susceptible to AGXX/aminoglycoside treatment. We further demonstrate that this synergistic interaction was associated with a significant increase in outer and inner membrane permeability, resulting in increased antibiotic influx. Our study also revealed that AGXX/aminoglycoside-mediated killing requires an active proton motive force across the bacterial membrane. Overall, our findings provide an understanding of cellular targets that could be inhibited to increase the activity of conventional antimicrobials. IMPORTANCE The emergence of drug-resistant bacteria coupled with the decline in antibiotic development highlights the need for novel alternatives. Thus, new strategies aimed at repurposing conventional antibiotics have gained significant interest. The necessity of these interventions is evident especially in gram-negative pathogens as they are particularly difficult to treat due to their outer membrane. This study highlights the effectiveness of the antimicrobial AGXX in potentiating aminoglycoside activities against P. aeruginosa. The combination of AGXX and aminoglycosides not only reduces bacterial survival rapidly but also significantly re-sensitizes aminoglycoside-resistant P. aeruginosa strains. In combination with gentamicin, AGXX induces increased endogenous oxidative stress, membrane damage, and iron-sulfur cluster disruption. These findings emphasize AGXX's potential as a route of antibiotic adjuvant development and shed light on potential targets to enhance aminoglycoside activity.
Collapse
Affiliation(s)
- Gracious Yoofi Donkor
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| | - Greg M. Anderson
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| | - Michael Stadler
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| | - Patrick Ofori Tawiah
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| | - Carl D. Orellano
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| | - Kevin A. Edwards
- School of Biological Sciences, Illinois State University, Cell Biology, Normal, Illinois, USA
| | - Jan-Ulrik Dahl
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| |
Collapse
|
33
|
Gajera G, Thakkar N, Godse C, DeSouza A, Mehta D, Kothari V. Sub-lethal concentration of a colloidal nanosilver formulation (Silversol®) triggers dysregulation of iron homeostasis and nitrogen metabolism in multidrug resistant Pseudomonas aeruginosa. BMC Microbiol 2023; 23:303. [PMID: 37872532 PMCID: PMC10591374 DOI: 10.1186/s12866-023-03062-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is a notorious pathogen. Its multidrug resistant strains are listed among priority pathogens against whom discovery of novel antibacterial agents and, elucidation of new anti-pathogenicity mechanisms are urgently warranted. This study describes multiple antibacterial effects of a colloidal nano-silver formulation- Silversol® against a multi-drug resistant strain of P. aeruginosa. RESULTS Minimum inhibitory concentration (MIC) of Silversol® against P. aeruginosa was found to be 1.5 ppm; and at sub-MIC of 1 ppm, it was able to alter quorum-sensing regulated pigmentation (pyocanin 82%↓; pyoverdine 48%↑), exopolysaccharide synthesis (76%↑) and biofilm formation, susceptibility to antibiotics (streptomycin and augmentin), protein synthesis and export (65%↑), nitrogen metabolism (37%↑ nitrite accumulation), and siderophore production in this pathogen. Network analysis of the differentially expressed genes in the transcriptome of the silversol-treated bacterium identified ten genes as the potential molecular targets: norB, norD, nirS, nirF, nirM, nirQ, nosZ, nosY, narK1, and norE (all associated with nitrogen metabolism or denitrification). Three of them (norB, narK1, and norE) were also validated through RT-PCR. CONCLUSIONS Generation of nitrosative stress and disturbance of iron homeostasis were found to be the major mechanisms associated with anti-Pseudomonas activity of Silversol®.
Collapse
Affiliation(s)
- Gemini Gajera
- Institute of Science, Nirma University, Ahmedabad, 382481, India
| | - Nidhi Thakkar
- Institute of Science, Nirma University, Ahmedabad, 382481, India
| | | | | | | | - Vijay Kothari
- Institute of Science, Nirma University, Ahmedabad, 382481, India.
