1
|
Qian C, Wang Z, Xiong Y, Zhang D, Zhong Y, Inuzuka H, Qi Y, Xie L, Chen X, Wei W, Jin J. Harnessing the Deubiquitinase USP1 for Targeted Protein Stabilization. J Am Chem Soc 2025; 147:14564-14573. [PMID: 40252079 PMCID: PMC12077936 DOI: 10.1021/jacs.5c01662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
Deubiquitinase-targeting chimera (DUBTAC) has emerged as a promising technology for targeted protein stabilization (TPS) by harnessing deubiquitinases (DUBs) to remove polyubiquitin chains from target proteins. Despite the presence of over 100 human DUBs, only OTUB1 and USP7 have been utilized in the development of DUBTAC. Hence, there is an urgent need to harness additional DUBs to expand the DUBTAC arsenal. In this work, we demonstrate for the first time that the USP1 deubiquitinase, which is overexpressed in several human cancers, can be leveraged for TPS. We report the development of novel USP1-recruiting DUBTACs by utilizing a noncovalent small-molecule inhibitor of USP1. First, we generated a USP1-based CFTR DUBTAC, MS5310, which effectively stabilized CFTR and is more potent than previously reported CFTR DUBTACs. Next, we developed first-in-class USP1-recruiting UTX DUBTACs, including MS7131, from a small-molecule inhibitor of UTX and JMJD3. Notably, MS7131 effectively stabilized the tumor suppressor UTX in a concentration- and time-dependent manner, while sparing the oncoprotein JMJD3, despite it retaining potent inhibition of JMJD3. Furthermore, UTX stabilization induced by MS7131 was dependent on the engagement of both USP1 and UTX. Consequently, MS7131, but not the parent USP1 inhibitor or UTX inhibitor, effectively reduced histone H3 lysine 27 trimethylation and significantly suppressed the proliferation and clonogenicity of cancer cells. Overall, this study highlights that USP1 can be harnessed for DUBTAC development. Moreover, we developed a valuable chemical tool, MS7131, for the investigation of UTX's distinct functions. This advancement paves the way for leveraging DUBTACs in the treatment of related diseases.
Collapse
Affiliation(s)
- Chao Qian
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Zhen Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Dingpeng Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Yue Zhong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Yihang Qi
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
2
|
Yildirim Z, Noll A, Martin-Hernandez K, Amé JC, Hanini N, Messaddeq N, Robert I, San Martin BR, Hildrestrand G, Bjoras M, Dantzer F. Parp3 assists muscle function and skeletal muscle differentiation by selectively adjusting H3K27me3 enrichment. iScience 2025; 28:112267. [PMID: 40248123 PMCID: PMC12005933 DOI: 10.1016/j.isci.2025.112267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/25/2024] [Accepted: 03/18/2025] [Indexed: 04/19/2025] Open
Abstract
Poly(ADP-ribose) polymerase 3 (Parp3) is known for its role in DNA repair, mitotic division, and cancer aggressiveness. Still, its physiological roles have yet to be defined. Here, we combined in vivo studies using Parp3-deficient mice with in cellulo studies to explore the involvement of Parp3 in skeletal muscle function and muscle differentiation. We show that Parp3 contributes to skeletal muscle integrity and promotes myogenic differentiation. Mechanistically, we show that Parp3 promotes the enrichment of the repressive histone mark H3K27me3 onto a panel of selected genes. For some genes, Parp3 also helps the binding of Ezh2, the histone methyltransferase that catalyzes H3K27me3. Moreover, Parp3 ADP-ribosylates Ezh2 in vitro. Altogether, these findings unveil Parp3 as a driver of efficient murine skeletal myogenesis in vitro and muscle function in young adults, and highlight an epigenetic control of gene expression.
Collapse
Affiliation(s)
- Zuleyha Yildirim
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d’Excellence Medalis, UMR7242, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412 Illkirch, France
| | - Aurélia Noll
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d’Excellence Medalis, UMR7242, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412 Illkirch, France
| | - Kathline Martin-Hernandez
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d’Excellence Medalis, UMR7242, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412 Illkirch, France
| | - Jean-Christophe Amé
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d’Excellence Medalis, UMR7242, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412 Illkirch, France
| | - Najat Hanini
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d’Excellence Medalis, UMR7242, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412 Illkirch, France
| | - Nadia Messaddeq
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France
- CNRS, UMR 7104, 67400 Illkirch, France
- Inserm, UMR-S 1258, 67400 Illkirch, France
| | - Isabelle Robert
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France
- CNRS, UMR 7104, 67400 Illkirch, France
- Inserm, UMR-S 1258, 67400 Illkirch, France
| | - Bernardo Reina San Martin
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France
- CNRS, UMR 7104, 67400 Illkirch, France
- Inserm, UMR-S 1258, 67400 Illkirch, France
| | - Gunn Hildrestrand
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Magnar Bjoras
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Centre for Embryology and Healthy Development, University of Oslo, 0424 Oslo, Norway
| | - Françoise Dantzer
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d’Excellence Medalis, UMR7242, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412 Illkirch, France
| |
Collapse
|
3
|
Cai F, Xu S, Li Y, He Q, Su Q, Chen H, Liu W, Chen J, Wang Q, Assaraf YG, Lin Y, Zhuang W. The role of the LncRNA XIST/miR-15a-5p/MN1 signaling axis in gender disparities in bladder cancer prognosis. Front Immunol 2025; 16:1554829. [PMID: 40308577 PMCID: PMC12040669 DOI: 10.3389/fimmu.2025.1554829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Background Bladder cancer (BC) exhibits significant gender disparities in incidence and prognosis, with women experiencing worse prognosis despite lower incidence rates. This study aims to elucidate the molecular mechanisms underlying these gender-specific differences, focusing on the role of the long non-coding RNA XIST. Methods Comprehensive bioinformatics analysis was performed using TCGA and GSE13507 cohorts to identify gender-differential gene expression. Functional experiments including cell proliferation, migration, and invasion assays were conducted in bladder cancer cell lines. Molecular interactions were investigated through gene knockdown, overexpression, and luciferase reporter assays. A zebrafish model was employed to validate in vivo findings. Results Our study revealed that XIST expression is significantly higher in female bladder cancer tissues and strongly associated with poor prognosis in female patients. The XIST/miR-15a-5p/MN1/FZD2 signaling axis was found to play a critical role in promoting bladder cancer progression. Specifically, XIST upregulates MN1 by sponging miR-15a-5p, which in turn enhances FZD2 expression. Functional experiments demonstrated that XIST knockdown significantly inhibited bladder cancer cell proliferation, migration, and invasion, effects which could be reversed by FZD2 overexpression. Conclusions The XIST/miR-15a-5p/MN1 signaling axis plays a critical role in the gender disparity observed in bladder cancer prognosis, particularly in women. Targeting this pathway may offer new therapeutic strategies for improving outcomes in female BC patients.
Collapse
Affiliation(s)
- Fangzhen Cai
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, Fujian, China
| | - Siwei Xu
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, Fujian, China
| | - Yinan Li
- The School of Clinical Medicine, Fuian Medical University, Fuzhou, China
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qingliu He
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, Fujian, China
| | - Qingfu Su
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, Fujian, China
| | - Heyi Chen
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, Fujian, China
| | - Weihui Liu
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, Fujian, China
| | - Jiabi Chen
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, Fujian, China
| | - Qingshui Wang
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yehuda G. Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yao Lin
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wei Zhuang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
4
|
Ma J, Zhang Y, Li J, Dang Y, Hu D. Regulation of histone H3K27 methylation in inflammation and cancer. MOLECULAR BIOMEDICINE 2025; 6:14. [PMID: 40042761 PMCID: PMC11882493 DOI: 10.1186/s43556-025-00254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
Inflammation is a multifaceted defense mechanism of the immune system against infection. Chronic inflammation is intricately linked to all stages of tumorigenesis and is therefore associated with an elevated risk of developing serious cancers. Epigenetic mechanisms have the capacity to trigger inflammation as well as facilitate tumor development and transformation within an inflammatory context. They achieve this by dynamically modulating the expression of both pro-inflammatory and anti-inflammatory cytokines, which in turn sustains chronic inflammation. The aberrant epigenetic landscape reconfigures the transcriptional programs of inflammatory and oncogenic genes. This reconfiguration is pivotal in dictating the biological functions of both tumor cells and immune cells. Aberrant histone H3 lysine 27 site (H3K27) methylation has been shown to be involved in biological behaviors such as inflammation development, tumor progression, and immune response. The establishment and maintenance of this repressive epigenetic mark is dependent on the involvement of the responsible histone modifying enzymes enhancer of zeste homologue 2 (EZH2), jumonji domain containing 3 (JMJD3) and ubiquitously transcribed tetratricopeptide repeat gene X (UTX) as well as multiple cofactors. In addition, specific pharmacological agents have been shown to modulate H3K27 methylation levels, thereby modulating inflammation and carcinogenesis. This review comprehensively summarises the current characteristics and clinical significance of epigenetic regulation of H3K27 methylation in the context of inflammatory response and tumor progression.
Collapse
Affiliation(s)
- Jing Ma
- Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358 Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Yalin Zhang
- Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358 Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Jingyuan Li
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, (Shanghai University of Traditional Chinese Medicine), Shanghai, 200032, China
| | - Yanqi Dang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, (Shanghai University of Traditional Chinese Medicine), Shanghai, 200032, China.
| | - Dan Hu
- Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358 Datong Road, Pudong New Area, Shanghai, 200137, China.
| |
Collapse
|
5
|
Pan G, Xia Y, Hao M, Guan J, Zhu Q, Zha T, Sheng L, Zhao Z, Pan H, Fang W, Xu X, Chen X, Zhou S, Tong Z. EZH2 suppresses IR-induced ferroptosis by forming a co-repressor complex with HIF-1α to inhibit ACSL4: Targeting EZH2 enhances radiosensitivity in KDM6A-deficient esophageal squamous carcinoma. Cell Death Differ 2025:10.1038/s41418-025-01451-5. [PMID: 39920286 DOI: 10.1038/s41418-025-01451-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/29/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
The mutation status of the lysine demethylase 6 A (KDM6A), a gene antagonist to Enhancer of zeste homolog 2 (EZH2), is closely related to the therapeutic efficacy of EZH2 inhibitors in several malignancies. However, the mutational landscape of KDM6A and the therapeutic targetability of EZH2 inhibitors in esophageal squamous carcinoma (ESCC) remain unreported. Here, we found that approximately 9.18% (9/98) of our study ESCC tissues had KDM6A mutations of which 7 cases resulted in a complete loss of expression and consequent loss of demethylase function. We found that KDM6A-deficient ESCC cells exhibited increased sensitivity to EZH2 inhibitor, and the radiosensitizing activity of EZH2 inhibitor was evident in KDM6A-dficient ESCC cells. Further transcriptome analysis revealed that ferroptosis is implicated in the radiosensitizing effect exerted by EZH2 inhibition on KDM6A-deficient ESCC cells. The following Chromatin Immunoprecipitation (ChIP), co-immunoprecipitation, and luciferase reporter assays demonstrated that in KDM6A-deficient ESCC cells, (1) Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) is the target gene for EZH2 to regulate ferroptosis; (2) The IR-induced hypoxia inducible factor 1 subunit alpha (HIF-1α) is a predominant mediator of EZH2 to repress ACSL4; (3) the HRE7-8 regions of the ACSL4 promoter are required for the repressive function of EZH2 on ACSL4; (4) EZH2 regulates ACSL4 by forming a co-repressive complex with HIF-1α. Our study provides preclinical evidence supporting that EZH2 inhibitors may confer therapeutic benefit in KDM6A-deficient ESCC patients.
Collapse
Affiliation(s)
- Guizhen Pan
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yeye Xia
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, Chengdu Fifth People's Hospital, Chengdu, China
| | - Mengyu Hao
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jiahao Guan
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qianqian Zhu
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Radiation Oncology, Fuyang Tumour Hospital, Fuyang, China
| | - Tianqi Zha
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lei Sheng
- Department of Radiation Oncology, the Chest Hospital of Anhui Province, Hefei, Anhui, China
| | - Zhenfeng Zhao
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Huaguang Pan
- Department of Thoracic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Weiyang Fang
- Department of Electrocardiography, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaoyong Xu
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiangcun Chen
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shuguang Zhou
- The Fifth Clinical College of Anhui Medical University, Hefei, Anhui, China
| | - Zhuting Tong
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
6
|
Sekino Y, Nakahara H, Ikeda K, Kobatake K, Kohada Y, Tasaka R, Takemoto K, Miyamoto S, Kitano H, Goto K, Goriki A, Hieda K, Hinata N. The Gender-Biased Differential Effect of KDM6A Mutation on Immune Therapy in Urothelial Carcinoma: A Public Database Study. Cancers (Basel) 2025; 17:356. [PMID: 39941725 PMCID: PMC11816370 DOI: 10.3390/cancers17030356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: It is said that genes that escape from X chromosome inactivation (XCI) contribute to gender differences. We analyzed the prognostic role of these genes and identified a gender-biased difference in prognosis according to KDM6A mutation in the immune therapy cohort (IMvigor 210). We also investigate the gender-biased differential effect of KDM6A mutation in several public databases of urothelial carcinoma (UC). Methods: We used AACR GENIE, The Cancer Genome Atlas, International Cancer Genome Consortium, several public databases related to immune therapy, chemotherapy, and BCG treatment. We studied the gender-biased prognostic role of KDM6A mutation in several cohorts and the association between KDM6A mutation and immune-related fractions according to gender. Results: The expression of KDM6A was higher in females than in males in several cohorts. Mutation of KDM6A was observed in about 20-25% of the patients. The rate of KDM6A mutation was higher in females than in males in several cohorts. Kaplan-Meier analysis revealed a gender-biased difference in prognosis between patients with KDM6A mutations and those with the wild-type KDM6A in several cohorts, including the immune therapy cohort. The rate of immune-inflamed type was higher in males than in females in the patients with KDM6A mutation in the IMvigor 210 and UC-GENOME studies. Single-sample Gene Set Enrichment Analysis showed that CD8+ cells and type 1 IFN response fractions and APC co-inhibition fraction were higher in the male than female patients with KDM6A mutation. Similar findings were observed in other immune-related studies (UC-GENOME). Conclusions: The effect of KDM6A mutation on immune therapy varied according to gender, and the status of KDM6A mutation may be a promising biomarker in immune therapy in UC.
