1
|
Palanisamy B, Mandal AKA. Unlocking the potential: Receptor-mediated targeted drug delivery in cancer therapy. Pathol Res Pract 2025; 270:155955. [PMID: 40209568 DOI: 10.1016/j.prp.2025.155955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/29/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
Receptor-mediated targeted drug delivery has emerged as a pivotal strategy in cancer therapy, offering precision and specificity in combating malignant diseases while minimizing systemic toxicity. This review explores the multifaceted role of receptors in cancer biology, emphasizing their contributions to cancer progression, metastasis, and their potential as therapeutic targets. Ligand-based targeting approaches highlight the utility of small molecules, peptides, and antibodies, as well as the development of novel targeting ligands. A critical focus is placed on engineering receptor-targeted nanoparticles and advanced drug delivery systems. Innovations in dual-targeting strategies and the targeted delivery to the tumour microenvironment (TME) and metastatic niches are discussed, underscoring their potential to enhance therapeutic efficacy. Additionally, receptor-targeted imaging is reviewed for its dual role in diagnosis and real-time treatment monitoring. To address the challenges of side effects and off-target toxicity, strategies that minimize these risks while targeting overexpressed receptors in solid tumours are explored. Finally, the review outlines future directions in receptor-targeted cancer therapy, emphasizing the need for interdisciplinary research to refine these strategies further. This comprehensive analysis aims to provide a roadmap for advancing receptor-based therapeutic approaches, ultimately improving outcomes for cancer patients.
Collapse
Affiliation(s)
- Balaji Palanisamy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| | - Abul Kalam Azad Mandal
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
2
|
Zhang K, Zhang Y, Xiang P, Wang Y, Li Y, Jiang S, Zhang Y, Chen M, Su W, Li X, Li S. Advances in T Cell-Based Cancer Immunotherapy: From Fundamental Mechanisms to Clinical Prospects. Mol Pharm 2025. [PMID: 40359327 DOI: 10.1021/acs.molpharmaceut.4c01502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
T cells and their T cell receptors (TCRs) play crucial roles in the adaptive immune system's response against pathogens and tumors. However, immunosenescence, characterized by declining T cell function and quantity with age, significantly impairs antitumor immunity. Recent years have witnessed remarkable progress in T cell-based cancer treatments, driven by a deeper understanding of T cell biology and innovative screening technologies. This review comprehensively examines T cell maturation mechanisms, T cell-mediated antitumor responses, and the implications of thymic involution on T cell diversity and cancer prognosis. We discuss recent advances in adoptive T cell therapies, including tumor-infiltrating lymphocyte (TIL) therapy, engineered T cell receptor (TCR-T) therapy, and chimeric antigen receptor T cell (CAR-T) therapy. Notably, we highlight emerging DNA-encoded library technologies in mammalian cells for high-throughput screening of TCR-antigen interactions, which are revolutionizing the discovery of novel tumor antigens and optimization of TCR affinity. The review also explores strategies to overcome challenges in the solid tumor microenvironment and emerging approaches to enhance the efficacy of T cell therapy. As our understanding of T cell biology deepens and screening technologies advances, T cell-based immunotherapies show increasing promise for delivering durable clinical benefits to a broader patient population.
Collapse
Affiliation(s)
- Kaili Zhang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yi Zhang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Pan Xiang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yi Wang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yifan Li
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Shuze Jiang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yuxuan Zhang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Min Chen
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Weijun Su
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaoling Li
- Cell Biotechnology Laboratory, Tianjin Cancer Hospital Airport Hospital, Tianjin 300308, China
- National Clinical Research Center for Cancer, Tianjin 300060, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300090, China
| | - Shuai Li
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
3
|
Gao Y, He J, Wang J, Xu H, Ma L. Chimeric antigen receptor T cell immunotherapy for gynecological malignancies. Crit Rev Oncol Hematol 2025; 209:104680. [PMID: 40024355 DOI: 10.1016/j.critrevonc.2025.104680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025] Open
Abstract
Gynecologic malignancies pose a serious threat to women's health worldwide. Although immunotherapy has significantly revolutionized cancer treatment strategies, effective therapeutic options for recurrent or advanced gynecologic malignancies are still deficient, posing significant challenges to clinical therapy. Chimeric antigen receptor (CAR) T cell therapy has achieved remarkable efficacy in treating hematologic malignancies, marking a significant change in the oncology treatment paradigm. However, despite the gradual increase in CAR T cell therapy used in treating solid tumors in recent years, its efficacy in treating gynecologic malignancies still needs further validation. This review will thoroughly examine CAR-T cell engineering and its mechanism of action on specific antigens associated with gynecologic malignancies, systematically assess the current application of CAR T cell therapy in gynecologic tumors and the advancements in clinical trials, and discuss the significant challenges and corresponding strategies, thereby offering a scientific foundation and guidance for future research in this area.
Collapse
Affiliation(s)
- Yajuan Gao
- Department of Gynecology and Obstetrics, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang 310008, China.
| | - Jing He
- Department of Emergency, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang 310008, China
| | - Jing Wang
- Department of Gynecology and Obstetrics, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang 310008, China
| | - Haiou Xu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310006, China
| | - Lin Ma
- Department of Gynecology and Obstetrics, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang 310008, China.
| |
Collapse
|
4
|
Kondo T, Bourassa FXP, Achar S, DuSold J, Céspedes PF, Ando M, Dwivedi A, Moraly J, Chien C, Majdoul S, Kenet AL, Wahlsten M, Kvalvaag A, Jenkins E, Kim SP, Ade CM, Yu Z, Gaud G, Davila M, Love P, Yang JC, Dustin ML, Altan-Bonnet G, François P, Taylor N. Engineering TCR-controlled fuzzy logic into CAR T cells enhances therapeutic specificity. Cell 2025; 188:2372-2389.e35. [PMID: 40220754 DOI: 10.1016/j.cell.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 09/16/2024] [Accepted: 03/09/2025] [Indexed: 04/14/2025]
Abstract
Chimeric antigen receptor (CAR) T cell immunotherapy represents a breakthrough in the treatment of hematological malignancies, but poor specificity has limited its applicability to solid tumors. By contrast, natural T cells harboring T cell receptors (TCRs) can discriminate between neoantigen-expressing cancer cells and self-antigen-expressing healthy tissues but have limited potency against tumors. We used a high-throughput platform to systematically evaluate the impact of co-expressing a TCR and CAR on the same CAR T cell. While strong TCR-antigen interactions enhanced CAR activation, weak TCR-antigen interactions actively antagonized their activation. Mathematical modeling captured this TCR-CAR crosstalk in CAR T cells, allowing us to engineer dual TCR/CAR T cells targeting neoantigens (HHATL8F/p53R175H) and human epithelial growth factor receptor 2 (HER2) ligands, respectively. These T cells exhibited superior anti-cancer activity and minimal toxicity against healthy tissue compared with conventional CAR T cells in a humanized solid tumor mouse model. Harnessing pre-existing inhibitory crosstalk between receptors, therefore, paves the way for the design of more precise cancer immunotherapies.
Collapse
MESH Headings
- Humans
- Animals
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Mice
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Immunotherapy, Adoptive/methods
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Fuzzy Logic
- Receptor, ErbB-2/immunology
- Receptor, ErbB-2/metabolism
- Cell Line, Tumor
- Neoplasms/therapy
- Neoplasms/immunology
- Antigens, Neoplasm/immunology
Collapse
Affiliation(s)
- Taisuke Kondo
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - François X P Bourassa
- Department of Physics, McGill University, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Sooraj Achar
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Justyn DuSold
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Pablo F Céspedes
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK; CAMS Oxford Institute, University of Oxford, Oxford, UK
| | - Makoto Ando
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Alka Dwivedi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Josquin Moraly
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Christopher Chien
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Saliha Majdoul
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Adam L Kenet
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Madison Wahlsten
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Audun Kvalvaag
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Edward Jenkins
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sanghyun P Kim
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Catherine M Ade
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Zhiya Yu
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Guillaume Gaud
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Marco Davila
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Paul Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - James C Yang
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Grégoire Altan-Bonnet
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Paul François
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada; MILA Québec, Montréal, QC, Canada.
| | - Naomi Taylor
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Université de Montpellier, Institut de Génétique Moléculaire de Montpellier, Montpellier, France.
| |
Collapse
|
5
|
Mulvey A, Trueb L, Coukos G, Arber C. Novel strategies to manage CAR-T cell toxicity. Nat Rev Drug Discov 2025; 24:379-397. [PMID: 39901030 DOI: 10.1038/s41573-024-01100-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 02/05/2025]
Abstract
The immune-related adverse events associated with chimeric antigen receptor (CAR)-T cell therapy result in substantial morbidity as well as considerable cost to the health-care system, and can limit the use of these treatments. Current therapeutic strategies to manage immune-related adverse events include interleukin-6 receptor (IL-6R) blockade and corticosteroids. However, because these interventions do not always address the side effects, nor prevent progression to higher grades of adverse events, new approaches are needed. A deeper understanding of the cell types involved, and their associated signalling pathways, cellular metabolism and differentiation states, should provide the basis for alternative strategies. To preserve treatment efficacy, cytokine-mediated toxicity needs to be uncoupled from CAR-T cell function, expansion, long-term persistence and memory formation. This may be achieved by targeting CAR or independent cytokine signalling axes transiently, and through novel T cell engineering strategies, such as low-affinity CAR-T cells, reversible on-off switches and versatile adaptor systems. We summarize the current management of cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome, and review T cell- and myeloid cell-intrinsic druggable targets and cellular engineering strategies to develop safer CAR-T cells.
Collapse
Affiliation(s)
- Arthur Mulvey
- Department of Oncology UNIL-CHUV, Service of Immuno-Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Lionel Trueb
- Department of Oncology UNIL-CHUV, Service of Immuno-Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - George Coukos
- Department of Oncology UNIL-CHUV, Service of Immuno-Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Caroline Arber
- Department of Oncology UNIL-CHUV, Service of Immuno-Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland.
- Departments of Oncology UNIL-CHUV and Laboratory Medicine and Pathology, Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| |
Collapse
|
6
|
Saeidpour Masouleh S, Nasiri K, Ostovar Ravari A, Saligheh Rad M, Kiani K, Sharifi Sultani A, Nejati ST, Nabi Afjadi M. Advances and challenges in CAR-T cell therapy for head and neck squamous cell carcinoma. Biomark Res 2025; 13:69. [PMID: 40312353 PMCID: PMC12044960 DOI: 10.1186/s40364-025-00783-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains among the most aggressive malignancies with limited treatment options, especially in recurrent and metastatic cases. Despite advances in surgery, radiotherapy, chemotherapy, and immune checkpoint inhibitors, survival rates remain suboptimal due to tumor heterogeneity, immune evasion, and treatment resistance. In recent years, Chimeric Antigen Receptor (CAR) T-cell therapy has revolutionized hematologic cancer treatment by genetically modifying T cells to target tumor-specific antigens like CD19, CD70, BCMA, EGFR, and HER2, leading to high remission rates. Its success is attributed to precise antigen recognition, sustained immune response, and long-term immunological memory, though challenges like cytokine release syndrome and antigen loss remain. Notably, its translation to solid tumors, including HNSCC, faces significant challenges, such as tumor microenvironment (TME)-induced immunosuppression, antigen heterogeneity, and limited CAR T-cell infiltration. To address these barriers, several tumor-associated antigens (TAAs), including EGFR, HER2 (ErbB2), B7-H3, CD44v6, CD70, CD98, and MUC1, have been identified as potential CAR T-cell targets in HNSCC. Moreover, innovative approaches, such as dual-targeted CAR T-cells, armored CARs, and CRISPR-engineered modifications, aim to enhance efficacy and overcome resistance. Notably, combination therapies integrating CAR T-cells with immune checkpoint inhibitors (e.g., PD-1/CTLA-4 blockade) and TGF-β-resistant CAR T designs are being explored to improve therapeutic outcomes. This review aimed to elucidate the current landscape of CAR T-cell therapy in HNSCC, by exploring its mechanisms, targeted antigens, challenges, emerging strategies, and future therapeutic potential.