| |
Collapse
|
34
|
Rahim MI, Waqas SFUH, Lienenklaus S, Willbold E, Eisenburger M, Stiesch M. Effect of titanium implants along with silver ions and tetracycline on type I interferon-beta expression during implant-related infections in co-culture and mouse model. Front Bioeng Biotechnol 2023; 11:1227148. [PMID: 37929187 PMCID: PMC10621036 DOI: 10.3389/fbioe.2023.1227148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023] Open
Abstract
Type I interferon-beta (IFN-β) is a crucial component of innate and adaptive immune systems inside the host. The formation of bacterial biofilms on medical implants can lead to inflammatory diseases and implant failure. Biofilms elicit IFN-β production inside the host that, in turn, restrict bacterial growth. Biofilms pose strong antibiotic resistance, whereas surface modification of medical implants with antibacterial agents may demonstrate strong antimicrobial effects. Most of the previous investigations were focused on determining the antibacterial activities of implant surfaces modified with antibacterial agents. The present study, for the first time, measured antibacterial activities and IFN-β expression of titanium surfaces along with silver or tetracycline inside co-culture and mouse models. A periodontal pathogen: Aggregatibacter actinomycetemcomitans reported to induce strong inflammation, was used for infection. Silver and tetracycline were added to the titanium surface using the heat evaporation method. Macrophages showed reduced compatibility on titanium surfaces with silver, and IFN-β expression inside cultured cells significantly decreased. Macrophages showed compatibility on implant surfaces with tetracycline, but IFN-β production significantly decreased inside seeded cells. The decrease in IFN-β production inside macrophages cultured on implant surfaces with silver and tetracycline was not related to the downregulation of Ifn-β gene. Bacterial infection significantly upregulated mRNA expression levels of Isg15, Mx1, Mx2, Irf-3, Irf-7, Tlr-2, Tnf-α, Cxcl-1, and Il-6 genes. Notably, mRNA expression levels of Mx1, Irf7, Tlr2, Tnf-α, Cxcl1, and Il-6 genes inside macrophages significantly downregulated on implant surfaces with silver or tetracycline. Titanium with tetracycline showed higher antibacterial activities than silver. The in vivo evaluation of IFN-β expression around implants was measured inside transgenic mice constitutive for IFN-β expression. Of note, the non-invasive in vivo imaging revealed a significant decrease in IFN-β expression around subcutaneous implants with silver compared to titanium and titanium with tetracycline in sterile or infected situations. The histology of peri-implant tissue interfaces around infected implants with silver showed a thick interface with a significantly higher accumulation of inflammatory cells. Titanium implants with silver and tetracycline remained antibacterial in mice. Findings from this study unequivocally indicate that implant surfaces with silver decrease IFN-β expression, a crucial component of host immunity.
Collapse
Affiliation(s)
- Muhammad Imran Rahim
- Department of Prosthetic Dentistry and Biomedical Materials Science, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Syed Fakhar-ul-Hassnain Waqas
- Biomarkers for Infectious Diseases, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Stefan Lienenklaus
- Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Elmar Willbold
- Department of Orthopedic Surgery, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Michael Eisenburger
- Department of Prosthetic Dentistry and Biomedical Materials Science, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| |
Collapse
|
35
|
Wang LQ, Zhang CY, Chen JJ, Lin WJ, Yu GY, Deng LS, Ji XR, Duan XM, Xiong YS, Jiang GJ, Wang JT, Liao XW, Liu LH. Ru-Based Organometallic Agents Bearing Phenyl Hydroxide: Synthesis and Antibacterial Mechanism Study against Staphylococcus aureus. ChemMedChem 2023; 18:e202300306. [PMID: 37527976 DOI: 10.1002/cmdc.202300306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/17/2023] [Accepted: 08/01/2023] [Indexed: 08/03/2023]
Abstract
The development of antimicrobial agents with novel model of actions is a promising strategy to combat multiple resistant bacteria. Here, three ruthenium-based complexes, which acted as potential antimicrobial agents, were synthesized and characterized. Importantly, three complexes all showed strong bactericidal potency against Staphylococcus aureus. In particular, the most active one has a MIC of 6.25 μg/mL. Mechanistic studies indicated that ruthenium complex killed S. aureus by releasing ROS and damaging the integrity of bacterial cell membrane. In addition, the most active complex not only could inhibit the biofilm formation and hemolytic toxin secretion of S. aureus, but also serve as a potential antimicrobial adjuvant as well, which showed synergistic effects with eight traditional antibiotics. Finally, both G. mellonella larva infection model and mouse skin infection model all demonstrated that ruthenium complex also showed significant efficacy against S. aureus in vivo. In summary, our study suggested that ruthenium-based complexes bearing a phenyl hydroxide are promising antimicrobial agents for combating S. aureus.
Collapse
Affiliation(s)
- L Q Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - C Y Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - J J Chen
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - W J Lin
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - G Y Yu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - L S Deng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - X R Ji
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - X M Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Y S Xiong
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - G J Jiang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - J T Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - X W Liao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - L H Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, 418000, China
| |
Collapse
|
36
|
Wang J, Song Y, Huang Z, Lin W, Yu G, Xiong Y, Jiang G, Tan Y, Wang J, Liao X. Coupling a Virulence-Targeting Moiety with Ru-Based AMP Mimics Efficiently Improved Its Anti-Infective Potency and Therapeutic Index. J Med Chem 2023; 66:13304-13318. [PMID: 37704628 DOI: 10.1021/acs.jmedchem.3c01282] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The surge of antibiotic resistance in Staphylococcus aureus calls for novel drugs that attack new targets. Developing antimicrobial peptides (AMPs) or antivirulence agents (AvAs) is a promising strategy to tackle this challenge. However, AMPs, which kill bacteria by disrupting cell membranes, suffer from low stability and high synthesis cost, while AvAs, which inhibit toxin secretion, have relatively poor bactericidal activity. Here, to address their respective shortcomings, we combined these two different antibacterial activities on the same molecular scaffold and developed a Ru-based metalloantibiotic, termed Ru1. Notably, Ru1 exerted remarkable bactericidal activity (MICS = 460 nM) and attenuated bacterial virulence as well. Mechanistic studies demonstrated that Ru1 had two independent targets: CcpA and bacterial membrane integrity. Based on its dual mechanism of action, Ru1 effectively overcame S. aureus resistance and showed high efficacy in a mouse infection model against S. aureus. This study provides a promising approach to confronting bacterial infections.
