1
|
Barman K, Goswami P. Recent Advances in Diagnostics and Therapeutic Interventions for Drug-Resistant Malaria. ACS Infect Dis 2025. [PMID: 40326084 DOI: 10.1021/acsinfecdis.4c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
The emergence of drug-resistant malarial parasites has been a growing challenge to medical science to safeguard public health in the malaria-endemic regions of the globe. With time, the parasite develops newer resistance mechanisms to defunct the drug's action one after another. Genetic mutation is the prime weapon parasites rely upon to initiate the resistance mechanism in a case-specific manner, following various strategies such as structural changes in the target protein, metabolic alterations, and tweaking the drug-transported channels. In order to combat these resistances, different approaches have evolved among these developing inhibitors against critical parasite enzymes and metabolic pathways, combinatorial/hybrid drug therapies, exploring new drug targets and analogues of existing drugs, use of resistance-reversal agents, drug-repurposing, gene blocking/altering using RNA interference and CRISPR/Cas systems are prominent. However, the effectiveness of these approaches needs to be earnestly monitored for better management of the disease, which demands the development of a reliable diagnosis technique. Several methodologies have been investigated in search of a suitable diagnosis technique, such as in vivo, in vitro, ex vivo drug efficacy studies, and molecular techniques. A parallel effort to transform the efficient method into an inexpensive and portable diagnosis tool for rapid screening of drug resistance malaria among masses in the societal landscape is advocated. This review gives an insight into the historical perspectives of drug-resistant malaria and the recent developments in malaria diagnosis and antimalarial drug discovery. Efforts have been made to update recent strategies formulated to combat and diagnose drug-resistant malaria. Finally, a concluding remark with a future perspective on the subject has been forwarded.
Collapse
Affiliation(s)
- Kangkana Barman
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
2
|
Liu X, Thistlethwaite S, Kholiya R, Pierscianowski J, Saliba KJ, Auclair K. Chemical synthesis and enzymatic late-stage diversification of novel pantothenate analogues with antiplasmodial activity. Eur J Med Chem 2024; 280:116902. [PMID: 39423490 DOI: 10.1016/j.ejmech.2024.116902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/21/2024]
Abstract
The emergence of resistance to nearly every therapeutic agent directed against malaria-causing Plasmodium parasites emphasises the dire need for new antimalarials. Despite their high potency and low cytotoxicity in vitro, the clinical use of pantothenamides is hindered by pantetheinase-mediated hydrolysis in human serum. We herein report the chemical synthesis and biological activity of a new series of pantothenamide analogues in which the labile amide group is replaced with an isoxazole ring. In addition, we utilised, for the first time, enzymatic late-stage diversification to generate additional isoxazole-containing pantothenamide-mimics. Thirteen novel isoxazole-containing pantothenamide-mimics were generated, several of which display nanomolar antiplasmodial activity against Plasmodium falciparum and are non-toxic to human cells in vitro. Although the derivatives generated via late-stage diversification are less potent than the parent compounds, the most potent still exerted its activity via a mechanism that interferes with the pantothenate-utilising process and appears to be nontoxic to human cells. This increases the appeal of using late-stage diversification to modify pantothenamide-mimics, potentially leading to compounds with improved antiplasmodial and/or pharmacological properties.
Collapse
Affiliation(s)
- Xiangning Liu
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Sian Thistlethwaite
- Department of Chemistry, McGill University, Montreal, Quebec, Canada, H3A 0B8
| | - Rohit Kholiya
- Department of Chemistry, McGill University, Montreal, Quebec, Canada, H3A 0B8
| | | | - Kevin J Saliba
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | - Karine Auclair
- Department of Chemistry, McGill University, Montreal, Quebec, Canada, H3A 0B8.
| |
Collapse
|
3
|
Luth MR, Godinez-Macias KP, Chen D, Okombo J, Thathy V, Cheng X, Daggupati S, Davies H, Dhingra SK, Economy JM, Edgar RCS, Gomez-Lorenzo MG, Istvan ES, Jado JC, LaMonte GM, Melillo B, Mok S, Narwal SK, Ndiaye T, Ottilie S, Diaz SP, Park H, Peña S, Rocamora F, Sakata-Kato T, Small-Saunders JL, Summers RL, Tumwebaze PK, Vanaerschot M, Xia G, Yeo T, You A, Gamo FJ, Goldberg DE, Lee MC, McNamara CW, Ndiaye D, Rosenthal PJ, Schreiber SL, Serra G, De Siqueira-Neto JL, Skinner-Adams TS, Uhlemann AC, Kato N, Lukens AK, Wirth DF, Fidock DA, Winzeler EA. Systematic in vitro evolution in Plasmodium falciparum reveals key determinants of drug resistance. Science 2024; 386:eadk9893. [PMID: 39607932 PMCID: PMC11809290 DOI: 10.1126/science.adk9893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/21/2024] [Accepted: 10/07/2024] [Indexed: 11/30/2024]
Abstract
Surveillance of drug resistance and the discovery of novel targets-key objectives in the fight against malaria-rely on identifying resistance-conferring mutations in Plasmodium parasites. Current approaches, while successful, require laborious experimentation or large sample sizes. To elucidate shared determinants of antimalarial resistance that can empower in silico inference, we examined the genomes of 724 Plasmodium falciparum clones, each selected in vitro for resistance to one of 118 compounds. We identified 1448 variants in 128 recurrently mutated genes, including drivers of antimalarial multidrug resistance. In contrast to naturally occurring variants, those selected in vitro are more likely to be missense or frameshift, involve bulky substitutions, and occur in conserved, ordered protein domains. Collectively, our dataset reveals mutation features that predict drug resistance in eukaryotic pathogens.
Collapse
Affiliation(s)
- Madeline R. Luth
- Department of Pediatrics, University of California San Diego; La Jolla, CA 92093, USA
| | | | - Daisy Chen
- Department of Pediatrics, University of California San Diego; La Jolla, CA 92093, USA
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, New York 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center; New York, New York 10032, USA
| | - Vandana Thathy
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, New York 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center; New York, New York 10032, USA
| | - Xiu Cheng
- Global Health Drug Discovery Institute; Beijing, 100192, China
| | - Sindhu Daggupati
- Department of Pediatrics, University of California San Diego; La Jolla, CA 92093, USA
| | - Heledd Davies
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom
| | - Satish K. Dhingra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, New York 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center; New York, New York 10032, USA
| | - Jan M. Economy
- Department of Pediatrics, University of California San Diego; La Jolla, CA 92093, USA
| | - Rebecca C. S. Edgar
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | | | - Eva S. Istvan
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine; Saint Louis, MO 63130, USA
- Department of Molecular Microbiology, Washington University School of Medicine; Saint Louis, MO 63130, USA
| | - Juan Carlos Jado
- Department of Pediatrics, University of California San Diego; La Jolla, CA 92093, USA
| | - Gregory M. LaMonte
- Department of Pediatrics, University of California San Diego; La Jolla, CA 92093, USA
| | - Bruno Melillo
- Chemical Biology and Therapeutics Science Program, Broad Institute; Cambridge, MA 02142, USA
| | - Sachel Mok
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center; New York, New York 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center; New York, New York 10032, USA
| | - Sunil K. Narwal
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, New York 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center; New York, New York 10032, USA
| | - Tolla Ndiaye
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, New York 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center; New York, New York 10032, USA
| | - Sabine Ottilie
- Department of Pediatrics, University of California San Diego; La Jolla, CA 92093, USA
| | - Sara Palomo Diaz
- Global Health Medicines R&D, GSK; Tres Cantos, Madrid 28760, Spain
| | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center; New York, New York 10032, USA
| | - Stella Peña
- Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República; Montevideo, Montevideo CC1157, Uruguay
| | - Frances Rocamora
- Department of Pediatrics, University of California San Diego; La Jolla, CA 92093, USA
| | - Tomoyo Sakata-Kato
- Global Health Drug Discovery Institute; Beijing, 100192, China
- Department of Protozoology, Nekken Institute for Tropical Medicine, Nagasaki University; Nagasaki, 852-8523, Japan
| | - Jennifer L. Small-Saunders
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center; New York, New York 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center; New York, New York 10032, USA
| | - Robert L. Summers
- Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA 02115, USA
- Infectious Disease and Microbiome Program, The Broad Institute; Cambridge, MA 02142, USA
| | | | - Manu Vanaerschot
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, New York 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center; New York, New York 10032, USA
| | - Guoqin Xia
- Department of Chemistry, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, New York 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center; New York, New York 10032, USA
| | - Ashley You
- Department of Pediatrics, University of California San Diego; La Jolla, CA 92093, USA
| | | | - Daniel E. Goldberg
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine; Saint Louis, MO 63130, USA
- Department of Molecular Microbiology, Washington University School of Medicine; Saint Louis, MO 63130, USA
| | - Marcus C.S. Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Case W. McNamara
- Calibr, a division of The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Daouda Ndiaye
- Centre International de Recherche et de Formation en Génomique Appliquée et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Philip J. Rosenthal
- Department of Medicine, University of California San Francisco; San Francisco, CA 94115, USA
| | | | - Gloria Serra
- Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República; Montevideo, Montevideo CC1157, Uruguay
| | - Jair Lage De Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego; La Jolla, CA 92037, USA
| | - Tina S. Skinner-Adams
- Griffith Institute for Drug Discovery, Griffith University; Nathan, Queensland 4111, Australia
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center; New York, New York 10032, USA
| | - Nobutaka Kato
- Global Health Drug Discovery Institute; Beijing, 100192, China
- Department of Protozoology, Nekken Institute for Tropical Medicine, Nagasaki University; Nagasaki, 852-8523, Japan
| | - Amanda K. Lukens
- Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA 02115, USA
- Infectious Disease and Microbiome Program, The Broad Institute; Cambridge, MA 02142, USA
| | - Dyann F. Wirth
- Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA 02115, USA
- Infectious Disease and Microbiome Program, The Broad Institute; Cambridge, MA 02142, USA
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, New York 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center; New York, New York 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center; New York, New York 10032, USA
| | - Elizabeth A. Winzeler
- Department of Pediatrics, University of California San Diego; La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego; La Jolla, CA 92037, USA
| |
Collapse
|
4
|
Rajaram K, Rangel GW, Munro JT, Nair SC, Llinás M, Prigge ST. MULTIPLE, REDUNDANT CARBOXYLIC ACID TRANSPORTERS SUPPORT MITOCHONDRIAL METABOLISM IN PLASMODIUM FALCIPARUM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.624872. [PMID: 39651245 PMCID: PMC11623635 DOI: 10.1101/2024.11.26.624872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The mitochondrion of the deadliest human malaria parasite, Plasmodium falciparum, is an essential source of cellular acetyl-CoA during the asexual blood-stage of the parasite life cycle. Blocking mitochondrial acetyl-CoA synthesis leads to a hypoacetylated proteome and parasite death. We previously determined that mitochondrial acetyl-CoA is primarily synthesized from glucose-derived pyruvate by α-ketoacid dehydrogenases. Here, we asked if inhibiting the import of glycolytic pyruvate across the mitochondrial inner membrane would affect acetyl-CoA production and, thus, could be a potential target for antimalarial drug development. We selected the two predicted mitochondrial pyruvate carrier proteins ( Pf MPC1 and Pf MPC2) for genetic knockout and isotopic metabolite tracing via HPLC-MS metabolomic analysis. Surprisingly, we observed that asexual blood-stage parasites could survive the loss of either or both Pf MPCs with only minor growth defects, despite a substantial reduction in the amount of glucose-derived isotopic labelling into acetyl-CoA. Furthermore, genetic deletion of two additional mitochondrial carboxylic acid transporters - DTC (di/tricarboxylic acid carrier) and YHM2 (a putative citrate/α-ketoglutarate carrier protein) - only mildly affected asexual blood-stage replication, even in the context of Pf MPC deficiency. Although we observed no added impact on the incorporation of glucose carbon into acetyl-CoA in these quadruple knockout mutants, we noted a large decrease in glutamine-derived label in tricarboxylic acid cycle metabolites, suggesting that DTC and YHM2 both import glutamine derivatives into the mitochondrion. Altogether, our results expose redundant routes used to fuel the blood-stage malaria parasite mitochondrion with imported carbon from two major sources - glucose and glutamine. SIGNIFICANCE The mitochondrion of malaria parasites generates key molecules, such as acetyl-CoA, that are required for numerous cellular processes. To support mitochondrial biosynthetic pathways, the parasites must transport carbon sources into this organelle. By studying how the mitochondrion obtains pyruvate, a molecule derived from glucose, we have uncovered redundant carbon transport systems that ensure parasite survival in red blood cells. This metabolic redundancy poses a challenge for drug development, as it enables the parasite to adapt and survive by relying on alternative pathways when one is disrupted.