Collapse
Affiliation(s)
- Yohei Sekino
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Hikaru Nakahara
- Department of Clinical and Molecular Genetics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan;
| | - Kenichiro Ikeda
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Kohei Kobatake
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Yuki Kohada
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Ryo Tasaka
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Kenshiro Takemoto
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Shunsuke Miyamoto
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Hiroyuki Kitano
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Keisuke Goto
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Akihiro Goriki
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Keisuke Hieda
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Nobuyuki Hinata
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| |
Collapse
|
7
|
Smith DJ, Lunj S, Adamson AD, Nagarajan S, Smith TAD, Reeves KJ, Hoskin PJ, Choudhury A. CRISPR-Cas9 potential for identifying novel therapeutic targets in muscle-invasive bladder cancer. Nat Rev Urol 2025; 22:55-65. [PMID: 38951705 DOI: 10.1038/s41585-024-00901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 07/03/2024]
Abstract
Gene editing technologies help identify the genetic perturbations driving tumour initiation, growth, metastasis and resistance to therapeutics. This wealth of information highlights tumour complexity and is driving cancer research towards precision medicine approaches based on an individual's tumour genetics. Bladder cancer is the 11th most common cancer in the UK, with high rates of relapse and low survival rates in patients with muscle-invasive bladder cancer (MIBC). MIBC is highly heterogeneous and encompasses multiple molecular subtypes, each with different responses to therapeutics. This evidence highlights the need to identify innovative therapeutic targets to address the challenges posed by this heterogeneity. CRISPR-Cas9 technologies have been used to advance our understanding of MIBC and determine novel drug targets through the identification of drug resistance mechanisms, targetable cell-cycle regulators, and novel tumour suppressor and oncogenes. However, the use of these technologies in the clinic remains a substantial challenge and will require careful consideration of dosage, safety and ethics. CRISPR-Cas9 offers considerable potential for revolutionizing bladder cancer therapies, but substantial research is required for validation before these technologies can be used in the clinical setting.
Collapse
Affiliation(s)
- Danielle J Smith
- Division of Cancer Sciences, University of Manchester, Manchester, UK.
| | - Sapna Lunj
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Antony D Adamson
- Faculty of Biology, Medicine and Health Research and Innovation, University of Manchester, Manchester, UK
| | - Sankari Nagarajan
- Division of Molecular and Cellular Function, University of Manchester, Manchester, UK
| | - Tim A D Smith
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- Nuclear Futures Institute, Bangor University, Bangor, UK
| | | | - Peter J Hoskin
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Ananya Choudhury
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
8
|
Agostini M, Giacobbi E, Servadei F, Bishof J, Funke L, Sica G, Rovella V, Carilli M, Iacovelli V, Shi Y, Hou J, Candi E, Melino G, Cervelli G, Scimeca M, Mauriello A, Bove P. Unveiling the molecular profile of a prostate carcinoma: implications for personalized medicine. Biol Direct 2024; 19:146. [PMID: 39741346 PMCID: PMC11686862 DOI: 10.1186/s13062-024-00492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Prostate cancer is the most common diagnosed tumor and the fifth cancer related death among men in Europe. Although several genetic alterations such as ERG-TMPRSS2 fusion, MYC amplification, PTEN deletion and mutations in p53 and BRCA2 genes play a key role in the pathogenesis of prostate cancer, specific gene alteration signature that could distinguish indolent from aggressive prostate cancer or may aid in patient stratification for prognosis and/or clinical management of patients with prostate cancer is still missing. Therefore, here, by a multi-omics approach we describe a prostate cancer carrying the fusion of TMPRSS2 with ERG gene and deletion of 16q chromosome arm. RESULTS We have observed deletion of KDM6A gene, which may represent an additional genomic alteration to be considered for patient stratification. The cancer hallmarks gene signatures highlight intriguing molecular aspects that characterize the biology of this tumor by both a high hypoxia and immune infiltration scores. Moreover, our analysis showed a slight increase in the Tumoral Mutational Burden, as well as an over-expression of the immune checkpoints. The omics profiling integrating hypoxia, ROS and the anti-cancer immune response, optimizes therapeutic strategies and advances personalized care for prostate cancer patients. CONCLUSION The here data reported can lay the foundation for predicting a poor prognosis for the studied prostate cancer, as well as the possibility of targeted therapies based on the modulation of hypoxia, ROS, and the anti-cancer immune response.
Collapse
Affiliation(s)
- Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Francesca Servadei
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Julia Bishof
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | - Likas Funke
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | - Giuseppe Sica
- Department of Surgical Science, University Tor Vergata, Viale Oxford 81, 00133, Rome, Italy
| | - Valentina Rovella
- Department of System Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Marco Carilli
- Urology Unit, Department of Surgery, Tor Vergata University of Rome, Rome, Italy
| | - Valerio Iacovelli
- Urology Unit, Department of Surgery, Tor Vergata University of Rome, Rome, Italy
| | - Yufang Shi
- Institutes for Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215000, China
| | - Jianquan Hou
- Institutes for Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215000, China
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Giulio Cervelli
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy.
| | - Pierluigi Bove
- Urology Unit, Department of Surgery, Tor Vergata University of Rome, Rome, Italy.
| |
Collapse
|
9
|
Abou Abdallah F, Abdel Massih C, Attieh C, Chebly A. The impact of mosaic loss of the Y chromosome (mLOY) in men of advanced age. Biogerontology 2024; 25:943-955. [PMID: 39223433 DOI: 10.1007/s10522-024-10133-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The Y chromosome has long been considered to be a "genetic wasteland" harboring only few genes essentially involved in male sex development and spermatogenesis. However, the discovery of mosaic loss of the Y chromosome (mLOY) in older men has led to revisiting of the potential impact of the Y chromosome on health and the pathophysiological processes of multiple diseases such as cancer, Alzheimer's disease and cardiovascular disease. Hence, developing more sensitive techniques for the detection of mLOY has become an emergent concern. In this article, we present a comprehensive review of the literature regarding mLOY. Additionally, we discuss the emerging discoveries concerning mLOY as well as the underlying mechanisms promoting disease in men of advanced age.
Collapse
Affiliation(s)
| | | | - Charbel Attieh
- Center Jacques Loiselet for Medical Genetics and Genomics (CGGM), Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Alain Chebly
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon.
- Center Jacques Loiselet for Medical Genetics and Genomics (CGGM), Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon.
| |
Collapse
|
10
|
Tamagawa H, Fujii M, Togasaki K, Seino T, Kawasaki S, Takano A, Toshimitsu K, Takahashi S, Ohta Y, Matano M, Kawasaki K, Machida Y, Sekine S, Machinaga A, Sasai K, Kodama Y, Kakiuchi N, Ogawa S, Hirano T, Seno H, Kitago M, Kitagawa Y, Iwasaki E, Kanai T, Sato T. Wnt-deficient and hypoxic environment orchestrates squamous reprogramming of human pancreatic ductal adenocarcinoma. Nat Cell Biol 2024; 26:1759-1772. [PMID: 39232216 DOI: 10.1038/s41556-024-01498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Human pancreatic cancer is characterized by the molecular diversity encompassing native duct-like and squamous cell-like identities, but mechanisms underlying squamous transdifferentiation have remained elusive. To comprehensively capture the molecular diversity of human pancreatic cancer, we here profiled 65 patient-derived pancreatic cancer organoid lines, including six adenosquamous carcinoma lines. H3K27me3-mediated erasure of the ductal lineage specifiers and hijacking of the TP63-driven squamous-cell programme drove squamous-cell commitment, providing survival benefit in a Wnt-deficient environment and hypoxic conditions. Gene engineering of normal pancreatic duct organoids revealed that GATA6 loss and a Wnt-deficient environment, in concert with genetic or hypoxia-mediated inactivation of KDM6A, facilitate squamous reprogramming, which in turn enhances environmental fitness. EZH2 inhibition counterbalanced the epigenetic bias and curbed the growth of adenosquamous cancer organoids. Our results demonstrate how an adversarial microenvironment dictates the molecular and histological evolution of human pancreatic cancer and provide insights into the principles and significance of lineage conversion in human cancer.
Collapse
Affiliation(s)
- Hiroki Tamagawa
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Masayuki Fujii
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan.
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| | - Kazuhiro Togasaki
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Seino
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Shintaro Kawasaki
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Ai Takano
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Kohta Toshimitsu
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Sirirat Takahashi
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Ohta
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Mami Matano
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Kenta Kawasaki
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Yujiro Machida
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Shigeki Sekine
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | | | | | - Yuzo Kodama
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomonori Hirano
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Eisuke Iwasaki
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Kanai
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan.
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
11
|
Botrous S, Elmaghraby A, Achy SE, Mustafa Y, Abdel-Rahman S. Artemisinin pre-treatment fore cisplatin dosage enhances high grade urothelial carcinoma treatment in male albino mice via reverse gene expression modulation of FGFR3, HRAS, P53 and KDM6A. BMC Cancer 2024; 24:971. [PMID: 39118085 PMCID: PMC11308388 DOI: 10.1186/s12885-024-12683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Urinary bladder cancer, is the 10th most common global cancer, diagnosed in over 600,000 people causing 200,000 deaths annually. Artemisinin and its derivatives are safe compounds that have recently been proven to possess potent anti-tumor effects in vivo, through inhibition of cancer cell growth. The aim of this study is to assess the efficiency of artemisinin as a cancer treatment alone and as a pre-treatment fore cisplatin therapy for high grade urothelial carcinoma. METHODS Sixty male albino mice were divided into six groups, and BBN was used to induce urinary bladder cancer. Blood samples were tested for renal functions and complete blood counts, kidney and urinary bladder tissues were harvested for histopathological examination. Total RNAs from urinary bladder tissues was collected, and gene expression of FGFR3, HRAS, P53, and KDM6A was quantified using qRT-PCR. RESULTS Compared to the induced cancer group, the results revealed that FGFR3 expression levels were down-regulated in the induced cancer group treated by artemisinin only and the induced cancer group pre-treated with artemisinin prior to cisplatin by ~ 0.86-fold and 0.4-folds, respectively, aligning with HRAS down-regulation by ~ 9.54-fold and 9.05-fold, respectively. Whereas, P53 expression levels were up-regulated by ~ 0.68-fold and 0.84-fold, respectively, in parallel with KDM6A expression, which is up-regulated by ~ 0.95-folds and 5.27-folds, respectively. Also, serum creatinine and urea levels decreased significantly in the induced cancer group treated by artemisinin alone and the induced cancer group pre-treated with artemisinin prior to cisplatin, whereas the induced cancer group treated by cisplatin their levels increased significantly. Moreover, Hb, PLT, RBC, and WBC counts improved in both cancer groups treated by artemisinin alone and pre-treated with artemisinin prior to cisplatin. Histologically, in kidney tissues, artemisinin pre-treatment significantly reduced renal injury caused by cisplatin. While Artemisinin treatment for cancer in bladder tissues reverted invasive urothelial carcinoma to moderate urothelial dysplasia. CONCLUSIONS This study indicates that artemisinin demonstrated a significant effect in reversal of the multi-step carcinogenesis process of high grade urothelial carcinoma and could enhance the effect of cisplatin therapy using artemisinin pre-treatment.
Collapse
Affiliation(s)
- Silvia Botrous
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria, Egypt.
| | - Ayaat Elmaghraby
- Department of Nucleic Acid Research, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Samar El Achy
- Department of Surgical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Yehia Mustafa
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Salah Abdel-Rahman
- Department of Nucleic Acid Research, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt.
| |
Collapse
|
12
|
Zhang S, Lin T, Xiong X, Chen C, Tan P, Wei Q. Targeting histone modifiers in bladder cancer therapy - preclinical and clinical evidence. Nat Rev Urol 2024; 21:495-511. [PMID: 38374198 DOI: 10.1038/s41585-024-00857-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/21/2024]
Abstract
Bladder cancer in the most advanced, muscle-invasive stage is lethal, and very limited therapeutic advances have been reported for decades. To date, cisplatin-based chemotherapy remains the first-line therapy for advanced bladder cancer. Late-line options have historically been limited. In the past few years, next-generation sequencing technology has enabled chromatin remodelling gene mutations to be characterized, showing that these alterations are more frequent in urothelial bladder carcinoma than in other cancer types. Histone modifiers have functional roles in tumour progression by modulating the expression of tumour suppressors and oncogenes and, therefore, have been considered as novel drug targets for cancer therapy. The roles of epigenetic reprogramming through histone modifications have been increasingly studied in bladder cancer, and the therapeutic efficacy of targeting those histone modifiers genetically or chemically is being assessed in preclinical studies. Results from preclinical studies in bladder cancer encouraged the investigation of some of these drugs in clinical trials, which yield mixed results. Further understanding of how alterations of histone modification mechanistically contribute to bladder cancer progression, drug resistance and tumour microenvironment remodelling will be required to facilitate clinical application of epigenetic drugs in bladder cancer.
