1
|
Han J, Hong R, Cao C, Zhang L, Sun A, Li Y, Chi Y, Zhang L, Yang Y, Qu X. Suppression of KDM5C mitigates the symptoms of Alzheimer's disease by up-regulating BDNF expression. Neurochem Int 2025; 186:105975. [PMID: 40180246 DOI: 10.1016/j.neuint.2025.105975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/17/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Histone methylation, a common form of chromatin remodeling, has been found to be associated with various neurological and cognitive disorders. However, little is known about how this mechanism contributes to the onset and progression of Alzheimer's disease (AD). Here, we found that lysine demethylase 5C (KDM5C), a histone H3 lysine 4 di- and tri-methyl (H3K4me2/3)-specific demethylase encoded by an X-linked mental retardation-related gene, displayed a progressive increase in the hippocampus with age in 3 × Tg-AD mice. Suppression of KDM5C partially mitigated the cognitive decline according to water maze, Y maze, and novel object recognition tests. In addition, significantly decreased amyloid plaques, enhanced long-term potentiation (LTP), and up-regulated expression of synaptic proteins were observed in KDM5C knockdown 3 × Tg-AD mice. Mechanistically, suppression of KDM5C could promote the expression of brain-derived neurotrophic factor (BDNF) to partially protect hippocampal neurons from beta-amyloid damage. In the promoter region of Bdnf, KDM5C was bound to the repressor element-1 (RE-1) motif to reduce the nearby H3K4me3 level and inhibit gene transcription. Mutations in the RE-1 motif reversed the inhibitory effect of KDM5C. Our results emphasize that KDM5C excess is one of the reasons for the onset and progression of AD and that suppression of KDM5C in the hippocampus should be considered a potential therapeutic target to ameliorate cognitive impairment and pathological symptoms in AD.
Collapse
Affiliation(s)
- Jingjing Han
- Department of Basic Medical Science, Jiangsu Medical College, Yancheng, 224005, Jiangsu, China
| | - Rui Hong
- Department of Basic Medical Science, Jiangsu Medical College, Yancheng, 224005, Jiangsu, China
| | - Cong Cao
- Department of Research and Education, The Fourth People's Hospital of Yancheng, Yancheng, 224000, Jiangsu, China
| | - Lina Zhang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ao Sun
- Department of Pharmacology, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, 224000, Jiangsu, China
| | - Yufei Li
- Department of Pharmacology, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, 224000, Jiangsu, China
| | - Yinxiu Chi
- Department of Basic Medical Science, Jiangsu Medical College, Yancheng, 224005, Jiangsu, China
| | - Linlin Zhang
- Department of Pharmacology, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, 224000, Jiangsu, China
| | - Ya Yang
- Group Health Section, The Affiliated Yancheng Maternity & Child Health Hospital of Yangzhou University, Yancheng, 224000, Jiangsu, China
| | - Xuebin Qu
- Department of Basic Medical Science, Jiangsu Medical College, Yancheng, 224005, Jiangsu, China.
| |
Collapse
|
2
|
Anderson KJ, Thorolfsdottir ET, Nodelman IM, Halldorsdottir ST, Benonisdottir S, Alghamdi M, Almontashiri N, Barry BJ, Begemann M, Britton JF, Burke S, Cogne B, Cohen AS, de Diego Boguñá C, Eichler EE, Engle EC, Fahrner JA, Faivre L, Fradin M, Fuhrmann N, Gao CW, Garg G, Grečmalová D, Grippa M, Harris JR, Hoekzema K, Hershkovitz T, Hubbard S, Janssens K, Jurgens JA, Kmoch S, Knopp C, Koptagel MA, Ladha FA, Lapunzina P, Lindau T, Meuwissen M, Minicucci A, Neuhaus E, Nizon M, Nosková L, Park K, Patel C, Pfundt R, Prasun P, Rahner N, Robin NH, Ronspies C, Roohi J, Rosenfeld J, Saenz M, Saunders C, Stark Z, Thiffault I, Thull S, Velasco D, Velmans C, Verseput J, Vitobello A, Wang T, Weiss K, Wentzensen IM, Pilarowski G, Eysteinsson T, Gillentine M, Stefánsson K, Helgason A, Bowman GD, Bjornsson HT. Androgens mediate sexual dimorphism in Pilarowski-Bjornsson Syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.05.06.25326635. [PMID: 40385454 PMCID: PMC12083630 DOI: 10.1101/2025.05.06.25326635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Sex-specific penetrance in autosomal dominant Mendelian conditions is largely understudied. The neurodevelopmental disorder Pilarowski-Bjornsson syndrome (PILBOS) was initially described in females. Here, we describe the clinical and genetic characteristics of the largest PILBOS cohort to date, showing that both sexes can exhibit PILBOS features, although males are overrepresented. A mouse model carrying a human-derived Chd1 missense variant (Chd1 R616Q/+) displays female-restricted phenotypes, including growth deficiency, anxiety and hypotonia. Orchiectomy unmasks a growth deficiency phenotype in male Chd1 R616Q/+ mice, while testosterone rescues the phenotype in females, implicating androgens in phenotype modulation. In the gnomAD and UK Biobank databases, rare missense variants in CHD1 are overrepresented in males, supporting a male protective effect. We identify 33 additional highly constrained autosomal genes with missense variant overrepresentation in males. Our results support androgen-regulated sexual dimorphism in PILBOS and open novel avenues to understand the mechanistic basis of sexual dimorphism in other autosomal Mendelian disorders.
Collapse
Affiliation(s)
- Kimberley Jade Anderson
- Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | | | - Ilana M. Nodelman
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Sara Tholl Halldorsdottir
- The Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Stefania Benonisdottir
- Institute of Physical Sciences, University of Iceland, Reykjavik, Iceland
- Leverhulme Centre for Demographic Science, Nuffield Department of Population Health, University of Oxford and Nuffield College, Oxford, UK
| | - Malak Alghamdi
- Medical Genetics Division, Pediatric Department, College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Naif Almontashiri
- College of Applied Medical Sciences and Center for Genetics and Inherited Diseases, Taibah University, Madinah, Kingdom of Saudi Arabia
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Brenda J. Barry
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Matthias Begemann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jacquelyn F. Britton
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Burke
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Benjamin Cogne
- Nantes Université, CHU de Nantes, CNRS, INSERM, l’institut du thorax, F-44000 Nantes, France
- Nantes Université, CHU de Nantes, Service de Génétique médicale, F-44000 Nantes, France
| | - Ana S.A. Cohen
- Department of Pathology and Laboratory Medicine, Genomic Medicine Center, Children’s Mercy-Kansas City, Kansas City, MO, USA
- The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA
| | | | - Evan E. Eichler
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Elizabeth C. Engle
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jill A. Fahrner
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laurence Faivre
- INSERM UMR1231, GAD team, Univeristé de Bourgogne Europe, Dijon, France
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, de l’Interrégion Est, Centre Hospitalier Universitaire Dijon, 21079 Dijon, France
| | - Mélanie Fradin
- Service de Genetique Medicale, Centre Labellisé Anomalies du Développement de l’Ouest, CHU Rennes, Rennes, France
| | - Nico Fuhrmann
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christine W. Gao
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gunjan Garg
- Department of Clinical Genetics, Liverpool Hospital, Sydney, New South Wales, Australia
- Hunter Genetics, Waratah, New South Wales, Australia
- School of Women’s and Children’s Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Dagmar Grečmalová
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Czech Republic
| | - Mina Grippa
- SSD Medical Genetics, Maternal and Child Department, AOU Policlinico Modena, Modena, Italy
| | - Jacqueline R. Harris
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kennedy Krieger Institute, Department of Neurology, Baltimore, Maryland, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Sydney Hubbard
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Katrien Janssens
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Julie A. Jurgens
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Cordula Knopp
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Meral Aktas Koptagel
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Farah A. Ladha
- Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX, USA
| | - Pablo Lapunzina
- INGEMM-Institute of Medical and Molecular Genetics, IdiPAZ- CIBERER- Hospital Universitario La Paz, Madrid, Spain and ERNITHACA, Madrid, Spain
| | - Tobias Lindau
- Department of Pediatrics, Gemeinschaftsklinikum Mittelrhein Kemperhof, Koblenzer Straße 115-155, 56073 Koblenz, Germany
| | - Marije Meuwissen
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Andreina Minicucci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, U.O. Genetica Medica, 40138 Bologna, Italy
| | - Emily Neuhaus
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Mathilde Nizon
- Service de Génétique Médicale, Unité de Génétique Clinique, Nantes, France
| | - Lenka Nosková
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kristen Park
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, USA
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane & Women’s Hospital Campus, Herston, Brisbane, Australia
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pankaj Prasun
- Division of Genetics, Department of Pediatrics West Virginia School of Medicine, Morgantown, USA
| | - Nils Rahner
- MVZ Institute for Clinical Genetics and Tumor Genetics, Bonn, Germany
| | - Nathaniel H. Robin
- Department of Genetics, UAB Heersink School of Medicine, Birmingham AL, USA
| | - Carey Ronspies
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jasmin Roohi
- Department of Genetics, Mid-Atlantic Permanente Medical Group, Washington, DC, USA
| | - Jill Rosenfeld
- Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Margarita Saenz
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, USA
| | - Carol Saunders
- Department of Pathology and Laboratory Medicine, Genomic Medicine Center, Children’s Mercy-Kansas City, Kansas City, MO, USA
- The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Flemington Road, Parkville, Victoria, Australia
| | - Isabelle Thiffault
- Department of Pathology and Laboratory Medicine, Genomic Medicine Center, Children’s Mercy-Kansas City, Kansas City, MO, USA
- The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA
| | - Sarah Thull
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Danita Velasco
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Clara Velmans
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jolijn Verseput
- Human Genetics Department, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Antonio Vitobello
- INSERM UMR1231, GAD team, Univeristé de Bourgogne Europe, Dijon, France
| | - Tianyun Wang
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Neuroscience Research Institute, Peking University; Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing 100191, China
- Autism Research Center, Peking University Health Science Center, Beijing 100191, China
| | - Karin Weiss
- The Genetics Institute Rambam Health Care Campus Haifa Israel
| | | | | | - Thor Eysteinsson
- Department of Physiology, Faculty of Medicine, University of Iceland
- Department of Ophthalmology, Landspitali University Hospital, Reykjavik, Iceland
| | | | - Kári Stefánsson
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Agnar Helgason
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Gregory D. Bowman
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Hans Tomas Bjornsson
- Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik, Iceland
- The Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Mertens M, Khalife L, Ma X, Bodamer O. Animal models of Kabuki syndrome and their applicability to novel drug discovery. Expert Opin Drug Discov 2025; 20:253-265. [PMID: 39862154 DOI: 10.1080/17460441.2025.2457624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 11/27/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
INTRODUCTION Kabuki Syndrome (KS) is a rare genetic disorder characterized by distinctive facial features, intellectual disability, and multiple congenital anomalies. It is caused by pathogenic variants in the KMT2D and KDM6A genes. Despite its significant disease burden, there are currently no approved therapies for KS, highlighting the need for advanced research and therapeutic development. AREAS COVERED This review examines the use of animal models in KS research, including mice, fish, frogs, and nematodes. These models replicate key mechanistic and clinical aspects of Kabuki Syndrome, facilitating preclinical studies to demonstrate therapeutic efficacy. The literature search focused on identifying studies that utilized these models to investigate the pathophysiology of Kabuki Syndrome and evaluate potential treatments. EXPERT OPINION Refining animal models is essential to enhance their relevance to human disease and accelerate the development of effective therapies for Kabuki Syndrome. Insights from these models are invaluable in understanding underlying molecular mechanisms and identifying therapeutic targets. Continued research and collaboration are crucial to translating these findings into clinical practice, offering hope for future treatments.
Collapse
Affiliation(s)
- Mareike Mertens
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Leen Khalife
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Xiaoting Ma
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Olaf Bodamer
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
4
|
König L, Schmidts M. The role of chromatin-related epigenetic modulations in CAKUT. Curr Top Dev Biol 2025; 163:169-227. [PMID: 40254345 DOI: 10.1016/bs.ctdb.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) represent a major health burden in humans. Phenotypes range from renal hypoplasia or renal agenesis, cystic renal dysplasia, duplicated or horseshoe kidneys to obstruction of the ureteropelvic junction, megaureters, duplicated ureters, urethral valves or bladder malformations. Over the past decade, next-generation sequencing has identified numerous causative genes; however, the genetic basis of most cases remains unexplained. It is assumed that environmental factors have a significant impact on the phenotype, but, overall, the pathogenesis has remained poorly understood. Interestingly however, CAKUT is a common phenotypic feature in two human syndromes, Kabuki and Koolen-de Vries syndrome, caused by dysfunction of genes encoding for KMT2D and KANSL1, both members of protein complexes playing an important role in histone modifications. In this chapter, we discuss current knowledge regarding epigenetic modulation in renal development and a putatively under-recognized role of epigenetics in CAKUT.
Collapse
Affiliation(s)
- Luise König
- Center for Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Miriam Schmidts
- Center for Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS-Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
Smail A, Al-Jawahiri R, Baker K. Polycomb-associated and Trithorax-associated developmental conditions-phenotypic convergence and heterogeneity. Eur J Hum Genet 2025:10.1038/s41431-025-01784-2. [PMID: 39843918 DOI: 10.1038/s41431-025-01784-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/12/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
Polycomb group (PcG) and Trithorax group (TrxG) complexes represent two major components of the epigenetic machinery. This study aimed to delineate phenotypic similarities and differences across developmental conditions arising from rare variants in PcG and TrxG genes, using data-driven approaches. 462 patients with a PcG or TrxG-associated condition were identified in the DECIPHER dataset. We analysed Human Phenotype Ontology (HPO) data to identify phenotypes enriched in this group, in comparison to other monogenic conditions within DECIPHER. We then assessed phenotypic relationships between single gene diagnoses within the PcG and TrxG group, by applying semantic similarity analysis and hierarchical clustering. Finally, we analysed patient-level phenotypic heterogeneity in this group, irrespective of specific genetic diagnosis, by applying the same clustering approach. Collectively, PcG/TrxG diagnoses were associated with increased reporting of HPO terms relating to integument, growth, head and neck, limb and digestive abnormalities. Gene group analysis identified three multi-gene clusters differentiated by microcephaly, limb/digit dysmorphologies, growth abnormalities and atypical behavioural phenotypes. Patient-level analysis identified two large clusters differentiated by neurodevelopmental abnormalities and facial dysmorphologies respectively, as well as smaller clusters associated with more specific phenotypes including behavioural characteristics, eye abnormalities, growth abnormalities and skull dysmorphologies. Importantly, patient-level phenotypic clusters did not align with genetic diagnoses. Data-driven approaches can highlight pathway-level and gene-level phenotypic convergences, and individual-level phenotypic heterogeneities. Future studies are needed to understand the multi-level mechanisms contributing to both convergence and variability within this population, and to extend data collection and analyses to later-emerging health characteristics.