Collapse
|
5
|
Woodland JG, Horatscheck A, Soares de Melo C, Dziwornu GA, Taylor D. Another decade of antimalarial drug discovery: New targets, tools and molecules. PROGRESS IN MEDICINAL CHEMISTRY 2024; 63:161-234. [PMID: 39370241 DOI: 10.1016/bs.pmch.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Malaria remains a devastating but preventable infectious disease that disproportionately affects the African continent. Emerging resistance to current frontline therapies means that not only are new treatments urgently required, but also novel validated antimalarial targets to circumvent cross-resistance. Fortunately, tremendous efforts have been made by the global drug discovery community over the past decade. In this chapter, we will highlight some of the antimalarial drug discovery and development programmes currently underway across the globe, charting progress in the identification of new targets and the development of new classes of drugs to prosecute them. These efforts have been complemented by the development of valuable tools to accelerate target validation such as the NOD scid gamma (NSG) humanized mouse efficacy model and progress in predictive modelling and open-source software. Among the medicinal chemistry programmes that have been conducted over the past decade are those targeting Plasmodium falciparum ATPase4 (ATP4) and acetyl-CoA synthetase (AcAS) as well as proteins disrupting parasite protein translation such as the aminoacyl-tRNA synthetases (aaRSs) and eukaryotic elongation factor 2 (eEF2). The benefits and challenges of targeting Plasmodium kinases will be examined, with a focus on Plasmodium cyclic GMP-dependent protein kinase (PKG), cyclin-dependent-like protein kinase 3 (CLK3) and phosphatidylinositol 4-kinase (PI4K). The chapter concludes with a survey of incipient drug discovery centres in Africa and acknowledges the value of recent international meetings in galvanizing and uniting the antimalarial drug discovery community.
Collapse
Affiliation(s)
- John G Woodland
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - André Horatscheck
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Candice Soares de Melo
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Godwin A Dziwornu
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Dale Taylor
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa.
| |
Collapse
|
6
|
Gangwar U, Choudhury H, Shameem R, Singh Y, Bansal A. Recent development in CRISPR-Cas systems for human protozoan diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:109-160. [PMID: 39266180 DOI: 10.1016/bs.pmbts.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Protozoan parasitic diseases pose a substantial global health burden. Understanding the pathogenesis of these diseases is crucial for developing intervention strategies in the form of vaccine and drugs. Manipulating the parasite's genome is essential for gaining insights into its fundamental biology. Traditional genomic manipulation methods rely on stochastic homologous recombination events, which necessitates months of maintaining the cultured parasites under drug pressure to generate desired transgenics. The introduction of mega-nucleases (MNs), zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs) greatly reduced the time required for obtaining a desired modification. However, there is a complexity associated with the design of these nucleases. CRISPR (Clustered regularly interspaced short palindromic repeats)/Cas (CRISPR associated proteins) is the latest gene editing tool that provides an efficient and convenient method for precise genomic manipulations in protozoan parasites. In this chapter, we have elaborated various strategies that have been adopted for the use of CRISPR-Cas9 system in Plasmodium, Leishmania and Trypanosoma. We have also discussed various applications of CRISPR-Cas9 pertaining to understanding of the parasite biology, development of drug resistance mechanism, gene drive and diagnosis of the infection.
Collapse
Affiliation(s)
- Utkarsh Gangwar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Risha Shameem
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Yashi Singh
- Department of Biosciences & Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Abhisheka Bansal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
7
|
Appetecchia F, Fabbrizi E, Fiorentino F, Consalvi S, Biava M, Poce G, Rotili D. Transmission-Blocking Strategies for Malaria Eradication: Recent Advances in Small-Molecule Drug Development. Pharmaceuticals (Basel) 2024; 17:962. [PMID: 39065810 PMCID: PMC11279868 DOI: 10.3390/ph17070962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Malaria drug research and development efforts have resurged in the last decade following the decelerating rate of mortality and malaria cases in endemic regions. The inefficiency of malaria interventions is largely driven by the spreading resistance of the Plasmodium falciparum parasite to current drug regimens and that of the malaria vector, the Anopheles mosquito, to insecticides. In response to the new eradication agenda, drugs that act by breaking the malaria transmission cycle (transmission-blocking drugs), which has been recognized as an important and additional target for intervention, are being developed. These drugs take advantage of the susceptibility of Plasmodium during population bottlenecks before transmission (gametocytes) and in the mosquito vector (gametes, zygotes, ookinetes, oocysts, sporozoites). To date, compounds targeting stage V gametocytes predominate in the chemical library of transmission-blocking drugs, and some of them have entered clinical trials. The targeting of Plasmodium mosquito stages has recently renewed interest in the development of innovative malaria control tools, which hold promise for the application of compounds effective at these stages. In this review, we highlight the major achievements and provide an update on the research of transmission-blocking drugs, with a particular focus on their chemical scaffolds, antiplasmodial activity, and transmission-blocking potential.
Collapse
Affiliation(s)
| | | | | | | | | | - Giovanna Poce
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.A.); (E.F.); (F.F.); (S.C.); (M.B.)
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.A.); (E.F.); (F.F.); (S.C.); (M.B.)
| |
Collapse
|
8
|
Achan J, Barry A, Leroy D, Kamara G, Duparc S, Kaszubska W, Gandhi P, Buffet B, Tshilab P, Ogutu B, Taylor T, Krishna S, Richardson N, Ramachandruni H, Rietveld H. Defining the next generation of severe malaria treatment: a target product profile. Malar J 2024; 23:174. [PMID: 38835069 DOI: 10.1186/s12936-024-04986-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Severe malaria is a life-threatening infection, particularly affecting children under the age of 5 years in Africa. Current treatment with parenteral artemisinin derivatives is highly efficacious. However, artemisinin partial resistance is widespread in Southeast Asia, resulting in delayed parasite clearance after therapy, and has emerged independently in South America, Oceania, and Africa. Hence, new treatments for severe malaria are needed, and it is prudent to define their characteristics now. This manuscript focuses on the target product profile (TPP) for new treatments for severe malaria. It also highlights preparedness when considering ways of protecting the utility of artemisinin-based therapies. TARGET PRODUCT PROFILE Severe malaria treatments must be highly potent, with rapid onset of antiparasitic activity to clear the infection as quickly as possible to prevent complications. They should also have a low potential for drug resistance selection, given the high parasite burden in patients with severe malaria. Combination therapies are needed to deter resistance selection and dissemination. Partner drugs which are approved for uncomplicated malaria treatment would provide the most rapid development pathway for combinations, though new candidate molecules should be considered. Artemisinin combination approaches to severe malaria would extend the lifespan of current therapy, but ideally, completely novel, non-artemisinin-based combination therapies for severe malaria should be developed. These should be advanced to at least phase 2 clinical trials, enabling rapid progression to patient use should current treatment fail clinically. New drug combinations for severe malaria should be available as injectable formulations for rapid and effective treatment, or as rectal formulations for pre-referral intervention in resource-limited settings. CONCLUSION Defining the TPP is a key step to align responses across the community to proactively address the potential for clinical failure of artesunate in severe malaria. In the shorter term, artemisinin-based combination therapies should be developed using approved or novel drugs. In the longer term, novel combination treatments should be pursued. Thus, this TPP aims to direct efforts to preserve the efficacy of existing treatments while improving care and outcomes for individuals affected by this life-threatening disease.
Collapse
Affiliation(s)
| | - Aïssata Barry
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Didier Leroy
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | - George Kamara
- Médecins Sans Frontières, Magburaka District Hospital, Freetown, Sierra Leone
| | - Stephan Duparc
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | - Wiweka Kaszubska
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | | | - Bénédicte Buffet
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | | | - Bernhards Ogutu
- Centre for Clinical Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Terrie Taylor
- Queen Elizabeth Central Hospital and Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Sanjeev Krishna
- Institut Für Tropenmedizin, Eberhard Karls Universität Tübingen, and German Center for Infection Research (Dzif), Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Clinical Academic Group, Institute for Infection and Immunity, St. George's University of London, London, UK
- St George's University Hospitals NHS Foundation Trust, London, UK
| | | | - Hanu Ramachandruni
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland.
| | - Hans Rietveld
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland.
| |
Collapse
|
9
|
Barritt SA, DuBois-Coyne SE, Dibble CC. Coenzyme A biosynthesis: mechanisms of regulation, function and disease. Nat Metab 2024; 6:1008-1023. [PMID: 38871981 DOI: 10.1038/s42255-024-01059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/30/2024] [Indexed: 06/15/2024]
Abstract
The tricarboxylic acid cycle, nutrient oxidation, histone acetylation and synthesis of lipids, glycans and haem all require the cofactor coenzyme A (CoA). Although the sources and regulation of the acyl groups carried by CoA for these processes are heavily studied, a key underlying question is less often considered: how is production of CoA itself controlled? Here, we discuss the many cellular roles of CoA and the regulatory mechanisms that govern its biosynthesis from cysteine, ATP and the essential nutrient pantothenate (vitamin B5), or from salvaged precursors in mammals. Metabolite feedback and signalling mechanisms involving acetyl-CoA, other acyl-CoAs, acyl-carnitines, MYC, p53, PPARα, PINK1 and insulin- and growth factor-stimulated PI3K-AKT signalling regulate the vitamin B5 transporter SLC5A6/SMVT and CoA biosynthesis enzymes PANK1, PANK2, PANK3, PANK4 and COASY. We also discuss methods for measuring CoA-related metabolites, compounds that target CoA biosynthesis and diseases caused by mutations in pathway enzymes including types of cataracts, cardiomyopathy and neurodegeneration (PKAN and COPAN).
Collapse
Affiliation(s)
- Samuel A Barritt
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sarah E DuBois-Coyne
- Department of Medicine, Department of Biological Chemistry and Molecular Pharmacology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian C Dibble
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Cheuka PM, Njaria P, Mayoka G, Funjika E. Emerging Drug Targets for Antimalarial Drug Discovery: Validation and Insights into Molecular Mechanisms of Function. J Med Chem 2024; 67:838-863. [PMID: 38198596 DOI: 10.1021/acs.jmedchem.3c01828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Approximately 619,000 malaria deaths were reported in 2021, and resistance to recommended drugs, including artemisinin-combination therapies (ACTs), threatens malaria control. Treatment failure with ACTs has been found to be as high as 93% in northeastern Thailand, and parasite mutations responsible for artemisinin resistance have already been reported in some African countries. Therefore, there is an urgent need to identify alternative treatments with novel targets. In this Perspective, we discuss some promising antimalarial drug targets, including enzymes involved in proteolysis, DNA and RNA metabolism, protein synthesis, and isoprenoid metabolism. Other targets discussed are transporters, Plasmodium falciparum acetyl-coenzyme A synthetase, N-myristoyltransferase, and the cyclic guanosine monophosphate-dependent protein kinase G. We have outlined mechanistic details, where these are understood, underpinning the biological roles and hence druggability of such targets. We believe that having a clear understanding of the underlying chemical interactions is valuable to medicinal chemists in their quest to design appropriate inhibitors.
Collapse
Affiliation(s)
- Peter Mubanga Cheuka
- Department of Chemistry, School of Natural Sciences, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
| | - Paul Njaria
- Department of Pharmacognosy and Pharmaceutical Chemistry, Kenyatta University, P.O. Box 14548-00400, Nairobi 00100, Kenya
| | - Godfrey Mayoka
- Department of Pharmacology and Pharmacognosy, School of Pharmacy, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi 00100, Kenya
| | - Evelyn Funjika
- Department of Chemistry, School of Natural Sciences, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
| |
Collapse
|
11
|
Khairnar P, Aleshire SL, Kumar Ongolu R, Jin L, Laidlaw MG, Donsbach KO, Gupton BF, Nelson RC, Shanahan CS. Highly Regioselective Protecting-Group-Free Synthesis of the Antimalarial Drug MMV693183. Org Process Res Dev 2024; 28:273-280. [PMID: 38268773 PMCID: PMC10804412 DOI: 10.1021/acs.oprd.3c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
MMV693183 is a promising antimalarial drug candidate that works for uncomplicated malaria treatment and resistance management. Herein, we report an efficient and highly regioselective synthesis of MMV693183. This novel synthetic method highlights a three-step route with an overall yield of 46% from readily available starting materials. The key to the success lies in (1) utilizing the subtle difference of the two amino groups in the starting material (S)-propane-1,2-diamine dihydrochloride without amino protection and (2) identifying the L-(+)-tartaric acid as the counter acid for the organic salt formation, yielding the desired regioisomer up to 100:0. The efficient and scalable three-step protocol operates under mild conditions with a high chemo/regioselectivity, providing effective access to MMV693183.
