1
|
van Wijngaarden AL, Koopmann TT, Ruivenkamp CAL, Wu HW, Ajmone Marsan N, Barge‐Schaapveld DQCM. A PDLIM7 Variant in Familial Mitral Valve Prolapse: A Case Series. Clin Case Rep 2025; 13:e70282. [PMID: 40161031 PMCID: PMC11952993 DOI: 10.1002/ccr3.70282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 04/02/2025] Open
Abstract
In the presented case of familial mitral valve prolapse, whole exome sequencing was used to reveal a missense variant in the PDLIM7 gene. This gene is considered a possible novel candidate gene for familial MVP based on PDLIM7 knock-out mice and zebrafish showing mitral valve abnormalities.
Collapse
Affiliation(s)
| | - Tamara T. Koopmann
- Department of Clinical GeneticsLeiden University Medical CenterLeidenthe Netherlands
| | | | - Hoi W. Wu
- Department of CardiologyLeiden University Medical CenterLeidenthe Netherlands
| | - Nina Ajmone Marsan
- Department of CardiologyLeiden University Medical CenterLeidenthe Netherlands
| | | |
Collapse
|
2
|
Martin SS, Aday AW, Allen NB, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Bansal N, Beaton AZ, Commodore-Mensah Y, Currie ME, Elkind MSV, Fan W, Generoso G, Gibbs BB, Heard DG, Hiremath S, Johansen MC, Kazi DS, Ko D, Leppert MH, Magnani JW, Michos ED, Mussolino ME, Parikh NI, Perman SM, Rezk-Hanna M, Roth GA, Shah NS, Springer MV, St-Onge MP, Thacker EL, Urbut SM, Van Spall HGC, Voeks JH, Whelton SP, Wong ND, Wong SS, Yaffe K, Palaniappan LP. 2025 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2025; 151:e41-e660. [PMID: 39866113 DOI: 10.1161/cir.0000000000001303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2025 AHA Statistical Update is the product of a full year's worth of effort in 2024 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. This year's edition includes a continued focus on health equity across several key domains and enhanced global data that reflect improved methods and incorporation of ≈3000 new data sources since last year's Statistical Update. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
3
|
Sakinah-Syed G, Liew JS, Abdul Majid N, Inche Zainal Abidin SA. Alteration of primary cilia and intraflagellar transport 20 (IFT20) expression in oral squamous cell carcinoma (OSCC) cell lines. PeerJ 2025; 13:e18931. [PMID: 40017656 PMCID: PMC11867036 DOI: 10.7717/peerj.18931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/13/2025] [Indexed: 03/01/2025] Open
Abstract
Background Aberrations in primary cilia expression and intraflagellar transport (IFT) protein function have been implicated in tumourigenesis. This study explores the relationship between the alteration of primary cilia and tumourigenesis by investigating primary cilia expression and the role of IFT20 in regulating matrix metalloproteinase 9 (MMP-9) expression in oral squamous cell carcinoma (OSCC) cell lines. Methods The frequency and length of primary cilia were determined in OKF6-TERT2 cells, HSC-2 cells, and HSC-3 cells using immunofluorescence. Additionally, primary cilia presence in non-proliferating OSCC cells was examined. OSCC cells were treated with either small interfering RNA (siRNA) negative control or siRNA targeting IFT20 for functional analysis. mRNA expression levels of IFT20 and MMP-9 were quantified using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results Results showed that HSC-2 cells exhibit abundant primary cilia when cultured in low serum media (2% serum) for 48 h, followed by serum starvation for over 72 h. No significant changes in cilia expression were observed in HSC-3 cells compared to OKF6-TERT2 cells. Ciliated cells were found in non-proliferating HSC-2 and HSC-3 cells. OSCC cells showed longer cilia than OKF6-TERT2 cells, indicating ciliary abnormalities. Changes in ciliation and cilium length of OSCC cells were accompanied by increased expression of IFT20, an intraflagellar transport protein crucial for the primary cilia assembly. However, IFT20 knockdown did not affect MMP-9 at the mRNA level in these cells. Conclusions This study reveals the differences in primary cilia expression among OSCC cells. Furthermore, the increased abundance and elongation of primary cilia in OSCC cells are accompanied by elevated expression of IFT20. Nonetheless, IFT20 did not affect MMP-9 mRNA expression in OSCC cells.