Collapse
Affiliation(s)
- Alice Smail
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Department of Medical & Molecular Genetics, King's College London, London, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Reem Al-Jawahiri
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Kate Baker
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
- Department of Pathology, University of Cambridge, Cambridge, UK.
- Department of Medical Genetics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Matsuda S, Hattori Y, Kimura H. Drug discovery strategy for TAK-418, a specific inhibitor of LSD1 enzyme activity, as a novel therapy for autism. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 102:267-300. [PMID: 39929582 DOI: 10.1016/bs.apha.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
The pathophysiology of neurodevelopmental disorders is associated with multiple genetic and environmental risk factors. Epigenetics, owing to its potential to recover global gene expression changes associated with disease conditions, is a crucial target to address neurodevelopmental disorders influenced by genetic and environmental factors. Here, we discuss the discovery of selective inhibitors of lysine-specific demethylase 1 (LSD1) enzyme activity and their therapeutic potential for neurodevelopmental disorders through epigenetic regulation in the brain. Conventional LSD1 inhibitors not only inhibit LSD1 enzymatic activity but also interfere with LSD1-cofactor complex formation, thus leading to hematological side effects. Notably, investigations on the structure-activity relationship have revealed (aminocyclopropyl)benzamide and (aminocyclopropyl)thiophene carboxamide derivatives as novel series of LSD1 inhibitors with fewer hematological side effects. Subsequently, we discovered T-448 and TAK-418 (clinical candidate) that selectively and potently inhibit LSD1 enzymatic activity without disrupting the LSD1-cofactor complex, resulting in potent epigenetic modulation without significant hematological toxicity risks in rodents. T-448 and TAK-418, at doses that achieved almost complete LSD1 occupancy in the brain, improved behavioral abnormalities in multiple rodent models of neurodevelopmental disorders. Furthermore, comprehensive RNA expression analyses revealed that, although gene expression abnormalities exhibited limited commonality across disease models, TAK-418 normalized each aberrant gene expression pattern in these rodent models. A positron emission tomography tracer was discovered to potentially measure the occupancy of TAK-418 at the LSD1 active site in the brain to improve the translatability of its preclinical efficacy to therapeutic effects in humans. TAK-418-type LSD1 inhibitors may offer novel treatment options for neurodevelopmental disorders.
Collapse
|
7
|
Mayfield JM, Hitefield NL, Czajewski I, Vanhye L, Holden L, Morava E, van Aalten DMF, Wells L. O-GlcNAc transferase congenital disorder of glycosylation (OGT-CDG): Potential mechanistic targets revealed by evaluating the OGT interactome. J Biol Chem 2024; 300:107599. [PMID: 39059494 PMCID: PMC11381892 DOI: 10.1016/j.jbc.2024.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
O-GlcNAc transferase (OGT) is the sole enzyme responsible for the post-translational modification of O-GlcNAc on thousands of target nucleocytoplasmic proteins. To date, nine variants of OGT that segregate with OGT Congenital Disorder of Glycosylation (OGT-CDG) have been reported and characterized. Numerous additional variants have been associated with OGT-CDG, some of which are currently undergoing investigation. This disorder primarily presents with global developmental delay and intellectual disability (ID), alongside other variable neurological features and subtle facial dysmorphisms in patients. Several hypotheses aim to explain the etiology of OGT-CDG, with a prominent hypothesis attributing the pathophysiology of OGT-CDG to mutations segregating with this disorder disrupting the OGT interactome. The OGT interactome consists of thousands of proteins, including substrates as well as interactors that require noncatalytic functions of OGT. A key aim in the field is to identify which interactors and substrates contribute to the primarily neural-specific phenotype of OGT-CDG. In this review, we will discuss the heterogenous phenotypic features of OGT-CDG seen clinically, the variable biochemical effects of mutations associated with OGT-CDG, and the use of animal models to understand this disorder. Furthermore, we will discuss how previously identified OGT interactors causal for ID provide mechanistic targets for investigation that could explain the dysregulated gene expression seen in OGT-CDG models. Identifying shared or unique altered pathways impacted in OGT-CDG patients will provide a better understanding of the disorder as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Johnathan M Mayfield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Naomi L Hitefield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | - Lotte Vanhye
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Laura Holden
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Eva Morava
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daan M F van Aalten
- School of Life Sciences, University of Dundee, Dundee, UK; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
8
|
Agustsson VI, Bjornsson PA, Fridriksdottir A, Bjornsson HT, Ellingsen LM. Automated fingerprint analysis as a diagnostic tool for the genetic disorder Kabuki syndrome. GENETICS IN MEDICINE OPEN 2024; 2:101884. [PMID: 39669635 PMCID: PMC11613772 DOI: 10.1016/j.gimo.2024.101884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 12/14/2024]
Abstract
Purpose Emerging therapeutic strategies for Kabuki syndrome (KS) make early diagnosis critical. Fingerprint analysis as a diagnostic aid for KS diagnosis could facilitate early diagnosis and expand the current patient base for clinical trials and natural history studies. Method Fingerprints of 74 individuals with KS, 1 individual with a KS-like phenotype, and 108 controls were collected through a mobile app. KS fingerprint patterns were studied using logistic regression and a convolutional neural network to differentiate KS individuals from controls. Results Our analysis identified 2 novel KS metrics (folding finger ridge count and simple pattern), which significantly differentiated KS fingerprints from controls, producing an area under the receiver operating characteristic curve value of 0.82 [0.75; 0.89] and a likelihood ratio of 9.0. This metric showed a sensitivity of 35.6% [23.73%; 47.46%] and a specificity of 96.04% [92.08%; 99.01%]. An independent artificial intelligence convolutional neural network classification-based method validated this finding and yielded comparable results, with a likelihood ratio of 8.7, sensitivity of 76.6%, and specificity of 91.2%. Conclusion Our findings suggest that automatic fingerprint analysis can have diagnostic use for KS and possible future utility for diagnosing other genetic disorders, enabling greater access to genetic diagnosis in areas with limited availability of genetic testing.
Collapse
Affiliation(s)
- Viktor Ingi Agustsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | - Pall Asgeir Bjornsson
- Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland
| | | | - Hans Tomas Bjornsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik, Iceland
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lotta Maria Ellingsen
- Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
9
|
Boniel S, Krajewska M, Pyrżak B, Paluchowska M, Majcher A, Zarlenga M, Krenke K, Śmigiel R, Jeziorek A, Szymańska K, Szczałuba K. Clinical and molecular characteristics of Kabuki syndrome patients with missense variants-novel features and literature review. Front Genet 2024; 15:1402531. [PMID: 39104744 PMCID: PMC11298422 DOI: 10.3389/fgene.2024.1402531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/13/2024] [Indexed: 08/07/2024] Open
Abstract
Kabuki Syndrome (KS) encompasses a spectrum of clinical manifestations, primarily attributed to pathogenic variants in the KMT2D gene. This study aims to elucidate novel features in KS patients with missense variants, contrasting their presentation with both literature-reported cases of patients with missense pathogenic variants as well as other KS patients with truncating pathogenic variants. Employing a survey questionnaire and clinical evaluations, we examined ten KS patients with missense variants, focusing on their dysmorphism characteristics, behavior and psychomotor development. We identified unique features in missense variant patients, including foot hyperesthesia, musicality, and sensory integration disorders. Notably, despite similarities in developmental trajectories, distinct phenotypic traits emerged in missense variant cases, suggesting a potential genotype-phenotype correlation. These findings contribute to a deeper understanding of KS heterogeneity and underscore the importance of genotype-specific characterization for prognostic and therapeutic considerations. Further exploration of genotype-phenotype relationships promises to refine clinical management strategies and enhance patient outcomes in this complex syndrome.
Collapse
Affiliation(s)
- Snir Boniel
- Department of Medical Genetics and Centre of Excellence for Rare and Undiagnosed Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Maria Krajewska
- Department of Pediatrics and Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | - Beata Pyrżak
- Department of Pediatrics and Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | - Monika Paluchowska
- Department of Pediatrics and Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Majcher
- Department of Pediatrics and Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | | | - Katarzyna Krenke
- Department of Pediatric Pulmonology and Allergology, Medical University of Warsaw, Warsaw, Poland
| | - Robert Śmigiel
- Department of Family and Pediatric Nursing, Medical University, Wroclaw, Poland
| | - Anetta Jeziorek
- Neurodiagnostic Unit, Medical University of Warsaw, Warsaw, Poland
| | - Krystyna Szymańska
- Department of Pediatric Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof Szczałuba
- Department of Medical Genetics and Centre of Excellence for Rare and Undiagnosed Diseases, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
10
|
Zhang Z, Guo Y, Gao X, Wang X, Jin C. Role of histone methyltransferase KMT2D in BMSC osteogenesis via AKT signaling. Regen Ther 2024; 26:775-782. [PMID: 39309396 PMCID: PMC11414574 DOI: 10.1016/j.reth.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Understanding the precise mechanism of BMSC (bone marrow mesenchymal stem cell) osteogenesis is critical for metabolic bone diseases and bone reconstruction. The histone-lysine N-methyltransferase 2D (KMT2D) acts as an important methyltransferase related with congenital skeletal disorders, yet the function of KMT2D in osteogenesis was unclear. Here we found that KMT2D expression was decreased in BMSCs collected from ovariectomized mice. Moreover, during human BMSC differentiation under mineralization induction, the mRNA level of KMT2D was gradually elevated. After KMT2D knockdown, the in vitro osteogenic differentiation of BMSCs was inhibited, while the in vivo bone formation potential of BMSCs was attenuated. Further, in BMSCs, KMT2D knockdown reduced the level of phosphorylated protein kinase B (p-AKT). SC-79, a common activator of AKT signaling, reversed the suppressing influence of KMT2D knockdown on BMSCs differentiation towards osteoblast. These results indicate that the KMT2D-AKT pathway plays an essential role in the osteogenesis process of human BMSCs (hBMSCs), which might provide new avenues for the molecular medicine of bone diseases and regeneration.
Collapse
Affiliation(s)
- Zhichun Zhang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China
| | - Yanyan Guo
- Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, 100101, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China
| | - Xuejun Gao
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China
| | - Xiaoyan Wang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China
| | - Chanyuan Jin
- Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, 100101, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China
| |
Collapse
|
11
|
Gao CW, Lin W, Riddle RC, Chopra S, Kim J, Boukas L, Hansen KD, Björnsson HT, Fahrner JA. Growth deficiency in a mouse model of Kabuki syndrome 2 bears mechanistic similarities to Kabuki syndrome 1. PLoS Genet 2024; 20:e1011310. [PMID: 38857303 PMCID: PMC11192384 DOI: 10.1371/journal.pgen.1011310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/21/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024] Open
Abstract
Growth deficiency is a characteristic feature of both Kabuki syndrome 1 (KS1) and Kabuki syndrome 2 (KS2), Mendelian disorders of the epigenetic machinery with similar phenotypes but distinct genetic etiologies. We previously described skeletal growth deficiency in a mouse model of KS1 and further established that a Kmt2d-/- chondrocyte model of KS1 exhibits precocious differentiation. Here we characterized growth deficiency in a mouse model of KS2, Kdm6atm1d/+. We show that Kdm6atm1d/+ mice have decreased femur and tibia length compared to controls and exhibit abnormalities in cortical and trabecular bone structure. Kdm6atm1d/+ growth plates are also shorter, due to decreases in hypertrophic chondrocyte size and hypertrophic zone height. Given these disturbances in the growth plate, we generated Kdm6a-/- chondrogenic cell lines. Similar to our prior in vitro model of KS1, we found that Kdm6a-/- cells undergo premature, enhanced differentiation towards chondrocytes compared to Kdm6a+/+ controls. RNA-seq showed that Kdm6a-/- cells have a distinct transcriptomic profile that indicates dysregulation of cartilage development. Finally, we performed RNA-seq simultaneously on Kmt2d-/-, Kdm6a-/-, and control lines at Days 7 and 14 of differentiation. This revealed surprising resemblance in gene expression between Kmt2d-/- and Kdm6a-/- at both time points and indicates that the similarity in phenotype between KS1 and KS2 also exists at the transcriptional level.