Collapse
Affiliation(s)
- Pankaj
V. Khairnar
- Medicines for All Institute, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Sarah L. Aleshire
- Medicines for All Institute, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Ravi Kumar Ongolu
- Medicines for All Institute, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Limei Jin
- Medicines for All Institute, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Michael G. Laidlaw
- Medicines for All Institute, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Kai O. Donsbach
- Medicines for All Institute, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - B. Frank Gupton
- Medicines for All Institute, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Ryan C. Nelson
- Medicines for All Institute, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Charles S. Shanahan
- Medicines for All Institute, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| |
Collapse
|
12
|
Chepngetich J, Muriithi B, Gachie B, Thiong'o K, Jepkorir M, Gathirwa J, Kimani F, Mwitari P, Kiboi D. Amodiaquine drug pressure selects nonsynonymous mutations in pantothenate kinase 1, diacylglycerol kinase, and phosphatidylinositol-4 kinase in Plasmodium berghei ANKA. OPEN RESEARCH AFRICA 2023; 5:28. [PMID: 38915420 PMCID: PMC11195610 DOI: 10.12688/openresafrica.13436.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 06/26/2024]
Abstract
Background Lumefantrine (LM), piperaquine (PQ), and amodiaquine (AQ), the long-acting components of the artemisinin-based combination therapies (ACTs), are a cornerstone of malaria treatment in Africa. Studies have shown that PQ, AQ, and LM resistance may arise independently of predicted modes of action. Protein kinases have emerged as mediators of drug action and efficacy in malaria parasites; however, the link between top druggable Plasmodium kinases with LM, PQ, and AQ resistance remains unclear. Using LM, PQ, or AQ-resistant Plasmodium berghei parasites, we have evaluated the association of choline kinase (CK), pantothenate kinase 1 (PANK1), diacylglycerol kinase (DAGK), and phosphatidylinositol-4 kinase (PI4Kβ), and calcium-dependent protein kinase 1 (CDPK1) with LM, PQ, and AQ resistance in Plasmodium berghei ANKA. Methods We used in silico bioinformatics tools to identify ligand-binding motifs, active sites, and sequence conservation across the different parasites. We then used PCR and sequencing analysis to probe for single nucleotide polymorphisms (SNPs) within the predicted functional motifs in the CK, PANK1, DAGK, PI4Kβ, and CDPK1. Using qPCR analysis, we measured the mRNA amount of PANK1, DAGK, and PI4Kβ at trophozoites and schizonts stages. Results We reveal sequence conservation and unique ligand-binding motifs in the CK, PANK1, DAGK, PI4Kβ, and CDPK1 across malaria species. DAGK, PANK1, and PI4Kβ possessed nonsynonymous mutations; surprisingly, the mutations only occurred in the AQr parasites. PANK1 acquired Asn394His, while DAGK contained K270R and K292R mutations. PI4Kβ had Asp366Asn, Ser1367Arg, Tyr1394Asn and Asp1423Asn. We show downregulation of PANK1, DAGK, and PI4Kβ in the trophozoites but upregulation at the schizonts stages in the AQr parasites. Conclusions The selective acquisition of the mutations and the differential gene expression in AQ-resistant parasites may signify proteins under AQ pressure. The role of the mutations in the resistant parasites and their impact on drug responses require investigations using reverse genetics techniques in malaria parasites.
Collapse
Affiliation(s)
- Jean Chepngetich
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology and Innovation, Nairobi, 62000, 00200, Kenya
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Nairobi, 54840, 00200, Kenya
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, 54840, 00200, Kenya
| | - Brenda Muriithi
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Nairobi, 54840, 00200, Kenya
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, 54840, 00200, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 62000, 00200, Kenya
| | - Beatrice Gachie
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology and Innovation, Nairobi, 62000, 00200, Kenya
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Nairobi, 54840, 00200, Kenya
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, 54840, 00200, Kenya
| | - Kevin Thiong'o
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, 54840, 00200, Kenya
| | - Mercy Jepkorir
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Nairobi, 54840, 00200, Kenya
| | - Jeremiah Gathirwa
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Nairobi, 54840, 00200, Kenya
| | - Francis Kimani
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, 54840, 00200, Kenya
| | - Peter Mwitari
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Nairobi, 54840, 00200, Kenya
| | - Daniel Kiboi
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 62000, 00200, Kenya
| |
Collapse
|
13
|
Siqueira-Neto JL, Wicht KJ, Chibale K, Burrows JN, Fidock DA, Winzeler EA. Antimalarial drug discovery: progress and approaches. Nat Rev Drug Discov 2023; 22:807-826. [PMID: 37652975 PMCID: PMC10543600 DOI: 10.1038/s41573-023-00772-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 09/02/2023]
Abstract
Recent antimalarial drug discovery has been a race to produce new medicines that overcome emerging drug resistance, whilst considering safety and improving dosing convenience. Discovery efforts have yielded a variety of new molecules, many with novel modes of action, and the most advanced are in late-stage clinical development. These discoveries have led to a deeper understanding of how antimalarial drugs act, the identification of a new generation of drug targets, and multiple structure-based chemistry initiatives. The limited pool of funding means it is vital to prioritize new drug candidates. They should exhibit high potency, a low propensity for resistance, a pharmacokinetic profile that favours infrequent dosing, low cost, preclinical results that demonstrate safety and tolerability in women and infants, and preferably the ability to block Plasmodium transmission to Anopheles mosquito vectors. In this Review, we describe the approaches that have been successful, progress in preclinical and clinical development, and existing challenges. We illustrate how antimalarial drug discovery can serve as a model for drug discovery in diseases of poverty.
Collapse
Affiliation(s)
| | - Kathryn J Wicht
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | - Kelly Chibale
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | | | - David A Fidock
- Department of Microbiology and Immunology and Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | |
Collapse
|
14
|
Riske BF, Luckhart S, Riehle MA. Starving the Beast: Limiting Coenzyme A Biosynthesis to Prevent Disease and Transmission in Malaria. Int J Mol Sci 2023; 24:13915. [PMID: 37762222 PMCID: PMC10530615 DOI: 10.3390/ijms241813915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Malaria parasites must acquire all necessary nutrients from the vertebrate and mosquito hosts to successfully complete their life cycle. Failure to acquire these nutrients can limit or even block parasite development and presents a novel target for malaria control. One such essential nutrient is pantothenate, also known as vitamin B5, which the parasite cannot synthesize de novo and is required for the synthesis of coenzyme A (CoA) in the parasite. This review examines pantothenate and the CoA biosynthesis pathway in the human-mosquito-malaria parasite triad and explores possible approaches to leverage the CoA biosynthesis pathway to limit malaria parasite development in both human and mosquito hosts. This includes a discussion of sources for pantothenate for the mosquito, human, and parasite, examining the diverse strategies used by the parasite to acquire substrates for CoA synthesis across life stages and host resource pools and a discussion of drugs and alternative approaches being studied to disrupt CoA biosynthesis in the parasite. The latter includes antimalarial pantothenate analogs, known as pantothenamides, that have been developed to target this pathway during the human erythrocytic stages. In addition to these parasite-targeted drugs, we review studies of mosquito-targeted allosteric enzymatic regulators known as pantazines as an approach to limit pantothenate availability in the mosquito and subsequently deprive the parasite of this essential nutrient.
Collapse
Affiliation(s)
- Brendan F. Riske
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA;
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843, USA;
- Department of Biological Sciences, University of Idaho, Moscow, ID 83843, USA
| | - Michael A. Riehle
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|
15
|
Gomes P, Guido RVC. Editorial: Antimalarial chemotherapy in the XXIst century, volume II. Front Pharmacol 2023; 14:1229764. [PMID: 37456750 PMCID: PMC10348896 DOI: 10.3389/fphar.2023.1229764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Affiliation(s)
- Paula Gomes
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences (FCUP), University of Porto, Porto, Portugal
| | - Rafael V. C. Guido
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| |
Collapse
|
16
|
Kreutzfeld O, Tumwebaze PK, Okitwi M, Orena S, Byaruhanga O, Katairo T, Conrad MD, Rasmussen SA, Legac J, Aydemir O, Giesbrecht D, Forte B, Campbell P, Smith A, Kano H, Nsobya SL, Blasco B, Duffey M, Bailey JA, Cooper RA, Rosenthal PJ. Susceptibility of Ugandan Plasmodium falciparum Isolates to the Antimalarial Drug Pipeline. Microbiol Spectr 2023; 11:e0523622. [PMID: 37158739 PMCID: PMC10269555 DOI: 10.1128/spectrum.05236-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Malaria, especially Plasmodium falciparum infection, remains an enormous problem, and its treatment and control are seriously challenged by drug resistance. New antimalarial drugs are needed. To characterize the Medicines for Malaria Venture pipeline of antimalarials under development, we assessed the ex vivo drug susceptibilities to 19 compounds targeting or potentially impacted by mutations in P. falciparum ABC transporter I family member 1, acetyl-CoA synthetase, cytochrome b, dihydroorotate dehydrogenase, elongation factor 2, lysyl-tRNA synthetase, phenylalanyl-tRNA synthetase, plasmepsin X, prodrug activation and resistance esterase, and V-type H+ ATPase of 998 fresh P. falciparum clinical isolates collected in eastern Uganda from 2015 to 2022. Drug susceptibilities were assessed by 72-h growth inhibition (half-maximum inhibitory concentration [IC50]) assays using SYBR green. Field isolates were highly susceptible to lead antimalarials, with low- to midnanomolar median IC50s, near values previously reported for laboratory strains, for all tested compounds. However, outliers with decreased susceptibilities were identified. Positive correlations between IC50 results were seen for compounds with shared targets. We sequenced genes encoding presumed targets to characterize sequence diversity, search for polymorphisms previously selected with in vitro drug pressure, and determine genotype-phenotype associations. We identified many polymorphisms in target genes, generally in <10% of isolates, but none were those previously selected in vitro with drug pressure, and none were associated with significantly decreased ex vivo drug susceptibility. Overall, Ugandan P. falciparum isolates were highly susceptible to 19 compounds under development as next-generation antimalarials, consistent with a lack of preexisting or novel resistance-conferring mutations in circulating Ugandan parasites. IMPORTANCE Drug resistance necessitates the development of new antimalarial drugs. It is important to assess the activities of compounds under development against parasites now causing disease in Africa, where most malaria cases occur, and to determine if mutations in these parasites may limit the efficacies of new agents. We found that African isolates were generally highly susceptible to the 19 studied lead antimalarials. Sequencing of the presumed drug targets identified multiple mutations in these genes, but these mutations were generally not associated with decreased antimalarial activity. These results offer confidence that the activities of the tested antimalarial compounds now under development will not be limited by preexisting resistance-mediating mutations in African malaria parasites.
Collapse
Affiliation(s)
- Oriana Kreutzfeld
- University of California, San Francisco, San Francisco, California, USA
| | | | - Martin Okitwi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Stephen Orena
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Thomas Katairo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Melissa D. Conrad
- University of California, San Francisco, San Francisco, California, USA
| | | | - Jennifer Legac
- University of California, San Francisco, San Francisco, California, USA
| | - Ozkan Aydemir
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Barbara Forte
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Peter Campbell
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Alasdair Smith
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Hiroki Kano
- Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Demarta-Gatsi C, Andenmatten N, Jiménez-Díaz MB, Gobeau N, Cherkaoui-Rabti MH, Fuchs A, Díaz P, Berja S, Sánchez R, Gómez H, Ruiz E, Sainz P, Salazar E, Gil-Merino R, Mendoza LM, Eguizabal C, Leroy D, Moehrle JJ, Tornesi B, Angulo-Barturen I. Predicting Optimal Antimalarial Drug Combinations from a Standardized Plasmodium falciparum Humanized Mouse Model. Antimicrob Agents Chemother 2023; 67:e0157422. [PMID: 37133382 PMCID: PMC10269072 DOI: 10.1128/aac.01574-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/29/2023] [Indexed: 05/04/2023] Open
Abstract
The development of new combinations of antimalarial drugs is urgently needed to prevent the spread of parasites resistant to drugs in clinical use and contribute to the control and eradication of malaria. In this work, we evaluated a standardized humanized mouse model of erythrocyte asexual stages of Plasmodium falciparum (PfalcHuMouse) for the selection of optimal drug combinations. First, we showed that the replication of P. falciparum was robust and highly reproducible in the PfalcHuMouse model by retrospective analysis of historical data. Second, we compared the relative value of parasite clearance from blood, parasite regrowth after suboptimal treatment (recrudescence), and cure as variables of therapeutic response to measure the contributions of partner drugs to combinations in vivo. To address the comparison, we first formalized and validated the day of recrudescence (DoR) as a new variable and found that there was a log-linear relationship with the number of viable parasites per mouse. Then, using historical data on monotherapy and two small cohorts of PfalcHuMice evaluated with ferroquine plus artefenomel or piperaquine plus artefenomel, we found that only measurements of parasite killing (i.e., cure of mice) as a function of drug exposure in blood allowed direct estimation of the individual drug contribution to efficacy by using multivariate statistical modeling and intuitive graphic displays. Overall, the analysis of parasite killing in the PfalcHuMouse model is a unique and robust experimental in vivo tool to inform the selection of optimal combinations by pharmacometric pharmacokinetic and pharmacodynamic (PK/PD) modeling.