Collapse
Affiliation(s)
- Shiyu Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tianhai Lin
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xingyu Xiong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chong Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Ping Tan
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
13
|
Feng M, Chai C, Hao X, Lai X, Luo Y, Zhang H, Tang W, Gao N, Pan G, Liu X, Wang Y, Xiong W, Wu Q, Wang J. Inherited KDM6A A649T facilitates tumor-immune escape and exacerbates colorectal signet-ring cell carcinoma outcomes. Oncogene 2024; 43:1757-1768. [PMID: 38622203 DOI: 10.1038/s41388-024-03029-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024]
Abstract
Childhood onset of colorectal signet-ring cell carcinoma (CR-SRCC) is extremely rare and featured as highly malignant with poor prognosis. Here we reported a CR-SRCC case of 11-year-old boy with a novel inherited X-linked KDM6AA694T mutation. The H3K27me3 demethylase KDM6A was frequently mutated in varieties of tumors and acts as a tumor suppressor. In vivo H3K27me3 demethylation assay demonstrated that KDM6AA694T had dampened H3K27me3 demethylase activity. Overexpression of KDM6AA694T in SRCC cell line KATO3 promoted cell proliferation, invasion and migration, which were further confirmed in vivo by constructing orthotopic tumor growth and lung metastasis model. Besides, expression of KDM6AA694T in immune cells suppresses inflammatory macrophage response and effector T cell response. In conclusion, we characterized a novel inherited KDM6AA694T mutant from a childhood-onset SRCC case and demonstrated that the mutant with impaired H3K27me3 demethylase activity could potentiate tumor malignancy and suppress antitumor immunity.
Collapse
Affiliation(s)
- Maoxiao Feng
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Chengwei Chai
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
- Department of Pediatric General Surgery, Guangdong Women and Children Hospital, Guangzhou, 511442, China.
| | - Xiaodong Hao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, 253000, China
| | - Xiaojiang Lai
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yuanyuan Luo
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Hong Zhang
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Wenzhu Tang
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Ningxin Gao
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Guihong Pan
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xiaojie Liu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Wenjing Xiong
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Qiang Wu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Jun Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
14
|
Tong D, Tang Y, Zhong P. The emerging roles of histone demethylases in cancers. Cancer Metastasis Rev 2024; 43:795-821. [PMID: 38227150 DOI: 10.1007/s10555-023-10160-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Modulation of histone methylation status is regarded as an important mechanism of epigenetic regulation and has substantial clinical potential for the therapy of diseases, including cancer and other disorders. The present study aimed to provide a comprehensive introduction to the enzymology of histone demethylases, as well as their cancerous roles, molecular mechanisms, therapeutic possibilities, and challenges for targeting them, in order to advance drug design for clinical therapy and highlight new insight into the mechanisms of these enzymes in cancer. A series of clinical trials have been performed to explore potential roles of histone demethylases in several cancer types. Numerous targeted inhibitors associated with immunotherapy, chemotherapy, radiotherapy, and targeted therapy have been used to exert anticancer functions. Future studies should evaluate the dynamic transformation of histone demethylases leading to carcinogenesis and explore individual therapy.
Collapse
Affiliation(s)
- Dali Tong
- Department of Urological Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China.
| | - Ying Tang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| | - Peng Zhong
- Department of Pathology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China.
| |
Collapse
|
15
|
Jamali M, Barar E, Shi J. Unveiling the Molecular Landscape of Pancreatic Ductal Adenocarcinoma: Insights into the Role of the COMPASS-like Complex. Int J Mol Sci 2024; 25:5069. [PMID: 38791111 PMCID: PMC11121229 DOI: 10.3390/ijms25105069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is poised to become the second leading cause of cancer-related death by 2030, necessitating innovative therapeutic strategies. Genetic and epigenetic alterations, including those involving the COMPASS-like complex genes, have emerged as critical drivers of PDAC progression. This review explores the genetic and epigenetic landscape of PDAC, focusing on the role of the COMPASS-like complex in regulating chromatin accessibility and gene expression. Specifically, we delve into the functions of key components such as KDM6A, KMT2D, KMT2C, KMT2A, and KMT2B, highlighting their significance as potential therapeutic targets. Furthermore, we discuss the implications of these findings for developing novel treatment modalities for PDAC.
Collapse
Affiliation(s)
- Marzieh Jamali
- Department of Pathology & Clinical Labs, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Erfaneh Barar
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Jiaqi Shi
- Department of Pathology & Clinical Labs, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Chauhan A, Gangopadhyay S, Sharma V, Singh S, Koshta K, Singh D, Ansari KM, Srivastava V. Prenatal arsenic exposure alters keratinocyte stem cell fate through persistent activation of IGF2R-MAPK cascade leading to aggravated skin carcinogenesis in mice offspring. Mol Carcinog 2024; 63:817-833. [PMID: 38299738 DOI: 10.1002/mc.23690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
Chronic exposure to arsenic (As) promotes skin carcinogenesis in humans and potentially disturbs resident stem cell dynamics, particularly during maternal and early life exposure. In the present study, we demonstrate how only prenatal arsenic exposure disturbs keratinocyte stem cell (KSC) conditioning using a BALB/c mice model. Prenatal As exposure alters the normal stemness (CD34, KRT5), differentiation (Involucrin), and proliferation (PCNA) program in skin of offspring with progression of age as observed at 2, 10, and 18 weeks. Primary KSCs isolated from exposed animal at Day-2 showed increased survival (Bax:Bcl-xL, TUNEL assay), proliferation (BrdU), and differentiation (KRT5, Involucrin) potential through the activation of pro-carcinogenic IGF2R-MAPK cascade (IGF2R-G(α)q-MEK1-ERK1/2). This was associated with reduced enrichment of histone H3K27me3 and its methylase, EZH2 along with increased binding of demethylase, KDM6A at Igf2r promoter. Altered KSCs conditioning through disturbed Igf2r imprint contributed to impaired proliferation and differentiation and an aggravated tumor response in offspring.
Collapse
Affiliation(s)
- Anchal Chauhan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Siddhartha Gangopadhyay
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vineeta Sharma
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Sukhveer Singh
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kavita Koshta
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Dhirendra Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Animal Facility, ASSIST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Kausar M Ansari
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Food Toxicology Laboratory, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Vikas Srivastava
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
17
|
Ozgun G, Yaras T, Akman B, Özden-Yılmaz G, Landman N, Karakülah G, van Lohuizen M, Senturk S, Erkek-Ozhan S. Retinoids and EZH2 inhibitors cooperate to orchestrate anti-oncogenic effects on bladder cancer cells. Cancer Gene Ther 2024; 31:537-551. [PMID: 38233533 DOI: 10.1038/s41417-024-00725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/19/2024]
Abstract
The highly mutated nature of bladder cancers harboring mutations in chromatin regulatory genes opposing Polycomb-mediated repression highlights the importance of targeting EZH2 in bladder cancer. Furthermore, the critical role of the retinoic acid signaling pathway in the development and homeostasis of the urothelium, and the anti-oncogenic effects of retinoids are well established. Therefore, our aim is to simultaneously target EZH2 and retinoic acid signaling in bladder cancer to potentiate the therapeutic response. Here we report that this coordinated targeting strategy stimulates an anti-oncogenic profile, as reflected by inducing a synergistic reduction in cell viability that was associated with increased apoptosis and cell cycle arrest in a cooperative and orchestrated manner. This study characterized anti-oncogenic transcriptional reprogramming centered on the transcriptional regulator CHOP by stimulating the endoplasmic reticulum stress response. We further portrayed a molecular mechanism whereby EZH2 maintains H3K27me3-mediated repression of a subset of genes involved in unfolded protein responses, reflecting the molecular mechanism underlying this co-targeting strategy. These findings highlight the importance of co-targeting the EZH2 and retinoic acid pathway in bladder cancers and encourage the design of novel treatments employing retinoids coupled with EZH2 inhibitors in bladder carcinoma.
Collapse
Affiliation(s)
- Gizem Ozgun
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Tutku Yaras
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Burcu Akman
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Gülden Özden-Yılmaz
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Nick Landman
- Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Maarten van Lohuizen
- Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Serif Senturk
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | | |
Collapse
|
18
|
Wang Y, Sano S. Why Y matters? The implication of loss of Y chromosome in blood and cancer. Cancer Sci 2024; 115:706-714. [PMID: 38258457 PMCID: PMC10921008 DOI: 10.1111/cas.16072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Hematopoietic mosaic loss of Y chromosome (mLOY) has emerged as a potential male-specific accelerator of biological aging, increasing the risk of various age-related diseases, including cancer. Importantly, mLOY is not confined to hematopoietic cells; its presence has also been observed in nonhematological cancer cells, with the impact of this presence previously unknown. Recent studies have revealed that, whether occurring in leukocytes or cancer cells, mLOY plays a role in promoting the development of an immunosuppressive tumor microenvironment. This occurs through the modulation of tumor-infiltrating immune cells, ultimately enabling cancer cells to evade the vigilant immune system. In this review, we illuminate recent progress concerning the effects of hematopoietic mLOY and cancer mLOY on cancer progression. Examining cancer progression from the perspective of LOY adds a new layer to our understanding of cancer immunity, promising insights that hold the potential to identify innovative and potent immunotherapy targets for cancer.
Collapse
Affiliation(s)
- Ying Wang
- Department of CardiologyThe Second Affiliated Hospital of Army Medical UniversityChongqingChina
| | - Soichi Sano
- Laboratory of Cardiovascular MosaicismNational Cerebral and Cardiovascular CenterOsakaJapan
| |
Collapse
|
19
|
Moussa MJ, Campbell MT, Alhalabi O. Revisiting Treatment of Metastatic Urothelial Cancer: Where Do Cisplatin and Platinum Ineligibility Criteria Stand? Biomedicines 2024; 12:519. [PMID: 38540132 PMCID: PMC10968461 DOI: 10.3390/biomedicines12030519] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 11/11/2024] Open
Abstract
Cisplatin-based chemotherapy has been the standard of care in metastatic urothelial cancer (mUC) for more than two decades. However, many patients with comorbidities cannot receive cisplatin or its alternative, carboplatin. 'Cisplatin-ineligible' and 'platinum-ineligible' patients lacked effective therapy options. However, the recent combination of enfortumab vedotin (EV), an antibody-drug conjugate targeting Nectin-4, with pembrolizumab (P), an antibody targeting the programmed death-1 (PD-1) immune checkpoint, is changing the status quo of frontline mUC treatment, with potential synergy seen in the EV-103 and EV-302 clinical trials. First, we review the working definitions of 'cisplatin ineligibility' and 'platinum ineligibility' in mUC clinical trials and the standard of care in both categories. Then, we review select clinical trials for frontline treatment of cisplatin- and platinum-ineligible mUC patients on ClinicalTrials.gov. We classify the investigated drugs in these trials by their therapeutic strategies. Alongside chemotherapy combinations, the field is witnessing more immunotherapy combinations with fibroblast growth factor receptor (FGFR) inhibitors, bicycle toxin conjugates, bispecific antibodies, innovative targeted therapies, and many others. Most importantly, we rethink the value of classifying patients by cisplatin or platinum ineligibility in the frontline setting in the post-EVP era. Lastly, we discuss new priority goals to tailor predictive, monitoring, and prognostic biomarkers to these emergent therapies.
Collapse
Affiliation(s)
| | | | - Omar Alhalabi
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.J.M.); (M.T.C.)
| |
Collapse
|
20
|
Li H, Jiang W, Liu S, Yang M, Chen S, Pan Y, Cui M. Connecting the mechanisms of tumor sex differences with cancer therapy. Mol Cell Biochem 2024; 479:213-231. [PMID: 37027097 DOI: 10.1007/s11010-023-04723-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 03/26/2023] [Indexed: 04/08/2023]
Abstract
Sex differences in cancer incidence and survival are constant and pronounced globally, across all races and all age groups of cancer types. In 2016, after the National Institutes of Health proposed a policy of utilizing sex as a biological variable, researchers started paying more attention to the molecular mechanisms behind gender variations in cancer. Historically, most previous studies investigating sex differences have been centered on gonadal sex hormones. Nevertheless, sex differences also involve genetic and molecular pathways that run throughout the entire process of cancer cell proliferation, metastasis, and treatment response, in addition to sex hormones. In particular, there is significant gender dimorphism in the efficacy and toxicity of oncology treatments, including conventional radiotherapy and chemotherapy, as well as the emerging targeted therapies and immunotherapy. To be clear, not all mechanisms will exhibit gender bias, and not all gender bias will affect cancer risk. Our goal in this review is to discuss some of the significant sex-related changes in fundamental cancer pathways. To this purpose, we summarize the differential impact of gender on cancer development in three dimensions: sex hormones, genetics, and epigenetics, and focus on current hot subjects including tumor suppressor function, immunology, stem cell renewal, and non-coding RNAs. Clarifying the essential mechanisms of gender differences will help guide the clinical treatment of both sexes in tumor radiation and chemotherapy, medication therapy with various targets, immunotherapy, and even drug development. We anticipate that sex-differentiated research will help advance sex-based cancer personalized medicine models and encourage future basic scientific and clinical research to take sex into account.