Collapse
Affiliation(s)
| | - Kamyar Nasiri
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Ava Ostovar Ravari
- Faculty of Dentistry, Haybusak University of Medical Sciences, Yerevan, Armenia
| | - Mona Saligheh Rad
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Kiarash Kiani
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | | | | | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
7
|
Ji S, Jin C, Cui X. Enhancing the physiological characteristics of chimeric antigen receptor natural killer cells by synthetic biology. Front Immunol 2025; 16:1592121. [PMID: 40313937 PMCID: PMC12043574 DOI: 10.3389/fimmu.2025.1592121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/02/2025] [Indexed: 05/03/2025] Open
Abstract
Chimeric antigen receptor natural Killer (CAR-NK) cells therapy represents a next-generation immunotherapeutic approach following CAR-T cells therapy, offering inherent "off-the-shelf" compatibility and mitigated off-tumor toxicity. Despite these advantages, clinical translation remains constrained by poor in vivo persistence and functional exhaustion in immunosuppressive tumor microenvironments (TME). This review examines recent advancements in synthetic biology aimed at enhancing the physiological characteristics of CAR-NK cells. By delineating the synergy between NK cells and synthetic biology toolkits, this work provides a roadmap for developing next-generation CAR-NK therapies capable of addressing solid tumor challenges while maintaining favorable safety profiles.
Collapse
Affiliation(s)
- Shuochao Ji
- Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Cheng Jin
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Xinjiang Cui
- Affiliated Hospital of Shandong Second Medical University, Weifang, China
| |
Collapse
|
8
|
Shirzadian M, Moori S, Rabbani R, Rahbarizadeh F. SynNotch CAR-T cell, when synthetic biology and immunology meet again. Front Immunol 2025; 16:1545270. [PMID: 40308611 PMCID: PMC12040928 DOI: 10.3389/fimmu.2025.1545270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Cancer immunotherapy has been transformed by chimeric antigen receptor (CAR) T-cell treatment, which has shown groundbreaking results in hematological malignancies. However, its application in solid tumors remains a formidable challenge due to immune evasion, tumor heterogeneity, and safety concerns arising from off-target effects. A long-standing effort in this field has been the development of synthetic receptors to create new signaling pathways and rewire immune cells for the specific targeting of cancer cells, particularly in cell-based immunotherapy. This field has undergone a paradigm shift with the introduction of synthetic Notch (synNotch) receptors, which offer a highly versatile signaling platform modeled after natural receptor-ligand interactions. By functioning as molecular logic gates, synNotch receptors enable precise, multi-antigen regulation of T-cell activation, paving the way for enhanced specificity and control. This review explores the revolutionary integration of synNotch systems with CAR T-cell therapy, emphasizing cutting-edge strategies to overcome the inherent limitations of traditional approaches. We delve into the mechanisms of synNotch receptor design, focusing on their ability to discriminate between cancerous and normal cells through spatiotemporally controlled gene expression. Additionally, we highlight recent advancements to improve therapeutic efficacy, safety, and adaptability in treating solid tumors. This study highlights the potential of synNotch-based CAR-T cells to transform the field of targeted cancer therapy by resolving present challenges and shedding light on potential future paths.
Collapse
Affiliation(s)
- Mohsen Shirzadian
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sepideh Moori
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Rabbani
- Department of Stem Cell Technology and Tissue Engineering, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
9
|
Balkhi S, Zuccolotto G, Di Spirito A, Rosato A, Mortara L. CAR-NK cell therapy: promise and challenges in solid tumors. Front Immunol 2025; 16:1574742. [PMID: 40260240 PMCID: PMC12009813 DOI: 10.3389/fimmu.2025.1574742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/17/2025] [Indexed: 04/23/2025] Open
Abstract
Over the past few years, cellular immunotherapy has emerged as a promising treatment for certain hematologic cancers, with various CAR-T therapies now widely used in clinical settings. However, challenges related to the production of autologous cell products and the management of CAR-T cell toxicity highlight the need for new cell therapy options that are universal, safe, and effective. Natural killer (NK) cells, which are part of the innate immune system, offer unique advantages, including the potential for off-the-shelf therapy. A recent first-in-human trial of CD19-CAR-NK infusion in patients with relapsed/refractory lymphoid malignancies demonstrated safety and promising clinical activity. Building on these positive clinical outcomes, current research focuses on enhancing CAR-NK cell potency by increasing their in vivo persistence and addressing functional exhaustion. There is also growing interest in applying the successes seen in hematologic malignancies to solid tumors. This review discusses current trends and emerging concepts in the engineering of next-generation CAR- NK therapies. It will cover the process of constructing CAR-NK cells, potential targets for their manufacturing, and their role in various solid tumors. Additionally, it will examine the mechanisms of action and the research status of CAR-NK therapies in the treatment of solid tumors, along with their advantages, limitations, and future challenges. The insights provided may guide future investigations aimed at optimizing CAR-NK therapy for a broader range of malignancies.
Collapse
Affiliation(s)
- Sahar Balkhi
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Gaia Zuccolotto
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Anna Di Spirito
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
10
|
Vonberg FW, Malik I, O'Reilly M, Hyare H, Carr AS, Roddie C. Neurotoxic complications of chimeric antigen receptor (CAR) T-cell therapy. J Neurol Neurosurg Psychiatry 2025:jnnp-2024-333924. [PMID: 40185628 DOI: 10.1136/jnnp-2024-333924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has revolutionised the treatment of haematological malignancies and has demonstrated efficacy in early trials for solid tumours, neurological and rheumatological autoimmune diseases. However, CAR-T is complicated in some patients by neurotoxicity syndromes including immune-effector cell-associated neurotoxicity syndrome, and the more recently described movement and neurocognitive treatment-emergent adverse events, and tumour inflammation-associated neurotoxicity. These neurotoxic syndromes remain poorly understood and are associated with significant morbidity and mortality. A multidisciplinary approach, including neurologists, haematologists and oncologists, is critical for the diagnosis and management of CAR-T neurotoxicity. This approach will be of increasing importance as the use of CAR-T expands, its applications increase and as novel neurotoxic syndromes emerge.
Collapse
Affiliation(s)
- Frederick W Vonberg
- National Hospital for Neurology and Neurosurgery, London, UK
- UCL Queen Square Institute of Neurology, London, UK
| | - Imran Malik
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Maeve O'Reilly
- Haematology, University College London Hospitals NHS Foundation Trust, London, UK
- UCL Cancer Institute, London, UK
| | - Harpreet Hyare
- UCL Queen Square Institute of Neurology, London, UK
- Neuroradiology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Aisling S Carr
- UCL Queen Square Institute of Neurology, London, UK
- Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Claire Roddie
- Haematology, University College London Hospitals NHS Foundation Trust, London, UK
- UCL Cancer Institute, London, UK
| |
Collapse
|
11
|
Li G, Ni C, Wang J, Zhang F, Fu Z, Wang L, Wang B, Liu Y, Zhao J, Li M, Lin H, Liao F, Ye S, Zhang Y, Cai J, Shi S, Zhong Z, Shi Y, He J, Xiong X, Xu Y, Chen J, Zhu W, Wang Y, Wang J, Hu X. Dynamic molecular atlas of cardiac fibrosis at single-cell resolution shows CD248 in cardiac fibroblasts orchestrates interactions with immune cells. NATURE CARDIOVASCULAR RESEARCH 2025; 4:380-396. [PMID: 40148545 DOI: 10.1038/s44161-025-00617-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 01/30/2025] [Indexed: 03/29/2025]
Abstract
Post-injury remodeling is a complex process involving temporal specific cellular interactions in the injured tissue where the resident fibroblasts play multiple roles. Here, we performed single-cell and spatial transcriptome analysis in human and mouse infarcted hearts to dissect the molecular basis of these interactions. We identified a unique fibroblast subset with high CD248 expression, strongly associated with extracellular matrix remodeling. Genetic Cd248 deletion in fibroblasts mitigated cardiac fibrosis and dysfunction following ischemia/reperfusion. Mechanistically, CD248 stabilizes type I transforming growth factor beta receptor and thus upregulates fibroblast ACKR3 expression, leading to enhanced T cell retention. This CD248-mediated fibroblast-T cell interaction is required to sustain fibroblast activation and scar expansion. Disrupting this interaction using monoclonal antibody or chimeric antigen receptor T cell reduces T cell infiltration and consequently ameliorates cardiac fibrosis and dysfunction. Our findings reveal a CD248+ fibroblast subpopulation as a key regulator of immune-fibroblast cross-talk and a potential therapy to treat tissue fibrosis.
Collapse
Affiliation(s)
- Guohua Li
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Cheng Ni
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Jiacheng Wang
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Feimu Zhang
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Zaiyang Fu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Lingjun Wang
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Biqing Wang
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Ye Liu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Jing Zhao
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Mo Li
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Hao Lin
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Fei Liao
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Shuchang Ye
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Yu Zhang
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Jiayue Cai
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Shaohui Shi
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Zhiwei Zhong
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Yanna Shi
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Junhua He
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Xushen Xiong
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Yang Xu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Jinghai Chen
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Wei Zhu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Yibin Wang
- Programme in Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Jian'an Wang
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, China
| | - Xinyang Hu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China.
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, China.
| |
Collapse
|
12
|
Wu L, Zhu L, Chen J. Diverse potential of chimeric antigen receptor-engineered cell therapy: Beyond cancer. Clin Transl Med 2025; 15:e70306. [PMID: 40205818 PMCID: PMC11982526 DOI: 10.1002/ctm2.70306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-engineered cell therapies have made significant progress in haematological cancer treatment. This success has motivated researchers to investigate its potential applications in non-cancerous diseases, with substantial strides already made in this field. MAIN BODY This review summarises the latest research on CAR-engineered cell therapies, with a particular focus on CAR-T cell therapy for non-cancerous diseases, including but not limited to infectious diseases, autoimmune diseases, cardiac diseases and immune-mediated disorders in transplantation. Additionally, the review discusses the current obstacles that need to be addressed for broader clinical applications. CONCLUSION With ongoing research and continuous improvements, CAR-engineered cell therapy holds promise as a potent tool for treating various diseases in the future. KEY POINTS CAR-engineered cell therapy has expanded beyond cancer to treat autoimmune diseases, infections, cardiac diseases, and transplant-related rejection. The CAR platform is diverse, with various cell types such as CAR-T, CAR-NK, and CAR-M potentially suited for different disease contexts. The safety, efficacy, and practicality of CAR cell therapy in non-cancer diseases remain challenging, requiring further technological optimization and clinical translation.