Collapse
Affiliation(s)
| | | | | | | | | | - Aline Fuchs
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Pablo Díaz
- The Art of Discovery, Derio, Basque Country, Spain
| | - Sandra Berja
- The Art of Discovery, Derio, Basque Country, Spain
| | | | - Hazel Gómez
- The Art of Discovery, Derio, Basque Country, Spain
| | | | - Paula Sainz
- The Art of Discovery, Derio, Basque Country, Spain
| | | | | | | | - Cristina Eguizabal
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
- Basque Centre for Blood Transfusion and Human Tissues, Galdakao, Bizkaia, Spain
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | | | | | | |
Collapse
|
18
|
Nair SC, Munro JT, Mann A, Llinás M, Prigge ST. The mitochondrion of Plasmodium falciparum is required for cellular acetyl-CoA metabolism and protein acetylation. Proc Natl Acad Sci U S A 2023; 120:e2210929120. [PMID: 37068227 PMCID: PMC10151609 DOI: 10.1073/pnas.2210929120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/28/2023] [Indexed: 04/19/2023] Open
Abstract
Coenzyme A (CoA) biosynthesis is an excellent target for antimalarial intervention. While most studies have focused on the use of CoA to produce acetyl-CoA in the apicoplast and the cytosol of malaria parasites, mitochondrial acetyl-CoA production is less well understood. In the current study, we performed metabolite-labeling experiments to measure endogenous metabolites in Plasmodium falciparum lines with genetic deletions affecting mitochondrial dehydrogenase activity. Our results show that the mitochondrion is required for cellular acetyl-CoA biosynthesis and identify a synthetic lethal relationship between the two main ketoacid dehydrogenase enzymes. The activity of these enzymes is dependent on the lipoate attachment enzyme LipL2, which is essential for parasite survival solely based on its role in supporting acetyl-CoA metabolism. We also find that acetyl-CoA produced in the mitochondrion is essential for the acetylation of histones and other proteins outside of the mitochondrion. Taken together, our results demonstrate that the mitochondrion is required for cellular acetyl-CoA metabolism and protein acetylation essential for parasite survival.
Collapse
Affiliation(s)
- Sethu C. Nair
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21218
| | - Justin T. Munro
- Department of Chemistry, Pennsylvania State University, University Park, PA16802
- Huck Center for Malaria Research, Pennsylvania State University, University Park, PA16802
| | - Alexis Mann
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21218
| | - Manuel Llinás
- Department of Chemistry, Pennsylvania State University, University Park, PA16802
- Huck Center for Malaria Research, Pennsylvania State University, University Park, PA16802
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA16802
| | - Sean T. Prigge
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
19
|
Lahree A, Mello-Vieira J, Mota MM. The nutrient games - Plasmodium metabolism during hepatic development. Trends Parasitol 2023; 39:445-460. [PMID: 37061442 DOI: 10.1016/j.pt.2023.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/17/2023]
Abstract
Malaria is a febrile illness caused by species of the protozoan parasite Plasmodium and is characterized by recursive infections of erythrocytes, leading to clinical symptoms and pathology. In mammals, Plasmodium parasites undergo a compulsory intrahepatic development stage before infecting erythrocytes. Liver-stage parasites have a metabolic configuration to facilitate the replication of several thousand daughter parasites. Their metabolism is of interest to identify cellular pathways essential for liver infection, to kill the parasite before onset of the disease. In this review, we summarize the current knowledge on nutrient acquisition and biosynthesis by liver-stage parasites mostly generated in murine malaria models, gaps in knowledge, and challenges to create a holistic view of the development and deficiencies in this field.
Collapse
Affiliation(s)
- Aparajita Lahree
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - João Mello-Vieira
- Institute of Biochemistry II, School of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maria M Mota
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
20
|
Bopp S, Pasaje CFA, Summers RL, Magistrado-Coxen P, Schindler KA, Corpas-Lopez V, Yeo T, Mok S, Dey S, Smick S, Nasamu AS, Demas AR, Milne R, Wiedemar N, Corey V, Gomez-Lorenzo MDG, Franco V, Early AM, Lukens AK, Milner D, Furtado J, Gamo FJ, Winzeler EA, Volkman SK, Duffey M, Laleu B, Fidock DA, Wyllie S, Niles JC, Wirth DF. Potent acyl-CoA synthetase 10 inhibitors kill Plasmodium falciparum by disrupting triglyceride formation. Nat Commun 2023; 14:1455. [PMID: 36927839 PMCID: PMC10020447 DOI: 10.1038/s41467-023-36921-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
Identifying how small molecules act to kill malaria parasites can lead to new "chemically validated" targets. By pressuring Plasmodium falciparum asexual blood stage parasites with three novel structurally-unrelated antimalarial compounds (MMV665924, MMV019719 and MMV897615), and performing whole-genome sequence analysis on resistant parasite lines, we identify multiple mutations in the P. falciparum acyl-CoA synthetase (ACS) genes PfACS10 (PF3D7_0525100, M300I, A268D/V, F427L) and PfACS11 (PF3D7_1238800, F387V, D648Y, and E668K). Allelic replacement and thermal proteome profiling validates PfACS10 as a target of these compounds. We demonstrate that this protein is essential for parasite growth by conditional knockdown and observe increased compound susceptibility upon reduced expression. Inhibition of PfACS10 leads to a reduction in triacylglycerols and a buildup of its lipid precursors, providing key insights into its function. Analysis of the PfACS11 gene and its mutations point to a role in mediating resistance via decreased protein stability.
Collapse
Affiliation(s)
- Selina Bopp
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | | | - Robert L Summers
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Pamela Magistrado-Coxen
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Kyra A Schindler
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Victoriano Corpas-Lopez
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sumanta Dey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sebastian Smick
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Armiyaw S Nasamu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Allison R Demas
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Rachel Milne
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Natalie Wiedemar
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Victoria Corey
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Maria De Gracia Gomez-Lorenzo
- Tres Cantos Medicines Research and Development Campus, Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Virginia Franco
- Tres Cantos Medicines Research and Development Campus, Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Angela M Early
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Amanda K Lukens
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Danny Milner
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Jeremy Furtado
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Francisco-Javier Gamo
- Tres Cantos Medicines Research and Development Campus, Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Elizabeth A Winzeler
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sarah K Volkman
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
- College of Natural, Behavioral, and Health Sciences, Simmons University, Boston, MA, USA
| | | | - Benoît Laleu
- Medicines for Malaria Venture, Geneva, Switzerland
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
21
|
Guerra F, Winzeler EA. New targets for antimalarial drug discovery. Curr Opin Microbiol 2022; 70:102220. [PMID: 36228458 PMCID: PMC9934905 DOI: 10.1016/j.mib.2022.102220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/22/2022] [Accepted: 09/10/2022] [Indexed: 01/25/2023]
Abstract
Phenotypic screening methods have placed numerous preclinical candidates into the antimalarial drug-discovery pipeline. As more chemically validated targets become available, efforts are shifting to target-based drug discovery. Here, we briefly review some of the most attractive targets that have been identified in recent years.
Collapse
Affiliation(s)
- Francisco Guerra
- Department of Pediatrics MC 0760, School of Medicine, University of California, La Jolla, San Diego, CA 92093, USA
| | - Elizabeth A Winzeler
- Department of Pediatrics MC 0760, School of Medicine, University of California, La Jolla, San Diego, CA 92093, USA.
| |
Collapse
|
22
|
Thakre N, Simão Gurge RM, Isoe J, Kivi H, Strickland J, Delacruz LR, Rodriguez AM, Haney R, Sadeghi R, Joy T, Chen M, Luckhart S, Riehle MA. Manipulation of pantothenate kinase in Anopheles stephensi suppresses pantothenate levels with minimal impacts on mosquito fitness. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 149:103834. [PMID: 36087890 PMCID: PMC9595603 DOI: 10.1016/j.ibmb.2022.103834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Pantothenate (Pan) is an essential nutrient required by both the mosquito vector and malaria parasite. We previously demonstrated that increasing pantothenate kinase (PanK) activity and co-enzyme A (CoA) biosynthesis led to significantly decreased parasite infection prevalence and intensity in the malaria mosquito Anopheles stephensi. In this study, we demonstrate that Pan stores in A. stephensi are a limited resource and that manipulation of PanK levels or activity, via small molecule modulators of PanK or transgenic mosquitoes, leads to the conversion of Pan to CoA and an overall reduction in Pan levels with minimal to no effects on mosquito fitness. Transgenic A. stephensi lines with repressed insulin signaling due to PTEN overexpression or repressed c-Jun N-terminal kinase (JNK) signaling due to MAPK phosphatase 4 (MKP4) overexpression exhibited enhanced PanK levels and significant reductions in Pan relative to non-transgenic controls, with the PTEN line also exhibiting significantly increased CoA levels. Provisioning of the PTEN line with the small molecule PanK modulator PZ-2891 increased CoA levels while provisioning Compound 7 decreased CoA levels, affirming chemical manipulation of mosquito PanK. We assessed effects of these small molecules on A. stephensi lifespan, reproduction and metabolism under optimized laboratory conditions. PZ-2891 and Compound 7 had no impact on A. stephensi survival when delivered via bloodmeal throughout mosquito lifespan. Further, PZ-2891 provisioning had no impact on egg production over the first two reproductive cycles. Finally, PanK manipulation with small molecules was associated with minimal impacts on nutritional stores in A. stephensi mosquitoes under optimized rearing conditions. Together with our previous data demonstrating that PanK activation was associated with significantly increased A. stephensi resistance to Plasmodium falciparum infection, the studies herein demonstrate a lack of fitness costs of mosquito Pan depletion as a basis for a feasible, novel strategy to control parasite infection of anopheline mosquitoes.
Collapse
Affiliation(s)
- Neha Thakre
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Raquel M Simão Gurge
- Departrment of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA
| | - Jun Isoe
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Heather Kivi
- Departrment of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA
| | - Jessica Strickland
- Departrment of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA
| | | | - Anna M Rodriguez
- Departrment of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA
| | - Reagan Haney
- Departrment of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA
| | - Rohollah Sadeghi
- Departrment of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA
| | - Teresa Joy
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Minhao Chen
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Shirley Luckhart
- Departrment of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA; Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Michael A Riehle
- Department of Entomology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
23
|
Generation and Validation of an Anti-Human PANK3 Mouse Monoclonal Antibody. Biomolecules 2022; 12:biom12091323. [PMID: 36139163 PMCID: PMC9496473 DOI: 10.3390/biom12091323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022] Open
Abstract
Coenzyme A (CoA) is an essential co-factor at the intersection of diverse metabolic pathways. Cellular CoA biosynthesis is regulated at the first committed step—phosphorylation of pantothenic acid—catalyzed by pantothenate kinases (PANK1,2,3 in humans, PANK3 being the most highly expressed). Despite the critical importance of CoA in metabolism, the differential roles of PANK isoforms remain poorly understood. Our investigations of PANK proteins as potential precision oncology collateral lethality targets (PANK1 is co-deleted as part of the PTEN locus in some highly aggressive cancers) were severely hindered by a dearth of commercial antibodies that can reliably detect endogenous PANK3 protein. While we successfully validated commercial antibodies for PANK1 and PANK2 using CRISPR knockout cell lines, we found no commercial antibody that could detect endogenous PANK3. We therefore set out to generate a mouse monoclonal antibody against human PANK3 protein. We demonstrate that a clone (Clone MDA-299-62A) can reliably detect endogenous PANK3 protein in cancer cell lines, with band-specificity confirmed by CRISPR PANK3 knockout and knockdown cell lines. Sub-cellular fractionation shows that PANK3 is overwhelmingly cytosolic and expressed broadly across cancer cell lines. PANK3 monoclonal antibody MDA-299-62A should prove a valuable tool for researchers investigating this understudied family of metabolic enzymes in health and disease.
Collapse
|
24
|
van der Watt ME, Reader J, Birkholtz LM. Adapt or Die: Targeting Unique Transmission-Stage Biology for Malaria Elimination. Front Cell Infect Microbiol 2022; 12:901971. [PMID: 35755845 PMCID: PMC9218253 DOI: 10.3389/fcimb.2022.901971] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/06/2022] [Indexed: 12/25/2022] Open
Abstract
Plasmodium parasites have a complex life cycle that includes development in the human host as well as the Anopheles vector. Successful transmission of the parasite between its host and vector therefore requires the parasite to balance its investments in asexual replication and sexual reproduction, varying the frequency of sexual commitment to persist within the human host and generate future opportunities for transmission. The transmission window is extended further by the ability of stage V gametocytes to circulate in peripheral blood for weeks, whereas immature stage I to IV gametocytes sequester in the bone marrow and spleen until final maturation. Due to the low gametocyte numbers in blood circulation and with the ease of targeting such life cycle bottlenecks, transmission represents an efficient target for therapeutic intervention. The biological process of Plasmodium transmission is a multistage, multifaceted process and the past decade has seen a much deeper understanding of the molecular mechanisms and regulators involved. Clearly, specific and divergent processes are used during transmission compared to asexual proliferation, which both poses challenges but also opportunities for discovery of transmission-blocking antimalarials. This review therefore presents an update of our molecular understanding of gametocyte and gamete biology as well as the status of transmission-blocking activities of current antimalarials and lead development compounds. By defining the biological components associated with transmission, considerations for the development of new transmission-blocking drugs to target such untapped but unique biology is suggested as an important, main driver for transmission-blocking drug discovery.