Collapse
Affiliation(s)
- Huan Li
- The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Weibo Jiang
- Department of Orthopaedic, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Shui Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Manshi Yang
- The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Siyuan Chen
- The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Yihan Pan
- The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Mengying Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China.
| |
Collapse
|
21
|
Radak M, Ghamari N, Fallahi H. Identification of common factors among fibrosarcoma, rhabdomyosarcoma, and osteosarcoma by network analysis. Biosystems 2024; 235:105093. [PMID: 38052344 DOI: 10.1016/j.biosystems.2023.105093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/07/2023]
Abstract
Sarcoma cancers are uncommon malignant tumors, and there are many subgroups, including fibrosarcoma (FS), which mainly affects middle-aged and older adults in deep soft tissues. Rhabdomyosarcoma (RMS), on the other hand, is the most common soft-tissue sarcoma in children and is located in the head and neck area. Osteosarcomas (OS) is the predominant form of primary bone cancer among young adults, primarily resulting from sporadically random mutations. This frequently results in the dissemination of cancer cells to the lungs, commonly known as metastasis. Mesodermal cells are the origin of sarcoma cancers. In this study, a rather radical approach has been applied. Instead of comparing homogenous cancer types, we focus on three main subtypes of sarcoma: fibrosarcoma, rhabdomyosarcoma, and osteosarcoma, and compare their gene expression with normal cell groups to identify the differentially expressed genes (DEGs). Next, by applying protein-protein interaction (PPI) network analysis, we determine the hub genes and crucial factors, such as transcription factors (TFs), affected by these types of cancer. Our findings indicate a modification in a range of pathways associated with cell cycle, extracellular matrix, and DNA repair in these three malignancies. Results showed that fibrosarcoma (FS), rhabdomyosarcoma (RMS), and osteosarcoma (OS) had 653, 1270, and 2823 differentially expressed genes (DEGs), respectively. Interestingly, there were 24 DEGs common to all three types. Network analysis showed that the fibrosarcoma network had two sub-networks identified in FS that contributed to the catabolic process of collagen via the G-protein coupled receptor signaling pathway. The rhabdomyosarcoma network included nine sub-networks associated with cell division, extracellular matrix organization, mRNA splicing via spliceosome, and others. The osteosarcoma network has 13 sub-networks, including mRNA splicing, sister chromatid cohesion, DNA repair, etc. In conclusion, the common DEGs identified in this study have been shown to play significant and multiple roles in various other cancers based on the literature review, indicating their significance.
Collapse
Affiliation(s)
- Mehran Radak
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, Kermanshah, 6714967346, Iran.
| | - Nakisa Ghamari
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, Kermanshah, 6714967346, Iran.
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, Kermanshah, 6714967346, Iran.
| |
Collapse
|
22
|
Li K, Qi L, Tang G, Xu H, Li Z, Fan B, Li Z, Li Y. Epigenetic Regulation in Urothelial Carcinoma. Curr Mol Med 2024; 24:85-97. [PMID: 36545729 DOI: 10.2174/1566524023666221221094432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022]
Abstract
Urothelial carcinoma (UC) is a common malignancy that remains a clinical challenge: Non-muscle-invasive urothelial carcinoma (NMIUC) has a high rate of recurrence and risk of progression, while muscle-invasive urothelial carcinoma (MIUC) has a high mortality. Although some new treatments, such as immunotherapies, have shown potential effects on some patients, most cases of advanced UC remain incurable. While treatments based on epigenetic mechanisms, whether combined with traditional platinum-based chemotherapy or emerging immunotherapy, show therapeutic advantages. With the advancement of sequencing and bioinformatics, the study of epigenomics, containing DNA methylation, histone modifications, chromatin remodeling, and non-coding RNA, is increasingly linked with the occurrence and progression of UC. Since the epigenetics of UC is a constantly developing field of medicine, this review aims to summarize the latest research on epigenetic regulation of UC, generalize the mechanism of epigenetics in UC, and reveal the potential epigenetic therapies in the clinical setting, in order to provide some new clues on the discovery of new drugs based on the epigenetics.
Collapse
Affiliation(s)
- Ke Li
- Department of Urology, Xiangya Hospital of Central South University, Changsha, China
| | - Lin Qi
- Department of Urology, Xiangya Hospital of Central South University, Changsha, China
| | - Guyu Tang
- Department of Urology, Xiangya Hospital of Central South University, Changsha, China
| | - Haozhe Xu
- Department of Urology, Xiangya Hospital of Central South University, Changsha, China
| | - Zhi Li
- Department of Urology, Xiangya Hospital of Central South University, Changsha, China
| | - Bo Fan
- Department of Urology, Xiangya Hospital of Central South University, Changsha, China
| | - Zhongbei Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Yuan Li
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
23
|
Liu Z, Jin K, Xu Z, Xu J, Su X, Li B, Liu G, Liu H, Chang Y, Wang Y, Xu L, Zhang W, Wang Z, Zhu Y, Xu J. Gender disparities in clinical outcomes of urothelial carcinoma linked to X chromosome gene KDM6A mutation. BMJ ONCOLOGY 2023; 2:e000199. [PMID: 39886491 PMCID: PMC11234999 DOI: 10.1136/bmjonc-2023-000199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/03/2023] [Indexed: 02/01/2025]
Abstract
Objective KDM6A, a representative tumour suppressor gene with sex bias, is frequently altered in urothelial carcinoma (UC). The specific impacts of KDM6A mutations on gender-based clinical outcomes in UC remain poorly understood. Methods and analysis We enrolled 2438 patients with UC from seven independent real-world cohorts possessing comprehensive clinical and genomic data. Point mutations and homozygous deletions of KDM6A are categorised as KDM6A Mut. We assessed the correlation between gender disparities in relation to KDM6A status and clinical outcomes, as well as genomic and immunological profiles. Results KDM6A mutations were identified in 679 of the 2306 patients with UC (29.4%), with 505 of 1768 (28.6%) in men and 174 of 538 (32.3%) in women. KDM6A mutations correlated with enhanced overall survival exclusively in male patients but were linked to improved outcomes following adjuvant chemotherapy only in female patients. Concerning immunotherapeutic responses, KDM6A Mut male patients displayed the most favourable clinical outcomes, whereas KDM6A Mut female patients demonstrated the least favourable outcomes. Independent of gender variations, KDM6A Mut patients exhibited heightened androgen receptor and diminished oestrogen receptor 1 filtered regulon activity. Additionally, KDM6A Mut male patients showed increased infiltration of T cells, cytotoxic T cells and NK cells with enriched neoantigens, in contrast to KDM6A Mut female patients who manifested a more pronounced angiogenesis signature. Conclusion Our findings offer preliminary clinical evidence accentuating KDM6A alterations as a promising prognostic and predictive biomarker while elucidating the gender disparities observed in patients with UC.
Collapse
Affiliation(s)
- Zhaopei Liu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kaifeng Jin
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ziyue Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jingtong Xu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaohe Su
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Bingyu Li
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ge Liu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hailong Liu
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yiwei Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Le Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zewei Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jiejie Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Li D, Liu F, Chen Y, Li P, Liu Y, Pang Y. Ipsilateral synchronous papillary renal neoplasm with reverse polarity and urothelial carcinoma in a renal transplant recipient: a rare case report with molecular analysis and literature review. Diagn Pathol 2023; 18:120. [PMID: 37924117 PMCID: PMC10623754 DOI: 10.1186/s13000-023-01405-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Renal transplant recipients (RTRs) have a 3- to 5-fold higher risk of developing malignant tumors than the general population, with new malignant tumors after transplantation considered to be the leading cause of death in RTRs. In pathological practice, it is rare for neoplasms with different histology to be located in the same organ. We report the first case of a synchronous papillary renal neoplasm with reverse polarity (PRNRP) and urothelial carcinoma (UC) in the ipsilateral kidney in an RTR. Molecular detection was conducted by next-generation sequencing. CASE PRESENTATION A 68-year-old female suffered from uremia 19 years ago and underwent renal transplantation (RT) after receiving dialysis for 6 months. Hematuria occurred one month ago and an enhanced CT showed that there were two abnormal density foci in the middle and lower parts of the autologous left kidney. A laparoscopic left nephrectomy and ureterectomy were performed. Gross examination revealed a mass (I) in the left renal parenchyma, 2*1.8*1.5 cm in size, that protruded from the renal capsule, and a cauliflower-like mass (II), 5*2.5*2 cm in size, adjacent to the mass (I). Microscopic findings revealed these lesions were PRNRP and UC, respectively. PCR analysis revealed a KRAS gene mutation (G12D in exon 2) in the PRNRP, while NGS analysis revealed FGFR3 (S249C in exon 7) and KDM6A (Q271Ter in exon 10 and A782Lfs in exon 17) mutations in the UC. CONCLUSIONS We report here for the first time an extraordinarily rare case of synchronous renal tumors of a PRNRP and UC in the ipsilateral kidney of an RTR. We identified simultaneous KRAS, FGFR3, and KDM6A mutations in two different renal masses in the ipsilateral kidney. Pathologic assessment with comparative molecular analysis of mutational profiles facilitates tumor studies after RT and may be of great value in clinical management strategies.
Collapse
Affiliation(s)
- Daosheng Li
- Department of Pathology, the Affiliated Tai'an City Central Hospital of Qingdao University, Tai'an, 271000, China
| | - Fenfen Liu
- Department of Urology, the Affiliated Tai'an City Central Hospital of Qingdao University, Tai'an, 271000, China
| | - Yiqian Chen
- Department of Rehabilitation, the Affiliated Tai'an City Central Hospital of Qingdao University, Tai'an, 271000, China
| | - Ping Li
- Department of Pathology, the Affiliated Tai'an City Central Hospital of Qingdao University, Tai'an, 271000, China
| | - Yuyu Liu
- Department of Hematology, the Affiliated Tai'an City Central Hospital of Qingdao University, Tai'an, 271000, China
| | - Yu Pang
- Department of Pathology, the Affiliated Tai'an City Central Hospital of Qingdao University, Tai'an, 271000, China.
| |
Collapse
|
25
|
Doshi B, Athans SR, Woloszynska A. Biological differences underlying sex and gender disparities in bladder cancer: current synopsis and future directions. Oncogenesis 2023; 12:44. [PMID: 37666817 PMCID: PMC10477245 DOI: 10.1038/s41389-023-00489-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023] Open
Abstract
Sex and gender disparities in bladder cancer have long been a subject of interest to the cancer research community, wherein men have a 4 times higher incidence rate than women, and female patients often present with higher-grade disease and experience worse outcomes. Despite the known differences in disease incidence and clinical outcomes between male and female bladder cancer patients, clinical management remains the same. In this review, we critically analyze studies that report on the biological differences between men and women and evaluate how these differences contribute to sex and gender disparities in bladder cancer. Distinct characteristics of the male and female immune systems, differences in circulating hormone levels and hormone receptor expression, and different genetic and epigenetic alterations are major biological factors that all likely contribute to disparate incidence rates and outcomes for male and female bladder cancer patients. Future preclinical and clinical studies in this area should employ experimental approaches that account for and consider sex and gender disparities in bladder cancer, thereby facilitating the development of precision medicine for the effective treatment of bladder cancer in all patients.
Collapse
Affiliation(s)
- Bhavisha Doshi
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Sarah R Athans
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Anna Woloszynska
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA.
| |
Collapse
|
26
|
Kobayashi K, Saito Y, Kage H, Fukuoka O, Yamamura K, Mukai T, Oda K, Yamasoba T. CDK12 alterations and ARID1A mutations are predictors of poor prognosis and therapeutic targets in high-grade salivary gland carcinoma: analysis of the National Genomic Profiling Database. Jpn J Clin Oncol 2023; 53:798-807. [PMID: 37357968 DOI: 10.1093/jjco/hyad066] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/03/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Due to the diversity of histopathologic types in salivary gland carcinoma, genomic analysis of large cohorts with next-generation sequencing by histologic type has not been adequately performed. METHODS We analysed data from 93 patients with salivary duct carcinoma and 243 patients with adenoid cystic carcinoma who underwent comprehensive genomic profiling testing in the Center for Cancer Genomics and Advanced Therapeutics database, a Japanese national genome profiling database. We visualised gene mutation profiles using the OncoPrinter platform. Fisher's exact test, Kaplan-Meier analysis, log-rank test and Cox regression models were used for statistical analysis. RESULTS In salivary duct carcinoma, a population with CDK12 and ERBB2 co-amplification was detected in 20 of 37 (54.1%) patients with ERBB2 amplification. We identified five loss-of-function variants in genes related to homologous recombination deficiency, such as BRCA2 and CDK12. Cox survival analysis showed that CDK12 and ERBB2 co-amplification is associated with overall survival (hazard ratio, 3.597; P = 0.045). In salivary duct carcinoma, NOTCH1 mutations were the most common, followed by mutations in chromatin modification genes such as KMT2D, BCOR, KDM6A, ARID1A, EP300 and CREBBP. In the multivariate Cox analysis, activating NOTCH1 mutations (hazard ratio, 3.569; P = 0.009) and ARID1A mutations (hazard ratio, 4.029; P = 0.034) were significantly associated with overall survival. CONCLUSION CDK12 and ERBB2 co-amplification is associated with a poor prognosis in salivary duct carcinoma. Chromatin remodelling genes are deeply involved in tumour progression in adenoid cystic carcinoma. One such gene, ARID1A, was an independent prognostic factor. In salivary duct carcinoma and adenoid cystic carcinoma, there might be minor populations with mutations that could be targeted for treatment with the synthetic lethality approach.
Collapse
Affiliation(s)
- Kenya Kobayashi
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| | - Yuki Saito
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| | - Hidenori Kage
- Department of Next-Generation Precision Medicine Development Laboratory, The University of Tokyo, Tokyo, Japan
| | - Osamu Fukuoka
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| | - Koji Yamamura
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| | - Toshiyuki Mukai
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| | - Katsutoshi Oda
- Department of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Abdel-Hafiz HA, Schafer JM, Chen X, Xiao T, Gauntner TD, Li Z, Theodorescu D. Y chromosome loss in cancer drives growth by evasion of adaptive immunity. Nature 2023; 619:624-631. [PMID: 37344596 PMCID: PMC10975863 DOI: 10.1038/s41586-023-06234-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/18/2023] [Indexed: 06/23/2023]
Abstract
Loss of the Y chromosome (LOY) is observed in multiple cancer types, including 10-40% of bladder cancers1-6, but its clinical and biological significance is unknown. Here, using genomic and transcriptomic studies, we report that LOY correlates with poor prognoses in patients with bladder cancer. We performed in-depth studies of naturally occurring LOY mutant bladder cancer cells as well as those with targeted deletion of Y chromosome by CRISPR-Cas9. Y-positive (Y+) and Y-negative (Y-) tumours grew similarly in vitro, whereas Y- tumours were more aggressive than Y+ tumours in immune-competent hosts in a T cell-dependent manner. High-dimensional flow cytometric analyses demonstrated that Y- tumours promote striking dysfunction or exhaustion of CD8+ T cells in the tumour microenvironment. These findings were validated using single-nuclei RNA sequencing and spatial proteomic evaluation of human bladder cancers. Of note, compared with Y+ tumours, Y- tumours exhibited an increased response to anti-PD-1 immune checkpoint blockade therapy in both mice and patients with cancer. Together, these results demonstrate that cancer cells with LOY mutations alter T cell function, promoting T cell exhaustion and sensitizing them to PD-1-targeted immunotherapy. This work provides insights into the basic biology of LOY mutation and potential biomarkers for improving cancer immunotherapy.