Collapse
Affiliation(s)
- Lvying Wu
- Institute of Clinical MedicineThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Lingfeng Zhu
- Minimally Invasive Urology and Translational Medicine CenterFuzhou First General Hospital Affiliated With Fujian Medical UniversityFuzhouFujianChina
| | - Jin Chen
- Institute of Clinical MedicineThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Minimally Invasive Urology and Translational Medicine CenterFuzhou First General Hospital Affiliated With Fujian Medical UniversityFuzhouFujianChina
| |
Collapse
|
13
|
DiAndreth B, Nesterenko PA, Winters AG, Flynn AD, Jette CA, Suryawanshi V, Shafaattalab S, Martire S, Daris M, Moore E, Elshimali R, Gill T, Riley TP, Miller S, Netirojjanakul C, Hamburger AE, Kamb A. Multi-targeted, NOT gated CAR-T cells as a strategy to protect normal lineages for blood cancer therapy. Front Immunol 2025; 16:1493329. [PMID: 40191207 PMCID: PMC11968376 DOI: 10.3389/fimmu.2025.1493329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/21/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction Despite advances in treatment of blood cancers, several-including acute myeloid leukemia (AML)-continue to be recalcitrant. Cell therapies based on chimeric antigen receptors (CARs) have emerged as promising approaches for blood cancers. However, current CAR-T treatments suffer from on-target, off-tumor toxicity, because most familiar blood cancer targets are also expressed in normal lineages. In addition, they face the common problem of relapse due to target-antigen loss. Cell therapeutics engineered to integrate more than one signal, often called logic-gated cells, can in principle achieve greater selectivity for tumors. Methods We applied such a technology, a NOT gated system called Tmod™ that is being developed to treat solid-tumor patients, to the problem of therapeutic selectivity for blood cancer cells. Results Here we show that Tmod cells can be designed to target 2-4 antigens to provide different practical and conceptual options for a blood cancer therapy: (i) mono- and bispecific activating receptors that target CD33, a well-known AML antigen expressed on the majority of AML tumors (as well as healthy myeloid cells) and CD43 (SPN), an antigen expressed on many hematopoietic cancers (and normal blood lineages); and (ii) mono- and bispecific inhibitory receptors that target CD16b (FCGR3B) and CLEC9A, antigens expressed on key normal blood cells but not on most blood cancers. Discussion These results further demonstrate the robust modularity of the Tmod system and generalize the Tmod approach beyond solid tumors.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Animals
- Hematologic Neoplasms/therapy
- Hematologic Neoplasms/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- T-Lymphocytes/metabolism
- Mice
- Antigens, Neoplasm/immunology
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Cell Line, Tumor
- Cell Lineage
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Alexander Kamb
- A2 Biotherapeutics Discovery Research, Agoura Hills, CA, United States
| |
Collapse
|
14
|
Peter J, Toppeta F, Trubert A, Danhof S, Hudecek M, Däullary T. Multi-Targeting CAR-T Cell Strategies to Overcome Immune Evasion in Lymphoid and Myeloid Malignancies. Oncol Res Treat 2025; 48:265-279. [PMID: 40090318 DOI: 10.1159/000543806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/15/2025] [Indexed: 03/18/2025]
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cell therapy has become a groundbreaking treatment for hematological malignancies, particularly lymphomas and multiple myeloma, with high remission rates in refractory and relapsed patients. However, most CAR-T therapies target a single antigen, such as CD19, which can result in immune evasion through antigen escape. This mechanism describes the downregulation or complete loss of the targeted antigen by the tumor cells, eventually leading to relapse. To address this issue, multi-targeting strategies like logic-gated CARs, adapter CARs, or combination therapies can increase the potency of CAR-T cells. These approaches aim to minimize immune evasion by targeting multiple antigens simultaneously, thereby increasing treatment durability. Additionally, advanced tools such as next-generation sequencing (NGS), direct stochastic optical reconstruction microscopy (dSTORM), or multiparametric flow cytometry are helping to identify novel tumor-specific targets and improve therapy designs. SUMMARY This review explores the current landscape of CAR-T cell therapies in lymphoid and myeloid malignancies, highlights ongoing clinical trials, and discusses the future of these innovative multi-targeting approaches to improve patient outcome. KEY MESSAGES Antigen escape limits CAR-T cell therapy success, but multi-targeting strategies like logic gates and adapter CARs offer solutions. Optimizing antigen selection and CAR design, along with larger clinical trials, is essential for improving patient outcomes. Personalization using advanced technologies like CRISPR screening and single-cell RNA sequencing can enhance durability and effectiveness of treatments for heavily pretreated patients.
Collapse
Affiliation(s)
- Jessica Peter
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Fabio Toppeta
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Alexandre Trubert
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Sophia Danhof
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Michael Hudecek
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Thomas Däullary
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| |
Collapse
|
15
|
Haubner S, Subklewe M, Sadelain M. Honing CAR T cells to tackle acute myeloid leukemia. Blood 2025; 145:1113-1125. [PMID: 39630061 DOI: 10.1182/blood.2024024063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/15/2024] [Indexed: 03/14/2025] Open
Abstract
ABSTRACT Acute myeloid leukemia (AML) remains a dismal disease with poor prognosis, particularly in the relapsed/refractory (R/R) setting. Chimeric antigen receptor (CAR) therapy has yielded remarkable clinical results in other leukemias and thus has, in principle, the potential to achieve similar outcomes in R/R AML. Redirecting the approved CD19-specific CAR designs against the myeloid antigens CD33, CD123, or CLEC12A has occasionally yielded morphologic leukemia-free states but has so far been marred by threatening myeloablation and early relapses. These safety and efficacy limitations are largely due to the challenge of identifying suitable target antigens and designing adequate receptors for effective recognition and safe elimination of AML. Building on lessons learned from the initial clinical attempts, a new wave of CAR strategies relying on alternative target antigens and innovative CAR designs is about to enter clinical evaluation. Adapted multiantigen targeting, logic gating, and emerging cell engineering solutions offer new possibilities to better direct T-cell specificity and sensitivity toward AML. Pharmacologic modulation and genetic epitope engineering may extend these approaches by augmenting target expression in AML cells or minimizing target expression in normal hematopoietic cells. On/off switches or CAR T-cell depletion may curb excessive or deleterious CAR activity. Investigation of AML-intrinsic resistance and leukemic microenvironmental factors is poised to reveal additional targetable AML vulnerabilities. We summarize here the findings, challenges, and new developments of CAR therapy for AML. These illustrate the need to specifically adapt CAR strategies to the complex biology of AML to achieve better therapeutic outcomes.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- T-Lymphocytes/immunology
- Animals
- Antigens, Neoplasm/immunology
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Sascha Haubner
- Columbia Initiative in Cell Engineering and Therapy, Department of Medicine, Columbia University, New York, NY
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Michel Sadelain
- Columbia Initiative in Cell Engineering and Therapy, Department of Medicine, Columbia University, New York, NY
| |
Collapse
|
16
|
Sivakumar A, Phuengkham H, Rajesh H, Mac QD, Rogers LC, Silva Trenkle AD, Bawage SS, Hincapie R, Li Z, Vainikos S, Lee I, Xue M, Qiu P, Finn MG, Kwong GA. AND-gated protease-activated nanosensors for programmable detection of anti-tumour immunity. NATURE NANOTECHNOLOGY 2025; 20:441-450. [PMID: 39753733 PMCID: PMC11922657 DOI: 10.1038/s41565-024-01834-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/30/2024] [Indexed: 03/20/2025]
Abstract
The forward design of biosensors that implement Boolean logic to improve detection precision primarily relies on programming genetic components to control transcriptional responses. However, cell- and gene-free nanomaterials programmed with logical functions may present lower barriers for clinical translation. Here we report the design of activity-based nanosensors that implement AND-gate logic without genetic parts via bi-labile cyclic peptides. These actuate by releasing a reporter if and only if cleaved by a specific pair of proteases. AND-gated nanosensors that detect the concomitant activity of the granzyme B protease secreted by CD8 T cells and matrix metalloproteinases overexpressed by cancer cells identify the unique condition of cytotoxic T cell killing of tumour cells. In preclinical mouse models, AND-gated nanosensors discriminate tumours that are responsive to immune checkpoint blockade therapy from B2m-/- tumours that are resistant to it, minimize signals from tissues without co-localized protease expression including the lungs during acute influenza infection, and release a reporter locally in tissue or distally in the urine for facile detection.
Collapse
Affiliation(s)
- Anirudh Sivakumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - Hathaichanok Phuengkham
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - Hitha Rajesh
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - Quoc D Mac
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - Leonard C Rogers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - Aaron D Silva Trenkle
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - Swapnil Subhash Bawage
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - Robert Hincapie
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zhonghan Li
- Department of Chemistry, University of California Riverside, Riverside, CA, USA
| | - Sofia Vainikos
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - Inho Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - Min Xue
- Department of Chemistry, University of California Riverside, Riverside, CA, USA
| | - Peng Qiu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - M G Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gabriel A Kwong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA.
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, USA.
- Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA, USA.
- The Georgia Immunoengineering Consortium, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
17
|
Nasiri F, Safarzadeh Kozani P, Salem F, Mahboubi Kancha M, Dashti Shokoohi S, Safarzadeh Kozani P. Mechanisms of antigen-dependent resistance to chimeric antigen receptor (CAR)-T cell therapies. Cancer Cell Int 2025; 25:64. [PMID: 39994651 PMCID: PMC11849274 DOI: 10.1186/s12935-025-03697-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
Cancer immunotherapy has reshaped the landscape of cancer treatment over the past decades. Genetic manipulation of T cells to express synthetic receptors, known as chimeric antigen receptors (CAR), has led to the creation of tremendous commercial and therapeutic success for the treatment of certain hematologic malignancies. However, since the engagement of CAR-T cells with their respective antigens is solely what triggers their cytotoxic reactions against target cells, the slightest changes to the availability and/or structure of the target antigen often result in the incapacitation of CAR-T cells to enforce tumoricidal responses. This results in the resistance of tumor cells to a particular CAR-T cell therapy that requires meticulous heeding to sustain remissions in cancer patients. In this review, we highlight the antigen-dependent resistance mechanisms by which tumor cells dodge being recognized and targeted by CAR-T cells. Moreover, since substituting the target antigen is the most potent strategy for overcoming antigen-dependent disease relapse, we tend to highlight the current status of some target antigens that might be considered suitable alternatives to the currently available antigens in various cancers. We also propose target antigens whose targeting might reduce the off-tumor adverse events of CAR-T cells in certain malignancies.
Collapse
Affiliation(s)
- Fatemeh Nasiri
- Department of Internal Medicine, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran
| | - Pouya Safarzadeh Kozani
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Faeze Salem
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maral Mahboubi Kancha
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | | | - Pooria Safarzadeh Kozani
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
18
|
Castellanos-Rueda R, Wang KLK, Forster JL, Driessen A, Frank JA, Martínez MR, Reddy ST. Dissecting the role of CAR signaling architectures on T cell activation and persistence using pooled screens and single-cell sequencing. SCIENCE ADVANCES 2025; 11:eadp4008. [PMID: 39951542 PMCID: PMC11827634 DOI: 10.1126/sciadv.adp4008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 01/10/2025] [Indexed: 02/16/2025]
Abstract
Chimeric antigen receptor (CAR) T cells offer a promising cancer treatment, yet challenges such as limited T cell persistence hinder efficacy. Given its critical role in modulating T cell responses, it is crucial to understand how the CAR signaling architecture influences T cell function. Here, we designed a combinatorial CAR signaling domain library and performed repeated antigen stimulation assays, pooled screens, and single-cell sequencing to systematically investigate the impact of modifying CAR signaling domains on T cell activation and persistence. Our data reveal the predominant influence of membrane-proximal domains in driving T cell phenotype. Notably, CD40 costimulation was crucial for fostering robust and lasting T cell responses. Furthermore, we correlated in vitro generated CAR T cell phenotypes with clinical outcomes in patients treated with CAR T therapy, establishing the foundation for a clinically informed screening approach. This work deepens our understanding of CAR T cell biology and may guide future CAR engineering efforts.