Collapse
Affiliation(s)
- Mariëtte E van der Watt
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Janette Reader
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Lyn-Marié Birkholtz
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
25
|
Ramjith J, Alkema M, Bradley J, Dicko A, Drakeley C, Stone W, Bousema T. Quantifying Reductions in Plasmodium falciparum Infectivity to Mosquitos: A Sample Size Calculator to Inform Clinical Trials on Transmission-Reducing Interventions. Front Immunol 2022; 13:899615. [PMID: 35720362 PMCID: PMC9205189 DOI: 10.3389/fimmu.2022.899615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Malaria transmission depends on the presence of mature Plasmodium transmission stages (gametocytes) that may render blood-feeding Anopheles mosquitos infectious. Transmission-blocking antimalarial drugs and vaccines can prevent transmission by reducing gametocyte densities or infectivity to mosquitos. Mosquito infection outcomes are thereby informative biological endpoints of clinical trials with transmission blocking interventions. Nevertheless, trials are often primarily designed to determine intervention safety; transmission blocking efficacy is difficult to incorporate in sample size considerations due to variation in infection outcomes and considerable inter-study variation. Here, we use clinical trial data from studies in malaria naive and naturally exposed study participants to present an online sample size calculator tool. This sample size calculator allows studies to be powered to detect reductions in the proportion of infected mosquitos or infection burden (oocyst density) in mosquitos. The utility of this online tool is illustrated using trial data with transmission blocking malaria drugs.
Collapse
Affiliation(s)
- Jordache Ramjith
- Radboud Institute for Molecular Life Sciences, Department of Medical Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Health Evidence, Biostatistics Research Group, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Manon Alkema
- Radboud Institute for Molecular Life Sciences, Department of Medical Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - John Bradley
- Medical Research Council (MRC) International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Alassane Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Chris Drakeley
- Medical Research Council (MRC) International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Will Stone
- Medical Research Council (MRC) International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Teun Bousema
- Radboud Institute for Molecular Life Sciences, Department of Medical Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
26
|
Xie SC, Metcalfe RD, Dunn E, Morton CJ, Huang SC, Puhalovich T, Du Y, Wittlin S, Nie S, Luth MR, Ma L, Kim MS, Pasaje CFA, Kumpornsin K, Giannangelo C, Houghton FJ, Churchyard A, Famodimu MT, Barry DC, Gillett DL, Dey S, Kosasih CC, Newman W, Niles JC, Lee MC, Baum J, Ottilie S, Winzeler EA, Creek DJ, Williamson N, Parker MW, Brand SL, Langston SP, Dick LR, Griffin MD, Gould AE, Tilley L. Reaction hijacking of tyrosine tRNA synthetase as a new whole-of-life-cycle antimalarial strategy. Science 2022; 376:1074-1079. [PMID: 35653481 PMCID: PMC7613620 DOI: 10.1126/science.abn0611] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Aminoacyl transfer RNA (tRNA) synthetases (aaRSs) are attractive drug targets, and we present class I and II aaRSs as previously unrecognized targets for adenosine 5'-monophosphate-mimicking nucleoside sulfamates. The target enzyme catalyzes the formation of an inhibitory amino acid-sulfamate conjugate through a reaction-hijacking mechanism. We identified adenosine 5'-sulfamate as a broad-specificity compound that hijacks a range of aaRSs and ML901 as a specific reagent a specific reagent that hijacks a single aaRS in the malaria parasite Plasmodium falciparum, namely tyrosine RS (PfYRS). ML901 exerts whole-life-cycle-killing activity with low nanomolar potency and single-dose efficacy in a mouse model of malaria. X-ray crystallographic studies of plasmodium and human YRSs reveal differential flexibility of a loop over the catalytic site that underpins differential susceptibility to reaction hijacking by ML901.
Collapse
Affiliation(s)
- Stanley C. Xie
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Riley D. Metcalfe
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Elyse Dunn
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Craig J. Morton
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Shih-Chung Huang
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts 02139, USA
| | - Tanya Puhalovich
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Yawei Du
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland,University of Basel, 4003 Basel, Switzerland
| | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Madeline R. Luth
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Liting Ma
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts 02139, USA
| | - Mi-Sook Kim
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts 02139, USA
| | | | - Krittikorn Kumpornsin
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | - Carlo Giannangelo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Fiona J. Houghton
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Alisje Churchyard
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | | | - Daniel C. Barry
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - David L. Gillett
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Sumanta Dey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Clara C. Kosasih
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - William Newman
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jacquin C. Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Marcus C.S. Lee
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | - Jake Baum
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Sabine Ottilie
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Elizabeth A. Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Nicholas Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Michael W. Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia,St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Stephen L. Brand
- Medicines for Malaria Venture, PO Box 1826, 20, Route de Pré-Bois, 1215, Geneva 15, Switzerland
| | - Steven P. Langston
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts 02139, USA
| | - Lawrence R. Dick
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia,Seofon Consulting, 30 Tucker Street, Natick, Massachusetts 01760, USA
| | - Michael D.W. Griffin
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Alexandra E. Gould
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts 02139, USA,For correspondence. Alexandra E. Gould, Takeda Development Center Americas, Inc., Cambridge, Massachusetts 02139, USA, (Chemistry) and Leann Tilley, Department of Biochemistry and Pharmacology, Bio21 Institute, The University of Melbourne, Melbourne, VIC 3010, Australia. (Biology)
| | - Leann Tilley
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia,For correspondence. Alexandra E. Gould, Takeda Development Center Americas, Inc., Cambridge, Massachusetts 02139, USA, (Chemistry) and Leann Tilley, Department of Biochemistry and Pharmacology, Bio21 Institute, The University of Melbourne, Melbourne, VIC 3010, Australia. (Biology)
| |
Collapse
|
27
|
de Vries LE, Jansen PAM, Barcelo C, Munro J, Verhoef JMJ, Pasaje CFA, Rubiano K, Striepen J, Abla N, Berning L, Bolscher JM, Demarta-Gatsi C, Henderson RWM, Huijs T, Koolen KMJ, Tumwebaze PK, Yeo T, Aguiar ACC, Angulo-Barturen I, Churchyard A, Baum J, Fernández BC, Fuchs A, Gamo FJ, Guido RVC, Jiménez-Diaz MB, Pereira DB, Rochford R, Roesch C, Sanz LM, Trevitt G, Witkowski B, Wittlin S, Cooper RA, Rosenthal PJ, Sauerwein RW, Schalkwijk J, Hermkens PHH, Bonnert RV, Campo B, Fidock DA, Llinás M, Niles JC, Kooij TWA, Dechering KJ. Preclinical characterization and target validation of the antimalarial pantothenamide MMV693183. Nat Commun 2022; 13:2158. [PMID: 35444200 PMCID: PMC9021288 DOI: 10.1038/s41467-022-29688-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 03/09/2022] [Indexed: 12/14/2022] Open
Abstract
Drug resistance and a dire lack of transmission-blocking antimalarials hamper malaria elimination. Here, we present the pantothenamide MMV693183 as a first-in-class acetyl-CoA synthetase (AcAS) inhibitor to enter preclinical development. Our studies demonstrate attractive drug-like properties and in vivo efficacy in a humanized mouse model of Plasmodium falciparum infection. The compound shows single digit nanomolar in vitro activity against P. falciparum and P. vivax clinical isolates, and potently blocks P. falciparum transmission to Anopheles mosquitoes. Genetic and biochemical studies identify AcAS as the target of the MMV693183-derived antimetabolite, CoA-MMV693183. Pharmacokinetic-pharmacodynamic modelling predict that a single 30 mg oral dose is sufficient to cure a malaria infection in humans. Toxicology studies in rats indicate a > 30-fold safety margin in relation to the predicted human efficacious exposure. In conclusion, MMV693183 represents a promising candidate for further (pre)clinical development with a novel mode of action for treatment of malaria and blocking transmission. Here, de Vries et al. perform a pre-clinical characterization of the antimalarial compound MMV693183: the compound targets acetyl-CoA synthetase, has efficacy in humanized mice against Plasmodium falciparum infection, blocks transmission to mosquito vectors, is safe in rats, and pharmacokinetic-pharmacodynamic modeling informs about a potential oral human dosing regimen.
Collapse
Affiliation(s)
- Laura E de Vries
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Patrick A M Jansen
- Department of Dermatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Justin Munro
- Department of Chemistry and Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA
| | - Julie M J Verhoef
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Kelly Rubiano
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Josefine Striepen
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nada Abla
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Luuk Berning
- TropIQ Health Sciences, Nijmegen, The Netherlands
| | | | | | | | - Tonnie Huijs
- TropIQ Health Sciences, Nijmegen, The Netherlands
| | | | | | - Tomas Yeo
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna C C Aguiar
- Sao Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil, São Carlos, SP, Brazil
| | | | - Alisje Churchyard
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | | | - Aline Fuchs
- Medicines for Malaria Venture, Geneva, Switzerland
| | | | - Rafael V C Guido
- Sao Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil, São Carlos, SP, Brazil
| | | | - Dhelio B Pereira
- Research Center for Tropical Medicine of Rondonia, Porto Velho, Brazil
| | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Camille Roesch
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris & Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Laura M Sanz
- Global Health, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | | | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris & Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Roland A Cooper
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA, USA
| | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,TropIQ Health Sciences, Nijmegen, The Netherlands
| | - Joost Schalkwijk
- Department of Dermatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Brice Campo
- Medicines for Malaria Venture, Geneva, Switzerland
| | - David A Fidock
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA.,Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Manuel Llinás
- Department of Chemistry and Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA.,Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Taco W A Kooij
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | | |
Collapse
|
28
|
Chemogenomics identifies acetyl-coenzyme A synthetase as a target for malaria treatment and prevention. Cell Chem Biol 2022; 29:191-201.e8. [PMID: 34348113 PMCID: PMC8878317 DOI: 10.1016/j.chembiol.2021.07.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/22/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
We identify the Plasmodium falciparum acetyl-coenzyme A synthetase (PfAcAS) as a druggable target, using genetic and chemical validation. In vitro evolution of resistance with two antiplasmodial drug-like compounds (MMV019721 and MMV084978) selects for mutations in PfAcAS. Metabolic profiling of compound-treated parasites reveals changes in acetyl-CoA levels for both compounds. Genome editing confirms that mutations in PfAcAS are sufficient to confer resistance. Knockdown studies demonstrate that PfAcAS is essential for asexual growth, and partial knockdown induces hypersensitivity to both compounds. In vitro biochemical assays using recombinantly expressed PfAcAS validates that MMV019721 and MMV084978 directly inhibit the enzyme by preventing CoA and acetate binding, respectively. Immunolocalization studies reveal that PfAcAS is primarily localized to the nucleus. Functional studies demonstrate inhibition of histone acetylation in compound-treated wild-type, but not in resistant parasites. Our findings identify and validate PfAcAS as an essential, druggable target involved in the epigenetic regulation of gene expression.
Collapse
|
29
|
Birkholtz LM, Alano P, Leroy D. Transmission-blocking drugs for malaria elimination. Trends Parasitol 2022; 38:390-403. [DOI: 10.1016/j.pt.2022.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/24/2022]
|
30
|
Lunghi M, Kloehn J, Krishnan A, Varesio E, Vadas O, Soldati-Favre D. Pantothenate biosynthesis is critical for chronic infection by the neurotropic parasite Toxoplasma gondii. Nat Commun 2022; 13:345. [PMID: 35039477 PMCID: PMC8764084 DOI: 10.1038/s41467-022-27996-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 01/03/2022] [Indexed: 11/16/2022] Open
Abstract
Coenzyme A (CoA) is an essential molecule acting in metabolism, post-translational modification, and regulation of gene expression. While all organisms synthesize CoA, many, including humans, are unable to produce its precursor, pantothenate. Intriguingly, like most plants, fungi and bacteria, parasites of the coccidian subgroup of Apicomplexa, including the human pathogen Toxoplasma gondii, possess all the enzymes required for de novo synthesis of pantothenate. Here, the importance of CoA and pantothenate biosynthesis for the acute and chronic stages of T. gondii infection is dissected through genetic, biochemical and metabolomic approaches, revealing that CoA synthesis is essential for T. gondii tachyzoites, due to the parasite's inability to salvage CoA or intermediates of the pathway. In contrast, pantothenate synthesis is only partially active in T. gondii tachyzoites, making the parasite reliant on its uptake. However, pantothenate synthesis is crucial for the establishment of chronic infection, offering a promising target for intervention against the persistent stage of T. gondii.