Collapse
Affiliation(s)
- Jing Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yun Song
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Ziying Huang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Wenjing Lin
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Guangying Yu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yanshi Xiong
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Guijuan Jiang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yanhui Tan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jintao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Xiangwen Liao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| |
Collapse
|
37
|
Pan X, Liu W, Du Q, Zhang H, Han D. Recent Advances in Bacterial Persistence Mechanisms. Int J Mol Sci 2023; 24:14311. [PMID: 37762613 PMCID: PMC10531727 DOI: 10.3390/ijms241814311] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The recurrence of bacterial infectious diseases is closely associated with bacterial persisters. This subpopulation of bacteria can escape antibiotic treatment by entering a metabolic status of low activity through various mechanisms, for example, biofilm, toxin-antitoxin modules, the stringent response, and the SOS response. Correspondingly, multiple new treatments are being developed. However, due to their spontaneous low abundance in populations and the lack of research on in vivo interactions between persisters and the host's immune system, microfluidics, high-throughput sequencing, and microscopy techniques are combined innovatively to explore the mechanisms of persister formation and maintenance at the single-cell level. Here, we outline the main mechanisms of persister formation, and describe the cutting-edge technology for further research. Despite the significant progress regarding study techniques, some challenges remain to be tackled.
Collapse
Affiliation(s)
- Xiaozhou Pan
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Wenxin Liu
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Qingqing Du
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Dingding Han
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| |
Collapse
|
38
|
Wang C, Xia Y, Wang R, Li J, Chan CL, Kao RYT, Toy PH, Ho PL, Li H, Sun H. Metallo-sideromycin as a dual functional complex for combating antimicrobial resistance. Nat Commun 2023; 14:5311. [PMID: 37658047 PMCID: PMC10474269 DOI: 10.1038/s41467-023-40828-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/11/2023] [Indexed: 09/03/2023] Open
Abstract
The rapid emergence of antimicrobial resistance (AMR) pathogens highlights the urgent need to approach this global burden with alternative strategies. Cefiderocol (Fetroja®) is a clinically-used sideromycin, that is utilized for the treatment of severe drug-resistant infections, caused by Gram-negative bacteria; there is evidence of cefiderocol-resistance occurring in bacterial strains however. To increase the efficacy and extend the life-span of sideromycins, we demonstrate strong synergisms between cefiderocol and metallodrugs (e.g., colloidal bismuth citrate (CBS)), against Pseudomonas aeruginosa and Burkholderia cepacia. Moreover, CBS enhances cefiderocol efficacy against biofilm formation, suppresses the resistance development in P. aeruginosa and resensitizes clinically isolated resistant P. aeruginosa to cefiderocol. Notably, the co-therapy of CBS and cefiderocol significantly increases the survival rate of mice and decreases bacterial loads in the lung in a murine acute pneumonia model. The observed phenomena are partially attributable to the competitive binding of Bi3+ to cefiderocol with Fe3+, leading to enhanced uptake of Bi3+ and reduced levels of Fe3+ in cells. Our studies provide insight into the antimicrobial potential of metallo-sideromycins.
Collapse
Affiliation(s)
- Chenyuan Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Yushan Xia
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Runming Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Jingru Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
- Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong, PR China
| | - Chun-Lung Chan
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Richard Yi-Tsun Kao
- Department of Microbiology, The University of Hong Kong, Sassoon Road, Hong Kong SAR, PR China
| | - Patrick H Toy
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Pak-Leung Ho
- Department of Microbiology, The University of Hong Kong, Sassoon Road, Hong Kong SAR, PR China
- Carol Yu Centre for Infection, The University of Hong Kong, Sassoon Road, Hong Kong SAR, PR China
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China.
- State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China.
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China.