Collapse
Affiliation(s)
- Christine W. Gao
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - WanYing Lin
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ryan C. Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, Maryland, United States of America
| | - Sheetal Chopra
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jiyoung Kim
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Leandros Boukas
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, Maryland, United States of America
| | - Kasper D. Hansen
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Hans T. Björnsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Landspítali University Hospital, Reykjavík, Iceland
| | - Jill A. Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
12
|
Tsang E, Han VX, Flutter C, Alshammery S, Keating BA, Williams T, Gloss BS, Graham ME, Aryamanesh N, Pang I, Wong M, Winlaw D, Cardamone M, Mohammad S, Gold W, Patel S, Dale RC. Ketogenic diet modifies ribosomal protein dysregulation in KMT2D Kabuki syndrome. EBioMedicine 2024; 104:105156. [PMID: 38768529 PMCID: PMC11134553 DOI: 10.1016/j.ebiom.2024.105156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Kabuki syndrome (KS) is a genetic disorder caused by DNA mutations in KMT2D, a lysine methyltransferase that methylates histones and other proteins, and therefore modifies chromatin structure and subsequent gene expression. Ketones, derived from the ketogenic diet, are histone deacetylase inhibitors that can 'open' chromatin and encourage gene expression. Preclinical studies have shown that the ketogenic diet rescues hippocampal memory neurogenesis in mice with KS via the epigenetic effects of ketones. METHODS Single-cell RNA sequencing and mass spectrometry-based proteomics were used to explore molecular mechanisms of disease in individuals with KS (n = 4) versus controls (n = 4). FINDINGS Pathway enrichment analysis indicated that loss of function mutations in KMT2D are associated with ribosomal protein dysregulation at an RNA and protein level in individuals with KS (FDR <0.05). Cellular proteomics also identified immune dysregulation and increased abundance of other lysine modification and histone binding proteins, representing a potential compensatory mechanism. A 12-year-old boy with KS, suffering from recurrent episodes of cognitive decline, exhibited improved cognitive function and neuropsychological assessment performance after 12 months on the ketogenic diet, with concomitant improvement in transcriptomic ribosomal protein dysregulation. INTERPRETATION Our data reveals that lysine methyltransferase deficiency is associated with ribosomal protein dysfunction, with secondary immune dysregulation. Diet and the production of bioactive molecules such as ketone bodies serve as a significant environmental factor that can induce epigenetic changes and improve clinical outcomes. Integrating transcriptomic, proteomic, and clinical data can define mechanisms of disease and treatment effects in individuals with neurodevelopmental disorders. FUNDING This study was supported by the Dale NHMRC Investigator Grant (APP1193648) (R.D), Petre Foundation (R.D), and The Sydney Children's Hospital Foundation/Kids Research Early and Mid-Career Researcher Grant (E.T).
Collapse
Affiliation(s)
- Erica Tsang
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Velda X Han
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chloe Flutter
- The Kabuki Syndrome Foundation - Volunteer, Northbrook, IL, USA
| | - Sarah Alshammery
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Brooke A Keating
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Tracey Williams
- Kids Rehab, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Brian S Gloss
- Westmead Research Hub, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Mark E Graham
- Biomedical Proteomics, Children's Medical Research Institute, The University of Sydney, Australia
| | - Nader Aryamanesh
- Bioinformatics Group, Children's Medical Research Institute, Westmead, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Ignatius Pang
- Bioinformatics Group, Children's Medical Research Institute, Westmead, Sydney, NSW, Australia
| | - Melanie Wong
- The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - David Winlaw
- Heart Centre, Ann and Robert H. Lurie Children's Hospital of Chicago and Feinberg School of Medicine, Northwestern University, USA
| | - Michael Cardamone
- Sydney Children's Hospital, Randwick, NSW, Australia; School of Clinical Medicine, University of New South Wales, NSW, Australia
| | - Shekeeb Mohammad
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Wendy Gold
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW, Australia; Molecular Neurobiology Research Laboratory, Kids Research, The Children's Hospital at Westmead & the Children's Medical Research Institute, NSW, Australia
| | - Shrujna Patel
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Russell C Dale
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; The Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
13
|
Potter SJ, Zhang L, Kotliar M, Wu Y, Schafer C, Stefan K, Boukas L, Qu’d D, Bodamer O, Simpson BN, Barski A, Lindsley AW, Bjornsson HT. KMT2D regulates activation, localization, and integrin expression by T-cells. Front Immunol 2024; 15:1341745. [PMID: 38765012 PMCID: PMC11099208 DOI: 10.3389/fimmu.2024.1341745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/26/2024] [Indexed: 05/21/2024] Open
Abstract
Individuals with Kabuki syndrome present with immunodeficiency; however, how pathogenic variants in the gene encoding the histone-modifying enzyme lysine methyltransferase 2D (KMT2D) lead to immune alterations remain poorly understood. Following up on our prior report of KMT2D-altered integrin expression in B-cells, we performed targeted analyses of KMT2D's influence on integrin expression in T-cells throughout development (thymocytes through peripheral T-cells) in murine cells with constitutive- and conditional-targeted Kmt2d deletion. Using high-throughput RNA-sequencing and flow cytometry, we reveal decreased expression (both at the transcriptional and translational levels) of a cluster of leukocyte-specific integrins, which perturb aspects of T-cell activation, maturation, adhesion/localization, and effector function. H3K4me3 ChIP-PCR suggests that these evolutionary similar integrins are under direct control of KMT2D. KMT2D loss also alters multiple downstream programming/signaling pathways, including integrin-based localization, which can influence T-cell populations. We further demonstrated that KMT2D deficiency is associated with the accumulation of murine CD8+ single-positive (SP) thymocytes and shifts in both human and murine peripheral T-cell populations, including the reduction of the CD4+ recent thymic emigrant (RTE) population. Together, these data show that the targeted loss of Kmt2d in the T-cell lineage recapitulates several distinct features of Kabuki syndrome-associated immune deficiency and implicates epigenetic mechanisms in the regulation of integrin signaling.
Collapse
Affiliation(s)
- Sarah J. Potter
- Division of Allergy & Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Li Zhang
- McKusick-Nathans Department of Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael Kotliar
- Division of Allergy & Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Yuehong Wu
- Division of Allergy & Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Caitlin Schafer
- Division of Allergy & Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Kurtis Stefan
- Division of Allergy & Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Leandros Boukas
- McKusick-Nathans Department of Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Dima Qu’d
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Olaf Bodamer
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, United States
- The Roya Kabuki Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Genetics and Genomics, Broad Institute of MIT and Harvard University, Cambridge, MA, United States
| | - Brittany N. Simpson
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Artem Barski
- Division of Allergy & Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Andrew W. Lindsley
- Division of Allergy & Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Hans T. Bjornsson
- McKusick-Nathans Department of Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Faculty of Medicine, The University of Iceland, Reykjavik, Iceland
- Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik, Iceland
| |
Collapse
|
14
|
Bergamasco MI, Vanyai HK, Garnham AL, Geoghegan ND, Vogel AP, Eccles S, Rogers KL, Smyth GK, Blewitt ME, Hannan AJ, Thomas T, Voss AK. Increasing histone acetylation improves sociability and restores learning and memory in KAT6B-haploinsufficient mice. J Clin Invest 2024; 134:e167672. [PMID: 38557491 PMCID: PMC10977983 DOI: 10.1172/jci167672] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/26/2024] [Indexed: 04/04/2024] Open
Abstract
Mutations in genes encoding chromatin modifiers are enriched among mutations causing intellectual disability. The continuing development of the brain postnatally, coupled with the inherent reversibility of chromatin modifications, may afford an opportunity for therapeutic intervention following a genetic diagnosis. Development of treatments requires an understanding of protein function and models of the disease. Here, we provide a mouse model of Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS) (OMIM 603736) and demonstrate proof-of-principle efficacy of postnatal treatment. SBBYSS results from heterozygous mutations in the KAT6B (MYST4/MORF/QFK) gene and is characterized by intellectual disability and autism-like behaviors. Using human cells carrying SBBYSS-specific KAT6B mutations and Kat6b heterozygous mice (Kat6b+/-), we showed that KAT6B deficiency caused a reduction in histone H3 lysine 9 acetylation. Kat6b+/- mice displayed learning, memory, and social deficits, mirroring SBBYSS individuals. Treatment with a histone deacetylase inhibitor, valproic acid, or an acetyl donor, acetyl-carnitine (ALCAR), elevated histone acetylation levels in the human cells with SBBYSS mutations and in brain and blood cells of Kat6b+/- mice and partially reversed gene expression changes in Kat6b+/- cortical neurons. Both compounds improved sociability in Kat6b+/- mice, and ALCAR treatment restored learning and memory. These data suggest that a subset of SBBYSS individuals may benefit from postnatal therapeutic interventions.
Collapse
Affiliation(s)
- Maria I. Bergamasco
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology and
| | - Hannah K. Vanyai
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology and
| | - Alexandra L. Garnham
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology and
| | - Niall D. Geoghegan
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology and
| | - Adam P. Vogel
- Centre for Neurosciences of Speech, University of Melbourne, Parkville, Victoria, Australia
- Redenlab Inc., Melbourne, Australia
| | - Samantha Eccles
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology and
| | - Kelly L. Rogers
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology and
| | - Gordon K. Smyth
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
| | - Marnie E. Blewitt
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology and
| | - Anthony J. Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Tim Thomas
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology and
| | - Anne K. Voss
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology and
| |
Collapse
|
15
|
Harris JR, Gao CW, Britton JF, Applegate CD, Bjornsson HT, Fahrner JA. Five years of experience in the Epigenetics and Chromatin Clinic: what have we learned and where do we go from here? Hum Genet 2024; 143:607-624. [PMID: 36952035 PMCID: PMC10034257 DOI: 10.1007/s00439-023-02537-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/20/2023] [Indexed: 03/24/2023]
Abstract
The multidisciplinary Epigenetics and Chromatin Clinic at Johns Hopkins provides comprehensive medical care for individuals with rare disorders that involve disrupted epigenetics. Initially centered on classical imprinting disorders, the focus shifted to the rapidly emerging group of genetic disorders resulting from pathogenic germline variants in epigenetic machinery genes. These are collectively called the Mendelian disorders of the epigenetic machinery (MDEMs), or more broadly, Chromatinopathies. In five years, 741 clinic visits have been completed for 432 individual patients, with 153 having confirmed epigenetic diagnoses. Of these, 115 individuals have one of 26 MDEMs with every single one exhibiting global developmental delay and/or intellectual disability. This supports prior observations that intellectual disability is the most common phenotypic feature of MDEMs. Additional common phenotypes in our clinic include growth abnormalities and neurodevelopmental issues, particularly hypotonia, attention-deficit/hyperactivity disorder (ADHD), and anxiety, with seizures and autism being less common. Overall, our patient population is representative of the broader group of MDEMs and includes mostly autosomal dominant disorders impacting writers more so than erasers, readers, and remodelers of chromatin marks. There is an increased representation of dual function components with a reader and an enzymatic domain. As expected, diagnoses were made mostly by sequencing but were aided in some cases by DNA methylation profiling. Our clinic has helped to facilitate the discovery of two new disorders, and our providers are actively developing and implementing novel therapeutic strategies for MDEMs. These data and our high follow-up rate of over 60% suggest that we are achieving our mission to diagnose, learn from, and provide optimal care for our patients with disrupted epigenetics.
Collapse
Affiliation(s)
- Jacqueline R Harris
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kennedy Krieger Institute, Baltimore, MD, USA
| | - Christine W Gao
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Johns Hopkins Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacquelyn F Britton
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carolyn D Applegate
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hans T Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Landspitali University Hospital, Reykjavik, Iceland
| | - Jill A Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
16
|
Kaur A, Chaudhry C, Kaur P, Daniel R, Srivastava P. Pattern Recognition of Common Multiple Congenital Malformation Syndromes with Underlying Chromatinopathy. J Pediatr Genet 2024; 13:6-14. [PMID: 38567171 PMCID: PMC10984715 DOI: 10.1055/s-0042-1748019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/07/2022] [Indexed: 10/17/2022]
Abstract
Chromatinopathy is an emerging category of multiple malformation syndromes caused by disruption in global transcriptional regulation with imbalances in the chromatin states (i.e., open or closed chromatin). These syndromes are caused by pathogenic variants in genes coding for the writers, erasers, readers, and remodelers of the epigenetic machinery. Majority of these disorders (93%) show neurological dysfunction in the form of intellectual disability. Other overlapping features are growth abnormalities, limb deformities, and immune dysfunction. In this study, we describe a series of children with six common chromatinopathy syndromes with an aim to develop pattern recognition of this emerging category of multiple malformation syndromes.
Collapse
Affiliation(s)
- Anupriya Kaur
- Department of Paediatrics, Genetic Metabolic Unit, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Chakshu Chaudhry
- Department of Paediatrics, Genetic Metabolic Unit, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Parminder Kaur
- Department of Paediatrics, Genetic Metabolic Unit, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Roshan Daniel
- Department of Paediatrics, Genetic Metabolic Unit, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Priyanka Srivastava
- Department of Paediatrics, Genetic Metabolic Unit, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
17
|
Gao CW, Lin W, Riddle RC, Kushwaha P, Boukas L, Björnsson HT, Hansen KD, Fahrner JA. A mouse model of Weaver syndrome displays overgrowth and excess osteogenesis reversible with KDM6A/6B inhibition. JCI Insight 2024; 9:e173392. [PMID: 38015625 PMCID: PMC10906465 DOI: 10.1172/jci.insight.173392] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
Weaver syndrome is a Mendelian disorder of the epigenetic machinery (MDEM) caused by germline pathogenic variants in EZH2, which encodes the predominant H3K27 methyltransferase and key enzymatic component of Polycomb repressive complex 2 (PRC2). Weaver syndrome is characterized by striking overgrowth and advanced bone age, intellectual disability, and distinctive facies. We generated a mouse model for the most common Weaver syndrome missense variant, EZH2 p.R684C. Ezh2R684C/R684C mouse embryonic fibroblasts (MEFs) showed global depletion of H3K27me3. Ezh2R684C/+ mice had abnormal bone parameters, indicative of skeletal overgrowth, and Ezh2R684C/+ osteoblasts showed increased osteogenic activity. RNA-Seq comparing osteoblasts differentiated from Ezh2R684C/+, and Ezh2+/+ BM-mesenchymal stem cells (BM-MSCs) indicated collective dysregulation of the BMP pathway and osteoblast differentiation. Inhibition of the opposing H3K27 demethylases KDM6A and KDM6B substantially reversed the excessive osteogenesis in Ezh2R684C/+ cells both at the transcriptional and phenotypic levels. This supports both the ideas that writers and erasers of histone marks exist in a fine balance to maintain epigenome state and that epigenetic modulating agents have therapeutic potential for the treatment of MDEMs.