Collapse
Affiliation(s)
- Matteo Lunghi
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Aarti Krishnan
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Emmanuel Varesio
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
- Mass Spectrometry Core Facility (MZ 2.0), University of Geneva, 1211, Geneva, Switzerland
| | - Oscar Vadas
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
- Protein and peptide purification platform, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland.
| |
Collapse
|
31
|
Sturm A, Vos MW, Henderson R, Eldering M, Koolen KMJ, Sheshachalam A, Favia G, Samby K, Herreros E, Dechering KJ. Barcoded Asaia bacteria enable mosquito in vivo screens and identify novel systemic insecticides and inhibitors of malaria transmission. PLoS Biol 2021; 19:e3001426. [PMID: 34928952 PMCID: PMC8726507 DOI: 10.1371/journal.pbio.3001426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/04/2022] [Accepted: 12/03/2021] [Indexed: 11/18/2022] Open
Abstract
This work addresses the need for new chemical matter in product development for control of pest insects and vector-borne diseases. We present a barcoding strategy that enables phenotypic screens of blood-feeding insects against small molecules in microtiter plate-based arrays and apply this to discovery of novel systemic insecticides and compounds that block malaria parasite development in the mosquito vector. Encoding of the blood meals was achieved through recombinant DNA-tagged Asaia bacteria that successfully colonised Aedes and Anopheles mosquitoes. An arrayed screen of a collection of pesticides showed that chemical classes of avermectins, phenylpyrazoles, and neonicotinoids were enriched for compounds with systemic adulticide activity against Anopheles. Using a luminescent Plasmodium falciparum reporter strain, barcoded screens identified 48 drug-like transmission-blocking compounds from a 400-compound antimicrobial library. The approach significantly increases the throughput in phenotypic screening campaigns using adult insects and identifies novel candidate small molecules for disease control. This study presents a barcoding strategy that enables high-throughput phenotypic screens of blood-feeding insects against small molecules in microtiter plate-based arrays and applies this to the discovery of novel systemic insecticides and compounds that block malaria parasite development in the mosquito vector.
Collapse
|
32
|
Hajialiani F, Shahbazzadeh D, Maleki F, Elmi T, Tabatabaie F, Zamani Z. The Metabolomic Profiles of Sera of Mice Infected with Plasmodium berghei and Treated by Effective Fraction of Naja naja oxiana Using 1H Nuclear Magnetic Resonance Spectroscopy. Acta Parasitol 2021; 66:1517-1527. [PMID: 34357584 DOI: 10.1007/s11686-021-00456-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The use of venom fractions from the Iranian cobra could be useful adjunct treatments of malaria with chloroquine. A metabolomic investigation with 1HNMR spectroscopy was conducted on an effective fraction tested earlier using Plasmodium berghei as an experimental murine model. PURPOSE We sought to ascertain both safety and anti-parasitic effects of experimental therapies. METHODS After purification of the venom fractions, 25 mice were infected, then treated for 4 days with 0.2 ml of 5 mg/kg, 2.5 mg/kg and 1 mg/kg of the effective fraction, chloroquine, and a drug vehicle. An ED50 was obtained using Giemsa staining and real-time PCR analysis. The toxicity tests inspecting both liver and kidney tissues were performed. RESULTS A clear inhibitory effect on parasitaemia was observed (with 75% inhibition with 5 mg/kg and 50% reduction when 2.5 mg/kg dosage used). ED50 obtained 2.5 mg/kg. The metabolomics were identified as differentiation of aminoacyl-t-RNA biosynthesis, valine, leucine, isoleucine biosynthesis and degradation pathways were observed. CONCLUSION Upon therapeutic effects of cobra venom fraction, further optimization of dose-dependent response of pharmacokinetics would be worthwhile for further exploration in adjunct experimental venom therapies.
Collapse
|
33
|
de Vries LE, Lunghi M, Krishnan A, Kooij TWA, Soldati-Favre D. Pantothenate and CoA biosynthesis in Apicomplexa and their promise as antiparasitic drug targets. PLoS Pathog 2021; 17:e1010124. [PMID: 34969059 PMCID: PMC8717973 DOI: 10.1371/journal.ppat.1010124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Apicomplexa phylum comprises thousands of distinct intracellular parasite species, including coccidians, haemosporidians, piroplasms, and cryptosporidia. These parasites are characterized by complex and divergent life cycles occupying a variety of host niches. Consequently, they exhibit distinct adaptations to the differences in nutritional availabilities, either relying on biosynthetic pathways or by salvaging metabolites from their host. Pantothenate (Pan, vitamin B5) is the precursor for the synthesis of an essential cofactor, coenzyme A (CoA), but among the apicomplexans, only the coccidian subgroup has the ability to synthesize Pan. While the pathway to synthesize CoA from Pan is largely conserved across all branches of life, there are differences in the redundancy of enzymes and possible alternative pathways to generate CoA from Pan. Impeding the scavenge of Pan and synthesis of Pan and CoA have been long recognized as potential targets for antimicrobial drug development, but in order to fully exploit these critical pathways, it is important to understand such differences. Recently, a potent class of pantothenamides (PanAms), Pan analogs, which target CoA-utilizing enzymes, has entered antimalarial preclinical development. The potential of PanAms to target multiple downstream pathways make them a promising compound class as broad antiparasitic drugs against other apicomplexans. In this review, we summarize the recent advances in understanding the Pan and CoA biosynthesis pathways, and the suitability of these pathways as drug targets in Apicomplexa, with a particular focus on the cyst-forming coccidian, Toxoplasma gondii, and the haemosporidian, Plasmodium falciparum.
Collapse
Affiliation(s)
- Laura E. de Vries
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Matteo Lunghi
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aarti Krishnan
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Taco W. A. Kooij
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dominique Soldati-Favre
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
34
|
Choudhury A, Khanppnavar B, Datta S. Crystallographic and biophysical analyses of Pseudomonas aeruginosa ketopantoate reductase: Implications of ligand induced conformational changes in cofactor recognition. Biochimie 2021; 193:103-114. [PMID: 34757166 DOI: 10.1016/j.biochi.2021.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 11/26/2022]
Abstract
Ketopantoate reductases (KPRs) catalyse NADPH-dependent reduction of ketopantoate to pantoate, the rate-limiting step of pantothenate biosynthetic pathway. In our recent study, we showed KPRs are under dynamic evolutionary selection and highlighted the possible role of ordered substrate binding kinetics for cofactor selection. To further delineate this at molecular level, here, we perform X-ray crystallographic and biophysical analyses of KPR in presence of non-canonical cofactor NAD+. In our structure, NAD+ was found to be highly dynamic in catalytic pocket of KPR, which could attain stable conformation only in presence of ketopantoate. Further, isothermal calorimetric (ITC) titrations showed that affinity of KPR for ketopantoate is higher in presence of NADP+ than in presence of NAD+ and lowest in absence of redox cofactors. In sum, our results clearly depict two modes of redox cofactor selections in KPRs, firstly by specific salt bridge interactions with unique phosphate moiety of NADP+ and secondly via ordered sequential heterotrophic cooperative binding of substrate ketopantoate.
Collapse
Affiliation(s)
- Arkaprabha Choudhury
- Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), India
| | - Basavraj Khanppnavar
- Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), India
| | - Saumen Datta
- Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), India.
| |
Collapse
|
35
|
Forte B, Ottilie S, Plater A, Campo B, Dechering KJ, Gamo FJ, Goldberg DE, Istvan ES, Lee M, Lukens AK, McNamara CW, Niles JC, Okombo J, Pasaje CFA, Siegel MG, Wirth D, Wyllie S, Fidock DA, Baragaña B, Winzeler EA, Gilbert IH. Prioritization of Molecular Targets for Antimalarial Drug Discovery. ACS Infect Dis 2021; 7:2764-2776. [PMID: 34523908 PMCID: PMC8608365 DOI: 10.1021/acsinfecdis.1c00322] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
There is a shift
in antimalarial drug discovery from phenotypic
screening toward target-based approaches, as more potential drug targets
are being validated in Plasmodium species. Given
the high attrition rate and high cost of drug discovery, it is important
to select the targets most likely to deliver progressible drug candidates.
In this paper, we describe the criteria that we consider important
for selecting targets for antimalarial drug discovery. We describe
the analysis of a number of drug targets in the Malaria Drug Accelerator
(MalDA) pipeline, which has allowed us to prioritize targets that
are ready to enter the drug discovery process. This selection process
has also highlighted where additional data are required to inform
target progression or deprioritization of other targets. Finally,
we comment on how additional drug targets may be identified.
Collapse
Affiliation(s)
- Barbara Forte
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Sabine Ottilie
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Andrew Plater
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Brice Campo
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | | | | | - Daniel E. Goldberg
- Division of Infectious Diseases, Department of Medicine and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Eva S. Istvan
- Division of Infectious Diseases, Department of Medicine and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Marcus Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom
| | - Amanda K. Lukens
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts 02142, United States
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Case W. McNamara
- Calibr, a Division of The Scripps Research Institute, 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jacquin C. Niles
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge Massachusetts 02139-4307, United States
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Charisse Flerida A. Pasaje
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge Massachusetts 02139-4307, United States
| | | | - Dyann Wirth
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts 02142, United States
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Beatriz Baragaña
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Elizabeth A. Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Ian H. Gilbert
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, United Kingdom
| |
Collapse
|
36
|
Design of proteasome inhibitors with oral efficacy in vivo against Plasmodium falciparum and selectivity over the human proteasome. Proc Natl Acad Sci U S A 2021; 118:2107213118. [PMID: 34548400 PMCID: PMC8488693 DOI: 10.1073/pnas.2107213118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 11/18/2022] Open
Abstract
Here, we describe inhibitors of the Plasmodium proteasome, an enzymatic complex that malaria parasites rely on to degrade proteins. Starting from inhibitors developed to treat cancer, derivatives were designed and synthesized with the aim of increasing potency against the Plasmodium proteasome and decreasing activity against the human enzyme. Biochemical and cellular assays identified compounds that exhibit selectivity and potency, both in vitro and in vivo, at different stages of the parasite’s lifecycle. Cryo-electron microscopy revealed that the inhibitors bind in a hydrophobic pocket that is structurally different in the human proteasome—underpinning their selectivity. The work will help develop antimalarial therapeutics, which are desperately needed to treat a disease that kills nearly half a million people annually. The Plasmodium falciparum proteasome is a potential antimalarial drug target. We have identified a series of amino-amide boronates that are potent and specific inhibitors of the P. falciparum 20S proteasome (Pf20S) β5 active site and that exhibit fast-acting antimalarial activity. They selectively inhibit the growth of P. falciparum compared with a human cell line and exhibit high potency against field isolates of P. falciparum and Plasmodium vivax. They have a low propensity for development of resistance and possess liver stage and transmission-blocking activity. Exemplar compounds, MPI-5 and MPI-13, show potent activity against P. falciparum infections in a SCID mouse model with an oral dosing regimen that is well tolerated. We show that MPI-5 binds more strongly to Pf20S than to human constitutive 20S (Hs20Sc). Comparison of the cryo-electron microscopy (EM) structures of Pf20S and Hs20Sc in complex with MPI-5 and Pf20S in complex with the clinically used anti-cancer agent, bortezomib, reveal differences in binding modes that help to explain the selectivity. Together, this work provides insights into the 20S proteasome in P. falciparum, underpinning the design of potent and selective antimalarial proteasome inhibitors.
Collapse
|
37
|
Metabolomics reveal alterations in arachidonic acid metabolism in Schistosoma mekongi after exposure to praziquantel. PLoS Negl Trop Dis 2021; 15:e0009706. [PMID: 34473691 PMCID: PMC8412319 DOI: 10.1371/journal.pntd.0009706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/05/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Mekong schistosomiasis is a parasitic disease caused by the blood-dwelling fluke Schistosoma mekongi. This disease contributes to human morbidity and mortality in the Mekong region, posing a public health threat to people in the area. Currently, praziquantel (PZQ) is the drug of choice for the treatment of Mekong schistosomiasis. However, the molecular mechanisms of PZQ action remain unclear, and Schistosoma PZQ resistance has been reported occasionally. Through this research, we aimed to use a metabolomic approach to identify the potentially altered metabolic pathways in S. mekongi associated with PZQ treatment. METHODOLOGY/PRINCIPAL FINDINGS Adult stage S. mekongi were treated with 0, 20, 40, or 100 μg/mL PZQ in vitro. After an hour of exposure to PZQ, schistosome metabolites were extracted and studied with mass spectrometry. The metabolomic data for the treatment groups were analyzed with the XCMS online platform and compared with data for the no treatment group. After low, medium (IC50), and high doses of PZQ, we found changes in 1,007 metabolites, of which phosphatidylserine and anandamide were the major differential metabolites by multivariate and pairwise analysis. In the pathway analysis, arachidonic acid metabolism was found to be altered following PZQ treatment, indicating that this pathway may be affected by the drug and potentially considered as a novel target for anti-schistosomiasis drug development. CONCLUSIONS/SIGNIFICANCE Our findings suggest that arachidonic acid metabolism is a possible target in the parasiticidal effects of PZQ against S. mekongi. Identifying potential targets of the effective drug PZQ provides an interesting viewpoint for the discovery and development of new agents that could enhance the prevention and treatment of schistosomiasis.