- State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China.
| |
Collapse
|
39
|
Madkhali OA. A comprehensive review on potential applications of metallic nanoparticles as antifungal therapies to combat human fungal diseases. Saudi Pharm J 2023; 31:101733. [PMID: 37649674 PMCID: PMC10463261 DOI: 10.1016/j.jsps.2023.101733] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/29/2023] [Indexed: 09/01/2023] Open
Abstract
Human pathogenic fungi are responsible for causing a range of infection types including mucosal, skin, and invasive infections. Life-threatening and invasive fungal infections (FIs) are responsible for mortality and morbidity, especially for individuals with compromised immune function. The number of currently available therapeutic agents against invasive FIs is limited compared to that against bacterial infections. In addition, the increased mortality and morbidity caused by FIs are linked to the limited number of available antifungal agents, antifungal resistance, and the increased toxicity of these agents. Currently available antifungal agents have several drawbacks in efficiency, efficacy, toxicity, activity spectrum, and selectivity. It has already been demonstrated with numerous metallic nanoparticles (MNPs) that these nanoparticles can serve as an effective and alternative solution as fungicidal agents. MNPs have great potential owing to their intrinsic antifungal properties and potential to deliver antifungal drugs. For instance, gold nanoparticles (AuNPs) have the capacity to disturb mitochondrial calcium homeostasis induced AuNP-mediated cell death in Candida albicans. In addition, both copper nanoparticles and copper oxide nanoparticles exerted significant suppressive properties against pathogenic fungi. Silver nanoparticles showed strong antifungal properties against numerous pathogenic fungi, such as Stachybotrys chartarum, Mortierella alpina, Chaetomium globosum, A. fumigatus, Cladosporium cladosporioides, Penicillium brevicompactum, Trichophyton rubrum, C. tropicalis, and C. albicans. Iron oxide nanoparticles showed potent antifungal activities against A. niger and P. chrysogenum. It has also been reported that zinc oxide nanoparticles can significantly inhibit fungal growth. These NPs have already exerted potent antifungal properties against a number of pathogenic fungal species including Candida, Aspergillus, Fusarium, and many others. Several strategies are currently used for the research and development of antifungal NPs including chemical modification of NPs and combination with the available drugs. This review has comprehensively presented the current and innovative antifungal approach using MNPs. Moreover, different types of MNPs, their physicochemical characteristics, and production techniques have been summarized in this review.
Collapse
Affiliation(s)
- Osama A. Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45124, Saudi Arabia
| |
Collapse
|
40
|
Pormohammad A, Firrincieli A, Salazar-Alemán DA, Mohammadi M, Hansen D, Cappelletti M, Zannoni D, Zarei M, Turner RJ. Insights into the Synergistic Antibacterial Activity of Silver Nitrate with Potassium Tellurite against Pseudomonas aeruginosa. Microbiol Spectr 2023; 11:e0062823. [PMID: 37409940 PMCID: PMC10433965 DOI: 10.1128/spectrum.00628-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
The constant, ever-increasing antibiotic resistance crisis leads to the announcement of "urgent, novel antibiotics needed" by the World Health Organization. Our previous works showed a promising synergistic antibacterial activity of silver nitrate with potassium tellurite out of thousands of other metal/metalloid-based antibacterial combinations. The silver-tellurite combined treatment not only is more effective than common antibiotics but also prevents bacterial recovery, decreases the risk of future resistance chance, and decreases the effective concentrations. We demonstrate that the silver-tellurite combination is effective against clinical isolates. Further, this study was conducted to address knowledge gaps in the available data on the antibacterial mechanism of both silver and tellurite, as well as to give insight into how the mixture provides synergism as a combination. Here, we defined the differentially expressed gene profile of Pseudomonas aeruginosa under silver, tellurite, and silver-tellurite combination stress using an RNA sequencing approach to examine the global transcriptional changes in the challenged cultures grown in simulated wound fluid. The study was complemented with metabolomics and biochemistry assays. Both metal ions mainly affected four cellular processes, including sulfur homeostasis, reactive oxygen species response, energy pathways, and the bacterial cell membrane (for silver). Using a Caenorhabditis elegans animal model we showed silver-tellurite has reduced toxicity over individual metal/metalloid salts and provides increased antioxidant properties to the host. This work demonstrates that the addition of tellurite would improve the efficacy of silver in biomedical applications. IMPORTANCE Metals and/or metalloids could represent antimicrobial alternatives for industrial and clinical applications (e.g., surface coatings, livestock, and topical infection control) because of their great properties, such as good stability and long half-life. Silver is the most common antimicrobial metal, but resistance prevalence is high, and it can be toxic to the host above a certain concentration. We found that a silver-tellurite composition has antibacterial synergistic effect and that the combination is beneficial to the host. So, the efficacy and application of silver could increase by adding tellurite in the recommended concentration(s). We used different methods to evaluate the mechanism for how this combination can be so incredibly synergistic, leading to efficacy against antibiotic- and silver-resistant isolates. Our two main findings are that (i) both silver and tellurite mostly target the same pathways and (ii) the coapplication of silver with tellurite tends not to target new pathways but targets the same pathways with an amplified change.