Collapse
Affiliation(s)
- Christine W. Gao
- Department of Genetic Medicine
- Department of Molecular Biology and Genetics, and
| | | | - Ryan C. Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA
| | - Priyanka Kushwaha
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Leandros Boukas
- Department of Genetic Medicine
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, Maryland, USA
| | - Hans T. Björnsson
- Department of Genetic Medicine
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Landspítali University Hospital, Reykjavík, Iceland
| | - Kasper D. Hansen
- Department of Genetic Medicine
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jill A. Fahrner
- Department of Genetic Medicine
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Kalinousky AJ, Luperchio TR, Schrode KM, Harris JR, Zhang L, DeLeon VB, Fahrner JA, Lauer AM, Bjornsson HT. KMT2D Deficiency Causes Sensorineural Hearing Loss in Mice and Humans. Genes (Basel) 2023; 15:48. [PMID: 38254937 PMCID: PMC10815913 DOI: 10.3390/genes15010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Individuals with Kabuki syndrome type 1 (KS1) often have hearing loss recognized in middle childhood. Current clinical dogma suggests that this phenotype is caused by frequent infections due to the immune deficiency in KS1 and/or secondary to structural abnormalities of the ear. To clarify some aspects of hearing loss, we collected information on hearing status from 21 individuals with KS1 and found that individuals have both sensorineural and conductive hearing loss, with the average age of presentation being 7 years. Our data suggest that while ear infections and structural abnormalities contribute to the observed hearing loss, these factors do not explain all loss. Using a KS1 mouse model, we found hearing abnormalities from hearing onset, as indicated by auditory brainstem response measurements. In contrast to mouse and human data for CHARGE syndrome, a disorder possessing overlapping clinical features with KS and a well-known cause of hearing loss and structural inner ear abnormalities, there are no apparent structural abnormalities of the cochlea in KS1 mice. The KS1 mice also display diminished distortion product otoacoustic emission levels, which suggests outer hair cell dysfunction. Combining these findings, our data suggests that KMT2D dysfunction causes sensorineural hearing loss compounded with external factors, such as infection.
Collapse
Affiliation(s)
- Allison J. Kalinousky
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (A.J.K.); (T.R.L.); (J.R.H.); (L.Z.); (J.A.F.)
| | - Teresa R. Luperchio
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (A.J.K.); (T.R.L.); (J.R.H.); (L.Z.); (J.A.F.)
| | - Katrina M. Schrode
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (K.M.S.); (A.M.L.)
| | - Jacqueline R. Harris
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (A.J.K.); (T.R.L.); (J.R.H.); (L.Z.); (J.A.F.)
- Department of Neurology, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Li Zhang
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (A.J.K.); (T.R.L.); (J.R.H.); (L.Z.); (J.A.F.)
| | - Valerie B. DeLeon
- Department of Anthropology, University of Florida, Gainesville, FL 32610, USA;
| | - Jill A. Fahrner
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (A.J.K.); (T.R.L.); (J.R.H.); (L.Z.); (J.A.F.)
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Amanda M. Lauer
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (K.M.S.); (A.M.L.)
| | - Hans T. Bjornsson
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (A.J.K.); (T.R.L.); (J.R.H.); (L.Z.); (J.A.F.)
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Landspitali University Hospital, 102 Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| |
Collapse
|
19
|
Li Z, Ning Z. Neonatal Kabuki syndrome caused by KMT2D mutation: A case report. Medicine (Baltimore) 2023; 102:e36681. [PMID: 38115267 PMCID: PMC10727567 DOI: 10.1097/md.0000000000036681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Kabuki syndrome (KS) is an autosomal dominant inherited syndrome that involves multiple organs and systems. Gene mutation is the main cause of KS. The reported mutations in X-linked histone H3 lysine 4 methylase (KMT2D) and KDM6A genes are 2 relatively clear pathogenic pathways. In this paper, we report a case of KS with neonatal hypoglycemia and special features caused by KMT2D gene mutation confirmed by whole exome sequencing, it enriched the clinical phenotype spectrum and gene mutation spectrum of KS, which helps to improve the understanding of the disease. CASE REPORT Through whole exome sequencing, we performed gene diagnosis of a newborn child with special facial features and multiple malformations, which revealed heterozygous mutation of NM_003482.3:c.755dupA(p.His252Glnfs*21) in KMT2D gene. It is consistent with the pathogenesis of KS, an autosomal dominat genetic disease caused by KMT2D gene mutation. This pathogenic mutation has not been prebiously reported. DISCUSSION KS has strong clinical characteristics and biological heterogeneity. Genetic diagnosis can help identify mutant gene types. However, the relationship between genotype and phenotype has not been fully clarified. The molecular etiological mechanism still needs to be further explored and elucidated.
Collapse
Affiliation(s)
- Zhang Li
- The Second Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, China
| | - Zou Ning
- The Second Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, China
| |
Collapse
|
20
|
Shpargel KB, Quickstad G. SETting up the genome: KMT2D and KDM6A genomic function in the Kabuki syndrome craniofacial developmental disorder. Birth Defects Res 2023; 115:1885-1898. [PMID: 37800171 PMCID: PMC11190966 DOI: 10.1002/bdr2.2253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Kabuki syndrome is a congenital developmental disorder that is characterized by distinctive facial gestalt and skeletal abnormalities. Although rare, the disorder shares clinical features with several related craniofacial syndromes that manifest from mutations in chromatin-modifying enzymes. Collectively, these clinical studies underscore the crucial, concerted functions of chromatin factors in shaping developmental genome structure and driving cellular transcriptional states. Kabuki syndrome predominantly results from mutations in KMT2D, a histone H3 lysine 4 methylase, or KDM6A, a histone H3 lysine 27 demethylase. AIMS In this review, we summarize the research efforts to model Kabuki syndrome in vivo to understand the cellular and molecular mechanisms that lead to the craniofacial and skeletal pathogenesis that defines the disorder. DISCUSSION As several studies have indicated the importance of KMT2D and KDM6A function through catalytic-independent mechanisms, we highlight noncanonical roles for these enzymes as recruitment centers for alternative chromatin and transcriptional machinery.
Collapse
Affiliation(s)
- Karl B. Shpargel
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Gabrielle Quickstad
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
21
|
Dyakonova VE. DNA Instability in Neurons: Lifespan Clock and Driver of Evolution. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1719-1731. [PMID: 38105193 DOI: 10.1134/s0006297923110044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023]
Abstract
In the last ten years, the discovery of neuronal DNA postmitotic instability has changed the theoretical landscape in neuroscience and, more broadly, biology. In 2003, A. M. Olovnikov suggested that neuronal DNA is the "initial substrate of aging". Recent experimental data have significantly increased the likelihood of this hypothesis. How does neuronal DNA accumulate damage and in what genome regions? What factors contribute to this process and how are they associated with aging and lifespan? These questions will be discussed in the review. In the course of Metazoan evolution, the instability of neuronal DNA has been accompanied by searching for the pathways to reduce the biological cost of brain activity. Various processes and activities, such as sleep, evolutionary increase in the number of neurons in the vertebrate brain, adult neurogenesis, distribution of neuronal activity, somatic polyploidy, and RNA editing in cephalopods, can be reconsidered in the light of the trade-off between neuronal plasticity and DNA instability in neurons. This topic is of considerable importance for both fundamental neuroscience and translational medicine.
Collapse
Affiliation(s)
- Varvara E Dyakonova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
22
|
Goodman SJ, Luperchio TR, Ellegood J, Chater-Diehl E, Lerch JP, Bjornsson HT, Weksberg R. Peripheral blood DNA methylation and neuroanatomical responses to HDACi treatment that rescues neurological deficits in a Kabuki syndrome mouse model. Clin Epigenetics 2023; 15:172. [PMID: 37884963 PMCID: PMC10605417 DOI: 10.1186/s13148-023-01582-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Recent findings from studies of mouse models of Mendelian disorders of epigenetic machinery strongly support the potential for postnatal therapies to improve neurobehavioral and cognitive deficits. As several of these therapies move into human clinical trials, the search for biomarkers of treatment efficacy is a priority. A potential postnatal treatment of Kabuki syndrome type 1 (KS1), caused by pathogenic variants in KMT2D encoding a histone-lysine methyltransferase, has emerged using a mouse model of KS1 (Kmt2d+/βGeo). In this mouse model, hippocampal memory deficits are ameliorated following treatment with the histone deacetylase inhibitor (HDACi), AR-42. Here, we investigate the effect of both Kmt2d+/βGeo genotype and AR-42 treatment on neuroanatomy and on DNA methylation (DNAm) in peripheral blood. While peripheral blood may not be considered a "primary tissue" with respect to understanding the pathophysiology of neurodevelopmental disorders, it has the potential to serve as an accessible biomarker of disease- and treatment-related changes in the brain. METHODS Half of the KS1 and wildtype mice were treated with 14 days of AR-42. Following treatment, fixed brain samples were imaged using MRI to calculate regional volumes. Blood was assayed for genome-wide DNAm at over 285,000 CpG sites using the Illumina Infinium Mouse Methylation array. DNAm patterns and brain volumes were analyzed in the four groups of animals: wildtype untreated, wildtype AR-42 treated, KS1 untreated and KS1 AR-42 treated. RESULTS We defined a DNAm signature in the blood of KS1 mice, that overlapped with the human KS1 DNAm signature. We also found a striking 10% decrease in total brain volume in untreated KS1 mice compared to untreated wildtype, which correlated with DNAm levels in a subset KS1 signature sites, suggesting that disease severity may be reflected in blood DNAm. Treatment with AR-42 ameliorated DNAm aberrations in KS1 mice at a small number of signature sites. CONCLUSIONS As this treatment impacts both neurological deficits and blood DNAm in mice, future KS clinical trials in humans could be used to assess blood DNAm as an early biomarker of therapeutic efficacy.
Collapse
Affiliation(s)
| | - Teresa Romeo Luperchio
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jacob Ellegood
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Canada
| | - Eric Chater-Diehl
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada
| | - Jason P Lerch
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, UK
| | - Hans Tomas Bjornsson
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, USA
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Landspitali University Hospital, Reykjavík, Iceland
| | - Rosanna Weksberg
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada.
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, Toronto, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Canada.
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
23
|
Yi S, Zhang X, Yang Q, Huang J, Zhou X, Qian J, Pan P, Yi S, Zhang S, Zhang Q, Tang X, Huang L, Zhang Q, Qin Z, Luo J. Clinical and molecular analysis of Guangxi patients with Kabuki syndrome and KMT2D mutations. Heliyon 2023; 9:e20223. [PMID: 37810849 PMCID: PMC10550629 DOI: 10.1016/j.heliyon.2023.e20223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/10/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
Kabuki syndrome (KS) is a multiple congenital anomaly syndrome that is characterized by postnatal growth deficiency, hypotonia, short stature, mild-to-moderate intellectual disability, skeletal abnormalities, persistence of fetal fingertip pads, and distinct facial appearance. It is mainly caused by pathogenic/likely pathogenic variants in the KMT2D or KDM6A genes. Here, we described the clinical features of nine sporadic KS patients with considerable phenotypic heterogeneity. In addition to intellectual disability and short stature, our patients presented with a high prevalence of motor retardation and recurrent otitis media. We recommended that KS should be strongly considered in patients with motor delay, short stature, intellectual disability, language disorder and facial deformities. Nine KMT2D variants, four of which were novel, were identified by whole-exome sequencing. The variants included five nonsense variants, two frameshift variants, one missense variant, and one non-canonical splice site variant. In addition, we reviewed the mutation types of the pathogenic KMT2D variants in the ClinVar database. We also indicated that effective mRNA analysis, using biological materials from patients, is helpful in classifying the pathogenicity of atypical splice site variants. Pedigree segregation analysis may also provide valuable information for pathogenicity classification of novel missense variants. These findings extended the mutation spectrum of KMT2D and provided new insights into the understanding of genotype-phenotype correlations, which are helpful for accurate genetic counseling and treatment optimization.