Collapse
|
38
|
Tisnerat C, Dassonville-Klimpt A, Gosselet F, Sonnet P. Antimalarial drug discovery: from quinine to the most recent promising clinical drug candidates. Curr Med Chem 2021; 29:3326-3365. [PMID: 34344287 DOI: 10.2174/0929867328666210803152419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
Malaria is a tropical threatening disease caused by Plasmodium parasites, resulting in 409,000 deaths in 2019. The delay of mortality and morbidity has been compounded by the widespread of drug resistant parasites from Southeast Asia since two decades. The emergence of artemisinin-resistant Plasmodium in Africa, where most cases are accounted, highlights the urgent need for new medicines. In this effort, the World Health Organization and Medicines for Malaria Venture joined to define clear goals for novel therapies and characterized the target candidate profile. This ongoing search for new treatments is based on imperative labor in medicinal chemistry which is summarized here with particular attention to hit-to-lead optimizations, key properties, and modes of action of these novel antimalarial drugs. This review, after presenting the current antimalarial chemotherapy, from quinine to the latest marketed drugs, focuses in particular on recent advances of the most promising antimalarial candidates in clinical and preclinical phases.
Collapse
Affiliation(s)
- Camille Tisnerat
- AGIR UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens. France
| | | | | | - Pascal Sonnet
- AGIR UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens. France
| |
Collapse
|
39
|
Tjhin ET, Howieson VM, Spry C, van Dooren GG, Saliba KJ. A novel heteromeric pantothenate kinase complex in apicomplexan parasites. PLoS Pathog 2021; 17:e1009797. [PMID: 34324601 PMCID: PMC8366970 DOI: 10.1371/journal.ppat.1009797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 08/16/2021] [Accepted: 07/13/2021] [Indexed: 11/19/2022] Open
Abstract
Coenzyme A is synthesised from pantothenate via five enzyme-mediated steps. The first step is catalysed by pantothenate kinase (PanK). All PanKs characterised to date form homodimers. Many organisms express multiple PanKs. In some cases, these PanKs are not functionally redundant, and some appear to be non-functional. Here, we investigate the PanKs in two pathogenic apicomplexan parasites, Plasmodium falciparum and Toxoplasma gondii. Each of these organisms express two PanK homologues (PanK1 and PanK2). We demonstrate that PfPanK1 and PfPanK2 associate, forming a single, functional PanK complex that includes the multi-functional protein, Pf14-3-3I. Similarly, we demonstrate that TgPanK1 and TgPanK2 form a single complex that possesses PanK activity. Both TgPanK1 and TgPanK2 are essential for T. gondii proliferation, specifically due to their PanK activity. Our study constitutes the first examples of heteromeric PanK complexes in nature and provides an explanation for the presence of multiple PanKs within certain organisms.
Collapse
Affiliation(s)
- Erick T. Tjhin
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Vanessa M. Howieson
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Christina Spry
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Giel G. van Dooren
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Kevin J. Saliba
- Research School of Biology, The Australian National University, Canberra, Australia
- Medical School, The Australian National University, Canberra, Australia
- * E-mail:
| |
Collapse
|
40
|
Yang T, Ottilie S, Istvan ES, Godinez-Macias KP, Lukens AK, Baragaña B, Campo B, Walpole C, Niles JC, Chibale K, Dechering KJ, Llinás M, Lee MCS, Kato N, Wyllie S, McNamara CW, Gamo FJ, Burrows J, Fidock DA, Goldberg DE, Gilbert IH, Wirth DF, Winzeler EA. MalDA, Accelerating Malaria Drug Discovery. Trends Parasitol 2021; 37:493-507. [PMID: 33648890 PMCID: PMC8261838 DOI: 10.1016/j.pt.2021.01.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/24/2022]
Abstract
The Malaria Drug Accelerator (MalDA) is a consortium of 15 leading scientific laboratories. The aim of MalDA is to improve and accelerate the early antimalarial drug discovery process by identifying new, essential, druggable targets. In addition, it seeks to produce early lead inhibitors that may be advanced into drug candidates suitable for preclinical development and subsequent clinical testing in humans. By sharing resources, including expertise, knowledge, materials, and reagents, the consortium strives to eliminate the structural barriers often encountered in the drug discovery process. Here we discuss the mission of the consortium and its scientific achievements, including the identification of new chemically and biologically validated targets, as well as future scientific directions.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Pediatrics, School of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Sabine Ottilie
- Department of Pediatrics, School of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Eva S Istvan
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, MO 63130, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63130, USA
| | - Karla P Godinez-Macias
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Amanda K Lukens
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Beatriz Baragaña
- Wellcome Center for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK
| | - Brice Campo
- Medicines for Malaria Venture, 1215 Geneva 15, Switzerland
| | - Chris Walpole
- Structural Genomics Consortium, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Building 56-341, 77 Massachusetts Avenue, Cambridge MA 02139-4307, USA
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | | | - Manuel Llinás
- Department of Biochemistry and Molecular Biology and Department of Chemistry, Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA 16082, USA
| | - Marcus C S Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Nobutaka Kato
- Global Health Drug Discovery Institute, Zhongguancun Dongsheng International Science Park, 1 North Yongtaizhuang Road, Beijing 100192, China
| | - Susan Wyllie
- Wellcome Center for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK
| | - Case W McNamara
- Calibr, a division of The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Francisco Javier Gamo
- Tres Cantos Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, 28760, Madrid, Spain
| | - Jeremy Burrows
- Medicines for Malaria Venture, 1215 Geneva 15, Switzerland
| | - David A Fidock
- Department of Microbiology and Immunology and Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Daniel E Goldberg
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, MO 63130, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63130, USA
| | - Ian H Gilbert
- Wellcome Center for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92093, USA.
| |
Collapse
|
41
|
Simão-Gurge RM, Thakre N, Strickland J, Isoe J, Delacruz LR, Torrevillas BK, Rodriguez AM, Riehle MA, Luckhart S. Activation of Anopheles stephensi Pantothenate Kinase and Coenzyme A Biosynthesis Reduces Infection with Diverse Plasmodium Species in the Mosquito Host. Biomolecules 2021; 11:807. [PMID: 34072373 PMCID: PMC8228300 DOI: 10.3390/biom11060807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
Malaria parasites require pantothenate from both human and mosquito hosts to synthesize coenzyme A (CoA). Specifically, mosquito-stage parasites cannot synthesize pantothenate de novo or take up preformed CoA from the mosquito host, making it essential for the parasite to obtain pantothenate from mosquito stores. This makes pantothenate utilization an attractive target for controlling sexual stage malaria parasites in the mosquito. CoA is synthesized from pantothenate in a multi-step pathway initiated by the enzyme pantothenate kinase (PanK). In this work, we manipulated A. stephensi PanK activity and assessed the impact of mosquito PanK activity on the development of two malaria parasite species with distinct genetics and life cycles: the human parasite Plasmodium falciparum and the mouse parasite Plasmodium yoelii yoelii 17XNL. We identified two putative A. stephensi PanK isoforms encoded by a single gene and expressed in the mosquito midgut. Using both RNAi and small molecules with reported activity against human PanK, we confirmed that A. stephensi PanK manipulation was associated with corresponding changes in midgut CoA levels. Based on these findings, we used two small molecule modulators of human PanK activity (PZ-2891, compound 7) at reported and ten-fold EC50 doses to examine the effects of manipulating A. stephensi PanK on malaria parasite infection success. Our data showed that oral provisioning of 1.3 nM and 13 nM PZ-2891 increased midgut CoA levels and significantly decreased infection success for both Plasmodium species. In contrast, oral provisioning of 62 nM and 620 nM compound 7 decreased CoA levels and significantly increased infection success for both Plasmodium species. This work establishes the A. stephensi CoA biosynthesis pathway as a potential target for broadly blocking malaria parasite development in anopheline hosts. We envision this strategy, with small molecule PanK modulators delivered to mosquitoes via attractive bait stations, working in concert with deployment of parasite-directed novel pantothenamide drugs to block parasite infection in the human host. In mosquitoes, depletion of pantothenate through manipulation to increase CoA biosynthesis is expected to negatively impact Plasmodium survival by starving the parasite of this essential nutrient. This has the potential to kill both wild type parasites and pantothenamide-resistant parasites that could develop under pantothenamide drug pressure if these compounds are used as future therapeutics for human malaria.
Collapse
Affiliation(s)
- Raquel M. Simão-Gurge
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843, USA; (R.M.S.-G.); (J.S.); (B.K.T.); (A.M.R.)
| | - Neha Thakre
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA; (N.T.); (J.I.); (L.R.D.); (M.A.R.)
| | - Jessica Strickland
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843, USA; (R.M.S.-G.); (J.S.); (B.K.T.); (A.M.R.)
| | - Jun Isoe
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA; (N.T.); (J.I.); (L.R.D.); (M.A.R.)
| | - Lillian R. Delacruz
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA; (N.T.); (J.I.); (L.R.D.); (M.A.R.)
| | - Brandi K. Torrevillas
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843, USA; (R.M.S.-G.); (J.S.); (B.K.T.); (A.M.R.)
| | - Anna M. Rodriguez
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843, USA; (R.M.S.-G.); (J.S.); (B.K.T.); (A.M.R.)
| | - Michael A. Riehle
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA; (N.T.); (J.I.); (L.R.D.); (M.A.R.)
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843, USA; (R.M.S.-G.); (J.S.); (B.K.T.); (A.M.R.)
- Department of Biological Sciences, University of Idaho, Moscow, ID 83843, USA
| |
Collapse
|
42
|
Swift RP, Rajaram K, Liu HB, Prigge ST. Dephospho-CoA kinase, a nuclear-encoded apicoplast protein, remains active and essential after Plasmodium falciparum apicoplast disruption. EMBO J 2021; 40:e107247. [PMID: 34031901 PMCID: PMC8365264 DOI: 10.15252/embj.2020107247] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Malaria parasites contain an essential organelle called the apicoplast that houses metabolic pathways for fatty acid, heme, isoprenoid, and iron–sulfur cluster synthesis. Surprisingly, malaria parasites can survive without the apicoplast as long as the isoprenoid precursor isopentenyl pyrophosphate (IPP) is supplemented in the growth medium, making it appear that isoprenoid synthesis is the only essential function of the organelle in blood‐stage parasites. In the work described here, we localized an enzyme responsible for coenzyme A synthesis, DPCK, to the apicoplast, but we were unable to delete DPCK, even in the presence of IPP. However, once the endogenous DPCK was complemented with the E. coli DPCK (EcDPCK), we were successful in deleting it. We were then able to show that DPCK activity is required for parasite survival through knockdown of the complemented EcDPCK. Additionally, we showed that DPCK enzyme activity remains functional and essential within the vesicles present after apicoplast disruption. These results demonstrate that while the apicoplast of blood‐stage P. falciparum parasites can be disrupted, the resulting vesicles remain biochemically active and are capable of fulfilling essential functions.
Collapse
Affiliation(s)
- Russell P Swift
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Krithika Rajaram
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hans B Liu
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
43
|
Duffey M, Blasco B, Burrows JN, Wells TNC, Fidock DA, Leroy D. Assessing risks of Plasmodium falciparum resistance to select next-generation antimalarials. Trends Parasitol 2021; 37:709-721. [PMID: 34001441 DOI: 10.1016/j.pt.2021.04.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
Strategies to counteract or prevent emerging drug resistance are crucial for the design of next-generation antimalarials. In the past, resistant parasites were generally identified following treatment failures in patients, and compounds would have to be abandoned late in development. An early understanding of how candidate therapeutics lose efficacy as parasites evolve resistance is important to facilitate drug design and improve resistance detection and monitoring up to the postregistration phase. We describe a new strategy to assess resistance to antimalarial compounds as early as possible in preclinical development by leveraging tools to define the Plasmodium falciparum resistome, predict potential resistance risks of clinical failure for candidate therapeutics, and inform decisions to guide antimalarial drug development.
Collapse
Affiliation(s)
| | - Benjamin Blasco
- Medicines for Malaria Venture, Geneva, Switzerland; Global Antibiotic Research and Development Partnership, Geneva, Switzerland
| | | | | | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland.
| |
Collapse
|
44
|
Guan J, Spry C, Tjhin ET, Yang P, Kittikool T, Howieson VM, Ling H, Starrs L, Duncan D, Burgio G, Saliba KJ, Auclair K. Exploring Heteroaromatic Rings as a Replacement for the Labile Amide of Antiplasmodial Pantothenamides. J Med Chem 2021; 64:4478-4497. [PMID: 33792339 DOI: 10.1021/acs.jmedchem.0c01755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Malaria-causing Plasmodium parasites are developing resistance to antimalarial drugs, providing the impetus for new antiplasmodials. Although pantothenamides show potent antiplasmodial activity, hydrolysis by pantetheinases/vanins present in blood rapidly inactivates them. We herein report the facile synthesis and biological activity of a small library of pantothenamide analogues in which the labile amide group is replaced with a heteroaromatic ring. Several of these analogues display nanomolar antiplasmodial activity against Plasmodium falciparum and/or Plasmodium knowlesi, and are stable in the presence of pantetheinase. Both a known triazole and a novel isoxazole derivative were further characterized and found to possess high selectivity indices, medium or high Caco-2 permeability, and medium or low microsomal clearance in vitro. Although they fail to suppress Plasmodium berghei proliferation in vivo, the pharmacokinetic and contact time data presented provide a benchmark for the compound profile likely required to achieve antiplasmodial activity in mice and should facilitate lead optimization.