Collapse
Affiliation(s)
- Rocío Castellanos-Rueda
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland
- Life Science Zurich Graduate School, Systems Biology, ETH Zürich, University of Zurich, 8057 Zürich, Switzerland
| | - Kai-Ling K. Wang
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland
| | - Juliette L. Forster
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland
| | - Alice Driessen
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland
- IBM Research Europe, Zurich, Switzerland
| | - Jessica A. Frank
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland
| | | | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland
| |
Collapse
|
19
|
Kar S, Verma D, Mehrotra S, Prajapati VK. Reconfiguring the immune system to target cancer: Therapies based on T cells, cytokines, and vaccines. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2025; 144:77-150. [PMID: 39978976 DOI: 10.1016/bs.apcsb.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Over the years, extensive research has been dedicated to performing in-depth analysis of cancer to uncover the intricate details of its nature - including the types of cancer, causative agents, stimulators of disease progression, factors contributing to poor prognosis, and efficient therapies to restrict the metastatic aggressiveness. This chapter highlights the mechanisms through which different arms of the host immune system - namely cytokines, lymphocytes, antigen-presenting cells (APCs) -can be mobilized to eradicate cancer. Most malignant tumors are either poorly immunogenic, or are harbored in a highly immuno-suppressive microenvironment. This is why reinforcing the host's anti-tumor defenses, through infusion of pro-inflammatory cytokines, tumor antigen-loaded APCs, and anti-tumor cytotoxic cells has emerged as a viable treatment option against cancer. The chapter also highlights the ongoing preclinical and clinical studies in different malignancies and the outcome of various therapies. Although these methods are not foolproof, and antigen escape variants can still evade or develop resistance to customized therapies, they achieve disease stabilization in several cases when conventional treatments fail. In many instances, combination therapies involving cytokines, T cells, and vaccinations prove more effective than monotherapies. The limitations of the current therapies are also discussed, along with ongoing modifications aimed at improving efficacy.
Collapse
Affiliation(s)
- Sramona Kar
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Divya Verma
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
20
|
Buono G, Capozzi M, Caputo R, Lauro VD, Cianniello D, Piezzo M, Cocco S, Martinelli C, Verrazzo A, Tafuro M, Calderaio C, Calabrese A, Nuzzo F, Pagliuca M, Laurentiis MD. CAR-T cell therapy for breast cancer: Current status and future perspective. Cancer Treat Rev 2025; 133:102868. [PMID: 39798230 DOI: 10.1016/j.ctrv.2024.102868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/15/2025]
Abstract
Within the expanding therapeutic landscape for breast cancer (BC), metastatic breast cancer (MBC) remains virtually incurable and tend to develop resistance to conventional treatments ultimately leading to metastatic progression and death. Cellular immunotherapy (CI), particularly chimeric antigen receptor-engineered T (CAR-T) cells, has emerged as a promising approach for addressing this challenge. In the wake of their striking efficacy against hematological cancers, CAR-T cells have also been used where the clinical need is greatest - in patients with aggressive BCs. Unfortunately, current outcomes fall considerably short of replicating that success, primarily owing to the scarcity of tumor-specific antigens and the immunosuppressive microenvironment within BC. Herein, we provide an up-to-date overview of both preclinical and clinical data concerning the application of CAR-T cell therapy in BC. By surveying the existing literature, we discuss the prevailing constrains of this therapeutic approach and overview possible strategies to advance it in the context of breast malignancies. Possible approaches include employing synthetic biology to refine antigen targeting and mitigate off-target toxicity, utilizing logic-gated CAR constructs to enhance specificity, and leveraging armored CARs to remodel the tumor micro-environment. Temporal and spatial regulation of CAR-T cells using inducible gene switches and external triggers further improves safety and functionality. In addition, promoting T cell homing through chemokine receptor engineering and enhancing manufacturing processes with universal CAR platforms expand therapeutic applicability. These innovations not only address antigen escape and T cell exhaustion but also optimize the efficacy and safety profile of CAR-T cell therapy. We, therefore, outline a trajectory wherein CAR-T cells may evolve from a promising experimental approach to a standard modality in BC therapy.
Collapse
Affiliation(s)
- Giuseppe Buono
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Monica Capozzi
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Roberta Caputo
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Vincenzo Di Lauro
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | | | - Michela Piezzo
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Stefania Cocco
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Claudia Martinelli
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy; Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Napoli, Italy
| | - Annarita Verrazzo
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy; Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Napoli, Italy
| | - Margherita Tafuro
- Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Napoli, Italy; Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Claudia Calderaio
- Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Napoli, Italy; Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | | | - Francesco Nuzzo
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Martina Pagliuca
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy; Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Napoli, Italy; Université Paris-Saclay, Gustave Roussy, INSERM, Molecular Predictors and New Targets in Oncology, Villejuif, France.
| | | |
Collapse
|
21
|
Zhang R, Zhao Y, Chai X, Wang Y, Zhao M, Guo S, Zhang Y, Zhao M. Modified CD15/CD16-CLL1 inhibitory CAR-T cells for mitigating granulocytopenia toxicities in the treatment of acute myeloid leukemia. Transl Oncol 2025; 52:102225. [PMID: 39647325 PMCID: PMC11667018 DOI: 10.1016/j.tranon.2024.102225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 12/10/2024] Open
Abstract
CLL1 Chimeric antigen receptor T-cell (CAR-T) therapy, as a promising immunotherapeutic approach, has demonstrated its potential to enhance the prognosis of patients diagnosed with acute myeloid leukemia (AML). However, due to the overexpression of CLL1 on neutrophils, CAR-T cells not only eliminated tumor cells but also eradicated neutrophils simultaneously, resulting in severe granulocytopenia and subsequent infections. Considering the distinct expression levels of CD15/CD16 on neutrophils and AML blasts, we have devised novel modified CD15 /CD16-CLL1 iCAR structures incorporating diverse inhibitory elements. Through extensive screening of structural optimization, we have successfully identified CD16-CLL1 iCAR-T cells that combine PD1 and 2B4 blockade, as well as a single VHH fragment replacing the entire CD16 scFv recognition domain. These modified cells demonstrate enhanced cytotoxicity against blasts while minimizing neutrophil elimination. Furthermore, their functionality has been effectively validated through both in vitro and in vivo experiments. In conclusion, we have successfully engineered innovative CD16-CLL1 iCAR-T cells, which preserves the cytotoxicity against tumor cells while preventing elimination of neutrophils, thereby significantly reducing the incidence of granulocytopenia during CAR-T therapy. Furthermore, our future objectives encompass the meticulous validation of both the efficacy and safety profile of this groundbreaking CAR-T therapy in clinical trials, as well as a comprehensive assessment of its potential to enhance the prognosis of patients diagnosed with AML.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300380, China
| | - Yifan Zhao
- The First Central Clinical College of Tianjin Medical University, Tianjin 300380, China
| | - Xiao Chai
- The First Central Clinical College of Tianjin Medical University, Tianjin 300380, China
| | - Yingshuai Wang
- Department of Internal Medicine III, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Mohan Zhao
- The First Central Clinical College of Tianjin Medical University, Tianjin 300380, China
| | - Shujing Guo
- The First Central Clinical College of Tianjin Medical University, Tianjin 300380, China
| | - Yu Zhang
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300380, China
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300380, China.
| |
Collapse
|
22
|
Khalifeh M, Salman H. Engineering resilient CAR T cells for immunosuppressive environment. Mol Ther 2025:S1525-0016(25)00039-5. [PMID: 39863931 DOI: 10.1016/j.ymthe.2025.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/29/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has revolutionized cancer treatment and is now being explored for other diseases, such as autoimmune disorders. While the tumor microenvironment (TME) in cancer is often immunosuppressive, in autoimmune diseases, the environment is typically inflammatory. Both environments can negatively impact CAR T cell survival: the former through direct suppression, hypoxia, and nutrient deprivation, and the latter through chronic T cell receptor (TCR) engagement, risking exhaustion. Mechanisms of resistance include T cell exhaustion, dysfunction, and the impact of the TME. Chronic antigenic stimulation leads to CAR T cell exhaustion. CAR construct design, including co-stimulatory domains, hinge, transmembrane regions, promoters, the affinity of the binder site, and on/off rate plays a crucial role in modulating CAR T cell function and resistance. This review discusses the impact of the in vitro development of CAR T cells, albeit in relation to the TME, on therapeutic outcomes. The use of alternative cell sources, multi-antigen targeting, and reengineering the TME, are discussed. The review emphasizes the need for continued innovation in CAR T cell design and manufacturing to optimize therapeutic efficacy and durability, especially in the face of varying environmental challenges.
Collapse
Affiliation(s)
- Malak Khalifeh
- Brown Center for Immunotherapy. IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, 975 W. Walnut St., IB554A, Indianapolis, IN 46202, USA
| | - Huda Salman
- Brown Center for Immunotherapy. IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, 975 W. Walnut St., IB554A, Indianapolis, IN 46202, USA.
| |
Collapse
|
23
|
Zhang C, Liu H. Advancements and Future Directions of Dual-Target Chimeric Antigen Receptor T-Cell Therapy in Preclinical and Clinical Studies. J Immunol Res 2025; 2025:5845167. [PMID: 39844819 PMCID: PMC11753851 DOI: 10.1155/jimr/5845167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
In recent years, chimeric antigen receptor T-cell (CAR-T) therapy has made groundbreaking progress in the treatment of various cancer types, particularly hematological malignancies. In the meantime, various preclinical and clinical studies have extensively explored dual-target CAR-T therapies which can be designed to recognize two antigens simultaneously based on the immunophenotype of tumor cells. Compared with single-target CAR-T approach, dual-target CAR-T therapies demonstrate varying degrees of superior antitumor CAR effects, prevent antigen escape and relapse, reduce on-target off-tumor effects, and ensure durable responses in different types of cancer. These advantages highlight the potential future prospects in this field, showing varying degrees of advancement in preclinical and clinical studies. Herein, we aimed to review different dual-target CAR-T studies conducted on a wide range of tumor models, summarizing the selection of target combinations, the efficacy and safety demonstrated in preclinical and clinical settings, the existing limitations, and the potential future directions of this promising therapeutic strategy.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/trends
- Immunotherapy, Adoptive/adverse effects
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Animals
- Neoplasms/therapy
- Neoplasms/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
- Antigens, Neoplasm/immunology
- Clinical Trials as Topic
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Treatment Outcome
Collapse
Affiliation(s)
- Chenyun Zhang
- School of Medicine, University of Tsinghua, Beijing, China
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Haizhou Liu
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
24
|
Kong Y, Li J, Zhao X, Wu Y, Chen L. CAR-T cell therapy: developments, challenges and expanded applications from cancer to autoimmunity. Front Immunol 2025; 15:1519671. [PMID: 39850899 PMCID: PMC11754230 DOI: 10.3389/fimmu.2024.1519671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Chimeric Antigen Receptor (CAR)-T cell therapy has rapidly emerged as a groundbreaking approach in cancer treatment, particularly for hematologic malignancies. However, the application of CAR-T cell therapy in solid tumors remains challenging. This review summarized the development of CAR-T technologies, emphasized the challenges and solutions in CAR-T cell therapy for solid tumors. Also, key innovations were discussed including specialized CAR-T, combination therapies and the novel use of CAR-Treg, CAR-NK and CAR-M cells. Besides, CAR-based cell therapy have extended its reach beyond oncology to autoimmune disorders. We reviewed preclinical experiments and clinical trials involving CAR-T, Car-Treg and CAAR-T cell therapies in various autoimmune diseases. By highlighting these cutting-edge developments, this review underscores the transformative potential of CAR technologies in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Yanwei Wu
- School of Medicine, Shanghai University, Shanghai, China
| | - Liang Chen
- School of Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
25
|
Garitaonaindia Y, Martínez-Cutillas M, Uribarren M, Redondo I, Calvo V, Serna-Blasco R, Provencio M. Adoptive cell therapies in thoracic malignancies: a comprehensive review. Clin Transl Oncol 2025:10.1007/s12094-024-03834-5. [PMID: 39789380 DOI: 10.1007/s12094-024-03834-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025]
Abstract
This review aims to summarize recent studies and findings within adoptive cell therapies, including tumor-infiltrating lymphocytes, genetically engineered T cell receptors, and chimeric antigen receptor T cells, in the treatment of thoracic malignancies, including non-small cell lung cancer, small cell lung cancer, and malignant pleural mesothelioma. Several trials are ongoing, and a few have reported results, suggesting that adoptive cell therapies may represent a potential treatment option for these patients, especially when checkpoint inhibition has failed. We also discuss the potential implementation of these therapies, as they present a new toxicity profile and an intrinsic financial burden. Despite the challenges to overcome, such as the accurate identification of antigens and developing strategies to improve efficacy and toxicity profiles, new cellular therapies are experiencing significant development in the field of thoracic malignancies.