Collapse
Affiliation(s)
- Ali Pormohammad
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- CCrest Laboratories, Inc., Montreal, Quebec, Canada
| | - Andrea Firrincieli
- Department for Innovation in Biological, Agro-Food and Forest systems, University of Tuscia, Viterbo, Italy
| | - Daniel A. Salazar-Alemán
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Mehdi Mohammadi
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Dave Hansen
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Mohammad Zarei
- Renal Division, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Raymond J. Turner
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
41
|
Zhang Z, Shao J, Gao Y, Li Y, Liu T, Yang M. Research progress and future prospects of antimicrobial modified polyetheretherketone (PEEK) for the treatment of bone infections. Front Bioeng Biotechnol 2023; 11:1244184. [PMID: 37600311 PMCID: PMC10436002 DOI: 10.3389/fbioe.2023.1244184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Infection of the bone is a difficult problem in orthopedic diseases. The key and basis of the treatment of bone infection is the effective control of local infection, as well as the elimination of infection focus and dead cavities. The most commonly used approach utilized for the prevention and management of bone infection is the application of antibiotic bone cement. However, the incorporation of antibiotics into the cement matrix has been found to considerably compromise the mechanical characteristics of bone cement. Moreover, some investigations have indicated that the antibiotic release rate of antibiotic bone cement is relatively low. Polyetheretherketone (PEEK) and its composites have been considered to perfectly address the challenges above, according to its favorable biomechanical characteristics and diverse surface functionalizations. This article provides a comprehensive overview of the recent advancements in the antimicrobial modification of PEEK composites in the field of antibacterial therapy of bone infection. Furthermore, the potential application of PEEK-modified materials in clinical treatment was discussed and predicted.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Junxing Shao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Gao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yuhuan Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Modi Yang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
42
|
Donkor GY, Anderson GM, Stadler M, Tawiah PO, Orellano CD, Edwards KA, Dahl JU. The Novel Silver-Containing Antimicrobial Potentiates Aminoglycoside Activity Against Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532855. [PMID: 36993297 PMCID: PMC10055142 DOI: 10.1101/2023.03.15.532855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The rapid dissemination of antibiotic resistance combined with the decline in the discovery of novel antibiotics represents a major challenge for infectious disease control that can only be mitigated by investments into novel treatment strategies. Alternative antimicrobials, including silver, have regained interest due to their diverse mechanisms of inhibiting microbial growth. One such example is AGXX®, a broad-spectrum silver containing antimicrobial that produces highly cytotoxic reactive oxygen species (ROS) to inflict extensive macromolecular damage. Due to connections identified between ROS production and antibiotic lethality, we hypothesized that AGXX® could potentially increase the activity of conventional antibiotics. Using the gram-negative pathogen Pseudomonas aeruginosa, we screened possible synergistic effects of AGXX® on several antibiotic classes. We found that the combination of AGXX® and aminoglycosides tested at sublethal concentrations led to a rapid exponential decrease in bacterial survival and restored sensitivity of a kanamycin-resistant strain. ROS production contributes significantly to the bactericidal effects of AGXX®/aminoglycoside treatments, which is dependent on oxygen availability and can be reduced by the addition of ROS scavengers. Additionally, P. aeruginosa strains deficient in ROS detoxifying/repair genes were more susceptible to AGXX®/aminoglycoside treatment. We further demonstrate that this synergistic interaction was associated with significant increase in outer and inner membrane permeability, resulting in increased antibiotic influx. Our study also revealed that AGXX®/aminoglycoside-mediated killing requires an active proton motive force across the bacterial membrane. Overall, our findings provide an understanding of cellular targets that could be inhibited to increase the activity of conventional antimicrobials.
Collapse
|
43
|
Kratzer F, Beck M, Hauck S, Militz M, Woltmann A. [Infected pseudarthrosis of the symphysis with persisting instability : Revision osteosynthesis with tantalum cage and silver ionized ITS plate after peri-implant infection with MRSE after osteosynthetic stabilization of a type C pelvic injury]. UNFALLCHIRURGIE (HEIDELBERG, GERMANY) 2023; 126:498-503. [PMID: 35796816 DOI: 10.1007/s00113-022-01194-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 06/01/2023]
Abstract
Overall symptomatic pseudathrosis after pelvic ring fracture is rare. A pseudarthrosis of the dorsal pelvic ring often leads to persisting pain due to instability and needs a consequent treatment strategy. Often a bacterial infection can be found in persisting pseudarthrosis notably in the anterior pelvic ring region. It is assumed that the peculiar anatomical site of the surgical approach - pubic region and abdominal skinfold - in particular accompanied with adipositas is predestined. Often patients with pseudathrosis and proof of bacterial infection show no symptoms. In these cases treatment is not mandatory. Patients however who complain about persisting pain limited treatment options exist.The following case report demonstrates a treatment strategy to achieve pelvic ring stability and infection eradication using a silver ionised plate and screws as well as a tantalum cage.