Collapse
Affiliation(s)
- Hany A Abdel-Hafiz
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Johanna M Schafer
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA
- Roche Diagnostics Solutions, Oro Valley, AZ, USA
| | - Xingyu Chen
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tong Xiao
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA
| | - Timothy D Gauntner
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA
| | - Dan Theodorescu
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Cedars-Sinai Cancer Center, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Liu C, Shi Q, Huang X, Koo S, Kong N, Tao W. mRNA-based cancer therapeutics. Nat Rev Cancer 2023:10.1038/s41568-023-00586-2. [PMID: 37311817 DOI: 10.1038/s41568-023-00586-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 06/15/2023]
Abstract
Due to the fact that mRNA technology allows the production of diverse vaccines and treatments in a shorter time frame and with reduced expense compared to conventional approaches, there has been a surge in the use of mRNA-based therapeutics in recent years. With the aim of encoding tumour antigens for cancer vaccines, cytokines for immunotherapy, tumour suppressors to inhibit tumour development, chimeric antigen receptors for engineered T cell therapy or genome-editing proteins for gene therapy, many of these therapeutics have shown promising efficacy in preclinical studies, and some have even entered clinical trials. Given the evidence supporting the effectiveness and safety of clinically approved mRNA vaccines, coupled with growing interest in mRNA-based therapeutics, mRNA technology is poised to become one of the major pillars in cancer drug development. In this Review, we present in vitro transcribed mRNA-based therapeutics for cancer treatment, including the characteristics of the various types of synthetic mRNA, the packaging systems for efficient mRNA delivery, preclinical and clinical studies, current challenges and future prospects in the field. We anticipate the translation of promising mRNA-based treatments into clinical applications, to ultimately benefit patients.
Collapse
Affiliation(s)
- Chuang Liu
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Qiangqiang Shi
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Xiangang Huang
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Seyoung Koo
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Na Kong
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
| | - Wei Tao
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Gilyazova I, Enikeeva K, Rafikova G, Kagirova E, Sharifyanova Y, Asadullina D, Pavlov V. Epigenetic and Immunological Features of Bladder Cancer. Int J Mol Sci 2023; 24:9854. [PMID: 37373000 DOI: 10.3390/ijms24129854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Bladder cancer (BLCA) is one of the most common types of malignant tumors of the urogenital system in adults. Globally, the incidence of BLCA is more than 500,000 new cases worldwide annually, and every year, the number of registered cases of BLCA increases noticeably. Currently, the diagnosis of BLCA is based on cystoscopy and cytological examination of urine and additional laboratory and instrumental studies. However, cystoscopy is an invasive study, and voided urine cytology has a low level of sensitivity, so there is a clear need to develop more reliable markers and test systems for detecting the disease with high sensitivity and specificity. Human body fluids (urine, serum, and plasma) are known to contain significant amounts of tumorigenic nucleic acids, circulating immune cells and proinflammatory mediators that can serve as noninvasive biomarkers, particularly useful for early cancer detection, follow-up of patients, and personalization of their treatment. The review describes the most significant advances in epigenetics of BLCA.
Collapse
Affiliation(s)
- Irina Gilyazova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Kadriia Enikeeva
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Guzel Rafikova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Evelina Kagirova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Yuliya Sharifyanova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Dilara Asadullina
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| |
Collapse
|
30
|
Du Z, Su J, Lin S, Chen T, Gao W, Wang M, Li Y, Wei D, Hu Z, Gao C, Li Q. Hydroxyphenylpyruvate Dioxygenase Is a Metabolic Immune Checkpoint for UTX-deficient Colorectal Cancer. Gastroenterology 2023; 164:1165-1179.e13. [PMID: 36813208 DOI: 10.1053/j.gastro.2023.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/01/2023] [Accepted: 02/11/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND & AIMS Aberrant epigenetic events mediated by histone methyltransferases and demethylases contribute to malignant progression of colorectal cancer (CRC). However, the role of the histone demethylase ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX) in CRC remains poorly understood. METHODS UTX conditional knockout mice and UTX-silenced MC38 cells were used to investigate UTX function in tumorigenesis and development of CRC. We performed time of flight mass cytometry to clarify the functional role of UTX in remodeling immune microenvironment of CRC. To investigate metabolic interaction between myeloid-derived suppressor cells (MDSCs) and CRC, we analyzed metabolomics data to identify metabolites secreted by UTX-deficient cancer cells and taken up by MDSCs. RESULTS We unraveled a tyrosine-mediated metabolic symbiosis between MDSC and UTX-deficient CRC. Loss of UTX in CRC resulted in methylation of phenylalanine hydroxylase, preventing its degradation and subsequently increasing tyrosine synthesis and secretion. Tyrosine taken up by MDSCs was metabolized to homogentisic acid by hydroxyphenylpyruvate dioxygenase. Homogentisic acid modified protein inhibitor of activated STAT3 via carbonylation of Cys 176, and relieved the inhibitory effect of protein inhibitor of activated STAT3 on signal transducer and activator of transcription 5 transcriptional activity. This in turn, promoted MDSC survival and accumulation, enabling CRC cells to acquire invasive and metastatic traits. CONCLUSIONS Collectively, these findings highlight hydroxyphenylpyruvate dioxygenase as a metabolic checkpoint to restrict immunosuppressive MDSCs and to counteract malignant progression of UTX-deficient CRC.
Collapse
Affiliation(s)
- ZunGuo Du
- Department of Pathology, HuaShan Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - JunHui Su
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - ShengLi Lin
- Endoscopy Center, Endoscopy Research Institute, Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Chen
- Endoscopy Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - WenChao Gao
- Department of General Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - MengHui Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - YueHeng Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Dong Wei
- Department of Anus and Intestine Surgery, PLA Central Hospital 150, Luoyang, Henan, China
| | - ZhiQian Hu
- Department of General Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - ChunFang Gao
- Department of Anus and Intestine Surgery, PLA Central Hospital 150, Luoyang, Henan, China
| | - QingQuan Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
31
|
Matar M, Prince G, Hamati I, Baalbaky M, Fares J, Aoude M, Matar C, Kourie HR. Implication of KDM6A in bladder cancer. Pharmacogenomics 2023; 24:509-522. [PMID: 37458596 DOI: 10.2217/pgs-2023-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Background: Bladder cancer is a common urogenital malignancy characterized by frequent genetic alterations. Histone demethylase gene KDM6A is commonly mutated in bladder cancer. Aim: To review the characteristics of KDM6A and its mutation consequences, and to introduce a potential KDM6A-targeted treatment. Methods: We conducted a comprehensive literature search using two electronic databases, MEDLINE and Cochrane Library, to retrieve topic-related articles from July 2013 to July 2022 using keywords 'KDM6A', 'bladder cancer', 'UTX', 'treatment' and 'mutation'. Five reviewers independently screened literature search results and abstracted data from included studies. Descriptive analysis was conducted and 30 articles were retained. Main Results: A total of 30 articles were retrieved. Experimental and clinical data were collected and grouped by theme. Therapeutic strategies are depicted and organized by tables for a better understanding. Conclusion: This review demonstrates that KDM6A has crucial implications in bladder cancer pathogenesis and treatment.
Collapse
Affiliation(s)
- Marianne Matar
- Hematology-Oncology Department, Hotel Dieu De France Hospital, Saint Joseph University of Beirut, Riad El Solh, Lebanon
| | - Gilles Prince
- Hematology-Oncology Department, Hotel Dieu De France Hospital, Saint Joseph University of Beirut, Riad El Solh, Lebanon
| | - Ibrahim Hamati
- Hematology-Oncology Department, Hotel Dieu De France Hospital, Saint Joseph University of Beirut, Riad El Solh, Lebanon
| | - Maria Baalbaky
- Hematology-Oncology Department, Hotel Dieu De France Hospital, Saint Joseph University of Beirut, Riad El Solh, Lebanon
| | - Jonas Fares
- Hematology-Oncology Department, Hotel Dieu De France Hospital, Saint Joseph University of Beirut, Riad El Solh, Lebanon
| | - Marc Aoude
- Hematology-Oncology Department, Hotel Dieu De France Hospital, Saint Joseph University of Beirut, Riad El Solh, Lebanon
| | - Charbel Matar
- Division of Hematology-Oncology, Internal Medicine Department, George Washington University Hospital, 20037, Washington DC, USA
| | - Hampig Raphael Kourie
- Hematology-Oncology Department, Hotel Dieu De France Hospital, Saint Joseph University of Beirut, Riad El Solh, Lebanon
| |
Collapse
|
32
|
Koti M, Bivalacqua T, Black PC, Cathomen T, Galsky MD, Gulley JL, Ingersoll MA, Kamat AM, Kassouf W, Siemens DR, Gao J. Adaptive Immunity in Genitourinary Cancers. Eur Urol Oncol 2023; 6:263-272. [PMID: 37069029 DOI: 10.1016/j.euo.2023.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 04/19/2023]
Abstract
CONTEXT While urothelial and renal cell cancers have exhibited modest responses to novel immune checkpoint inhibitors targeting the programmed death ligand 1 and its receptor, response rates in patients with prostate cancer have remained poor. The factors underlying suboptimal outcomes observed in patients treated with novel immunotherapies are still to be resolved. OBJECTIVE To review the literature and describe the key adaptive immune physiological events associated with cancer progression and therapeutic response in genitourinary (GU) cancers. EVIDENCE ACQUISITION We performed a nonsystematic, collaborative narrative review to highlight recent advancements leading to the current state of knowledge on the critical mediators of antitumor adaptive immunity to GU cancers. Further, we discuss the findings on the pre- and post-treatment immunological events that either are unique to each of the three cancer types or exhibit overlapping clinical associations. EVIDENCE SYNTHESIS Aging-associated immune function decline is a major factor underlying poor outcomes observed in patients treated with both conventional and novel immunotherapies. Other cancer immunobiological aspects associated with suboptimal responses in GU cancers include the overall tumor mutational burden, mutations in specific tumor suppressor/DNA damage repair genes (KDM6A, PTEN, STAG2, TP53, ATM, and BRCA2), and abundance of multiple functional states of adaptive immune cells and their spatiotemporal localization within the tumor immune microenvironment. Understanding these mechanisms may potentially lead to the development of prognostic and predictive biomarkers such as immune cell infiltration profiles and tertiary lymphoid structures (TLSs) that associate with variable clinical outcomes depending on the nature of the novel immunotherapeutic approach. Implementation of newer immune-monitoring technologies and improved preclinical modeling systems will augment our understanding of the host and tumor intrinsic factors contributing to the variability of responses to immunotherapies. CONCLUSIONS Despite the tremendous progress made in the understanding of dynamic and static adaptive immune elements within the tumor immune landscape, several knowledge gaps remain. A comprehensive knowledge thus gained will lead to precision immunotherapy, improved drug sequencing, and a therapeutic response. PATIENT SUMMARY We performed a collaborative review by a diverse group of experts in the field to examine our understanding of the events and crosstalk between cancer cells and the patient's immune system that are associated with responses to novel immunotherapies. An evolving understanding of tumor-intrinsic and host-related immune alterations, both before and after therapy, will aid in the discovery of promising markers of responses to immunotherapy as well as the development of unique therapeutic approaches for the management of genitourinary cancers.
Collapse
Affiliation(s)
- Madhuri Koti
- Department of Biomedical and Molecular Sciences, Cancer Research Institute, Queen's University, Kingston, ON, Canada.
| | - Trinity Bivalacqua
- Department of Urology, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter C Black
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Faculty of Medicine & Medical Center - University of Freiburg, Freiburg, Germany
| | - Matthew D Galsky
- Division of Hematology/Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James L Gulley
- Center for Immuno-Oncology, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Molly A Ingersoll
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, 75014, France; Mucosal Inflammation and Immunity, Department of Immunology, Institut Pasteur, 75015 Paris, France
| | - Ashish M Kamat
- Department of Urology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wassim Kassouf
- Division of Urology, McGill University Health Center, Montreal, QC, Canada
| | - D Robert Siemens
- Department of Urology, Queen's University School of Medicine, Kingston, ON, Canada
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
33
|
Guo Y, Tian C, Cheng Z, Chen R, Li Y, Su F, Shi Y, Tan H. Molecular and Functional Heterogeneity of Primary Pancreatic Neuroendocrine Tumors and Metastases. Neuroendocrinology 2023; 113:943-956. [PMID: 37232011 PMCID: PMC10614458 DOI: 10.1159/000530968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Treatment response to the standard therapy is low for metastatic pancreatic neuroendocrine tumors (PanNETs) mainly due to the tumor heterogeneity. We investigated the heterogeneity between primary PanNETs and metastases to improve the precise treatment. METHODS The genomic and transcriptomic data of PanNETs were retrieved from the Genomics, Evidence, Neoplasia, Information, Exchange (GENIE), and Gene Expression Omnibus (GEO) database, respectively. Potential prognostic effects of gene mutations enriched in metastases were investigated. Gene set enrichment analysis was performed to investigate the functional difference. Oncology Knowledge Base was interrogated for identifying the targetable gene alterations. RESULTS Twenty-one genes had significantly higher mutation rates in metastases which included TP53 (10.3% vs. 16.9%, p = 0.035) and KRAS (3.7% vs. 9.1%, p = 0.016). Signaling pathways related to cell proliferation and metabolism were enriched in metastases, whereas epithelial-mesenchymal transition (EMT) and TGF-β signaling were enriched in primaries. Gene mutations were highly enriched in metastases that had significant unfavorable prognostic effects included mutation of TP53 (p < 0.001), KRAS (p = 0.001), ATM (p = 0.032), KMT2D (p = 0.001), RB1 (p < 0.001), and FAT1 (p < 0.001). Targetable alterations enriched in metastases included mutation of TSC2 (15.5%), ARID1A (9.7%), KRAS (9.1%), PTEN (8.7%), ATM (6.4%), amplification of EGFR (6.0%), MET (5.5%), CDK4 (5.5%), MDM2 (5.0%), and deletion of SMARCB1 (5.0%). CONCLUSION Metastases exhibited a certain extent of genomic and transcriptomic diversity from primary PanNETs. TP53 and KRAS mutation in primary samples might associate with metastasis and contribute to a poorer prognosis. A high fraction of novel targetable alterations enriched in metastases deserves to be validated in advanced PanNETs.