Collapse
Affiliation(s)
- Yago Garitaonaindia
- Medical Oncology Department, Puerta de Hierro University Hospital, C/ Manuel de Falla, 1, 28222, Majadahonda, Madrid, Spain.
| | - Marta Martínez-Cutillas
- Medical Oncology Department, Puerta de Hierro University Hospital, C/ Manuel de Falla, 1, 28222, Majadahonda, Madrid, Spain
| | - Maria Uribarren
- Medical Oncology Department, Puerta de Hierro University Hospital, C/ Manuel de Falla, 1, 28222, Majadahonda, Madrid, Spain
| | - Isabel Redondo
- Medical Oncology Department, Puerta de Hierro University Hospital, C/ Manuel de Falla, 1, 28222, Majadahonda, Madrid, Spain
| | - Virginia Calvo
- Medical Oncology Department, Puerta de Hierro University Hospital, C/ Manuel de Falla, 1, 28222, Majadahonda, Madrid, Spain
| | - Roberto Serna-Blasco
- Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Puerta De Hierro University Hospital, Majadahonda, Madrid, Spain
| | - Mariano Provencio
- Medical Oncology Department, Puerta de Hierro University Hospital, C/ Manuel de Falla, 1, 28222, Majadahonda, Madrid, Spain.
| |
Collapse
|
26
|
Mobark N, Hull CM, Maher J. Optimising CAR T therapy for the treatment of solid tumors. Expert Rev Anticancer Ther 2025; 25:9-25. [PMID: 39466110 DOI: 10.1080/14737140.2024.2421194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
INTRODUCTION Adoptive immunotherapy using chimeric antigen receptor (CAR)-engineered T cells has proven transformative in the management of B cell and plasma cel derived malignancies. However, solid tumors have largely proven to be resistant to this therapeutic modality. Challenges include the paucity of safe target antigens, heterogeneity of target expression within the tumor, difficulty in delivery of CAR T cells to the site of disease, poor penetration within solid tumor deposits and inability to circumvent the array of immunosuppressive and biophysical barriers imposed by the solid tumor microenvironment. AREAS COVERED Literature was reviewed on the PubMed database, excluding occasional papers which were not available as open access publications or through other means. EXPERT OPINION Here, we have surveyed the large body of technological advances that have been made in the quest to bridge the gap toward successful deployment of CAR T cells for the treatment of solid tumors. These encompass the development of more sophisticated targeting strategies to engage solid tumor cells safely and comprehensively, improved drug delivery solutions, design of novel CAR architectures that achieve improved functional persistence and which resist physical, chemical and biological hurdles present in tumor deposits. Prospects for combination therapies that incorporate CAR T cells are also considered.
Collapse
Affiliation(s)
- Norhan Mobark
- King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Hospital, London, UK
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - John Maher
- King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Hospital, London, UK
- Leucid Bio Ltd., Guy's Hospital, London, UK
- Department of Immunology, Eastbourne Hospital, Eastbourne, East Sussex, UK
| |
Collapse
|
27
|
Cao Y, Yan W, Yi W, Yin Q, Li Y. Bioengineered therapeutic systems for improving antitumor immunity. Natl Sci Rev 2025; 12:nwae404. [PMID: 40114728 PMCID: PMC11925021 DOI: 10.1093/nsr/nwae404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/29/2024] [Accepted: 11/08/2024] [Indexed: 03/22/2025] Open
Abstract
Immunotherapy, a monumental advancement in antitumor therapy, still yields limited clinical benefits owing to its unguaranteed efficacy and safety. Therapeutic systems derived from cellular, bacterial and viral sources possess inherent properties that are conducive to antitumor immunotherapy. However, crude biomimetic systems have restricted functionality and may produce undesired toxicity. With advances in biotechnology, various toolkits are available to add or subtract certain properties of living organisms to create flexible therapeutic platforms. This review elaborates on the creation of bioengineered systems, via gene editing, synthetic biology and surface engineering, to enhance immunotherapy. The modifying strategies of the systems are discussed, including equipment for navigation and recognition systems to improve therapeutic precision, the introduction of controllable components to control the duration and intensity of treatment, the addition of immunomodulatory components to amplify immune activation, and the removal of toxicity factors to ensure biosafety. Finally, we summarize the advantages of bioengineered immunotherapeutic systems and possible directions for their clinical translation.
Collapse
Affiliation(s)
- Ying Cao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wenlu Yan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenzhe Yi
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Yin
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264000, China
| |
Collapse
|
28
|
Barjasteh AH, Saebi M, Mahmoudi M, Kheder RK, Hashemy SI, Forouzanfar F, Esmaeili SA. Revolutionizing Cancer Treatment: Unveiling the Power of CAR T-cell Therapy. Curr Pharm Des 2025; 31:1020-1036. [PMID: 39757684 DOI: 10.2174/0113816128336391241107112957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 01/07/2025]
Abstract
Cancer is a significant health challenge worldwide, causing social and economic burdens. Despite advancements in medicine, it remains a leading cause of death and is projected to increase by 2040. While conventional treatments like surgery, radiation, and chemotherapy are effective, they often have severe side effects. CAR T-cell (chimeric antigen receptor T-cell) treatment is a novel immunotherapy method personalized to the patient's immune system and directly targets cancer cells. It originated in the 1980s, and advancements have made it more effective. However, challenges remain, such as severe side effects, high costs, and manufacturing variability. Despite these challenges, the treatment with CAR T-cells has shown remarkable success, especially in hematologic malignancies. Though, it is new to solid tumours, ongoing research looks promising. CAR T-cell therapy offers hope for fightingcancer, and it stands poised to redefine cancer treatment paradigms, giving renewed optimism to patients globally.
Collapse
Affiliation(s)
- Amir Hossein Barjasteh
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Saebi
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramiar Kamal Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Ranya, Sulaymaniyah, Iraq
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Rankin AW, Duncan BB, Allen C, Silbert SK, Shah NN. Evolving strategies for addressing CAR T-cell toxicities. Cancer Metastasis Rev 2024; 44:17. [PMID: 39674824 PMCID: PMC11646216 DOI: 10.1007/s10555-024-10227-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/02/2024] [Indexed: 12/16/2024]
Abstract
The field of chimeric antigen receptor (CAR) T-cell therapy has grown from a fully experimental concept to now boasting a multitude of treatments including six FDA-approved products targeting various hematologic malignancies. Yet, along with their efficacy, these therapies come with side effects requiring timely and thoughtful interventions. In this review, we discuss the most common toxicities associated with CAR T-cells to date, highlighting risk factors, prognostication, implications for critical care management, patient experience optimization, and ongoing work in the field of toxicity mitigation. Understanding the current state of the field and standards of practice is critical in order to improve and manage potential toxicities of both current and novel CAR T-cell therapies as they are applied in the clinic.
Collapse
Affiliation(s)
- Alexander W Rankin
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brynn B Duncan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cecily Allen
- Division of Hematology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Critical Care Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Sara K Silbert
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
30
|
Reddy NR, Maachi H, Xiao Y, Simic MS, Yu W, Tonai Y, Cabanillas DA, Serrano-Wu E, Pauerstein PT, Tamaki W, Allen GM, Parent AV, Hebrok M, Lim WA. Engineering synthetic suppressor T cells that execute locally targeted immunoprotective programs. Science 2024; 386:eadl4793. [PMID: 39636990 PMCID: PMC11831968 DOI: 10.1126/science.adl4793] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 09/22/2024] [Indexed: 12/07/2024]
Abstract
Immune homeostasis requires a balance of inflammatory and suppressive activities. To design cells potentially useful for local immune suppression, we engineered conventional CD4+ T cells with synthetic Notch (synNotch) receptors driving antigen-triggered production of anti-inflammatory payloads. Screening a diverse library of suppression programs, we observed the strongest suppression of cytotoxic T cell attack by the production of both anti-inflammatory factors (interleukin-10, transforming growth factor-β1, programmed death ligand 1) and sinks for proinflammatory cytokines (interleukin-2 receptor subunit CD25). Engineered cells with bespoke regulatory programs protected tissues from immune attack without systemic suppression. Synthetic suppressor T cells protected transplanted beta cell organoids from cytotoxic T cells. They also protected specific tissues from unwanted chimeric antigen receptor (CAR) T cell cross-reaction. Synthetic suppressor T cells are a customizable platform to potentially treat autoimmune diseases, organ rejection, and CAR T cell toxicities with spatial precision.
Collapse
Affiliation(s)
- Nishith R. Reddy
- UCSF Cell Design Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Hasna Maachi
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Yini Xiao
- UCSF Cell Design Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Milos S. Simic
- UCSF Cell Design Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Wei Yu
- UCSF Cell Design Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Yurie Tonai
- UCSF Cell Design Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Daniela A. Cabanillas
- UCSF Cell Design Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Ella Serrano-Wu
- UCSF Cell Design Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Philip T. Pauerstein
- UCSF Cell Design Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Whitney Tamaki
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA, USA
| | - Greg M. Allen
- UCSF Cell Design Institute, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Audrey V. Parent
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Matthias Hebrok
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Wendell A. Lim
- UCSF Cell Design Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
31
|
Damiani D, Tiribelli M. Advancing Chimeric Antigen Receptor T-Cell Therapy for Acute Myeloid Leukemia: Current Limitations and Emerging Strategies. Pharmaceuticals (Basel) 2024; 17:1629. [PMID: 39770471 PMCID: PMC11728840 DOI: 10.3390/ph17121629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 01/16/2025] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy represents one of the most impressive advances in anticancer therapy of the last decade. While CAR T-cells are gaining ground in various B cell malignancies, their use in acute myeloid leukemia (AML) remains limited, and no CAR-T product has yet received approval for AML. The main limitation of CAR-T therapy in AML is the lack of specific antigens that are expressed in leukemic cells but not in their healthy counterparts, such as hematopoietic stem cells (HSCs), as their targeting would result in an on-target/off-tumor toxicity. Moreover, the heterogeneity of AML and the tendency of blasts to modify surface antigens' expression in the course of the disease make identification of suitable targets even more challenging. Lastly, AML's immunosuppressive microenvironment dampens CAR-T therapeutic activities. In this review, we focus on the actual pitfalls of CAR T-cell therapy in AML, and we discuss promising approaches to overcome them.