Collapse
Affiliation(s)
- Florian Kratzer
- Unfallchirurgie, Orthopädie und Allgemeinchirurgie, BG Unfallklinik Murnau, Professor-Küntscher-Straße 8, 82418, Murnau am Staffelsee, Deutschland.
| | - Markus Beck
- Unfallchirurgie, Orthopädie und Allgemeinchirurgie, BG Unfallklinik Murnau, Professor-Küntscher-Straße 8, 82418, Murnau am Staffelsee, Deutschland
| | - Stefan Hauck
- Unfallchirurgie, Orthopädie und Allgemeinchirurgie, BG Unfallklinik Murnau, Professor-Küntscher-Straße 8, 82418, Murnau am Staffelsee, Deutschland
| | - Matthias Militz
- Unfallchirurgie, Orthopädie und Allgemeinchirurgie, BG Unfallklinik Murnau, Professor-Küntscher-Straße 8, 82418, Murnau am Staffelsee, Deutschland
| | - Alexander Woltmann
- Unfallchirurgie, Orthopädie und Allgemeinchirurgie, BG Unfallklinik Murnau, Professor-Küntscher-Straße 8, 82418, Murnau am Staffelsee, Deutschland
| |
Collapse
|
44
|
Scott C, Wisdom NH, Coulter K, Bardin S, Strap JL, Trevani L. Interdisciplinary Undergraduate Laboratory for an Integrated Chemistry/Biology Program: Synthesis of Silver Nanoparticles (AgNPs)-Cellulose Composite Materials with Antimicrobial Activity. JOURNAL OF CHEMICAL EDUCATION 2023; 100:1446-1454. [PMID: 37067876 PMCID: PMC10100815 DOI: 10.1021/acs.jchemed.2c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 02/15/2023] [Indexed: 06/19/2023]
Abstract
This laboratory exercise integrates chemistry and biology concepts to give third/fourth-year undergraduate students an opportunity to apply knowledge from different subject areas to address a real-world biomedical issue such as pathogen inhibition using composite materials. It involves the preparation of a bacteria-derived cellulosic biopolymer through microbial cultivation, impregnation of the bacterial cellulose (BC) with silver nanoparticles (AgNPs), followed by the analysis of the materials and the antimicrobial properties of the biomaterial-AgNPs composites. The methods are relatively simple and use inexpensive chemicals. A Tollens type approach is adopted to produce silver nanoparticles-bacterial cellulose (AgNPs-BC) composites by the reduction of [Ag(NH3)2]+ complex embedded in the cellulose matrix. The samples were dried by two different methods: freeze-drying or vacuum-drying. The dried AgNPs-BC films were evaluated for antimicrobial properties against a test organism, in this example, Pseudomonas aeruginosa, a Gram-negative biosafety containment level 2 (BSL 2) bacterium, using an agar diffusion test. For additional flexibility and customization, options for dividing the chemistry/biology content of this laboratory into smaller units with an emphasis on characterization techniques of nanomaterials for chemistry majors are also discussed.
Collapse
|
45
|
Danai L, Rolband LA, Perdomo VA, Skelly E, Kim T, Afonin KA. Optical, structural and antibacterial properties of silver nanoparticles and DNA-templated silver nanoclusters. Nanomedicine (Lond) 2023; 18:769-782. [PMID: 37345552 PMCID: PMC10308257 DOI: 10.2217/nnm-2023-0082] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023] Open
Abstract
Silver nanoparticles (AgNPs) are increasingly considered for biomedical applications as drug-delivery carriers, imaging probes and antibacterial agents. Silver nanoclusters (AgNCs) represent another subclass of nanoscale silver. AgNCs are a promising tool for nanomedicine due to their small size, structural homogeneity, antibacterial activity and fluorescence, which arises from their molecule-like electron configurations. The template-assisted synthesis of AgNCs relies on organic molecules that act as polydentate ligands. In particular, single-stranded nucleic acids reproducibly scaffold AgNCs to provide fluorescent, biocompatible materials that are incorporable in other formulations. This mini review outlines the design and characterization of AgNPs and DNA-templated AgNCs, discusses factors that affect their physicochemical and biological properties, and highlights applications of these materials as antibacterial agents and biosensors.