Collapse
Affiliation(s)
- Jinming Guan
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - Christina Spry
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Erick T Tjhin
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Penghui Yang
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada.,College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Tanakorn Kittikool
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - Vanessa M Howieson
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Harriet Ling
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Lora Starrs
- John Curtin School of Medical Research, The Australian National University, Acton, ACT 2601, Australia
| | - Dustin Duncan
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - Gaetan Burgio
- John Curtin School of Medical Research, The Australian National University, Acton, ACT 2601, Australia
| | - Kevin J Saliba
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia.,Medical School, The Australian National University, Acton, ACT 2601, Australia
| | - Karine Auclair
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
45
|
Kirti A, Sharma M, Rani K, Bansal A. CRISPRing protozoan parasites to better understand the biology of diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 180:21-68. [PMID: 33934837 DOI: 10.1016/bs.pmbts.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Precise gene editing techniques are paramount to gain deeper insights into the biological processes such as host-parasite interactions, drug resistance mechanisms, and gene-function relationships. Discovery of CRISPR-Cas9 system has spearheaded mechanistic understanding of protozoan parasite biology as evident from the number of reports in the last decade. Here, we have described the use of CRISPR-Cas9 in understanding the biology of medically important protozoan parasites such as Plasmodium, Leishmania, Trypanosoma, Babesia and Trichomonas. In spite of intrinsic difficulties in genome editing in these protozoan parasites, CRISPR-Cas9 has acted as a catalyst for faster generation of desired transgenic parasites. Modifications in the CRISPR-Cas9 system for improving the efficiency have been useful in better understanding the molecular mechanisms associated with repair of double strand breaks in the parasites. Moreover, improvement in reagents used for CRISPR mediated gene editing have been instrumental in addressing the issue of non-specificity and toxicity for therapeutic use. These application-based modifications may help in further increasing the efficiency of gene editing in protozoan parasites.
Collapse
Affiliation(s)
- Apurva Kirti
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Manish Sharma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Komal Rani
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhisheka Bansal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
46
|
Nurkanto A, Jeelani G, Santos HJ, Rahmawati Y, Mori M, Nakamura Y, Goto K, Saikawa Y, Annoura T, Tozawa Y, Sakura T, Inaoka DK, Shiomi K, Nozaki T. Characterization of Plasmodium falciparum Pantothenate Kinase and Identification of Its Inhibitors From Natural Products. Front Cell Infect Microbiol 2021; 11:639065. [PMID: 33768012 PMCID: PMC7985445 DOI: 10.3389/fcimb.2021.639065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/29/2021] [Indexed: 12/17/2022] Open
Abstract
Coenzyme A (CoA) is a well-known cofactor that plays an essential role in many metabolic reactions in all organisms. In Plasmodium falciparum, the most deadly among Plasmodium species that cause malaria, CoA and its biosynthetic pathway have been proven to be indispensable. The first and rate-limiting reaction in the CoA biosynthetic pathway is catalyzed by two putative pantothenate kinases (PfPanK1 and 2) in this parasite. Here we produced, purified, and biochemically characterized recombinant PfPanK1 for the first time. PfPanK1 showed activity using pantetheine besides pantothenate, as the primary substrate, indicating that CoA biosynthesis in the blood stage of P. falciparum can bypass pantothenate. We further developed a robust and reliable screening system to identify inhibitors using recombinant PfPanK1 and identified four PfPanK inhibitors from natural compounds.
Collapse
Affiliation(s)
- Arif Nurkanto
- Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia.,Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ghulam Jeelani
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Herbert J Santos
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yulia Rahmawati
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mihoko Mori
- Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan.,Biological Resource Center, National Institute of Technology and Evaluation (NITE), Chiba, Japan
| | - Yumi Nakamura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Kana Goto
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Yoko Saikawa
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Takeshi Annoura
- Department of Parasitology, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Takaya Sakura
- Department of Molecular Infection Dynamics, School of Tropical Medicine and Global Health, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Daniel Ken Inaoka
- Department of Molecular Infection Dynamics, School of Tropical Medicine and Global Health, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Kazuro Shiomi
- Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
47
|
Mok S, Stokes BH, Gnädig NF, Ross LS, Yeo T, Amaratunga C, Allman E, Solyakov L, Bottrill AR, Tripathi J, Fairhurst RM, Llinás M, Bozdech Z, Tobin AB, Fidock DA. Artemisinin-resistant K13 mutations rewire Plasmodium falciparum's intra-erythrocytic metabolic program to enhance survival. Nat Commun 2021; 12:530. [PMID: 33483501 PMCID: PMC7822823 DOI: 10.1038/s41467-020-20805-w] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
The emergence and spread of artemisinin resistance, driven by mutations in Plasmodium falciparum K13, has compromised antimalarial efficacy and threatens the global malaria elimination campaign. By applying systems-based quantitative transcriptomics, proteomics, and metabolomics to a panel of isogenic K13 mutant or wild-type P. falciparum lines, we provide evidence that K13 mutations alter multiple aspects of the parasite's intra-erythrocytic developmental program. These changes impact cell-cycle periodicity, the unfolded protein response, protein degradation, vesicular trafficking, and mitochondrial metabolism. K13-mediated artemisinin resistance in the Cambodian Cam3.II line was reversed by atovaquone, a mitochondrial electron transport chain inhibitor. These results suggest that mitochondrial processes including damage sensing and anti-oxidant properties might augment the ability of mutant K13 to protect P. falciparum against artemisinin action by helping these parasites undergo temporary quiescence and accelerated growth recovery post drug elimination.
Collapse
Affiliation(s)
- Sachel Mok
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Barbara H Stokes
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nina F Gnädig
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Leila S Ross
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Tomas Yeo
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Chanaki Amaratunga
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Erik Allman
- Department of Biochemistry & Molecular Biology, Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Lev Solyakov
- Protein Nucleic Acid Laboratory, University of Leicester, Leicester, UK
| | - Andrew R Bottrill
- Protein Nucleic Acid Laboratory, University of Leicester, Leicester, UK
| | - Jaishree Tripathi
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Astra Zeneca, Gaithersburg, MD, 20878, USA
| | - Manuel Llinás
- Department of Biochemistry & Molecular Biology, Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, USA.,Department of Chemistry, Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Andrew B Tobin
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - David A Fidock
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA. .,Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
48
|
Butman HS, Kotzé TJ, Dowd CS, Strauss E. Vitamin in the Crosshairs: Targeting Pantothenate and Coenzyme A Biosynthesis for New Antituberculosis Agents. Front Cell Infect Microbiol 2020; 10:605662. [PMID: 33384970 PMCID: PMC7770189 DOI: 10.3389/fcimb.2020.605662] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/23/2020] [Indexed: 01/05/2023] Open
Abstract
Despite decades of dedicated research, there remains a dire need for new drugs against tuberculosis (TB). Current therapies are generations old and problematic. Resistance to these existing therapies results in an ever-increasing burden of patients with disease that is difficult or impossible to treat. Novel chemical entities with new mechanisms of action are therefore earnestly required. The biosynthesis of coenzyme A (CoA) has long been known to be essential in Mycobacterium tuberculosis (Mtb), the causative agent of TB. The pathway has been genetically validated by seminal studies in vitro and in vivo. In Mtb, the CoA biosynthetic pathway is comprised of nine enzymes: four to synthesize pantothenate (Pan) from l-aspartate and α-ketoisovalerate; five to synthesize CoA from Pan and pantetheine (PantSH). This review gathers literature reports on the structure/mechanism, inhibitors, and vulnerability of each enzyme in the CoA pathway. In addition to traditional inhibition of a single enzyme, the CoA pathway offers an antimetabolite strategy as a promising alternative. In this review, we provide our assessment of what appear to be the best targets, and, thus, which CoA pathway enzymes present the best opportunities for antitubercular drug discovery moving forward.
Collapse
Affiliation(s)
- Hailey S. Butman
- Department of Chemistry, George Washington University, Washington, DC, United States
| | - Timothy J. Kotzé
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Cynthia S. Dowd
- Department of Chemistry, George Washington University, Washington, DC, United States
| | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
49
|
Andrade CM, Fleckenstein H, Thomson-Luque R, Doumbo S, Lima NF, Anderson C, Hibbert J, Hopp CS, Tran TM, Li S, Niangaly M, Cisse H, Doumtabe D, Skinner J, Sturdevant D, Ricklefs S, Virtaneva K, Asghar M, Homann MV, Turner L, Martins J, Allman EL, N'Dri ME, Winkler V, Llinás M, Lavazec C, Martens C, Färnert A, Kayentao K, Ongoiba A, Lavstsen T, Osório NS, Otto TD, Recker M, Traore B, Crompton PD, Portugal S. Increased circulation time of Plasmodium falciparum underlies persistent asymptomatic infection in the dry season. Nat Med 2020; 26:1929-1940. [PMID: 33106664 DOI: 10.1038/s41591-020-1084-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/27/2020] [Indexed: 12/25/2022]
Abstract
The dry season is a major challenge for Plasmodium falciparum parasites in many malaria endemic regions, where water availability limits mosquito vectors to only part of the year. How P. falciparum bridges two transmission seasons months apart, without being cleared by the human host or compromising host survival, is poorly understood. Here we show that low levels of P. falciparum parasites persist in the blood of asymptomatic Malian individuals during the 5- to 6-month dry season, rarely causing symptoms and minimally affecting the host immune response. Parasites isolated during the dry season are transcriptionally distinct from those of individuals with febrile malaria in the transmission season, coinciding with longer circulation within each replicative cycle of parasitized erythrocytes without adhering to the vascular endothelium. Low parasite levels during the dry season are not due to impaired replication but rather to increased splenic clearance of longer-circulating infected erythrocytes, which likely maintain parasitemias below clinical and immunological radar. We propose that P. falciparum virulence in areas of seasonal malaria transmission is regulated so that the parasite decreases its endothelial binding capacity, allowing increased splenic clearance and enabling several months of subclinical parasite persistence.
Collapse
Affiliation(s)
- Carolina M Andrade
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hannah Fleckenstein
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Richard Thomson-Luque
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Nathalia F Lima
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Carrie Anderson
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Julia Hibbert
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christine S Hopp
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Tuan M Tran
- Division of Infectious Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shanping Li
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Moussa Niangaly
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Hamidou Cisse
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Didier Doumtabe
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Jeff Skinner
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Dan Sturdevant
- Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Stacy Ricklefs
- Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kimmo Virtaneva
- Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Muhammad Asghar
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Manijeh Vafa Homann
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Louise Turner
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, København N, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Joana Martins
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Portugal and ICVS/3B's -PT Government Associate Laboratory, Braga, Portugal
| | - Erik L Allman
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, The Pennsylvania State University, State College, PA, USA
| | | | - Volker Winkler
- Institute of Global Health, Heidelberg University Hospital, Heidelberg, Germany
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, The Pennsylvania State University, State College, PA, USA.,Department of Chemistry, The Pennsylvania State University, State College, PA, USA
| | | | - Craig Martens
- Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Anna Färnert
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Kassoum Kayentao
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Thomas Lavstsen
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, København N, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Nuno S Osório
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Portugal and ICVS/3B's -PT Government Associate Laboratory, Braga, Portugal
| | - Thomas D Otto
- Institute of Infection, Immunity & Inflammation, MVLS, University of Glasgow, Glasgow, UK
| | - Mario Recker
- Centre for Mathematics & the Environment, University of Exeter, Penryn Campus, Penryn, UK
| | - Boubacar Traore
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Peter D Crompton
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Silvia Portugal
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany. .,German Center for Infection Research (DZIF), Heidelberg, Heidelberg, Germany. .,Max Planck Institute for Infection Biology, Berlin, Germany.
| |
Collapse
|
50
|
Carolino K, Winzeler EA. The antimalarial resistome - finding new drug targets and their modes of action. Curr Opin Microbiol 2020; 57:49-55. [PMID: 32682267 PMCID: PMC7763834 DOI: 10.1016/j.mib.2020.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022]
Abstract
To this day, malaria remains a global burden, affecting millions of people, especially those in sub-Saharan Africa and Asia. The rise of drug resistance to current antimalarial treatments, including artemisinin-based combination therapies, has made discovering new small molecule compounds with novel modes of action an urgent matter. The concerted effort to construct enormous compound libraries and develop high-throughput phenotypic screening assays to find compounds effective at specifically clearing malaria-causing Plasmodium parasites at any stage of the life cycle has provided many antimalarial prospects, but does not indicate their target or mode of action. Here, we review recent advances in antimalarial drug discovery efforts, focusing on the following 'omics' approaches in mode of action studies: IVIEWGA, CETSA, metabolomic profiling.
Collapse
Affiliation(s)
- Krypton Carolino
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, United States
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States.
| |
Collapse
|