Collapse
Affiliation(s)
- Sheng Yi
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiaofei Zhang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Pediatrics Department, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qi Yang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingjing Huang
- Department of Surgery, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xunzhao Zhou
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jiale Qian
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Pediatrics Department, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Pingshan Pan
- Department of Obstetrics, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shang Yi
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shujie Zhang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiang Zhang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xianglian Tang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Limei Huang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qinle Zhang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zailong Qin
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingsi Luo
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
24
|
Pan Y, Yao H, Chen G, Tan Q, Chang Q, Ma Y, Liang Z. Fetal Phenotype and Prenatal Diagnosis of Kabuki Syndrome. MATERNAL-FETAL MEDICINE 2023; 5:187-191. [PMID: 40416851 PMCID: PMC12096401 DOI: 10.1097/fm9.0000000000000070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/24/2020] [Indexed: 11/26/2022] Open
Abstract
Kabuki syndrome (MIM 147920) is an autosomal dominant rare disease featured with multiple malformations and mental retardation. The main clinical manifestations of Kabuki syndrome are characteristic facial features, skeletal abnormalities, dermatoglyphic abnormalities, postpartum growth retardation, mild to moderate mental retardation, as well as other structural and functional abnormalities that may involve multiple systems. The establishment of diagnosis needs to be combined with clinical phenotype and the discovery of pathogenic mutation. Compared with the abundant descriptions and records of genotype-phenotype of postpartum patients, few prenatal diagnosis cases of Kabuki syndrome had been reported, which partially result from lacking the knowledge of its phenotype in fetuses that might suggest the diagnosis. This report performed comprehensive prenatal examinations to identify a fetus's etiology with multiple structural anomalies characterized by ascites, thickening of local skin, and cardiac abnormalities. We ruled out intrauterine infection, thalassemia, and chromosome abnormality by corresponding tests. Finally, trio whole-exome sequencing revealed a de novo heterozygous variation c.15641g > A (p.r5214h) in exon 48 of the KMT2D gene was the fetus's genetic pathogeny causing Kabuki syndrome. This result suggests that Kabuki syndrome should be in the suspected etiology list for prenatal hydrops/ascites. Our study confirmed that prenatal whole-exome sequencing is an efficient tool for diagnosing fetal abnormalities, and a multidisciplinary team is necessary for providing pregnancy guidance to patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongyi Ma
- Department of Gynecology & Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400030, China
| | - Zhiqing Liang
- Department of Gynecology & Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400030, China
| |
Collapse
|
25
|
Lumpkin CJ, Harris AW, Connell AJ, Kirk RW, Whiting JA, Saieva L, Pellizzoni L, Burghes AHM, Butchbach MER. Evaluation of the orally bioavailable 4-phenylbutyrate-tethered trichostatin A analogue AR42 in models of spinal muscular atrophy. Sci Rep 2023; 13:10374. [PMID: 37365234 PMCID: PMC10293174 DOI: 10.1038/s41598-023-37496-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 06/22/2023] [Indexed: 06/28/2023] Open
Abstract
Proximal spinal muscular atrophy (SMA) is a leading genetic cause for infant death in the world and results from the selective loss of motor neurons in the spinal cord. SMA is a consequence of low levels of SMN protein and small molecules that can increase SMN expression are of considerable interest as potential therapeutics. Previous studies have shown that both 4-phenylbutyrate (4PBA) and trichostatin A (TSA) increase SMN expression in dermal fibroblasts derived from SMA patients. AR42 is a 4PBA-tethered TSA derivative that is a very potent histone deacetylase inhibitor. SMA patient fibroblasts were treated with either AR42, AR19 (a related analogue), 4PBA, TSA or vehicle for 5 days and then immunostained for SMN localization. AR42 as well as 4PBA and TSA increased the number of SMN-positive nuclear gems in a dose-dependent manner while AR19 did not show marked changes in gem numbers. While gem number was increased in AR42-treated SMA fibroblasts, there were no significant changes in FL-SMN mRNA or SMN protein. The neuroprotective effect of this compound was then assessed in SMNΔ7 SMA (SMN2+/+;SMNΔ7+/+;mSmn-/-) mice. Oral administration of AR42 prior to disease onset increased the average lifespan of SMNΔ7 SMA mice by ~ 27% (20.1 ± 1.6 days for AR42-treated mice vs. 15.8 ± 0.4 days for vehicle-treated mice). AR42 treatment also improved motor function in these mice. AR42 treatment inhibited histone deacetylase (HDAC) activity in treated spinal cord although it did not affect SMN protein expression in these mice. AKT and GSK3β phosphorylation were both significantly increased in SMNΔ7 SMA mouse spinal cords. In conclusion, presymptomatic administration of the HDAC inhibitor AR42 ameliorates the disease phenotype in SMNΔ7 SMA mice in a SMN-independent manner possibly by increasing AKT neuroprotective signaling.
Collapse
Affiliation(s)
- Casey J Lumpkin
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Ashlee W Harris
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
| | - Andrew J Connell
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
| | - Ryan W Kirk
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
| | - Joshua A Whiting
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
| | - Luciano Saieva
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Livio Pellizzoni
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | - Arthur H M Burghes
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Matthew E R Butchbach
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA.
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Ng R, Harris J, Fahrner JA, Bjornsson HT. Individuals with Wiedemann-Steiner syndrome show nonverbal reasoning and visuospatial defects with relative verbal skill sparing. J Int Neuropsychol Soc 2023; 29:512-518. [PMID: 36062544 DOI: 10.1017/s1355617722000467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Wiedemann-Steiner syndrome (WSS) is a rare Mendelian disorder of the epigenetic machinery caused by heterozygous pathogenic variants in KMT2A. Currently, the specific neurocognitive profile of this syndrome remains unknown. This case series provides insight into the cognitive phenotype of WSS. METHODS This study involves a retrospective medical chart review of 10 pediatric patients, each with a molecularly confirmed diagnosis of WSS who underwent clinical neuropsychological evaluation at an academic medical center. RESULTS The majority of patients performed in the below average to very low ranges in Nonverbal Reasoning, Visual/Spatial Perception, Visuoconstruction, Visual Memory, Attention, Working Memory and Math Computation skills. In contrast, over half the sample performed within normal limits on Receptive Vocabulary, Verbal Memory, and Word Reading. Wilcoxon signed rank test showed weaker Nonverbal versus Verbal Reasoning skills (p = .005). Most caregivers reported deficits in executive functioning, most notably in emotion regulation. CONCLUSIONS Nonverbal reasoning/memory, visuospatial/construction, attention, working memory, executive functioning, and math computation skills are areas of weakness among those with WSS. These findings overlap with research on Kabuki syndrome, which is caused by variants in KMT2D, and suggest disruption in the neurogenesis of the hippocampal formation may drive shared pathogenesis of the two syndromes.
Collapse
Affiliation(s)
- Rowena Ng
- Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacqueline Harris
- Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jill A Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hans Tomas Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Landspitali University Hospital, Reykjavik, Iceland
| |
Collapse
|
27
|
El-Sayed A, Aleya L, Kamel M. Epigenetics and the role of nutraceuticals in health and disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28480-28505. [PMID: 36694069 DOI: 10.1007/s11356-023-25236-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
In the post-genomic era, the data provided by complete genome sequencing could not answer several fundamental questions about the causes of many noninfectious diseases, diagnostic biomarkers, and novel therapeutic approaches. The rapidly expanding understanding of epigenetic mechanisms, as well as widespread acceptance of their hypothesized role in disease induction, facilitated the development of a number of novel diagnostic markers and therapeutic concepts. Epigenetic aberrations are reversible in nature, which enables the treatment of serious incurable diseases. Therefore, the interest in epigenetic modulatory effects has increased over the last decade, so about 60,000 publications discussing the expression of epigenetics could be detected in the PubMed database. Out of these, 58,442 were published alone in the last 10 years, including 17,672 reviews (69 historical articles), 314 clinical trials, 202 case reports, 197 meta-analyses, 156 letters to the editor, 108 randomized controlled trials, 87 observation studies, 40 book chapters, 22 published lectures, and 2 clinical trial protocols. The remaining publications are either miscellaneous or a mixture of the previously mentioned items. According to the species and gender, the publications included 44,589 human studies (17,106 females, 14,509 males, and the gender is not mentioned in the remaining papers) and 30,253 animal studies. In the present work, the role of epigenetic modulations in health and disease and the influencing factors in epigenetics are discussed.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, 25030, Besançon Cedex, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
28
|
Bonefas KM, Vallianatos CN, Raines B, Tronson NC, Iwase S. Sexually Dimorphic Alterations in the Transcriptome and Behavior with Loss of Histone Demethylase KDM5C. Cells 2023; 12:637. [PMID: 36831303 PMCID: PMC9954040 DOI: 10.3390/cells12040637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Chromatin dysregulation has emerged as a major hallmark of neurodevelopmental disorders such as intellectual disability (ID) and autism spectrum disorders (ASD). The prevalence of ID and ASD is higher in males compared to females, with unknown mechanisms. Intellectual developmental disorder, X-linked syndromic, Claes-Jensen type (MRXSCJ), is caused by loss-of-function mutations of lysine demethylase 5C (KDM5C), a histone H3K4 demethylase gene. KDM5C escapes X-inactivation, thereby presenting at a higher level in females. Initially, MRXSCJ was exclusively reported in males, while it is increasingly evident that females with heterozygous KDM5C mutations can show cognitive deficits. The mouse model of MRXSCJ, male Kdm5c-hemizygous knockout animals, recapitulates key features of human male patients. However, the behavioral and molecular traits of Kdm5c-heterozygous female mice remain incompletely characterized. Here, we report that gene expression and behavioral abnormalities are readily detectable in Kdm5c-heterozygous female mice, demonstrating the requirement for a higher KDM5C dose in females. Furthermore, we found both shared and sex-specific consequences of a reduced KDM5C dose in social behavior, gene expression, and genetic interaction with the counteracting enzyme KMT2A. These observations provide an essential insight into the sex-biased manifestation of neurodevelopmental disorders and sex chromosome evolution.
Collapse
Affiliation(s)
- Katherine M. Bonefas
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christina N. Vallianatos
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Genetics and Genomics Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brynne Raines
- Department of Psychology, College of LS&A, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natalie C. Tronson
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Psychology, College of LS&A, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shigeki Iwase
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Genetics and Genomics Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
29
|
Ritchie FD, Lizarraga SB. The role of histone methyltransferases in neurocognitive disorders associated with brain size abnormalities. Front Neurosci 2023; 17:989109. [PMID: 36845425 PMCID: PMC9950662 DOI: 10.3389/fnins.2023.989109] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
Brain size is controlled by several factors during neuronal development, including neural progenitor proliferation, neuronal arborization, gliogenesis, cell death, and synaptogenesis. Multiple neurodevelopmental disorders have co-morbid brain size abnormalities, such as microcephaly and macrocephaly. Mutations in histone methyltransferases that modify histone H3 on Lysine 36 and Lysine 4 (H3K36 and H3K4) have been identified in neurodevelopmental disorders involving both microcephaly and macrocephaly. H3K36 and H3K4 methylation are both associated with transcriptional activation and are proposed to sterically hinder the repressive activity of the Polycomb Repressor Complex 2 (PRC2). During neuronal development, tri-methylation of H3K27 (H3K27me3) by PRC2 leads to genome wide transcriptional repression of genes that regulate cell fate transitions and neuronal arborization. Here we provide a review of neurodevelopmental processes and disorders associated with H3K36 and H3K4 histone methyltransferases, with emphasis on processes that contribute to brain size abnormalities. Additionally, we discuss how the counteracting activities of H3K36 and H3K4 modifying enzymes vs. PRC2 could contribute to brain size abnormalities which is an underexplored mechanism in relation to brain size control.
Collapse
|
30
|
Ng R, Bjornsson HT, Fahrner JA, Harris J. Unique profile of academic learning difficulties in Wiedemann-Steiner syndrome. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2023; 67:101-111. [PMID: 36437529 PMCID: PMC9839653 DOI: 10.1111/jir.12993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/06/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Wiedemann-Steiner syndrome (WSS) is a rare genetic disorder caused by heterozygous variants in KMT2A. To date, the cognitive profile associated with WSS remains largely unknown, although emergent case series implicate increased risk of non-verbal reasoning and visual processing deficits. This study examines the academic and learning concerns associated with WSS based on a parent-report screening measure. PARTICIPANTS AND METHODS A total of 25 parents of children/adults with a molecularly-confirmed diagnosis of WSS (mean age = 12.85 years, SD = 7.82) completed the Colorado Learning Difficulties Questionnaire (CLDQ), a parent-screening measure of learning and academic difficulties. Parent ratings were compared to those from a normative community sample to determine focal areas in Math, Reading and Spatial skills that may be weaker within this clinical population. RESULTS On average, parent ratings on the Math (mean Z = -3.08, SD = 0.87) and Spatial scales (mean Z = -2.52, SD = 0.85) were significantly more elevated than that of Reading (mean Z = -1.31, SD = 1.46) (Wilcoxon sign rank test Z < -3.83, P < 0.001), reflecting relatively more challenges observed in these areas. Distribution of parent ratings in Math items largely reflect a positively skewed distribution with most endorsing over three standard deviations below a community sample. In contrast, distributions of parent ratings in Reading and Spatial domains were more symmetric but flat. Ratings for Reading items yielded much larger variance than the other two domains, reflecting a wider range of performance variability. CONCLUSIONS Parent ratings on the CLDQ suggest more difficulties with Math and Spatial skills among those with WSS within group and relative to a community sample. Study results are consistent with recent case reports on the neuropsychological profile associated with WSS and with Kabuki syndrome, which is caused by variants in the related gene KMT2D. Findings lend support for overlapping cognitive patterns across syndromes, implicating potential common disease pathogenesis.
Collapse
Affiliation(s)
- Rowena Ng
- Kennedy Krieger Institute
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine
| | - Hans Tomas Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine
- Department of Pediatrics, Johns Hopkins University School of Medicine
- Faculty of Medicine, University of Iceland, Reykjavik
- Landspitali University Hospital
| | - Jill A. Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine
- Department of Pediatrics, Johns Hopkins University School of Medicine
| | - Jacqueline Harris
- Kennedy Krieger Institute
- Department of Genetic Medicine, Johns Hopkins University School of Medicine
- Department of Pediatrics, Johns Hopkins University School of Medicine
- Department of Neurology, Johns Hopkins University School of Medicine
| |
Collapse
|
31
|
Ng R, Bjornsson HT, Fahrner JA, Harris J. Anxiety in Wiedemann-Steiner syndrome. Am J Med Genet A 2023; 191:437-444. [PMID: 36373844 PMCID: PMC9907226 DOI: 10.1002/ajmg.a.63040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022]
Abstract
This study examined anxiety in Wiedemann-Steiner syndrome (WSS). Eighteen caregivers and participants with WSS completed the parent- and self-report versions of the Screen for Child Anxiety Related Disorder or the adapted version of the Screen for Adult Anxiety Related Disorder. Approximately 33.33% of parents and 65% of participants with WSS rated in the clinical range for overall anxiety. Across anxiety subtypes, parents primarily indicated concerns with Separation Anxiety (72%), which was also endorsed by the majority of participants with WSS (82%). The emergent trend showed Total Anxiety increased with age based on parent-informant ratings. The behavioral phenotype of WSS includes elevated anxiety. Clinical management should include incorporating early behavioral interventions to bolster emotion regulation given the observed risk of anxiety with age.