Collapse
Affiliation(s)
- Leyla Danai
- Department of Chemistry, Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Lewis A Rolband
- Department of Chemistry, Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | | | - Elizabeth Skelly
- Department of Chemistry, Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Taejin Kim
- Physical Sciences Department, West Virginia University Institute of Technology, Beckley, WV 25801, USA
| | - Kirill A Afonin
- Department of Chemistry, Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
46
|
Pugachev VG, Totmenina OD. A COMBINATION PREPARATION BASED ON ANTIBIOTIC, CLUSTER SILVER AND BACTERIOPHAGE FOR TREATMENT OF INFECTIOUS DISEASES CAUSED BY STAPHYLOCOCCUS AUREUS AND S. AUREUS MRSA. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2023. [DOI: 10.15789/2220-7619-acp-3667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
The problems of bacterial infections in medicine and veterinary medicine require careful study and rapid solution. Due to continuous and, in some cases, irrational use of antibiotics, the efficiency of their effect on host has been noticeably decreasing; moreover, resistance to antibacterial drugs is steadily growing, antibiotic-resistant strains emerge, which are not amenable to conventional medical treatment. The unprecedented rise of pathogenic bacteria resistance to antibiotics requires generation of new drugs to combat them. One of the ways to increase the effectiveness of antibiotic therapy is to use combination drugs. Combination dosage forms provide an increased therapeutic effect and should not be toxic to the body. To overcome the microbial resistance reducing host burden of antibiotics, we proposed a combination preparation based on antibiotic, cluster silver and specific bacteriophage for treatment of infectious diseases caused by S. aureus, including MRSA strains. Each component has already proven in the treatment of pathogen-caused infectious diseases. But while using this combination agent, it became possible to reduce the amount of antibiotic and get rid of antibiotic-resistant and phage-resistant forms of bacteria. The study showed the effectiveness of the combination preparation on S.aureus MRSA bacteria, while reducing the amount of antibiotics in proposed composition by 2-4 times compared to use of antibiotic alone. The efficacy of the preparation containing was as follows: 10mcg/ml gentamicin, 7mcg/ml cluster silver and 106 bov/ml bacteriophage, on S.acureus MRSA bacteria in suspension is comparable to the effectiveness of gentamicin with a concentration of 40mcg/ml.
For S. aureus 209 and S. aureus ssp. bacteria with reduced resistance to antibiotics, the use of two-component compositions (antibiotic + cluster silver; antibiotic + bacteriophage) also allowed to reduce the antibiotic concentration by 2-3 times. It should be noted that with a constant amount of antibiotic, increasing the amount of cluster silver by 4-5 times, there is a rise in bactericidal properties of the resulting preparations. Repeated introduction of drug dose allows to achieve a marked decrease in level of pathogenic microorganisms in the suspension studied. This drug has no limitations depending on the state and degree of microbial resistance.
Collapse
|
47
|
Franco D, Leonardi AA, Rizzo MG, Palermo N, Irrera A, Calabrese G, Conoci S. Biological Response Evaluation of Human Fetal Osteoblast Cells and Bacterial Cells on Fractal Silver Dendrites for Bone Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1107. [PMID: 36986001 PMCID: PMC10054653 DOI: 10.3390/nano13061107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Prosthetic joint replacement is the most widely used surgical approach to repair large bone defects, although it is often associated with prosthetic joint infection (PJI), caused by biofilm formation. To solve the PJI problem, various approaches have been proposed, including the coating of implantable devices with nanomaterials that exhibit antibacterial activity. Among these, silver nanoparticles (AgNPs) are the most used for biomedical applications, even though their use has been limited by their cytotoxicity. Therefore, several studies have been performed to evaluate the most appropriate AgNPs concentration, size, and shape to avoid cytotoxic effects. Great attention has been focused on Ag nanodendrites, due to their interesting chemical, optical, and biological properties. In this study, we evaluated the biological response of human fetal osteoblastic cells (hFOB) and P. aeruginosa and S. aureus bacteria on fractal silver dendrite substrates produced by silicon-based technology (Si_Ag). In vitro results indicated that hFOB cells cultured for 72 h on the Si_Ag surface display a good cytocompatibility. Investigations using both Gram-positive (S. aureus) and Gram-negative (P. aeruginosa) bacterial strains incubated on Si_Ag for 24 h show a significant decrease in pathogen viability, more evident for P. aeruginosa than for S. aureus. These findings taken together suggest that fractal silver dendrite could represent an eligible nanomaterial for the coating of implantable medical devices.