Collapse
Affiliation(s)
- Yiying Guo
- Department of Integrative Oncology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chao Tian
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zixuan Cheng
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ruao Chen
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanliang Li
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fei Su
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Yanfen Shi
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Huangying Tan
- Department of Integrative Oncology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing, China
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
34
|
Burlibasa L, Nicu AT, Chifiriuc MC, Medar C, Petrescu A, Jinga V, Stoica I. H3 histone methylation landscape in male urogenital cancers: from molecular mechanisms to epigenetic biomarkers and therapeutic targets. Front Cell Dev Biol 2023; 11:1181764. [PMID: 37228649 PMCID: PMC10203431 DOI: 10.3389/fcell.2023.1181764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
During the last decades, male urogenital cancers (including prostate, renal, bladder and testicular cancers) have become one of the most frequently encountered malignancies affecting all ages. While their great variety has promoted the development of various diagnosis, treatment and monitoring strategies, some aspects such as the common involvement of epigenetic mechanisms are still not elucidated. Epigenetic processes have come into the spotlight in the past years as important players in the initiation and progression of tumors, leading to a plethora of studies highlighting their potential as biomarkers for diagnosis, staging, prognosis, and even as therapeutic targets. Thus, fostering research on the various epigenetic mechanisms and their roles in cancer remains a priority for the scientific community. This review focuses on one of the main epigenetic mechanisms, namely, the methylation of the histone H3 at various sites and its involvement in male urogenital cancers. This histone modification presents a great interest due to its modulatory effect on gene expression, leading either to activation (e.g., H3K4me3, H3K36me3) or repression (e.g., H3K27me3, H3K9me3). In the last few years, growing evidence has demonstrated the aberrant expression of enzymes that methylate/demethylate histone H3 in cancer and inflammatory diseases, that might contribute to the initiation and progression of such disorders. We highlight how these particular epigenetic modifications are emerging as potential diagnostic and prognostic biomarkers or targets for the treatment of urogenital cancers.
Collapse
Affiliation(s)
| | | | - Mariana Carmen Chifiriuc
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- Romanian Academy, Bucharest, Romania
| | - Cosmin Medar
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Amelia Petrescu
- Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Viorel Jinga
- Academy of Romanian Scientists, Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Ileana Stoica
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
35
|
Yan R, Shen Y, Zhang X, Xu P, Wang J, Li J, Ren F, Ye D, Zhou SK. Histopathological bladder cancer gene mutation prediction with hierarchical deep multiple-instance learning. Med Image Anal 2023; 87:102824. [PMID: 37126973 DOI: 10.1016/j.media.2023.102824] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/13/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Gene mutation detection is usually carried out by molecular biological methods, which is expensive and has a long-time cycle. In contrast, pathological images are ubiquitous. If clinically significant gene mutations can be predicted only through pathological images, it will greatly promote the widespread use of gene mutation detection in clinical practice. However, current gene mutation prediction methods based on pathological images are ineffective because of the inability to identify mutated regions in gigapixel Whole Slide Image (WSI). To address this challenge, hereby we propose a carefully designed framework for WSI-based gene mutation prediction, which consists of three parts. (i) The first part of cancerous area segmentation, based on supervised learning, quickly filters out a large number of non-mutated regions; (ii) the second part of cancerous patch clustering, based on the representations derived from contrastive learning, ensures the comprehensiveness of patch selection; and (iii) the third part of mutation classification, based on the proposed hierarchical deep multi-instance learning method (HDMIL), ensures that sufficient patches are considered and inaccurate selections are ignored. In addition, benefiting from a two-stage attention mechanism in HDMIL, the patches that are highly correlated with gene mutations can be identified. This interpretability can help a pathologist to analyze the correlation between gene mutation and histopathological morphology. Experimental results demonstrate that the proposed gene mutation prediction framework significantly outperforms the state-of-the-art methods. In the TCGA bladder cancer dataset, five clinically relevant gene mutations are well predicted.
Collapse
Affiliation(s)
- Rui Yan
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yijun Shen
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xueyuan Zhang
- Zhijian Life Technology Co., Ltd., Beijing, 100036, China
| | - Peihang Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jun Wang
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jintao Li
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fei Ren
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China; SKLP, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - S Kevin Zhou
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China; School of Biomedical Engineering & Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China.
| |
Collapse
|
36
|
Chen LJ, Xu XY, Zhong XD, Liu YJ, Zhu MH, Tao F, Li CY, She QS, Yang GJ, Chen J. The role of lysine-specific demethylase 6A (KDM6A) in tumorigenesis and its therapeutic potentials in cancer therapy. Bioorg Chem 2023; 133:106409. [PMID: 36753963 DOI: 10.1016/j.bioorg.2023.106409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Histone demethylation is a key post-translational modification of chromatin, and its dysregulation affects a wide array of nuclear activities including the maintenance of genome integrity, transcriptional regulation, and epigenetic inheritance. Lysine specific demethylase 6A (KDM6A, also known as UTX) is an Fe2+- and α-ketoglutarate- dependent oxidase which belongs to KDM6 Jumonji histone demethylase subfamily, and it can remove mono-, di- and tri-methyl groups from methylated lysine 27 of histone H3 (H3K27me1/2/3). Mounting studies indicate that KDM6A is responsible for driving multiple human diseases, particularly cancers and pharmacological inhibition of KDM6A is an effective strategy to treat varieties of KDM6A-amplified cancers in cellulo and in vivo. Although there are several reviews on the roles of KDM6 subfamily in cancer development and therapy, all of them only simply introduce the roles of KDM6A in cancer without systematically summarizing the specific mechanisms of KDM6A in tumorigenesis, which greatly limits the advances on the understanding of roles KDM6A in varieties of cancers, discovering targeting selective KDM6A inhibitors, and exploring the adaptive profiles of KDM6A antagonists. Herein, we present the structure and functions of KDM6A, simply outline the functions of KDM6A in homeostasis and non-cancer diseases, summarize the role of KDM6A and its distinct target genes/ligand proteins in development of varieties of cancers, systematically classify KDM6A inhibitors, sum up the difficulties encountered in the research of KDM6A and the discovery of related drugs, and provide the corresponding solutions, which will contribute to understanding the roles of KDM6A in carcinogenesis and advancing the progression of KDM6A as a drug target in cancer therapy.
Collapse
Affiliation(s)
- Li-Juan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Xin-Yang Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Xiao-Dan Zhong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Ming-Hui Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Fan Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Qiu-Sheng She
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan 467044, Henan, China.
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
37
|
Thompson D, Lawrentschuk N, Bolton D. New Approaches to Targeting Epigenetic Regulation in Bladder Cancer. Cancers (Basel) 2023; 15:cancers15061856. [PMID: 36980741 PMCID: PMC10046617 DOI: 10.3390/cancers15061856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Epigenetics is a growing field and in bladder cancer, it is of particular interest in advanced or metastatic disease. As opposed to genetic mutations in which the nucleotide sequence itself is altered, epigenetic alterations refer to changes to the genome that do not involve nucleotides. This is of great interest in cancer research because epigenetic alterations are reversible, making them a promising target for pharmacological agents. While chemoimmunotherapy is the mainstay for metastatic disease, there are few alternatives for patients who have progressed on first- or second-line treatment. By targeting reversible epigenetic alterations, novel epigenetic therapies are important potential treatment options for these patients. A search of clinical registries was performed in order to identify and collate epigenetic therapies currently in human trials. A literature search was also performed to identify therapies that are currently in preclinical stages, whether this be in vivo or in vitro models. Twenty-five clinical trials were identified that investigated the use of epigenetic inhibitors in patients with bladder cancer, often in combination with another agent, such as platinum-based chemotherapy or pembrolizumab. The main classes of epigenetic inhibitors studied include DNA-methyltransferase (DNMT) inhibitors, histone deacetylase (HDAC) inhibitors, and histone methyltransferase (HMT) inhibitors. At present, no phase 3 clinical trials have been registered. Few trials have published results, though DNMT inhibitors have shown the most promise thus far. Many patients with advanced or metastatic bladder cancer have limited treatment options, particularly when first- or second-line chemoimmunotherapy fails. Epigenetic alterations, which are common in bladder cancer, are potential targets for drug therapies, and these epigenetic agents are already in use for many cancers. While they have shown promise in pre-clinical trials for bladder cancer, more research is needed to assess their benefit in clinical settings.
Collapse
Affiliation(s)
- Daryl Thompson
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Nathan Lawrentschuk
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, VIC 3000, Australia
- Department of Urology, The Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
- EJ Whitten Prostate Cancer Research Centre at Epworth Healthcare, Melbourne, VC 3121, Australia
| | - Damien Bolton
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia
- Olivia Newton-John Cancer and Wellness Centre, Austin Health, Melbourne, VIC 3084, Australia
- Correspondence:
| |
Collapse
|
38
|
Shea LK, Akhave NS, Sutton LA, Compton LA, York C, Ramakrishnan SM, Miller CA, Wartman LD, Chen DY. Combined Kdm6a and Trp53 Deficiency Drives the Development of Squamous Cell Skin Cancer in Mice. J Invest Dermatol 2023; 143:232-241.e6. [PMID: 36055401 PMCID: PMC10334302 DOI: 10.1016/j.jid.2022.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/18/2022] [Accepted: 08/06/2022] [Indexed: 01/25/2023]
Abstract
Cutaneous squamous cell carcinoma (cSCC) has among the highest mutation burdens of all cancers, reflecting its pathogenic association with the mutagenic effects of UV light exposure. Although mutations in cancer-relevant genes such as TP53 and NOTCH1 are common in cSCC, they are also tolerated in normal skin and suggest that other events are required for transformation; it is not yet clear whether epigenetic regulators cooperate in the pathogenesis of cSCC. KDM6A encodes a histone H3K27me2/me3 demethylase that is frequently mutated in cSCC and other cancers. Previous sequencing studies indicate that roughly 7% of cSCC samples harbor KDM6A mutations, including frequent truncating mutations, suggesting a role for this gene as a tumor suppressor in cSCC. Mice with epidermal deficiency of both Kdm6a and Trp53 exhibited 100% penetrant, spontaneous cSCC development within a year, and exome sequencing of resulting tumors reveals recurrent mutations in Ncstn and Vcan. Four of 16 tumors exhibited deletions in large portions of chromosome 1 involving Ncstn, whereas another 25% of tumors harbored deletions in chromosome 19 involving Pten, implicating the loss of other tumor suppressors as cooperating events for combined KDM6A- and TRP53-dependent tumorigenesis. This study suggests that KDM6A acts as an important tumor suppressor for cSCC pathogenesis.
Collapse
Affiliation(s)
- Lauren K Shea
- Division of Oncology, John T. Milliken Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Neal S Akhave
- Division of Oncology, John T. Milliken Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Leslie A Sutton
- Division of Dermatology, John T. Milliken Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Leigh A Compton
- Division of Dermatology, John T. Milliken Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA; Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Conner York
- Division of Oncology, John T. Milliken Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Sai Mukund Ramakrishnan
- Division of Oncology, John T. Milliken Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Christopher A Miller
- Division of Oncology, John T. Milliken Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Lukas D Wartman
- Division of Oncology, John T. Milliken Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - David Y Chen
- Division of Dermatology, John T. Milliken Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA.
| |
Collapse
|
39
|
Tayari MM, Fang C, Ntziachristos P. Context-Dependent Functions of KDM6 Lysine Demethylases in Physiology and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1433:139-165. [PMID: 37751139 DOI: 10.1007/978-3-031-38176-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Histone lysine methylation is a major epigenetic modification that participates in several cellular processes including gene regulation and chromatin structure. This mark can go awry in disease contexts such as cancer. Two decades ago, the discovery of histone demethylase enzymes thirteen years ago sheds light on the complexity of the regulation of this mark. Here we address the roles of lysine demethylases JMJD3 and UTX in physiological and disease contexts. The two demethylases play pivotal roles in many developmental and disease contexts via regulation of di- and trimethylation of lysine 27 on histone H3 (H3K27me2/3) in repressing gene expression programs. JMJD3 and UTX participate in several biochemical settings including methyltransferase and chromatin remodeling complexes. They have histone demethylase-dependent and -independent activities and a variety of context-specific interacting factors. The structure, amounts, and function of the demethylases can be altered in disease due to genetic alterations or aberrant gene regulation. Therefore, academic and industrial initiatives have targeted these enzymes using a number of small molecule compounds in therapeutic approaches. In this chapter, we will touch upon inhibitor formulations, their properties, and current efforts to test them in preclinical contexts to optimize their therapeutic outcomes. Demethylase inhibitors are currently used in targeted therapeutic approaches that might be particularly effective when used in conjunction with systemic approaches such as chemotherapy.