Collapse
Affiliation(s)
- Rowena Ng
- Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hans Tomas Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Landspitali University Hospital, Reykjavik, Iceland
| | - Jill A. Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jacqueline Harris
- Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
32
|
Maines E, Maiorana A, Leonardi L, Piccoli G, Soffiati M, Franceschi R. A narrative review on pathogenetic mechanisms of hyperinsulinemic hypoglycemia in Kabuki syndrome. Endocr Regul 2023; 57:128-137. [PMID: 37285460 DOI: 10.2478/enr-2023-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
Objective. Kabuki syndrome (KS) is associated with hyperinsulinemic hypoglycemia (HH) in 0.3-4% of patients, thus exceeding the prevalence in the general population. HH association is stronger for KS type 2 (KDM6A-KS, OMIM #300867) than KS type 1 (KMT2D-KS, OMIM #147920). Both the disease-associated genes, KMD6A and KMT2D, modulate the chromatin dynamic. As such, KS is considered to be the best characterized pediatric chromatinopathy. However, the exact pathogenetic mechanisms leading to HH in this syndrome remain still unclear. Methods. We selected on the electronic database PubMed all articles describing or hypothesizing the mechanisms underlying the dysregulated insulin secretion in KS. Results. The impact on the gene expression due to the KDM6A or KMT2D function loss may lead to a deregulated pancreatic β-cell differentiation during embryogenesis. Moreover, both KMT2D gene and KDM6A gene are implicated in promoting the transcription of essential pancreatic β-cell genes and in regulating the metabolic pathways instrumental for insulin release. Somatic KMT2D or KDM6A mutations have also been described in several tumor types, including insulinoma, and have been associated with metabolic pathways promoting pancreatic cell proliferation. Conclusions. The impact of pathogenic variants in KDM6A and KDM2D genes on β-cell insulin release remains to be fully clarified. Understanding this phenomenon may provide valuable insight into the physiological mechanisms of insulin release and into the pathological cascade causing hyperinsulinism in KS. The identification of these molecular targets may open new therapeutic opportunities based on epigenetic modifiers.
Collapse
Affiliation(s)
- Evelina Maines
- 1Division of Pediatrics, S. Chiara General Hospital, APSS, Trento, Italy
| | - Arianna Maiorana
- 2Division of Metabolism and Research Unit of Metabolic Biochemistry, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Letizia Leonardi
- 1Division of Pediatrics, S. Chiara General Hospital, APSS, Trento, Italy
| | - Giovanni Piccoli
- 3CIBIO - Department of Cellular, Computational and Integrative Biology, Università degli Studi di Trento, Italy
| | - Massimo Soffiati
- 1Division of Pediatrics, S. Chiara General Hospital, APSS, Trento, Italy
| | - Roberto Franceschi
- 1Division of Pediatrics, S. Chiara General Hospital, APSS, Trento, Italy
| |
Collapse
|
33
|
Kalinousky AJ, Rapp T, Hijazi H, Johnson J, Bjornsson HT, Harris JR. Neurobehavioral phenotype of Kabuki syndrome: Anxiety is a common feature. Front Genet 2022; 13:1007046. [PMID: 36276984 PMCID: PMC9582441 DOI: 10.3389/fgene.2022.1007046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Kabuki syndrome (KS) is a Mendelian Disorder of the Epigenetic Machinery (MDEM) caused by loss of function variants in either of two genes involved in the regulation of histone methylation, KMT2D (34–76%) or KDM6A (9–13%). Previously, representative neurobehavioral deficits of KS were recapitulated in a mouse model, emphasizing the role of KMT2D in brain development, specifically in ongoing hippocampal neurogenesis in the granule cell layer of the dentate gyrus. Interestingly, anxiety, a phenotype that has a known association with decreased hippocampal neurogenesis, has been anecdotally reported in individuals with KS. In this study, anxiety and behavior were assessed in a cohort of 60 individuals with molecularly confirmed KS and 25 unaffected biological siblings, via questionnaires (SCARED/GAS-ID and CBCL/ABCL). Participant age ranged from 4 to 43 years old, with 88.3% of participants having a pathogenic variant in KMT2D, and the rest having variants in KDM6A. In addition, data was collected on adaptive function and positive affect/quality of life in participants with KS using appropriate online surveys including ABAS-III and PROMIS Positive Affect. Survey scores were compared within the KS participants across age groups and between KS participants and their unaffected siblings. We found that children with KS have significantly higher anxiety scores and total behavior problem scores than their unaffected siblings (p = 0.0225, p < 0.0001). Moreover, a large proportion of affected individuals (22.2% of children and 60.0% of adults) surpassed the established threshold for anxiety; this may even be an underestimate given many patients are already treated for anxiety. In this sample, anxiety levels did not correlate with level of cognitive or adaptive function in any KS participants, but negatively correlated with positive affect in children with KS (p = 0.0005). These findings indicate that anxiety is a common neurobehavioral feature of KS. Providers should therefore carefully screen individuals with KS for anxiety as well as other behavioral issues in order to allow for prompt intervention. Neurobehavioral anxiety measures may also prove to be important outcome measures for clinical trials in KS.
Collapse
Affiliation(s)
- Allison J. Kalinousky
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tyler Rapp
- University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Hadia Hijazi
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Hans Tomas Bjornsson
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Landspitali University Hospital, Reykjavík, Iceland
| | - Jacqueline R. Harris
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kennedy Krieger Institute, Baltimore, MD, United States
- *Correspondence: Jacqueline R. Harris,
| |
Collapse
|
34
|
Rapp T, Kalinousky AJ, Johnson J, Bjornsson H, Harris J. Sleep disturbance is a common feature of Kabuki syndrome. Am J Med Genet A 2022; 188:3041-3048. [PMID: 35930004 PMCID: PMC9474613 DOI: 10.1002/ajmg.a.62921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 01/31/2023]
Abstract
Kabuki syndrome (KS) is a rare epigenetic disorder caused by heterozygous loss of function variants in either KMT2D (90%) or KDM6A (10%), both involved in regulation of histone methylation. While sleep disturbance in other Mendelian disorders of the epigenetic machinery has been reported, no study has been conducted on sleep in KS. This study assessed sleep in 59 participants with KS using a validated sleep questionnaire. Participants ranged in age from 4 to 43 years old with 86% of participants having a pathogenic variant in KMT2D. In addition, data on adaptive function, behavior, anxiety, and quality of life were collected using their respective questionnaires. Some form of sleep issue was present in 71% of participants, with night-waking, daytime sleepiness, and sleep onset delay being the most prevalent. Sleep dysfunction was positively correlated with maladaptive behaviors, anxiety levels, and decreasing quality of life. Sleep issues were not correlated with adaptive function. This study establishes sleep disturbance as a common feature of KS. Quantitative sleep measures may be a useful outcome measure for clinical trials in KS. Further, clinicians caring for those with KS should consider sleep dysfunction as an important feature that impacts overall health and well being in these patients.
Collapse
Affiliation(s)
- Tyler Rapp
- University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Allison J Kalinousky
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Hans Bjornsson
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Landspitali University Hospital, Reykjavik, Iceland
| | - Jacqueline Harris
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Kennedy Krieger Institute, Baltimore, MD 21205, USA
| |
Collapse
|
35
|
Awotoye W, Mossey PA, Hetmanski JB, Gowans LJJ, Eshete MA, Adeyemo WL, Alade A, Zeng E, Adamson O, Naicker T, Anand D, Adeleke C, Busch T, Li M, Petrin A, Aregbesola BS, Braimah RO, Oginni FO, Oladele AO, Oladayo A, Kayali S, Olotu J, Hassan M, Pape J, Donkor P, Arthur FKN, Obiri-Yeboah S, Sabbah DK, Agbenorku P, Plange-Rhule G, Oti AA, Gogal RA, Beaty TH, Taub M, Marazita ML, Schnieders MJ, Lachke SA, Adeyemo AA, Murray JC, Butali A. Whole-genome sequencing reveals de-novo mutations associated with nonsyndromic cleft lip/palate. Sci Rep 2022; 12:11743. [PMID: 35817949 PMCID: PMC9273634 DOI: 10.1038/s41598-022-15885-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/22/2022] [Indexed: 11/08/2022] Open
Abstract
The majority (85%) of nonsyndromic cleft lip with or without cleft palate (nsCL/P) cases occur sporadically, suggesting a role for de novo mutations (DNMs) in the etiology of nsCL/P. To identify high impact protein-altering DNMs that contribute to the risk of nsCL/P, we conducted whole-genome sequencing (WGS) analyses in 130 African case-parent trios (affected probands and unaffected parents). We identified 162 high confidence protein-altering DNMs some of which are based on available evidence, contribute to the risk of nsCL/P. These include novel protein-truncating DNMs in the ACTL6A, ARHGAP10, MINK1, TMEM5 and TTN genes; as well as missense variants in ACAN, DHRS3, DLX6, EPHB2, FKBP10, KMT2D, RECQL4, SEMA3C, SEMA4D, SHH, TP63, and TULP4. Many of these protein-altering DNMs were predicted to be pathogenic. Analysis using mouse transcriptomics data showed that some of these genes are expressed during the development of primary and secondary palate. Gene-set enrichment analysis of the protein-altering DNMs identified palatal development and neural crest migration among the few processes that were significantly enriched. These processes are directly involved in the etiopathogenesis of clefting. The analysis of the coding sequence in the WGS data provides more evidence of the opportunity for novel findings in the African genome.
Collapse
Affiliation(s)
- Waheed Awotoye
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA, USA.
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA.
| | - Peter A Mossey
- Department of Orthodontics, University of Dundee, Dundee, UK
| | - Jacqueline B Hetmanski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lord J J Gowans
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Mekonen A Eshete
- Surgical Department, School Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Wasiu L Adeyemo
- Department of Oral and Maxillofacial Surgery, University of Lagos, Lagos, Nigeria
| | - Azeez Alade
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Erliang Zeng
- Division of Biostatistics and Computational Biology, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Olawale Adamson
- Department of Oral and Maxillofacial Surgery, University of Lagos, Lagos, Nigeria
| | - Thirona Naicker
- Department of Pediatrics, University of KwaZulu-Natal, Durban, South Africa
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, USA
| | - Chinyere Adeleke
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Tamara Busch
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Mary Li
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Aline Petrin
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA, USA
- Department of Orthodontics, University of Iowa, Iowa City, IA, USA
| | - Babatunde S Aregbesola
- Department of Oral and Maxillofacial Surgery, Obafemi Awolowo University, Ile-Ife, Osun, A234, Nigeria
| | - Ramat O Braimah
- Department of Oral and Maxillofacial Surgery, Obafemi Awolowo University, Ile-Ife, Osun, A234, Nigeria
| | - Fadekemi O Oginni
- Department of Oral and Maxillofacial Surgery, Obafemi Awolowo University, Ile-Ife, Osun, A234, Nigeria
| | - Ayodeji O Oladele
- Department of Oral and Maxillofacial Surgery, Obafemi Awolowo University, Ile-Ife, Osun, A234, Nigeria
| | - Abimbola Oladayo
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Sami Kayali
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Joy Olotu
- Department of Anatomy, University of Port Harcourt, Choba, Nigeria
| | - Mohaned Hassan
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - John Pape
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Peter Donkor
- Department of Surgery, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Fareed K N Arthur
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Solomon Obiri-Yeboah
- Department of Maxillofacial Sciences, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Daniel K Sabbah
- Department of Child Oral Health and Orthodontics, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Pius Agbenorku
- Department of Surgery, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Gyikua Plange-Rhule
- Department of Child Health, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alexander Acheampong Oti
- Department of Maxillofacial Sciences, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Rose A Gogal
- Center for Biocatalysis and Bioprocessing (CBB), University of Iowa, Iowa City, USA
| | - Terri H Beaty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Margaret Taub
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, and Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael J Schnieders
- Center for Biocatalysis and Bioprocessing (CBB), University of Iowa, Iowa City, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, USA
| | | | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Azeez Butali
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA, USA.
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
36
|
Ojaimi MA, Banimortada BJ, Othman A, Riedhammer KM, Almannai M, El-Hattab AW. Disorders of histone methylation: molecular basis and clinical syndromes. Clin Genet 2022; 102:169-181. [PMID: 35713103 DOI: 10.1111/cge.14181] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/01/2022]
Abstract
Epigenetic modifications of DNA and histone tails are essential for gene expression regulation. They play an essential role in neurodevelopment as nervous system development is a complex process requiring a dynamic pattern of gene expression. Histone methylation is one of the vital epigenetic regulators and mostly occurs on lysine residues of histones H3 and H4. Histone methylation is catalyzed by two sets of enzymes: histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs). KMT2 enzymes form a distinct multi-subunit complex known as COMPASS to enhance their catalytic activity and diversify their biologic functions. Several neurodevelopmental syndromes result from defects of histone methylation which can be caused by deficiencies in histone methyltransferases and demethylases, loss of the histone methyltransferase activator TASP1, or derangements in COMPASS formation. In this review article, the molecular mechanism of histone methylation is discussed followed by summarizing clinical syndromes caused by monogenic defects in histone methylation.
Collapse
Affiliation(s)
- Mode Al Ojaimi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Amna Othman
- Genetics and Genomic Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Korbinian M Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Mohammed Almannai
- Genetics and Precision Medicine Department, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia
| | - Ayman W El-Hattab
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Pediatrics Department, University Hospital Sharjah, Sharjah, United Arab Emirates.,Genetics and Metabolic Department, KidsHeart Medical Center, Abu Dhabi, United Arab Emirates
| |
Collapse
|
37
|
Epigenetics of Autism Spectrum Disorder: Histone Deacetylases. Biol Psychiatry 2022; 91:922-933. [PMID: 35120709 DOI: 10.1016/j.biopsych.2021.11.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/08/2023]
Abstract
The etiology of autism spectrum disorder (ASD) remains unknown, but gene-environment interactions, mediated through epigenetic mechanisms, are thought to be a key contributing factor. Prenatal environmental factors have been shown to be associated with both increased risk of ASD and altered histone deacetylases (HDACs) or acetylation levels. The relationship between epigenetic changes and gene expression in ASD suggests that alterations in histone acetylation, which lead to changes in gene transcription, may play a key role in ASD. Alterations in the acetylome have been demonstrated for several genes in ASD, including genes involved in synaptic function, neuronal excitability, and immune responses, which are mechanisms previously implicated in ASD. We review preclinical and clinical studies that investigated HDACs and autism-associated behaviors and discuss risk genes for ASD that code for proteins associated with HDACs. HDACs are also implicated in neurodevelopmental disorders with a known genetic etiology, such as 15q11-q13 duplication and Phelan-McDermid syndrome, which share clinical features and diagnostic comorbidities (e.g., epilepsy, anxiety, and intellectual disability) with ASD. Furthermore, we highlight factors that affect the behavioral phenotype of acetylome changes, including sensitive developmental periods and brain region specificity in the context of epigenetic programming.