Collapse
Affiliation(s)
- Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98168 Messina, Italy
| | - Antonio Alessio Leonardi
- Department of Physic and Astronomy, University of Catania (Italy), Via Santa Sofia 64, 95123 Catania, Italy
- CNR IMM, Catania Università, Via Santa Sofia 64, 95123 Catania, Italy
| | - Maria Giovanna Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98168 Messina, Italy
| | - Nicoletta Palermo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98168 Messina, Italy
| | - Alessia Irrera
- CNR URT Lab SENS, Beyond NANO, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98168 Messina, Italy
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98168 Messina, Italy
- CNR URT Lab SENS, Beyond NANO, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
48
|
Frei A, Verderosa AD, Elliott AG, Zuegg J, Blaskovich MAT. Metals to combat antimicrobial resistance. Nat Rev Chem 2023; 7:202-224. [PMID: 37117903 PMCID: PMC9907218 DOI: 10.1038/s41570-023-00463-4] [Citation(s) in RCA: 203] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 02/10/2023]
Abstract
Bacteria, similar to most organisms, have a love-hate relationship with metals: a specific metal may be essential for survival yet toxic in certain forms and concentrations. Metal ions have a long history of antimicrobial activity and have received increasing attention in recent years owing to the rise of antimicrobial resistance. The search for antibacterial agents now encompasses metal ions, nanoparticles and metal complexes with antimicrobial activity ('metalloantibiotics'). Although yet to be advanced to the clinic, metalloantibiotics are a vast and underexplored group of compounds that could lead to a much-needed new class of antibiotics. This Review summarizes recent developments in this growing field, focusing on advances in the development of metalloantibiotics, in particular, those for which the mechanism of action has been investigated. We also provide an overview of alternative uses of metal complexes to combat bacterial infections, including antimicrobial photodynamic therapy and radionuclide diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Angelo Frei
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Anthony D Verderosa
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alysha G Elliott
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Johannes Zuegg
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Mark A T Blaskovich
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
49
|
Ngo D, Magaña AJ, Tran T, Sklenicka J, Phan K, Eykholt B, Jimenez V, Ramirez MS, Tolmasky ME. Inhibition of Enzymatic Acetylation-Mediated Resistance to Plazomicin by Silver Ions. Pharmaceuticals (Basel) 2023; 16:236. [PMID: 37259383 PMCID: PMC9966628 DOI: 10.3390/ph16020236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 03/24/2024] Open
Abstract
Plazomicin is a recent U.S. Food and Drug Administration (FDA)-approved semisynthetic aminoglycoside. Its structure consists of a sisomicin scaffold modified by adding a 2(S)-hydroxy aminobutyryl group at the N1 position and a hydroxyethyl substituent at the 6' position. These substitutions produced a molecule refractory to most aminoglycoside-modifying enzymes. The main enzyme within this group that recognizes plazomicin as substrate is the aminoglycoside 2'-N-acetyltransferase type Ia [AAC(2')-Ia], which reduces the antibiotic's potency. Designing formulations that combine an antimicrobial with an inhibitor of resistance is a recognized strategy to extend the useful life of existing antibiotics. We have recently found that several metal ions inhibit the enzymatic inactivation of numerous aminoglycosides mediated by the aminoglycoside 6'-N-acetyltransferase type Ib [AAC(6')-Ib]. In particular, Ag+, which also enhances the effect of aminoglycosides by other mechanisms, is very effective in interfering with AAC(6')-Ib-mediated resistance to amikacin. Here we report that silver acetate is a potent inhibitor of AAC(2')-Ia-mediated acetylation of plazomicin in vitro, and it reduces resistance levels of Escherichia coli carrying aac(2')-Ia. The resistance reversion assays produced equivalent results when the structural gene was expressed under the control of the natural or the blaTEM-1 promoters. The antibiotic effect of plazomicin in combination with silver was bactericidal, and the mix did not show significant toxicity to human embryonic kidney 293 (HEK293) cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA
| |
Collapse
|
50
|
Antibacterial activity of metal-phenanthroline complexes against multidrug-resistant Irish clinical isolates: a whole genome sequencing approach. J Biol Inorg Chem 2023; 28:153-171. [PMID: 36484826 PMCID: PMC9734640 DOI: 10.1007/s00775-022-01979-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/08/2022] [Indexed: 12/14/2022]
Abstract
Antimicrobial resistance (AMR) is one of the serious global health challenges of our time. There is now an urgent need to develop novel therapeutic agents that can overcome AMR, preferably through alternative mechanistic pathways from conventional treatments. The antibacterial activity of metal complexes (metal = Cu(II), Mn(II), and Ag(I)) incorporating 1,10-phenanthroline (phen) and various dianionic dicarboxylate ligands, along with their simple metal salt and dicarboxylic acid precursors, against common AMR pathogens were investigated. Overall, the highest level of antibacterial activity was evident in compounds that incorporate the phen ligand compared to the activities of their simple salt and dicarboxylic acid precursors. The chelates incorporating both phen and the dianion of 3,6,9-trioxaundecanedioic acid (tdda) were the most effective, and the activity varied depending on the metal centre. Whole-genome sequencing (WGS) was carried out on the reference Pseudomonas aeruginosa strain, PAO1. This strain was exposed to sub-lethal doses of lead metal-tdda-phen complexes to form mutants with induced resistance properties with the aim of elucidating their mechanism of action. Various mutations were detected in the mutant P. aeruginosa genome, causing amino acid changes to proteins involved in cellular respiration, the polyamine biosynthetic pathway, and virulence mechanisms. This study provides insights into acquired resistance mechanisms of pathogenic organisms exposed to Cu(II), Mn(II), and Ag(I) complexes incorporating phen with tdda and warrants further development of these potential complexes as alternative clinical therapeutic drugs to treat AMR infections.
Collapse
|