Collapse
Affiliation(s)
- Mina Masoumeh Tayari
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Celestia Fang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Panagiotis Ntziachristos
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Center for Medical Genetics, Ghent University, Medical Research Building 2 (MRB2), Entrance 38, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
40
|
Piunti A, Meghani K, Yu Y, Robertson AG, Podojil JR, McLaughlin KA, You Z, Fantini D, Chiang M, Luo Y, Wang L, Heyen N, Qian J, Miller SD, Shilatifard A, Meeks JJ. Immune activation is essential for the antitumor activity of EZH2 inhibition in urothelial carcinoma. SCIENCE ADVANCES 2022; 8:eabo8043. [PMID: 36197969 PMCID: PMC9534493 DOI: 10.1126/sciadv.abo8043] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 08/17/2022] [Indexed: 05/31/2023]
Abstract
The long-term survival of patients with advanced urothelial carcinoma (UCa) is limited because of innate resistance to treatment. We identified elevated expression of the histone methyltransferase EZH2 as a hallmark of aggressive UCa and hypothesized that EZH2 inhibition, via a small-molecule catalytic inhibitor, might have antitumor effects in UCa. Here, in a carcinogen-induced mouse bladder cancer model, a reduction in tumor progression and an increase in immune infiltration upon EZH2 inhibition were observed. Treatment of mice with EZH2i causes an increase in MHC class II expression in the urothelium and can activate infiltrating T cells. Unexpectedly, we found that the lack of an intact adaptive immune system completely abolishes the antitumor effects induced by EZH2 catalytic inhibition. These findings show that immune evasion is the only important determinant for the efficacy of EZH2 catalytic inhibition treatment in a UCa model.
Collapse
Affiliation(s)
- Andrea Piunti
- Division of Hematology/Oncology, Department of Pediatrics, University of Chicago, Chicago, IL, USA
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Khyati Meghani
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Urology, Feinberg School of Medicine, Chicago, IL, USA
| | - Yanni Yu
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Urology, Feinberg School of Medicine, Chicago, IL, USA
| | | | - Joseph R. Podojil
- Department of Microbiology and Immunology, Feinberg School of Medicine, Chicago, IL, USA
| | - Kimberly A. McLaughlin
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Urology, Feinberg School of Medicine, Chicago, IL, USA
| | - Zonghao You
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Urology, Feinberg School of Medicine, Chicago, IL, USA
| | - Damiano Fantini
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Urology, Feinberg School of Medicine, Chicago, IL, USA
| | - MingYi Chiang
- Department of Microbiology and Immunology, Feinberg School of Medicine, Chicago, IL, USA
| | - Yi Luo
- Department of Urology, University of Iowa, Iowa City, IA, USA
| | - Lu Wang
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nathan Heyen
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Urology, Feinberg School of Medicine, Chicago, IL, USA
- Dxige Research Inc., Courtenay, BC, Canada
| | - Jun Qian
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Urology, Feinberg School of Medicine, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Stephen D. Miller
- Department of Microbiology and Immunology, Feinberg School of Medicine, Chicago, IL, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Joshua J. Meeks
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Urology, Feinberg School of Medicine, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
41
|
Lam CM, Li Z, Theodorescu D, Li X. Mechanism of Sex Differences in Bladder Cancer: Evident and Elusive Sex-biasing Factors. Bladder Cancer 2022; 8:241-254. [PMID: 36277328 PMCID: PMC9536425 DOI: 10.3233/blc-211658] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/14/2022] [Indexed: 11/26/2022]
Abstract
Bladder cancer incidence is drastically higher in males than females across geographical, racial, and socioeconomic strata. Despite potential differences in tumor biology, however, male and female bladder cancer patients are still clinically managed in highly similar ways. While sex hormones and sex chromosomes have been shown to promote observed sex differences, a more complex story lies beneath these evident sex-biasing factors than previously appreciated. Advances in genomic technology have spurred numerous preclinical studies characterizing elusive sex-biasing factors such as epigenetics, X chromosome inactivation escape genes, single nucleotide polymorphism, transcription regulation, metabolism, immunity, and many more. Sex-biasing effects, if properly understood, can be leveraged by future efforts in precision medicine based on a patient's biological sex. In this review, we will highlight key findings from the last half century that demystify the intricate ways in which sex-specific biology contribute to differences in pathogenesis as well as discuss future research directions.
Collapse
Affiliation(s)
- Christa M. Lam
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – The James, Columbus, OH, USA
| | - Dan Theodorescu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xue Li
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
42
|
Rinaldetti S, Zhou Q, Abbott JM, de Jong FC, Esquer H, Costello JC, Theodorescu D, LaBarbera DV. High-Content Drug Discovery Targeting Molecular Bladder Cancer Subtypes. Int J Mol Sci 2022; 23:10605. [PMID: 36142576 PMCID: PMC9506379 DOI: 10.3390/ijms231810605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Molecular subtypes of muscle-invasive bladder cancer (MIBC) display differential survival and drug sensitivities in clinical trials. To date, they have not been used as a paradigm for phenotypic drug discovery. This study aimed to discover novel subtype-stratified therapy approaches based on high-content screening (HCS) drug discovery. Transcriptome expression data of CCLE and BLA-40 cell lines were used for molecular subtype assignment in basal, luminal, and mesenchymal-like cell lines. Two independent HCSs, using focused compound libraries, were conducted to identify subtype-specific drug leads. We correlated lead drug sensitivity data with functional genomics, regulon analysis, and in-vitro drug response-based enrichment analysis. The basal MIBC subtype displayed sensitivity to HDAC and CHK inhibitors, while the luminal subtype was sensitive to MDM2 inhibitors. The mesenchymal-like cell lines were exclusively sensitive to the ITGAV inhibitor SB273005. The role of integrins within this mesenchymal-like MIBC subtype was confirmed via its regulon activity and gene essentiality based on CRISPR-Cas9 knock-out data. Patients with high ITGAV expression showed a significant decrease in the median overall survival. Phenotypic high-content drug screens based on bladder cancer cell lines provide rationales for novel stratified therapeutic approaches as a framework for further prospective validation in clinical trials.
Collapse
Affiliation(s)
- Sébastien Rinaldetti
- The Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The Department of Hematology-Oncology, Centre Hospitalier de Luxembourg, 1210 Luxembourg, Luxembourg
| | - Qiong Zhou
- The Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joshua M. Abbott
- The Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Florus C. de Jong
- The Department of Urology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Hector Esquer
- The Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James C. Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dan Theodorescu
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
| | - Daniel V. LaBarbera
- The Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The Center for Drug Discovery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
43
|
Creasey T, Barretta E, Ryan SL, Butler E, Kirkwood AA, Leongamornlert D, Papaemmanuil E, Patrick P, Clifton-Hadley L, Patel B, Menne T, McMillan AK, Harrison CJ, Rowntree CJ, Morley N, Marks DI, Fielding AK, Moorman AV. Genetic and genomic analysis of acute lymphoblastic leukemia in older adults reveals a distinct profile of abnormalities: analysis of 210 patients from the UKALL14 and UKALL60+ clinical trials. Haematologica 2022; 107:2051-2063. [PMID: 34788984 PMCID: PMC9425332 DOI: 10.3324/haematol.2021.279177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/09/2021] [Indexed: 11/09/2022] Open
Abstract
Despite being predominantly a childhood disease, the incidence of acute lymphoblastic leukemia (ALL) has a second peak in adults aged 60 years and over. These older adults fare extremely poorly with existing treatment strategies and very few studies have undertaken a comprehensive genetic and genomic characterization to improve prognosis in this age group. We performed cytogenetic, single nucleotide polymorphism (SNP) array and next-generation sequencing (NGS) analyses on samples from 210 patients aged ≥60 years from the UKALL14 and UKALL60+ clinical trials. BCR-ABL1-positive disease was present in 26% (55/210) of patients, followed by low hypodiploidy/near triploidy in 13% (28/210). Cytogenetically cryptic rearrangements in CRLF2, ZNF384 and MEF2D were detected in 5%, 1% and <1% of patients, respectively. Copy number abnormalities were common and deletions in ALL driver genes were seen in 77% of cases. IKZF1 deletion was present in 51% (40/78) of samples tested and the IKZF1plus profile was identified in over a third (28/77) of cases of B-cell precursor ALL. The genetic good-risk abnormalities high hyperdiploidy (n=2), ETV6-RUNX1 (no cases) and ERG deletion (no cases) were exceptionally rare in this cohort. RAS pathway mutations were seen in 17% (4/23) of screened samples. KDM6A abnormalities, including biallelic deletions, were discovered in 5% (4/78) of SNP arrays and 9% (2/23) of NGS samples, and represent novel, potentially therapeutically actionable lesions using EZH2 inhibitors. Outcome remained poor with 5-year event-free and overall survival rates of 17% and 24%, respectively, across the cohort, indicating a need for novel therapeutic strategies.
Collapse
Affiliation(s)
- Thomas Creasey
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne.
| | - Emilio Barretta
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Sarra L Ryan
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Ellie Butler
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Amy A Kirkwood
- Cancer Research UK and UCL Cancer Trials Centre, UCL Cancer Institute University College London
| | | | | | - Pip Patrick
- Cancer Research UK and UCL Cancer Trials Centre, UCL Cancer Institute University College London
| | - Laura Clifton-Hadley
- Cancer Research UK and UCL Cancer Trials Centre, UCL Cancer Institute University College London
| | - Bela Patel
- Department of Haematology, Queen Mary University of London, London
| | - Tobias Menne
- Department of Haematology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne
| | - Andrew K McMillan
- Department of Haematology, Nottingham University Hospital NHS Trust, Nottingham
| | - Christine J Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Clare J Rowntree
- Department of Haematology, Cardiff And Vale University Health Board, Cardiff
| | - Nick Morley
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield
| | - David I Marks
- Department of Haematology, University Hospitals Bristol NHS Foundation Trust, Bristol
| | | | - Anthony V Moorman
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne.
| |
Collapse
|
44
|
JMJD family proteins in cancer and inflammation. Signal Transduct Target Ther 2022; 7:304. [PMID: 36050314 PMCID: PMC9434538 DOI: 10.1038/s41392-022-01145-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
The occurrence of cancer entails a series of genetic mutations that favor uncontrollable tumor growth. It is believed that various factors collectively contribute to cancer, and there is no one single explanation for tumorigenesis. Epigenetic changes such as the dysregulation of enzymes modifying DNA or histones are actively involved in oncogenesis and inflammatory response. The methylation of lysine residues on histone proteins represents a class of post-translational modifications. The human Jumonji C domain-containing (JMJD) protein family consists of more than 30 members. The JMJD proteins have long been identified with histone lysine demethylases (KDM) and histone arginine demethylases activities and thus could function as epigenetic modulators in physiological processes and diseases. Importantly, growing evidence has demonstrated the aberrant expression of JMJD proteins in cancer and inflammatory diseases, which might serve as an underlying mechanism for the initiation and progression of such diseases. Here, we discuss the role of key JMJD proteins in cancer and inflammation, including the intensively studied histone lysine demethylases, as well as the understudied group of JMJD members. In particular, we focused on epigenetic changes induced by each JMJD member and summarized recent research progress evaluating their therapeutic potential for the treatment of cancer and inflammatory diseases.
Collapse
|
45
|
Diao W, Zheng J, Li Y, Wang J, Xu S. Targeting histone demethylases as a potential cancer therapy (Review). Int J Oncol 2022; 61:103. [PMID: 35801593 DOI: 10.3892/ijo.2022.5393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/15/2022] [Indexed: 11/06/2022] Open
Abstract
Post‑translational modifications of histones by histone demethylases have an important role in the regulation of gene transcription and are implicated in cancers. Recently, the family of lysine (K)‑specific demethylase (KDM) proteins, referring to histone demethylases that dynamically regulate histone methylation, were indicated to be involved in various pathways related to cancer development. To date, numerous studies have been conducted to explore the effects of KDMs on cancer growth, metastasis and drug resistance, and a majority of KDMs have been indicated to be oncogenes in both leukemia and solid tumors. In addition, certain KDM inhibitors have been developed and have become the subject of clinical trials to explore their safety and efficacy in cancer therapy. However, most of them focus on hematopoietic malignancy. This review summarizes the effects of KDMs on tumor growth, drug resistance and the current status of KDM inhibitors in clinical trials.
Collapse
Affiliation(s)
- Wenfei Diao
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Jiabin Zheng
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Yong Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Junjiang Wang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Songhui Xu
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
46
|
Fan B, Huang Y, Zhang H, Chen T, Tao S, Wang X, Wen S, Wang H, Lin Z, Liu T, Zhang H, He T, Li X. Analysis of genetic profiling, pathomics signature, and prognostic features of primary lymphoepithelioma‐like carcinoma of the renal pelvis. Mol Oncol 2022; 16:3666-3688. [PMID: 36052737 PMCID: PMC9580896 DOI: 10.1002/1878-0261.13307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
The genetic features of primary lymphoepithelioma‐like carcinoma (LELC) of the upper urinary tract have not been systematically explored. In this study, tumor mutation profiling was performed using whole‐genome sequencing in two patients with LELC of the renal pelvis. Novel candidate variants relevant to known disease genes were selected using rare‐variant burden analysis. Subsequently, a population‐based study was performed using the Surveillance, Epidemiology, and End Results (SEER), PubMed, MEDLINE, Embase, and Scopus databases to explore clinical features and prognostic risk factors. Immunohistochemical analysis revealed seven positive cytokeratin‐associated markers in tumor cells and five positive lymphocyte‐associated markers in and around the tumor area. Sub‐sequently, we identified KDM6A as the susceptibility gene and LEPR as the driver gene by Sanger sequencing in case 2 of LELC of the renal pelvis. Three mutation sites of the existing targeted drugs were screened: CA9, a therapeutic target for zonisamide; ARVCF, a therapeutic target for bupropion; and PLOD3, a therapeutic target for vitamin C. In a population‐based study, patients with primary LELC of the upper urinary tract had clinical outcomes similar to those of patients with primary upper urinary tract urothelial carcinoma (UUT‐UC) before and after propensity score matching at 1 : 5. Focal subtype was an independent prognostic factor for the overall survival of patients with LELC of the upper urinary tract. The carcinogenesis of primary LELC may be due to different genetic variations, including single‐nucleotide variants, insertion and deletions, structural variations, and repeat regions, which may provide the basis for clinical diagnosis and treatment. The prognosis of LELC in the upper urinary tract is similar to that of UUT‐UC. We suggest that the focal subtype can serve as a prognostic factor for LELC of the upper urinary tract; however, further studies are required to confirm this.