Collapse
Affiliation(s)
- Daniela Damiani
- Division of Hematology and Stem Cell Transplantation, University Hospital, 33100 Udine, Italy;
- Department of Medicine (DMED), University of Udine, 33100 Udine, Italy
| | - Mario Tiribelli
- Division of Hematology and Stem Cell Transplantation, University Hospital, 33100 Udine, Italy;
- Department of Medicine (DMED), University of Udine, 33100 Udine, Italy
| |
Collapse
|
32
|
Sirini C, De Rossi L, Moresco MA, Casucci M. CAR T cells in solid tumors and metastasis: paving the way forward. Cancer Metastasis Rev 2024; 43:1279-1296. [PMID: 39316265 DOI: 10.1007/s10555-024-10213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
CAR T cell therapy, hailed as a breakthrough in cancer treatment due to its remarkable outcomes in hematological malignancies, encounters significant hurdles when applied to solid tumors. While notable responses to CAR T cells remain sporadic in these patients, challenges persist due to issues such as on-target off-tumor toxicity, difficulties in their trafficking and infiltration into the tumor, and the presence of a hostile and immunosuppressive microenvironment. This review aims to explore recent endeavors aimed at overcoming these obstacles in CAR T cell therapy for solid tumors. Specifically, we will delve into promising strategies for enhancing tumor specificity through antigen targeting, addressing tumor heterogeneity, overcoming physical barriers, and counteracting the immune-suppressive microenvironment.
Collapse
Affiliation(s)
- Camilla Sirini
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Laura De Rossi
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Marta Angiola Moresco
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Monica Casucci
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
| |
Collapse
|
33
|
Trautmann T, Yakobian N, Nguyen R. CAR T-cells for pediatric solid tumors: where to go from here? Cancer Metastasis Rev 2024; 43:1445-1461. [PMID: 39317919 PMCID: PMC11554711 DOI: 10.1007/s10555-024-10214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Despite the great success that chimeric antigen receptor (CAR) T-cells have had in patients with B-cell malignancies and multiple myeloma, they continue to have limited efficacy against most solid tumors. Especially in the pediatric population, pre- and post-treatment biopsies are rarely performed due to ethical reasons, and thus, our understanding is still very limited regarding the mechanisms in the tumor microenvironment by which tumor cells exclude effectors and attract immune-suppressive cells. Nevertheless, based on the principles that are known, current T-cell engineering has leveraged some of these processes and created more potent CAR T-cells. The recent discovery of new oncofetal antigens and progress made in CAR design have expanded the potential pool of candidate antigens for therapeutic development. The most promising approaches to enhance CAR T-cells are novel CAR gating strategies, creative ways of cytokine delivery to the TME without enhancing systemic toxicity, and hijacking the chemokine axis of tumors for migratory purposes. With these new modifications, the next step in the era of CAR T-cell development will be the clinical validation of these promising preclinical findings.
Collapse
Affiliation(s)
- Tina Trautmann
- Pediatric Oncology Branch, NCI, NIH, NCI, 10 Center Drive, 1W-5832, Bethesda, MD, 20892, USA
| | - Natalia Yakobian
- Pediatric Oncology Branch, NCI, NIH, NCI, 10 Center Drive, 1W-5832, Bethesda, MD, 20892, USA
| | - Rosa Nguyen
- Pediatric Oncology Branch, NCI, NIH, NCI, 10 Center Drive, 1W-5832, Bethesda, MD, 20892, USA.
| |
Collapse
|
34
|
Park HB, Kim KH, Kim JH, Kim SI, Oh YM, Kang M, Lee S, Hwang S, Lee H, Lee T, Park S, Lee JE, Jeong GR, Lee DH, Youn H, Choi EY, Son WC, Chung SJ, Chung J, Choi K. Improved safety of chimeric antigen receptor T cells indirectly targeting antigens via switchable adapters. Nat Commun 2024; 15:9917. [PMID: 39557825 PMCID: PMC11574259 DOI: 10.1038/s41467-024-53996-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/28/2024] [Indexed: 11/20/2024] Open
Abstract
Chimeric antigen receptor T (CAR-T) cells show remarkable efficacy for some hematological malignancies. However, CAR targets that are expressed at high level and selective to tumors are scarce. Several strategies have been proposed to tackle the on-target off-tumor toxicity of CAR-T cells that arise from suboptimal selectivity, but these are complicated, with many involving dual gene expression for specificity. In this study, we show that switchable CAR-T cells with a tumor targeting adaptor can mitigate on-target off-tumor toxicity against a low selectivity tumor antigen that cannot be targeted by conventional CAR-T cells, such as CD40. Our system is composed of anti-cotinine murine CAR-T cells and cotinine-labeled anti-CD40 single chain variable fragments (scFv), with which we show selective tumor killing while sparing CD40-expressing normal cells including macrophages in a mouse model of lymphoma. Simple replacement of the tumor-targeting adaptor with a suicidal drug-conjugated tag may further enhance safety by enabling permanent in vivo depletion of the switchable CAR-T cells when necessary. In summary, our switchable CAR system can control CAR-T cell toxicity while maintaining therapeutic efficacy, thereby expanding the range of CAR targets.
Collapse
MESH Headings
- Animals
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- Mice
- Humans
- Immunotherapy, Adoptive/methods
- CD40 Antigens/immunology
- CD40 Antigens/metabolism
- T-Lymphocytes/immunology
- Cell Line, Tumor
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Single-Chain Antibodies/immunology
- Single-Chain Antibodies/genetics
- Lymphoma/immunology
- Lymphoma/therapy
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Hyung Bae Park
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ki Hyun Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ju Hwan Kim
- AbTis Co. Ltd., Suwon, Gyeonggi-do, Republic of Korea
| | - Sang Il Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu Mi Oh
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Miseung Kang
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seoho Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Siwon Hwang
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyeonmin Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - TaeJin Lee
- AbTis Co. Ltd., Suwon, Gyeonggi-do, Republic of Korea
- Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Seungbin Park
- Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Ji Eun Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ga Ram Jeong
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Ticaros Inc., Seoul, Republic of Korea
| | - Dong Hyun Lee
- Department of Medical Science, AMIST, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hyewon Youn
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Nuclear Medicine, Cancer Imaging Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human Environment Interface Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Woo Chan Son
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sang J Chung
- Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea.
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Kyungho Choi
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
35
|
Nolan-Stevaux O, Smith R. Logic-gated and contextual control of immunotherapy for solid tumors: contrasting multi-specific T cell engagers and CAR-T cell therapies. Front Immunol 2024; 15:1490911. [PMID: 39606234 PMCID: PMC11599190 DOI: 10.3389/fimmu.2024.1490911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
CAR-T cell and T cell engager therapies have demonstrated transformational efficacy against hematological malignancies, but achieving efficacy in solid tumors has been more challenging, in large part because of on-target/off-tumor toxicities and sub-optimal T cell anti-tumor cytotoxic functions. Here, we discuss engineering solutions that exploit biological properties of solid tumors to overcome these challenges. Using logic gates as a framework, we categorize the numerous approaches that leverage two inputs instead of one to achieve better cancer selectivity or efficacy in solid tumors with dual-input CAR-Ts or multi-specific TCEs. In addition to the "OR gate" and "AND gate" approaches that leverage dual tumor antigen targeting, we also review "contextual AND gate" technologies whereby continuous cancer-selective inputs such a pH, hypoxia, target density, tumor proteases, and immune-suppressive cytokine gradients can be creatively incorporated in therapy designs. We also introduce the notion of "output directionality" to distinguish dual-input strategies that mechanistically impact cancer cell killing or T cell fitness. Finally, we contrast the feasibility and potential benefits of the various approaches using CAR-T and TCE therapeutics and discuss why the promising "IF/THEN" and "NOT" gate types pertain more specifically to CAR-T therapies, but can also succeed by integrating both technologies.
Collapse
Affiliation(s)
| | - Richard Smith
- Cell Biology Research, Kite Pharma, Foster City, CA, United States
| |
Collapse
|
36
|
Arunachalam AK, Grégoire C, Coutinho de Oliveira B, Melenhorst JJ. Advancing CAR T-cell therapies: Preclinical insights and clinical translation for hematological malignancies. Blood Rev 2024; 68:101241. [PMID: 39289094 DOI: 10.1016/j.blre.2024.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has achieved significant success in achieving durable and potentially curative responses in patients with hematological malignancies. CARs are tailored fusion proteins that direct T cells to a specific antigen on tumor cells thereby eliciting a targeted immune response. The approval of several CD19-targeted CAR T-cell therapies has resulted in a notable surge in clinical trials involving CAR T cell therapies for hematological malignancies. Despite advancements in understanding response mechanisms, resistance patterns, and adverse events associated with CAR T-cell therapy, the translation of these insights into robust clinical efficacy has shown modest outcomes in both clinical trials and real-world scenarios. Therefore, the assessment of CAR T-cell functionality through rigorous preclinical studies plays a pivotal role in refining therapeutic strategies for clinical applications. This review provides an overview of the various in vitro and animal models used to assess the functionality of CAR T-cells. We discuss the findings from preclinical research involving approved CAR T-cell products, along with the implications derived from recent preclinical studies aiming to optimize the functionality of CAR T-cells. The review underscores the importance of robust preclinical evaluations and the need for models that accurately replicate human disease to bridge the gap between preclinical success and clinical efficacy.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Hematologic Neoplasms/therapy
- Hematologic Neoplasms/immunology
- Animals
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
- Translational Research, Biomedical
- Disease Models, Animal
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Arun K Arunachalam
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Céline Grégoire
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Beatriz Coutinho de Oliveira
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Jan Joseph Melenhorst
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| |
Collapse
|
37
|
Colonne CK, Kimble EL, Turtle CJ. Evolving strategies to overcome barriers in CAR-T cell therapy for acute myeloid leukemia. Expert Rev Hematol 2024; 17:797-818. [PMID: 39439295 DOI: 10.1080/17474086.2024.2420614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/05/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is a complex and heterogeneous disease characterized by an aggressive clinical course and limited efficacious treatment options in the relapsed/refractory (R/R) setting. Chimeric antigen receptor (CAR)-modified T (CAR-T) cell immunotherapy is an investigational treatment strategy for R/R AML that has shown some promise. However, obstacles to successful CAR-T cell immunotherapy for AML remain. AREAS COVERED In analyses of clinical trials of CAR-T cell therapy for R/R AML, complete responses without measurable residual disease have been reported, but the durability of those responses remains unclear. Significant barriers to successful CAR-T cell therapy in AML include the scarcity of suitable tumor-target antigens (TTA), inherent T cell functional deficits, and the immunoinhibitory and hostile tumor microenvironment (TME). This review will focus on these barriers to successful CAR-T cell therapy in AML, and discuss scientific advancements and evolving strategies to overcome them. EXPERT OPINION Achieving durable remissions in R/R AML will likely require a multifaceted approach that integrates advancements in TTA selection, enhancement of the intrinsic quality of CAR-T cells, and development of strategies to overcome inhibitory mechanisms in the AML TME.