Collapse
|
38
|
Ma Q, Song C, Yin B, Shi Y, Ye L. The role of Trithorax family regulating osteogenic and Chondrogenic differentiation in mesenchymal stem cells. Cell Prolif 2022; 55:e13233. [PMID: 35481717 PMCID: PMC9136489 DOI: 10.1111/cpr.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/17/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) hold great promise and clinical efficacy in bone/cartilage regeneration. With a deeper understanding of stem cell biology over the past decade, epigenetics stands out as one of the most promising ways to control MSCs differentiation. Trithorax group (TrxG) proteins, including the COMPASS family, ASH1L, CBP/p300 as histone modifying factors, and the SWI/SNF complexes as chromatin remodelers, play an important role in gene expression regulation during the process of stem cell differentiation. This review summarises the components and functions of TrxG complexes. We provide an overview of the regulation mechanisms of TrxG in MSCs osteogenic and chondrogenic differentiation, and discuss the prospects of epigenetic regulation mediated by TrxG in bone and cartilage regeneration.
Collapse
Affiliation(s)
- Qingge Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenghao Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bei Yin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Nothof SA, Magdinier F, Van-Gils J. Chromatin Structure and Dynamics: Focus on Neuronal Differentiation and Pathological Implication. Genes (Basel) 2022; 13:genes13040639. [PMID: 35456445 PMCID: PMC9029427 DOI: 10.3390/genes13040639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Chromatin structure is an essential regulator of gene expression. Its state of compaction contributes to the regulation of genetic programs, in particular during differentiation. Epigenetic processes, which include post-translational modifications of histones, DNA methylation and implication of non-coding RNA, are powerful regulators of gene expression. Neurogenesis and neuronal differentiation are spatio-temporally regulated events that allow the formation of the central nervous system components. Here, we review the chromatin structure and post-translational histone modifications associated with neuronal differentiation. Studying the impact of histone modifications on neuronal differentiation improves our understanding of the pathophysiological mechanisms of chromatinopathies and opens up new therapeutic avenues. In addition, we will discuss techniques for the analysis of histone modifications on a genome-wide scale and the pathologies associated with the dysregulation of the epigenetic machinery.
Collapse
Affiliation(s)
- Sophie A. Nothof
- Marseille Medical Genetics, Aix Marseille University, Inserm, CEDEX 05, 13385 Marseille, France; (S.A.N.); (F.M.)
| | - Frédérique Magdinier
- Marseille Medical Genetics, Aix Marseille University, Inserm, CEDEX 05, 13385 Marseille, France; (S.A.N.); (F.M.)
| | - Julien Van-Gils
- Marseille Medical Genetics, Aix Marseille University, Inserm, CEDEX 05, 13385 Marseille, France; (S.A.N.); (F.M.)
- Reference Center AD SOOR, AnDDI-RARE, Inserm U 1211, Medical Genetics Department, Bordeaux University, Center Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France
- Correspondence:
| |
Collapse
|
40
|
Kirsten TB, Silva EP, Biondi TF, Rodrigues PS, Cardoso CV, Massironi SMG, Mori CMC, Bondan EF, Bernardi MM. Bate palmas mutant mice as a model of Kabuki syndrome: Higher susceptibility to infections and vocalization impairments? J Neurosci Res 2022; 100:1438-1451. [PMID: 35362120 DOI: 10.1002/jnr.25050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/11/2022] [Accepted: 03/19/2022] [Indexed: 11/11/2022]
Abstract
The recessive mutant mouse bate palmas (bapa) arose from N-ethyl-N-nitrosourea mutagenesis. Previous studies of our group revealed some behavioral impairments and a mutation in the lysine (K)-specific methyltransferase 2D (Kmt2d) gene. Because mutations in the KMT2D gene in humans are mainly responsible for Kabuki syndrome, this study was proposed to validate bapa mice as a model of Kabuki syndrome. Besides other symptoms, Kabuki syndrome is characterized by increased susceptibility to infections and speech impairments, usually diagnosed in the early childhood. Thus, juvenile male and female bapa mice were studied in different developmental stages (prepubertal period and puberty). To induce sickness behavior and to study infection susceptibility responses, lipopolysaccharide (LPS) was used. To study oral communication, ultrasonic vocalizations were evaluated. Behavioral (open-field test) and central (astrocytic glial fibrillary acidic protein [GFAP] and tyrosine hydroxylase [TH]) evaluations were also performed. Control and bapa female mice emitted 31-kHz ultrasounds on prepubertal period when exploring a novel environment, a frequency not yet described for mice, being defined as 31-kHz exploratory vocalizations. Males, LPS, and puberty inhibited these vocalizations. Bapa mice presented increased motor/exploratory behaviors on prepubertal period due to increased striatal TH expression, revealing striatal dopaminergic system hyperactivity. Combining open-field behavior and GFAP expression, bapa mice did not develop LPS tolerance, that is, they remained expressing signs of sickness behavior after LPS challenge, being more susceptible to infectious/inflammatory processes. It was concluded that bapa mice is a robust experimental model of Kabuki syndrome.
Collapse
Affiliation(s)
- Thiago B Kirsten
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Ericka P Silva
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Thalles F Biondi
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Paula S Rodrigues
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Carolina V Cardoso
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Silvia M G Massironi
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Claudia M C Mori
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Eduardo F Bondan
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Maria M Bernardi
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| |
Collapse
|
41
|
Dauch C, Shim S, Cole MW, Pollock NC, Beer AJ, Ramroop J, Klee V, Allain DC, Shakya R, Knoblaugh SE, Kulewsky J, Toland AE. KMT2D loss drives aggressive tumor phenotypes in cutaneous squamous cell carcinoma. Am J Cancer Res 2022; 12:1309-1322. [PMID: 35411237 PMCID: PMC8984905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most lethal skin cancer. Due to ultraviolet light-induced damage, cSCCs have a high mutation rate, but some genes are more frequently mutated in aggressive cSCCs. Lysine-specific histone methyltransferase 2D (KMT2D) has a two-fold higher mutation frequency in metastatic cSCCs relative to primary non-metastatic associated cSCCs. The role of KMT2D in more aggressive phenotypes in cSCC is uncharacterized. Studies of other tumor types suggest that KMT2D acts to suppress tumor development. To determine whether KMT2D loss has an impact on tumor characteristics, we disrupted KMT2D in a cSCC cell line using CRISPR-cas9 and performed phenotypic analyses. KMT2D loss modestly increased cell proliferation and colony formation (1.4- and 1.6-fold respectively). Cells lacking KMT2D showed increased rates of migration and faster cell cycle progression. In xenograft models, tumors with KMT2D loss showed slight increases in mitotic indices. Collectively, these findings suggest that KMT2D loss-of-function mutations may promote more aggressive and invasive behaviors in cSCC, suggesting that KMT2D-related pathways could be targets for cancer therapies. Future studies to determine the downstream genes and mechanism of phenotypic effect are needed.
Collapse
Affiliation(s)
- Cara Dauch
- Department of Cancer Biology and Genetics, The Ohio State University College of MedicineColumbus, OH 43210, USA
| | - Sharon Shim
- Central Michigan University College of MedicineMount Pleasant, MI 48858, USA
| | - Matthew Wyatt Cole
- Department of Cancer Biology and Genetics, The Ohio State University College of MedicineColumbus, OH 43210, USA
- Department of Radiation Oncology, The Ohio State UniversityColumbus, OH 43210, USA
| | - Nijole C Pollock
- Department of Cancer Biology and Genetics, The Ohio State University College of MedicineColumbus, OH 43210, USA
| | - Abigail J Beer
- Department of Cancer Biology and Genetics, The Ohio State University College of MedicineColumbus, OH 43210, USA
| | - Johnny Ramroop
- Department of Cancer Biology and Genetics, The Ohio State University College of MedicineColumbus, OH 43210, USA
| | - Victoria Klee
- Department of Internal Medicine, Division of Human Genetics, The Ohio State UniversityColumbus, OH 43210, USA
| | - Dawn C Allain
- Department of Internal Medicine, Division of Human Genetics, The Ohio State UniversityColumbus, OH 43210, USA
| | - Reena Shakya
- Comprehensive Cancer Center, The Ohio State UniversityColumbus, OH 43210, USA
| | - Sue E Knoblaugh
- Department of Veterinary Biosciences, The Ohio State UniversityColumbus, OH 43210, USA
| | - Jesse Kulewsky
- Department of Pathology, The Ohio State University Wexner Medical CenterColumbus, OH 43210, USA
| | - Amanda Ewart Toland
- Department of Cancer Biology and Genetics, The Ohio State University College of MedicineColumbus, OH 43210, USA
- Department of Internal Medicine, Division of Human Genetics, The Ohio State UniversityColumbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State UniversityColumbus, OH 43210, USA
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW There are currently no approved medications for the core symptoms of autism spectrum disorder (ASD), and only limited data on the management of co-occurring mental health and behavioural symptoms. The purpose of this review is to synthesize recent trials on novel treatments in ASD, with a focus on research trends in the past 2 years. RECENT FINDINGS No new pharmacologic agents received regulatory approval for use in ASD. Several large randomized controlled trials (RCTs) had negative or ambiguous results (e.g. fluoxetine, oxytocin). A cross-over RCT of an oral cannabinoid suggested possible benefits for disruptive behaviours. Two large-scale multicentre trials of bumetanide were terminated early for lack of efficacy. Multicenter trials using repetitive transcranial magnetic stimulation are underway. Recent meta-analyses indicate that specific behavioural and psychological interventions can support social communication and treat anxiety. Numerous novel treatment targets informed by biological mechanisms are under investigation. SUMMARY Recent data support the use of behavioural and psychological interventions for social communication and anxiety in ASD; data are more limited regarding pharmacotherapy for core and associated symptoms. Next steps include replication of early findings, trials of new molecular targets, and the identification of novel biomarkers, including genetic predictors, of treatment response.
Collapse
Affiliation(s)
- Danielle Baribeau
- University of Toronto
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Jacob Vorstman
- University of Toronto
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Evdokia Anagnostou
- University of Toronto
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Harnessing the Power of Stem Cell Models to Study Shared Genetic Variants in Congenital Heart Diseases and Neurodevelopmental Disorders. Cells 2022; 11:cells11030460. [PMID: 35159270 PMCID: PMC8833927 DOI: 10.3390/cells11030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/03/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Advances in human pluripotent stem cell (hPSC) technology allow one to deconstruct the human body into specific disease-relevant cell types or create functional units representing various organs. hPSC-based models present a unique opportunity for the study of co-occurring disorders where “cause and effect” can be addressed. Poor neurodevelopmental outcomes have been reported in children with congenital heart diseases (CHD). Intuitively, abnormal cardiac function or surgical intervention may stunt the developing brain, leading to neurodevelopmental disorders (NDD). However, recent work has uncovered several genetic variants within genes associated with the development of both the heart and brain that could also explain this co-occurrence. Given the scalability of hPSCs, straightforward genetic modification, and established differentiation strategies, it is now possible to investigate both CHD and NDD as independent events. We will first overview the potential for shared genetics in both heart and brain development. We will then summarize methods to differentiate both cardiac & neural cells and organoids from hPSCs that represent the developmental process of the heart and forebrain. Finally, we will highlight strategies to rapidly screen several genetic variants together to uncover potential phenotypes and how therapeutic advances could be achieved by hPSC-based models.
Collapse
|
44
|
Di Candia F, Fontana P, Paglia P, Falco M, Rosano C, Piscopo C, Cappuccio G, Siano MA, De Brasi D, Mandato C, De Maggio I, Squeo GM, Monica MD, Scarano G, Lonardo F, Strisciuglio P, Merla G, Melis D. Clinical heterogeneity of Kabuki syndrome in a cohort of Italian patients and review of the literature. Eur J Pediatr 2022; 181:171-187. [PMID: 34232366 PMCID: PMC8760211 DOI: 10.1007/s00431-021-04108-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022]
Abstract
Kabuki syndrome (KS) is a well-recognized disorder characterized by postnatal growth deficiency, dysmorphic facial features, skeletal anomalies, and intellectual disability. The syndrome is caused by KMT2D gene mutations or less frequently KDM6A gene mutations or deletions. We report a systematic evaluation of KS patients from Campania region of Italy; data were also compared with literature ones. We collected data of 15 subjects (8 males and 7 females with age range 10-26 years; mean age 16.9 years) with confirmed diagnosis of KS, representing the entire cohort of patients from Campania Region. Each patient performed biochemical testing and instrumental investigation. Neuro-intellectual development, cranio-facial dysmorphisms, and multisystem involvement data were collected retrospectively. For each category, type of defects and frequency of the anomalies were analyzed. Our observation shows that KS patients from Campania region have some particular and previously underscored, neurological and immunological findings. We found high prevalence of EEG's abnormalities (43%) and MRI brain abnormalities (60%). Microcephaly resulted more common in our series (33%), if compared with major cohorts described in literature. Biochemical features of immunodeficiency and autoimmune diseases including thyroid autoimmunity, polyserositis, and vitiligo were observed with high prevalence (54.5%). Low immunoglobulins levels were a frequent finding. Lymphocyte class investigation showed significantly reduced CD8 levels in one patient.Conclusions: These data confirm great heterogeneity of clinical manifestations in KS and suggest to introduce further clinical diagnostic criteria in order to perform a correct and precocious diagnosis. What is Known • Kabuki syndrome is characterized by growth deficiency, dysmorphic facial features, skeletal anomalies, and intellectual disability • Immune dysfunction is a common finding but autoimmune diseases are rarely seen • Neurological features are common What is New • Some particular facial features could help gestalt diagnosis (hypertelorism, broad nasal bridge, micrognathia, tooth agenesis, cutaneous haemangiomas and strabismus) • Higher prevalence of autoimmune disorders than previously reported • Particular neurological features are present in this cohort (EEG and MRI brain abnormalities).