Collapse
Affiliation(s)
- Bo Fan
- Department of Urology Second Affiliated Hospital of Dalian Medical University 116000 Dalian Liaoning Province China
| | - Yuanbin Huang
- Department of Urology Second Affiliated Hospital of Dalian Medical University 116000 Dalian Liaoning Province China
| | - Hongshuo Zhang
- Department of Biochemistry, Institute of Glycobiology Dalian Medical University 116000 Dalian Liaoning Province China
| | - Tingyu Chen
- Department of Clinical Medicine Dalian Medical University 116000 Dalian Liaoning Province China
| | - Shenghua Tao
- Department of Urology Second Affiliated Hospital of Dalian Medical University 116000 Dalian Liaoning Province China
| | - Xiaogang Wang
- Department of Urology Second Affiliated Hospital of Dalian Medical University 116000 Dalian Liaoning Province China
| | - Shuang Wen
- Department of Pathology, Dalian Friendship Hospital 116000 Dalian Liaoning Province China
| | - Honglong Wang
- Department of Pathology, Dalian Friendship Hospital 116000 Dalian Liaoning Province China
| | - Zhe Lin
- Ethics Committee Second Affiliated Hospital of Dalian Medical University 116000 Dalian Liaoning Province China
| | - Tianqing Liu
- Department of Pathology, Dalian Friendship Hospital 116000 Dalian Liaoning Province China
| | - Hongxian Zhang
- Department of Urology Second Affiliated Hospital of Dalian Medical University 116000 Dalian Liaoning Province China
| | - Tao He
- Department of Urology Second Affiliated Hospital of Dalian Medical University 116000 Dalian Liaoning Province China
| | - Xiancheng Li
- Department of Urology Second Affiliated Hospital of Dalian Medical University 116000 Dalian Liaoning Province China
| |
Collapse
|
47
|
Lian WS, Wu RW, Ko JY, Chen YS, Wang SY, Yu CP, Jahr H, Wang FS. Histone H3K27 demethylase UTX compromises articular chondrocyte anabolism and aggravates osteoarthritic degeneration. Cell Death Dis 2022; 13:538. [PMID: 35676242 PMCID: PMC9178009 DOI: 10.1038/s41419-022-04985-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 01/21/2023]
Abstract
Epigenome alteration in chondrocytes correlates with osteoarthritis (OA) development. H3K27me3 demethylase UTX regulates tissue homeostasis and deterioration, while its role was not yet studied in articulating joint tissue in situ. We now uncovered that increased UTX and H3K27me3 expression in articular chondrocytes positively correlated with human knee OA. Forced UTX expression upregulated the H3K27me3 enrichment at transcription factor Sox9 promoter, inhibiting key extracellular matrix molecules collagen II, aggrecan, and glycosaminoglycan in articular chondrocytes. Utx overexpression in knee joints aggravated the signs of OA, including articular cartilage damage, synovitis, osteophyte formation, and subchondral bone loss in mice. Chondrocyte-specific Utx knockout mice developed thicker articular cartilage than wild-type mice and showed few gonarthrotic symptoms during destabilized medial meniscus- and collagenase-induced joint injury. In vitro, Utx loss changed H3K27me3-binding epigenomic landscapes, which contributed to mitochondrial activity, cellular senescence, and cartilage development. Insulin-like growth factor 2 (Igf2) and polycomb repressive complex 2 (PRC2) core components Eed and Suz12 were, among others, functional target genes of Utx. Specifically, Utx deletion promoted Tfam transcription, mitochondrial respiration, ATP production and Igf2 transcription but inhibited Eed and Suz12 expression. Igf2 blockade or forced Eed or Suz12 expression increased H3K27 trimethylation and H3K27me3 enrichment at Sox9 promoter, compromising Utx loss-induced extracellular matrix overproduction. Taken together, UTX repressed articular chondrocytic activity, accelerating cartilage loss during OA. Utx loss promoted cartilage integrity through epigenetic stimulation of mitochondrial biogenesis and Igf2 transcription. This study highlighted a novel noncanonical role of Utx, in concert with PRC2 core components, in controlling H3K27 trimethylation and articular chondrocyte anabolism and OA development.
Collapse
Affiliation(s)
- Wei-Shiung Lian
- grid.145695.a0000 0004 1798 0922Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan ,grid.145695.a0000 0004 1798 0922Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan ,grid.145695.a0000 0004 1798 0922Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Re-Wen Wu
- grid.145695.a0000 0004 1798 0922Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jih-Yang Ko
- grid.145695.a0000 0004 1798 0922Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Shan Chen
- grid.145695.a0000 0004 1798 0922Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan ,grid.145695.a0000 0004 1798 0922Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan ,grid.145695.a0000 0004 1798 0922Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shao-Yu Wang
- grid.145695.a0000 0004 1798 0922Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan ,grid.145695.a0000 0004 1798 0922Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan ,grid.145695.a0000 0004 1798 0922Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chun-Ping Yu
- grid.506939.0Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Holger Jahr
- grid.412301.50000 0000 8653 1507Department of Anatomy and Cell Biology, University Hospital RWTH Aachen, Aachen, Germany ,grid.412966.e0000 0004 0480 1382Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Feng-Sheng Wang
- grid.145695.a0000 0004 1798 0922Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan ,grid.145695.a0000 0004 1798 0922Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan ,grid.145695.a0000 0004 1798 0922Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
48
|
Shen C, Han L, Liu B, Zhang G, Cai Z, Yin X, Yin Y, Chen Z, Zhang B. The KDM6A-SPARCL1 axis blocks metastasis and regulates the tumour microenvironment of gastrointestinal stromal tumours by inhibiting the nuclear translocation of p65. Br J Cancer 2022; 126:1457-1469. [PMID: 35136209 PMCID: PMC9090789 DOI: 10.1038/s41416-022-01728-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/07/2022] [Accepted: 01/28/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND It is urgent to explore the pathogenic mechanism of gastrointestinal stromal tumours (GISTs). KDM6A, a histone demethylase, can activate gene transcription and has not been reported in GISTs. SPARCL1 may serve as a metastasis marker in GIST, but the molecular mechanism remains to be further explored. This study aimed to explore the biological function and molecular mechanism of KDM6A and SPARCL1 in GIST. METHODS CCK-8, live cell count, colony formation, wound-healing and Transwell migration and invasion assays were employed to detect the cell proliferation, migration and invasion. A xenograft model and hepatic metastasis model were used to assess the role of KDM6A and SPARCL1 in vivo. RESULTS KDM6A inhibited the proliferation, migration and invasion of GIST cells. Mechanistically, KDM6A promotes the transcription of SPARCL1 by demethylating histone H3 lysine trimethylation and consequently leads to the inactivation of p65. SPARCL1 affected the metastasis of GIST cells in a mesenchymal-epithelial transition- and matrix-metalloproteinase-dependent manner. SPARCL1 knockdown promoted angiogenesis, M2 polarisation and macrophage recruitment by inhibiting the phosphorylation of p65. Moreover, KDM6A and SPARCL1 inhibited hepatic metastasis and macrophage infiltration in vivo. CONCLUSIONS Our findings establish the critical role of the KDM6A-SPARCL1-p65 axis in restraining the malignancy of GIST.
Collapse
Affiliation(s)
- Chaoyong Shen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Luyin Han
- Intensive care unit, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Baike Liu
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Guixiang Zhang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Zhaolun Cai
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Xiaonan Yin
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Yuan Yin
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Zhixin Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Bo Zhang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
49
|
Cheon H, Xing JC, Moosic KB, Ung J, Chan VW, Chung DS, Toro MF, Elghawy O, Wang JS, Hamele CE, Hardison RC, Olson TL, Tan SF, Feith DJ, Ratan A, Loughran TP. Genomic landscape of TCRαβ and TCRγδ T-large granular lymphocyte leukemia. Blood 2022; 139:3058-3072. [PMID: 35015834 PMCID: PMC9121841 DOI: 10.1182/blood.2021013164] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/18/2021] [Indexed: 11/20/2022] Open
Abstract
Large granular lymphocyte (LGL) leukemia comprises a group of rare lymphoproliferative disorders whose molecular landscape is incompletely defined. We leveraged paired whole-exome and transcriptome sequencing in the largest LGL leukemia cohort to date, which included 105 patients (93 T-cell receptor αβ [TCRαβ] T-LGL and 12 TCRγδ T-LGL). Seventy-six mutations were observed in 3 or more patients in the cohort, and out of those, STAT3, KMT2D, PIK3R1, TTN, EYS, and SULF1 mutations were shared between both subtypes. We identified ARHGAP25, ABCC9, PCDHA11, SULF1, SLC6A15, DDX59, DNMT3A, FAS, KDM6A, KMT2D, PIK3R1, STAT3, STAT5B, TET2, and TNFAIP3 as recurrently mutated putative drivers using an unbiased driver analysis approach leveraging our whole-exome cohort. Hotspot mutations in STAT3, PIK3R1, and FAS were detected, whereas truncating mutations in epigenetic modifying enzymes such as KMT2D and TET2 were observed. Moreover, STAT3 mutations co-occurred with mutations in chromatin and epigenetic modifying genes, especially KMT2D and SETD1B (P < .01 and P < .05, respectively). STAT3 was mutated in 50.5% of the patients. Most common Y640F STAT3 mutation was associated with lower absolute neutrophil count values, and N647I mutation was associated with lower hemoglobin values. Somatic activating mutations (Q160P, D170Y, L287F) in the STAT3 coiled-coil domain were characterized. STAT3-mutant patients exhibited increased mutational burden and enrichment of a mutational signature associated with increased spontaneous deamination of 5-methylcytosine. Finally, gene expression analysis revealed enrichment of interferon-γ signaling and decreased phosphatidylinositol 3-kinase-Akt signaling for STAT3-mutant patients. These findings highlight the clinical and molecular heterogeneity of this rare disorder.
Collapse
Affiliation(s)
- HeeJin Cheon
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA
- Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA
| | - Jeffrey C Xing
- Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA
| | - Katharine B Moosic
- Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA
| | - Johnson Ung
- Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA
| | - Vivian W Chan
- Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA
| | - David S Chung
- Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA
| | - Mariella F Toro
- Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA
| | - Omar Elghawy
- Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA
| | - John S Wang
- Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA
| | - Cait E Hamele
- Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Center for Computational Biology & Bioinformatics, The Pennsylvania State University, State College, PA
| | - Thomas L Olson
- Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA
| | - Su-Fern Tan
- Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA
| | - David J Feith
- Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA
| | - Aakrosh Ratan
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA; and
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville VA
| | - Thomas P Loughran
- Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
50
|
Machnicki MM, Rzepakowska A, Janowska J, Pepek M, Krop A, Pruszczyk K, Stawinski P, Rydzanicz M, Grzybowski J, Gornicka B, Wnuk M, Ploski R, Osuch-Wojcikiewicz E, Stoklosa T. Analysis of Mutational Profile of Hypopharyngeal and Laryngeal Head and Neck Squamous Cell Carcinomas Identifies KMT2C as a Potential Tumor Suppressor. Front Oncol 2022; 12:768954. [PMID: 35664801 PMCID: PMC9160230 DOI: 10.3389/fonc.2022.768954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
Hypopharyngeal cancer is a poorly characterized type of head and neck squamous cell carcinoma (HNSCC) with bleak prognosis and only few studies focusing specifically on the genomic profile of this type of cancer. We performed molecular profiling of 48 HPV (Human Papilloma Virus)-negative tumor samples including 23 originating from the hypopharynx and 25 from the larynx using a targeted next-generation sequencing approach. Among genes previously described as significantly mutated, TP53, FAT1, NOTCH1, KMT2C, and CDKN2A were found to be most frequently mutated. We also found that more than three-quarters of our patients harbored candidate actionable or prognostic alterations in genes belonging to RTK/ERK/PI3K, cell-cycle, and DNA-damage repair pathways. Using previously published data we compared 67 hypopharyngeal cancers to 595 HNSCC from other sites and found no prominent differences in mutational frequency except for CASP8 and HRAS genes. Since we observed relatively frequent mutations of KTM2C (MLL3) in our dataset, we analyzed their role, in vitro, by generating a KMT2C-mutant hypopharyngeal cancer cell line FaDu with CRISPR-Cas9. We demonstrated that KMT2C loss-of-function mutations resulted in increased colony formation and proliferation, in concordance with previously published results. In summary, our results show that the mutational profile of hypopharyngeal cancers might be similar to the one observed for other head and neck cancers with respect to minor differences and includes multiple candidate actionable and prognostic genetic alterations. We also demonstrated, for the first time, that the KMT2C gene may play a role of tumor suppressor in HNSCC, which opens new possibilities in the search for new targeted treatment approaches.
Collapse
Affiliation(s)
- Marcin M. Machnicki
- Department of Tumor Biology and Genetics, Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Marcin M. Machnicki, ; Tomasz Stoklosa,
| | - Anna Rzepakowska
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Warsaw, Warsaw, Poland
| | | | - Monika Pepek
- Department of Tumor Biology and Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Alicja Krop
- Department of Tumor Biology and Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | - Piotr Stawinski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | - Jakub Grzybowski
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| | - Barbara Gornicka
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Wnuk
- Department of Biology, University of Rzeszow, Rzeszow, Poland
| | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Osuch-Wojcikiewicz
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Stoklosa
- Department of Tumor Biology and Genetics, Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Marcin M. Machnicki, ; Tomasz Stoklosa,
| |
Collapse
|