Collapse
Affiliation(s)
- Chanukya K Colonne
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Erik L Kimble
- Translational Science and Therapeutic Division, Fred Hutchinson Cancer Center, Seattle, USA
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, USA
| | - Cameron J Turtle
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
38
|
Rabie LE, Mohran AA, Gaber KA, Ali NM, Abd El Naby AM, Ghoniem EA, Abd Elmaksod BA, Abdallah AN. Beyond Conventional Treatments: Exploring CAR-T Cell Therapy for Cancer Stem Cell Eradication. Stem Cell Rev Rep 2024; 20:2001-2015. [PMID: 39312080 PMCID: PMC11554798 DOI: 10.1007/s12015-024-10786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 11/12/2024]
Abstract
BACKGROUND For decades cancer remained the center of attention in the scientific community as its survival rates are low. Researchers from all around the world wanted to know the core of the problem as to what initiates cancer in a patient and helps with its progression. Many postulations came to light, but Cancer Stem Cells (CSC) was the most appealing and convincing. MAIN BODY In this review, we shed light on a potential solution to the problem by reviewing CAR-T cells (Chimeric antigen receptor T cells). These specialized T cells are designed to detect specific antigens on cancer cells. We analyse the steps of their formation from the collection of T cells from the patient's bloodstream and modifying it to exhibit specific CAR structures on their surfaces, to reinjecting them back and evaluating their efficacy. We thoroughly investigate the structure of the CAR design with improvements across different generations. The focus extends to the unique properties of CSCs as in how targeting specific markers on them can enhance the precision of cancer therapy. CONCLUSION Despite the successes, the review discusses the existing limitations and toxicities associated with CAR-derived therapies, highlighting the ongoing need for research and refinement. Looking ahead, we explore proposed strategies aimed at optimizing CAR-T cell therapy to mitigate adverse effects for improved cancer treatments.
Collapse
Affiliation(s)
- Lobna E Rabie
- Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Ahmed A Mohran
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Kholoud A Gaber
- Molecular Biology and Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nour M Ali
- Chemistry Department, Faculty of Science, KFS University, Kafr El-Sheikh, Egypt
| | - Asmaa M Abd El Naby
- Zoology-Chemistry Department, Faculty of Science, Beni Suef University, Beni Suef, Egypt
| | - Eman A Ghoniem
- Biotechnology and Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | - Ahmed N Abdallah
- Hormones Department, Medical Research and Clinical Studies Institute, National research Centre, Cairo, Egypt
| |
Collapse
|
39
|
Chen Z, Hu F, Xiang J, Zhou X, Wu B, Fan B, Tang H, Liu B, Chen L. Mesoporous Microneedles Enabled Localized Controllable Delivery of Stimulator of Interferon Gene Agonist Nanoexosomes for FLASH Radioimmunotherapy against Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58180-58190. [PMID: 39432387 DOI: 10.1021/acsami.4c09833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The immunosuppressive nature of the tumor microenvironment (TME) contributes to radioresistance, thereby impairing the effectiveness of radiotherapy as a therapeutic intervention. Activation through the stimulator of interferon genes (STING) pathway shows potential in modulating immunogenicity. However, the therapeutic efficacy of STING agonists might be restricted by off-target effects and potential cytotoxicity. In this work, nanoexosomes (EXOs) loaded within porous microneedles were employed for precise delivery of the STING agonist MSA-2 (MEM) to the tumor site. Leveraging the enhanced tumor penetration enabled by microneedles, EXOs can be continually released and accumulate within deep residual tumors. Once internalized, these EXOs release the encapsulated MSA-2, facilitating the activation of the STING pathway upon exposure to ultrahigh dose-rate (FLASH) irradiation. This strategy elevates the type I interferon level, promotes dendric cell maturation, and modulates the immunosuppressive TME, showing efficient antitumor efficacy in both primary/metastatic tumors. Furthermore, the induction of a potent immune response effectively prevented tumor recurrence. The combination of EXO-loaded microneedles with FLASH radiotherapy resulted in minimal systemic side effects, attributed to precise drug delivery and radioprotection conferred by FLASH. Altogether, the strategic design of EXO-loaded microneedles holds promise for enhancing MSA-2 delivery, thereby mitigating the radioresistant tumor microenvironment through STING cascade activation-mediated immunotherapy, consequently optimizing the outcomes of FLASH radiotherapy.
Collapse
Affiliation(s)
- Zhiran Chen
- The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, Jiangsu 224001, China
| | - Fangjie Hu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Chaoyang District, Beijing 100020, China
| | - Jingfeng Xiang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaoxiang Zhou
- The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, Jiangsu 224001, China
| | - Bo Wu
- The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, Jiangsu 224001, China
| | - Baohang Fan
- Division of Gastrointestinal Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Han Tang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Bin Liu
- Department of Urology China, Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Longyun Chen
- The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, Jiangsu 224001, China
| |
Collapse
|
40
|
Cheever A, Kang CC, O’Neill KL, Weber KS. Application of novel CAR technologies to improve treatment of autoimmune disease. Front Immunol 2024; 15:1465191. [PMID: 39445021 PMCID: PMC11496059 DOI: 10.3389/fimmu.2024.1465191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has become an important treatment for hematological cancers, and its success has spurred research into CAR T cell therapies for other diseases, including solid tumor cancers and autoimmune diseases. Notably, the development of CAR-based treatments for autoimmune diseases has shown great progress recently. Clinical trials for anti-CD19 and anti-BCMA CAR T cells in treating severe B cell-mediated autoimmune diseases, like systemic lupus erythematosus (SLE), have shown lasting remission thus far. CAR T cells targeting autoreactive T cells are beginning clinical trials for treating T cell mediated autoimmune diseases. Chimeric autoantigen receptor (CAAR) T cells specifically target and eliminate only autoreactive B cells, and they have shown promise in treating mucosal pemphigus vulgaris and MuSK myasthenia gravis. Regulatory CAR T cells have also been developed, which show potential in altering autoimmune affected areas by creating a protective barrier as well as helping decrease inflammation. These new treatments are only the beginning of potential CAR T cell applications in treating autoimmune disease. Novel CAR technologies have been developed that increase the safety, potency, specificity, and efficacy of CAR T cell therapy. Applying these novel modifications to autoimmune CARs has the potential to enhance the efficacy and applicability of CAR therapies to autoimmune disease. This review will detail several recently developed CAR technologies and discuss how their application to autoimmune disease will improve this emerging field. These include logic-gated CARs, soluble protein-secreting CARs, and modular CARs that enable CAR T cell therapies to be more specific, reach a wider span of target cells, be safer for patients, and give a more potent cytotoxic response. Applying these novel CAR technologies to the treatment of autoimmune diseases has the potential to revolutionize this growing application of CAR T cell therapies.
Collapse
|
41
|
Peng L, Sferruzza G, Yang L, Zhou L, Chen S. CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors. Cell Mol Immunol 2024; 21:1089-1108. [PMID: 39134804 PMCID: PMC11442786 DOI: 10.1038/s41423-024-01207-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/22/2024] [Indexed: 10/02/2024] Open
Abstract
In the past decade, chimeric antigen receptor (CAR)-T cell therapy has emerged as a promising immunotherapeutic approach for combating cancers, demonstrating remarkable efficacy in relapsed/refractory hematological malignancies in both pediatric and adult patients. CAR-natural killer (CAR-NK) cell complements CAR-T cell therapy by offering several distinct advantages. CAR-NK cells do not require HLA compatibility and exhibit low safety concerns. Moreover, CAR-NK cells are conducive to "off-the-shelf" therapeutics, providing significant logistic advantages over CAR-T cells. Both CAR-T and CAR-NK cells have shown consistent and promising results in hematological malignancies. However, their efficacy against solid tumors remains limited due to various obstacles including limited tumor trafficking and infiltration, as well as an immuno-suppressive tumor microenvironment. In this review, we discuss the recent advances and current challenges of CAR-T and CAR-NK cell immunotherapies, with a specific focus on the obstacles to their application in solid tumors. We also analyze in depth the advantages and drawbacks of CAR-NK cells compared to CAR-T cells and highlight CAR-NK CAR optimization. Finally, we explore future perspectives of these adoptive immunotherapies, highlighting the increasing contribution of cutting-edge biotechnological tools in shaping the next generation of cellular immunotherapy.
Collapse
Affiliation(s)
- Lei Peng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
| | - Giacomo Sferruzza
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
| | - Luojia Yang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Liqun Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA.
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA.
- Immunobiology Program, Yale University, New Haven, CT, USA.
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
42
|
Blud D, Rubio-Reyes P, Perret R, Weinkove R. Tuning CAR T-cell therapies for efficacy and reduced toxicity. Semin Hematol 2024; 61:333-344. [PMID: 39095226 DOI: 10.1053/j.seminhematol.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapies are a standard of care for certain relapsed or refractory B-cell cancers. However, many patients do not respond to CAR T-cell therapy or relapse later, short- and long-term toxicities are common, and current CAR T-cell therapies have limited efficacy for solid cancers. The gene engineering inherent in CAR T-cell manufacture offers an unprecedented opportunity to control cellular characteristics and design products that may overcome these limitations. This review summarises available methods to "tune" CAR T-cells for optimal efficacy and safety. The components of a typical CAR, and the modifications that can influence CAR T-cell function are discussed. Methods of engineering passive, inducible or autonomous control mechanisms into CAR T-cells, allowing selective limitation or enhancement of CAR T-cell activity are reviewed. The impact of manufacturing processes on CAR T-cell function are considered, including methods of limiting CAR T-cell terminal differentiation and exhaustion, and the use of specific T-cell subsets as the CAR T starting material. We discuss the use of multicistronic transgenes and multiplexed gene editing. Finally, we highlight the need for innovative clinical trial designs if we are to make the most of the opportunities offered by CAR T-cell therapies.
Collapse
Affiliation(s)
- Danielle Blud
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Patricia Rubio-Reyes
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Rachel Perret
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Robert Weinkove
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand; Wellington Blood & Cancer Centre, Te Whatu Ora Health New Zealand Capital Coast & Hutt Valley, Wellington, New Zealand; Department of Pathology and Molecular Medicine, University of Otago Wellington, Wellington, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
43
|
Anderson GSF, Chapman MA. T cell-redirecting therapies in hematological malignancies: Current developments and novel strategies for improved targeting. Mol Ther 2024; 32:2856-2891. [PMID: 39095991 PMCID: PMC11403239 DOI: 10.1016/j.ymthe.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
T cell-redirecting therapies (TCRTs), such as chimeric antigen receptor (CAR) or T cell receptor (TCR) T cells and T cell engagers, have emerged as a highly effective treatment modality, particularly in the B and plasma cell-malignancy setting. However, many patients fail to achieve deep and durable responses; while the lack of truly unique tumor antigens, and concurrent on-target/off-tumor toxicities, have hindered the development of TCRTs for many other cancers. In this review, we discuss the recent developments in TCRT targets for hematological malignancies, as well as novel targeting strategies that aim to address these, and other, challenges.