Collapse
Affiliation(s)
- Francesca Di Candia
- grid.411293.c0000 0004 1754 9702Pediatric Unit, Translational Medicine Department, Federico II University Hospital, Naples, Italy
| | - Paolo Fontana
- Medical Genetics Unit, San Pio Hospital, Benevento, Italy
| | - Pamela Paglia
- Pediatric Unit, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, (Salerno), Baronissi, Italy
| | - Mariateresa Falco
- Pediatric Unit, San Giovanni di Dio e Ruggi d’Aragona University Hospital, Via San Leonardo, 1 – 84131 Salerno, Italy
| | - Carmen Rosano
- grid.411293.c0000 0004 1754 9702Pediatric Unit, Translational Medicine Department, Federico II University Hospital, Naples, Italy
| | - Carmelo Piscopo
- grid.413172.2Medical Genetics Unit, Cardarelli Hospital, Napoli, Italy
| | - Gerarda Cappuccio
- grid.411293.c0000 0004 1754 9702Pediatric Unit, Translational Medicine Department, Federico II University Hospital, Naples, Italy
| | - Maria Anna Siano
- Pediatric Unit, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, (Salerno), Baronissi, Italy
| | - Daniele De Brasi
- Department of Pediatrics, AORN Santobono-Pausilipon, Napoli, Italy
| | - Claudia Mandato
- Department of Pediatrics, AORN Santobono-Pausilipon, Napoli, Italy
| | - Ilaria De Maggio
- grid.413172.2Medical Genetics Unit, Cardarelli Hospital, Napoli, Italy
| | - Gabriella Maria Squeo
- grid.413503.00000 0004 1757 9135Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | | | | | | | - Pietro Strisciuglio
- grid.411293.c0000 0004 1754 9702Pediatric Unit, Translational Medicine Department, Federico II University Hospital, Naples, Italy
| | - Giuseppe Merla
- grid.413503.00000 0004 1757 9135Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Daniela Melis
- Pediatric Unit, Translational Medicine Department, Federico II University Hospital, Naples, Italy. .,Pediatric Unit, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", (Salerno), Baronissi, Italy. .,Pediatric Unit, San Giovanni di Dio e Ruggi d'Aragona University Hospital, Via San Leonardo, 1 - 84131, Salerno, Italy.
| |
Collapse
|
45
|
Ng R, Bjornsson HT, Fahrner JA, Harris J. Sleep disturbances correlate with behavioral problems among individuals with Wiedemann-Steiner syndrome. Front Genet 2022; 13:950082. [PMID: 36313433 PMCID: PMC9608624 DOI: 10.3389/fgene.2022.950082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Wiedemann-Steiner syndrome (WSS) is a rare genetic disorder caused by mutation in KMT2A and characterized by neurodevelopmental delay. This study is the first prospective investigation to examine the sleep and behavioral phenotypes among those with WSS through parent-informant screening inventories. A total of 24 parents of children/adults with WSS (11F, Mean age = 12.71 years, SD = 8.17) completed the Strengths and Difficulties Questionnaire (SDQ) and 22 of these caregivers also completed the Modified Simonds and Parraga Sleep Questionnaire (MSPSQ). On average, the majority of those with WSS (83%) were rated to show borderline to clinical level of behavioral difficulties on the SDQ. Approximately 83% were rated in these ranges for hyperactivity, 63% for emotional problems, and 50% for conduct problems. When applying prior published clinical cut-off for risk of sleep disturbance among those with neurodevelopmental disorders, over 80% of our sample exceeded this limit on the MSPSQ. Largely, caregivers' ratings suggested restless sleep, rigid bedtime rituals, sleep reluctance and breathing through the mouth in sleep were most consistent problems observed. Partial correlations between sleep and behavioral domains showed elevated emotional problems were associated with parasomnia characteristics after controlling for age. Daytime drowsiness and activity were associated with more hyperactivity. Those with more night waking problems and delayed sleep onset were rated to show more severe conduct problems. Overall, these findings suggest dysfunctional sleep behaviors, hyperactivity, and affective problems are part of the neurobehavioral phenotype of WSS. Routine clinical care for those affected by WSS should include close monitoring of sleep and overactive behaviors.
Collapse
Affiliation(s)
- Rowena Ng
- Kennedy Krieger Institute, Baltimore, MD, United States.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hans Tomas Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Landspitali University Hospital, Reykjavik, Iceland
| | - Jill A Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jacqueline Harris
- Kennedy Krieger Institute, Baltimore, MD, United States.,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
46
|
Morgan MAJ, Popova IK, Vaidya A, Burg JM, Marunde MR, Rendleman EJ, Dumar ZJ, Watson R, Meiners MJ, Howard SA, Khalatyan N, Vaughan RM, Rothbart SB, Keogh MC, Shilatifard A. A trivalent nucleosome interaction by PHIP/BRWD2 is disrupted in neurodevelopmental disorders and cancer. Genes Dev 2021; 35:1642-1656. [PMID: 34819353 PMCID: PMC8653789 DOI: 10.1101/gad.348766.121] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022]
Abstract
Mutations in the PHIP/BRWD2 chromatin regulator cause the human neurodevelopmental disorder Chung-Jansen syndrome, while alterations in PHIP expression are linked to cancer. Precisely how PHIP functions in these contexts is not fully understood. Here we demonstrate that PHIP is a chromatin-associated CRL4 ubiquitin ligase substrate receptor and is required for CRL4 recruitment to chromatin. PHIP binds to chromatin through a trivalent reader domain consisting of a H3K4-methyl binding Tudor domain and two bromodomains (BD1 and BD2). Using semisynthetic nucleosomes with defined histone post-translational modifications, we characterize PHIPs BD1 and BD2 as respective readers of H3K14ac and H4K12ac, and identify human disease-associated mutations in each domain and the intervening linker region that likely disrupt chromatin binding. These findings provide new insight into the biological function of this enigmatic chromatin protein and set the stage for the identification of both upstream chromatin modifiers and downstream targets of PHIP in human disease.
Collapse
Affiliation(s)
- Marc A J Morgan
- Simpson Querrey Center for Epigenetics, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | - Anup Vaidya
- EpiCypher, Inc., Durham, North Carolina 27709, USA
| | | | | | - Emily J Rendleman
- Simpson Querrey Center for Epigenetics, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Zachary J Dumar
- Simpson Querrey Center for Epigenetics, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | - Natalia Khalatyan
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Robert M Vaughan
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Minnesota 49503, USA
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Minnesota 49503, USA
| | | | - Ali Shilatifard
- Simpson Querrey Center for Epigenetics, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
47
|
Wright A, Hall A, Daly T, Fontelonga T, Potter S, Schafer C, Lindsley A, Hung C, Bodamer O, Gussoni E. Lysine methyltransferase 2D regulates muscle fiber size and muscle cell differentiation. FASEB J 2021; 35:e21955. [PMID: 34613626 PMCID: PMC8500524 DOI: 10.1096/fj.202100823r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022]
Abstract
Kabuki syndrome (KS) is a rare genetic disorder caused primarily by mutations in the histone modifier genes KMT2D and KDM6A. The genes have broad temporal and spatial expression in many organs, resulting in complex phenotypes observed in KS patients. Hypotonia is one of the clinical presentations associated with KS, yet detailed examination of skeletal muscle samples from KS patients has not been reported. We studied the consequences of loss of KMT2D function in both mouse and human muscles. In mice, heterozygous loss of Kmt2d resulted in reduced neuromuscular junction (NMJ) perimeter, decreased muscle cell differentiation in vitro and impaired myofiber regeneration in vivo. Muscle samples from KS patients of different ages showed presence of increased fibrotic tissue interspersed between myofiber fascicles, which was not seen in mouse muscles. Importantly, when Kmt2d‐deficient muscle stem cells were transplanted in vivo in a physiologic non‐Kabuki environment, their differentiation potential is restored to levels undistinguishable from control cells. Thus, the epigenetic changes due to loss of function of KMT2D appear reversible through a change in milieu, opening a potential therapeutic avenue.
Collapse
Affiliation(s)
- Alec Wright
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Arielle Hall
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Tara Daly
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,The Roya Kabuki Program, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Tatiana Fontelonga
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sarah Potter
- Division of Allergy and Immunology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Caitlin Schafer
- Division of Allergy and Immunology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Andrew Lindsley
- Division of Allergy and Immunology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA.,Amgen, Thousand Oaks, California, USA
| | - Christina Hung
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,The Roya Kabuki Program, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Olaf Bodamer
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,The Roya Kabuki Program, Boston Children's Hospital, Boston, Massachusetts, USA.,Division of Genetics and Genomics, Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
| | - Emanuela Gussoni
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,The Roya Kabuki Program, Boston Children's Hospital, Boston, Massachusetts, USA.,The Stem Cell Program, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
48
|
Luperchio TR, Boukas L, Zhang L, Pilarowski G, Jiang J, Kalinousky A, Hansen KD, Bjornsson HT. Leveraging the Mendelian disorders of the epigenetic machinery to systematically map functional epigenetic variation. eLife 2021; 10:65884. [PMID: 34463256 PMCID: PMC8443249 DOI: 10.7554/elife.65884] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Although each Mendelian Disorder of the Epigenetic Machinery (MDEM) has a different causative gene, there are shared disease manifestations. We hypothesize that this phenotypic convergence is a consequence of shared epigenetic alterations. To identify such shared alterations, we interrogate chromatin (ATAC-seq) and expression (RNA-seq) states in B cells from three MDEM mouse models (Kabuki [KS] type 1 and 2 and Rubinstein-Taybi type 1 [RT1] syndromes). We develop a new approach for the overlap analysis and find extensive overlap primarily localized in gene promoters. We show that disruption of chromatin accessibility at promoters often disrupts downstream gene expression, and identify 587 loci and 264 genes with shared disruption across all three MDEMs. Subtle expression alterations of multiple, IgA-relevant genes, collectively contribute to IgA deficiency in KS1 and RT1, but not in KS2. We propose that the joint study of MDEMs offers a principled approach for systematically mapping functional epigenetic variation in mammals.
Collapse
Affiliation(s)
- Teresa Romeo Luperchio
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Leandros Boukas
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Li Zhang
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Genay Pilarowski
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jenny Jiang
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Allison Kalinousky
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Kasper D Hansen
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Hans T Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Landspitali University Hospital, Reykjavik, Iceland
| |
Collapse
|
49
|
Cacciaguerra L, Valsasina P, Meani A, Riccitelli GC, Radaelli M, Rocca MA, Filippi M. Volume of hippocampal subfields and cognitive deficits in neuromyelitis optica spectrum disorders. Eur J Neurol 2021; 28:4167-4177. [PMID: 34415660 DOI: 10.1111/ene.15073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/28/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Aquaporin-4 (AQP4) water channel is involved in hippocampal plasticity and is the target of neuromyelitis optica spectrum disorders (NMOSD) autoimmunity. We measured volumes of hippocampal subfields and their association with cognitive performance in AQP4-seropositive NMOSD patients. METHODS Global and regional hippocampal volumes were derived from 28 AQP4-seropositive NMOSD patients and 101 healthy controls (HC) from 3D-T1-weighted images. Normalized brain volumes were also calculated. A neuropsychological evaluation, including the Brief Repeatable Battery of Neuropsychological Tests, was performed in patients. Based on HC data, we estimated mean z-scores of volumes in the whole NMOSD group and compared them according to the status of global and domain-selective cognitive impairment. RESULTS Global cognitive impairment was detected in 46.4% of NMOSD patients, with attentive (60.7%) and executive (21.4%) domains being the most affected. NMOSD patients had left hippocampal atrophy at global (p = 0.012) and regional level (fimbria, Cornu Ammonis [CA] 3, molecular layer, dentate gyrus [DG], and subicular complex, p values ranging between 0.033 and <0.001). On the right side the fimbria and hippocampal tail were atrophic (p = 0.024 for both). Cognitively impaired patients showed atrophy in the left CA3 and CA4 (p = 0.025-0.028), while patients presenting verbal and visual memory impairment had significant CA3 and DG atrophy. Those patients with attentive or executive impairment had preserved brain and hippocampal volumes. CONCLUSIONS NMOSD patients showed hippocampal atrophy associated with verbal and visual memory impairment. Such damage did not explain attention and executive function alterations, which were the most common cognitive deficits in this population.
Collapse
Affiliation(s)
- Laura Cacciaguerra
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Valsasina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gianna C Riccitelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marta Radaelli
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
50
|
Novel treatments for autism spectrum disorder based on genomics and systems biology. Pharmacol Ther 2021; 230:107939. [PMID: 34174273 DOI: 10.1016/j.pharmthera.2021.107939] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder with a complex underlying genetic architecture. There are currently no known pharmacologic treatments for the core ASD symptoms of social deficits and restricted/ repetitive behavior. However, there are dozens of clinical trials currently underway that are testing the impact of novel and existing agents on core and associated symptoms in ASD. METHODS We present a narrative synthesis of the historical and contemporary challenges to drug discovery in ASD. We then provide an overview of novel treatments currently under investigation from a genomics and systems biology perspective. RESULTS Data driven network and cluster analyses suggest alterations in transcriptional regulation, chromatin remodelling, synaptic transmission, neuropeptide signalling, and/or immunological mechanisms may contribute to or underlie the development of ASD. Agents and upcoming trials targeting each of the above listed systems are reviewed. CONCLUSION Identifying effective pharmacologic treatments for the core and associated symptom domains in ASD will require further collaboration and innovation in the areas of outcome measurement, biomarker research, and genomics, as well as systematic efforts to identify and treat subgroups of individuals with ASD who may be differentially responsive to specific treatments.
Collapse
|