Collapse
Affiliation(s)
| | - Michael A Chapman
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK; Addenbrooke's Hospital, Cambridge Universities Foundation Trust, Cambridge CB2 0QQ, UK.
| |
Collapse
|
44
|
Jin C, Liao S, Lu G, Geng BD, Ye Z, Xu J, Ge G, Yang D. Cellular senescence in metastatic prostate cancer: A therapeutic opportunity or challenge (Review). Mol Med Rep 2024; 30:162. [PMID: 38994760 PMCID: PMC11258599 DOI: 10.3892/mmr.2024.13286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
The treatment of patients with metastatic prostate cancer (PCa) is considered to be a long‑standing challenge. Conventional treatments for metastatic PCa, such as radical prostatectomy, radiotherapy and androgen receptor‑targeted therapy, induce senescence of PCa cells to a certain extent. While senescent cells can impede tumor growth through the restriction of cell proliferation and increasing immune clearance, the senescent microenvironment may concurrently stimulate the secretion of a senescence‑associated secretory phenotype and diminish immune cell function, which promotes PCa recurrence and metastasis. Resistance to established therapies is the primary obstacle in treating metastatic PCa as it can lead to progression towards an incurable state of disease. Therefore, understanding the molecular mechanisms that underly the progression of PCa is crucial for the development of novel therapeutic approaches. The present study reviews the phenomenon of treatment‑induced senescence in PCa, the dual role of senescence in PCa treatments and the mechanisms through which senescence promotes PCa metastasis. Furthermore, the present review discusses potential therapeutic strategies to target the aforementioned processes with the aim of providing insights into the evolving therapeutic landscape for the treatment of metastatic PCa.
Collapse
Affiliation(s)
- Cen Jin
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
- Medical Imaging School, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| | - Sijian Liao
- Clinical Medicine School, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| | - Guoliang Lu
- Department of Pediatrics, Anshun People's Hospital, Anshun, Guizhou 561000, P.R. China
| | - Bill D. Geng
- School of Natural Science, University of Texas at Austin, Austin, TX 78712, USA
| | - Zi Ye
- Clinical Medicine School, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| | - Jianwei Xu
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| | - Guo Ge
- Department of Human Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| | - Dan Yang
- Department of Surgery, Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| |
Collapse
|
45
|
Gandhi M, Sharma B, Nair S, Vaidya ADB. Current Insights into CAR T-Cell-Based Therapies for Myelodysplastic Syndrome. Pharm Res 2024; 41:1757-1773. [PMID: 39187686 DOI: 10.1007/s11095-024-03761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024]
Abstract
Myelodysplastic syndromes (MDS) are due to defective hematopoiesis in bone marrow characterized by cytopenia and dysplasia of blood cells, with a varying degree of risk of acute myeloid leukemia (AML). Currently, the only potentially curative strategy is hematopoietic stem cell transplantation (HSCT). Many patients are ineligible for HSCT, due to late diagnosis, presence of co-morbidities, old age and complications likely due to graft-versus-host disease (GvHD). As a consequence, patients with MDS are often treated conservatively with blood transfusions, chemotherapy, immunotherapy etc. based on the grade and manifestations of MDS. The development of chimeric antigen receptor (CAR)-T cell therapy has revolutionized immunotherapy for hematological malignancies, as evidenced by a large body of literature. However, resistance and toxicity associated with it are also a challenge. Hence, there is an urgent need to develop new strategies for immunological and hematopoetic management of MDS. Herein, we discuss current limitations of CAR T-cell therapy and summarize novel approaches to mitigate this. Further, we discuss the in vivo activation of tumor-specific T cells, immune check inhibitors (ICI) and other approaches to normalize the bone marrow milieu for the management of MDS.
Collapse
Affiliation(s)
- Manav Gandhi
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Bhirisha Sharma
- University of Mumbai, Santa Cruz (East), Mumbai, 400055, India
| | - Sujit Nair
- Viridis Biopharma Pvt. Ltd, Mumbai, 400022, India.
- Phytoveda Pvt. Ltd, Mumbai, 400022, India.
| | - Ashok D B Vaidya
- Kasturba Health Society-Medical Research Centre, Vile Parle (West), Mumbai, 400056, India
| |
Collapse
|
46
|
WANG ZHENGYI, ZHOU LIANG, WU XIAOYING. Influencing factors and solution strategies of chimeric antigen receptor T-cell therapy (CAR-T) cell immunotherapy. Oncol Res 2024; 32:1479-1516. [PMID: 39220130 PMCID: PMC11361912 DOI: 10.32604/or.2024.048564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/28/2024] [Indexed: 09/04/2024] Open
Abstract
Chimeric antigen receptor T-cesll therapy (CAR-T) has achieved groundbreaking advancements in clinical application, ushering in a new era for innovative cancer treatment. However, the challenges associated with implementing this novel targeted cell therapy are increasingly significant. Particularly in the clinical management of solid tumors, obstacles such as the immunosuppressive effects of the tumor microenvironment, limited local tumor infiltration capability of CAR-T cells, heterogeneity of tumor targeting antigens, uncertainties surrounding CAR-T quality, control, and clinical adverse reactions have contributed to increased drug resistance and decreased compliance in tumor therapy. These factors have significantly impeded the widespread adoption and utilization of this therapeutic approach. In this paper, we comprehensively analyze recent preclinical and clinical reports on CAR-T therapy while summarizing crucial factors influencing its efficacy. Furthermore, we aim to identify existing solution strategies and explore their current research status. Through this review article, our objective is to broaden perspectives for further exploration into CAR-T therapy strategies and their clinical applications.
Collapse
Affiliation(s)
- ZHENGYI WANG
- Department of Institute of Laboratory Animal Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - LIANG ZHOU
- Department of Institute of Laboratory Animal Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - XIAOYING WU
- Ministry of Education and Training, Chengdu Second People’s Hospital, Chengdu, China
| |
Collapse
|
47
|
Mohammad Taheri M, Javan F, Poudineh M, Athari SS. Beyond CAR-T: The rise of CAR-NK cell therapy in asthma immunotherapy. J Transl Med 2024; 22:736. [PMID: 39103889 PMCID: PMC11302387 DOI: 10.1186/s12967-024-05534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Asthma poses a major public health burden. While existing asthma drugs manage symptoms for many, some patients remain resistant. The lack of a cure, especially for severe asthma, compels exploration of novel therapies. Cancer immunotherapy successes with CAR-T cells suggest its potential for asthma treatment. Researchers are exploring various approaches for allergic diseases including membrane-bound IgE, IL-5, PD-L2, and CTLA-4 for asthma, and Dectin-1 for fungal asthma. NK cells offer several advantages over T cells for CAR-based immunotherapy. They offer key benefits: (1) HLA compatibility, meaning they can be used in a wider range of patients without the need for matching tissue types. (2) Minimal side effects (CRS and GVHD) due to their limited persistence and cytokine profile. (3) Scalability for "off-the-shelf" production from various sources. Several strategies have been introduced that highlight the superiority and challenges of CAR-NK cell therapy for asthma treatment including IL-10, IFN-γ, ADCC, perforin-granzyme, FASL, KIR, NCRs (NKP46), DAP, DNAM-1, TGF-β, TNF-α, CCL, NKG2A, TF, and EGFR. Furthermore, we advocate for incorporating AI for CAR design optimization and CRISPR-Cas9 gene editing technology for precise gene manipulation to generate highly effective CAR constructs. This review will delve into the evolution and production of CAR designs, explore pre-clinical and clinical studies of CAR-based therapies in asthma, analyze strategies to optimize CAR-NK cell function, conduct a comparative analysis of CAR-T and CAR-NK cell therapy with their respective challenges, and finally present established novel CAR designs with promising potential for asthma treatment.
Collapse
Affiliation(s)
| | - Fatemeh Javan
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Shamseddin Athari
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Immunology, Zanjan School of Medicine, Zanjan University of Medical Sciences, 12th Street, Shahrake Karmandan, Zanjan, 45139-561111, Iran.
| |
Collapse
|
48
|
Srivastava S, Singh S, Singh A. Augmenting the landscape of chimeric antigen receptor T-cell therapy. Expert Rev Anticancer Ther 2024; 24:755-773. [PMID: 38912754 DOI: 10.1080/14737140.2024.2372330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION The inception of recombinant DNA technology and live cell genomic alteration have paved the path for the excellence of cell and gene therapies and often provided the first curative treatment for many indications. The approval of the first Chimeric Antigen Receptor (CAR) T-cell therapy was one of the breakthrough innovations that became the headline in 2017. Currently, the therapy is primarily restricted to a few nations, and the market is growing at a CAGR (current annual growth rate) of 11.6% (2022-2032), as opposed to the established bio-therapeutic market at a CAGR of 15.9% (2023-2030). The limited technology democratization is attributed to its autologous nature, lack of awareness, therapy inclusion criteria, high infrastructure cost, trained personnel, complex manufacturing processes, regulatory challenges, recurrence of the disease, and long-term follow-ups. AREAS COVERED This review discusses the vision and strategies focusing on the CAR T-cell therapy democratization with mitigation plans. Further, it also covers the strategies to leverage the mRNA-based CAR T platform for building an ecosystem to ensure availability, accessibility, and affordability to the community. EXPERT OPINION mRNA-guided CAR T cell therapy is a rapidly growing area wherein a collaborative approach among the stakeholders is needed for its success.
Collapse
Affiliation(s)
| | - Sanjay Singh
- mRNA Department, Gennova Biopharmaceuticals Ltd. ITBT Park, Pune, India
| | - Ajay Singh
- mRNA Department, Gennova Biopharmaceuticals Ltd. ITBT Park, Pune, India
| |
Collapse
|
49
|
Walker IG, Roy JP, Anderson GSF, Guerrero Lopez J, Chapman MA. Targeting myeloma essential genes using NOT Gated CAR T-cells, a computational approach. Leukemia 2024; 38:1848-1852. [PMID: 38688994 PMCID: PMC11286523 DOI: 10.1038/s41375-024-02247-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Affiliation(s)
- Ieuan G Walker
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Addenbrooke's Hospital, Cambridge Universities Foundation Trust, Cambridge, UK
| | - James P Roy
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | | | - Michael A Chapman
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Addenbrooke's Hospital, Cambridge Universities Foundation Trust, Cambridge, UK.
| |
Collapse
|
50
|
Russell GC, Hamzaoui Y, Rho D, Sutrave G, Choi JS, Missan DS, Reckard GA, Gustafson MP, Kim GB. Synthetic biology approaches for enhancing safety and specificity of CAR-T cell therapies for solid cancers. Cytotherapy 2024; 26:842-857. [PMID: 38639669 DOI: 10.1016/j.jcyt.2024.03.484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
CAR-T cell therapies have been successful in treating numerous hematologic malignancies as the T cell can be engineered to target a specific antigen associated with the disease. However, translating CAR-T cell therapies for solid cancers is proving more challenging due to the lack of truly tumor-associated antigens and the high risk of off-target toxicities. To combat this, numerous synthetic biology mechanisms are being incorporated to create safer and more specific CAR-T cells that can be spatiotemporally controlled with increased precision. Here, we seek to summarize and analyze the advancements for CAR-T cell therapies with respect to clinical implementation, from the perspective of synthetic biology and immunology. This review should serve as a resource for further investigation and growth within the field of personalized cellular therapies.
Collapse
Affiliation(s)
- Grace C Russell
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Yassin Hamzaoui
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Daniel Rho
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Gaurav Sutrave
- The University of Sydney, Sydney, Australia; Department of Haematology, Westmead Hospital, Sydney, Australia; Immuno & Gene Therapy Committee, International Society for Cell and Gene Therapy, Vancouver, Canada
| | - Joseph S Choi
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Dara S Missan
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Gabrielle A Reckard
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Michael P Gustafson
- Immuno & Gene Therapy Committee, International Society for Cell and Gene Therapy, Vancouver, Canada; Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, Arizona, USA; Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Gloria B Kim
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA; Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, USA.
| |
Collapse
|