Collapse
Affiliation(s)
- Gulam Sakinah-Syed
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, WP Kuala Lumpur, Malaysia
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, WP Kuala Lumpur, Malaysia
| | - Jia Shi Liew
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, WP Kuala Lumpur, Malaysia
| | - Nazia Abdul Majid
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, WP Kuala Lumpur, Malaysia
| | - Siti Amalina Inche Zainal Abidin
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, WP Kuala Lumpur, Malaysia
- Oral Cancer Research & Coordinating Center, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, WP Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Bossé Y, Thériault S, Mathieu P. Mapping the Monogenic and Polygenic Architecture of Mitral Valve Prolapse. Can J Cardiol 2025:S0828-282X(25)00092-3. [PMID: 39884461 DOI: 10.1016/j.cjca.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/01/2025] Open
Affiliation(s)
- Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Quebec City, Canada; Department of Molecular Medicine, Université Laval, Quebec City, Canada.
| | - Sébastien Thériault
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Quebec City, Canada
| | - Patrick Mathieu
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Quebec City, Canada
| |
Collapse
|
5
|
Rimbert A, Duval D, Trujillano D, Kyndt F, Jobbe-Duval A, Lindenbaum P, Tucker N, Lecointe S, Labbé P, Toquet C, Karakachoff M, Roussel JC, Baufreton C, Bruneval P, Cueff C, Donal E, Redon R, Olaso R, Boland A, Deleuze JF, Estivill X, Slaugenhaupt S, Markwald RR, Norris RA, Verhoye JP, Probst V, Hagège A, Levine R, Jeunemaitre X, Marec HL, Capoulade R, Bouatia-Naji N, Dina C, Milan D, Ossowski S, Schott JJ, Mérot J, Scouarnec SL, Tourneau TL. Isolated prolapse of the posterior mitral valve leaflet: phenotypic refinement, heritability and genetic etiology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.16.24315096. [PMID: 39484266 PMCID: PMC11527059 DOI: 10.1101/2024.10.16.24315096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
BACKGROUND Isolated posterior leaflet mitral valve prolapse (PostMVP), a common form of MVP, often referred as fibroelastic deficiency, is considered a degenerative disease. PostMVP patients are usually asymptomatic and often undiagnosed until chordal rupture. The present study aims to characterize familial PostMVP phenotype and familial recurrence, its genetic background, and the pathophysiological processes involved. METHODS We prospectively enrolled 284 unrelated MVP probands, of whom 178 (63%) had bi-leaflet MVP and 106 had PostMVP (37%). Familial screening within PostMVP patients allowed the identification of 20 families with inherited forms of PostMVP for whom whole genome sequencing was carried out in probands. Functional in vivo and in vitro investigations were performed in zebrafishand in Hek293T cells. RESULTS In the 20 families with inherited form of PostMVP, 38.8% of relatives had a MVP/prodromal form, mainly of the posterior leaflet, with transmission consistent with an autosomal dominant mode of inheritance. Compared with control relatives, PostMVP family patients have clear posterior leaflet dystrophy on echocardiography. Patients with PostMVP present a burden of rare genetic variants in ARHGAP24. ARHGAP24 encodes the filamin A binding RhoGTPase-activating protein FilGAP and its silencing in zebrafish leads to atrioventricular regurgitation. In vitro functional studies showed that variants of FilGAP, found in PostMVP families, are loss-of-function variants impairing cellular adhesion and mechano-transduction capacities. CONCLUSIONS PostMVP should not only be considered an isolated degenerative pathology but as a specific heritable phenotypic trait with genetic and functional pathophysiological origins. The identification of loss-of-function variants in ARHGAP24 further reinforces the pivotal role of mechano-transduction pathways in the pathogenesis of MVP. CLINICAL PERSPECTIVE Isolated posterior mitral valve prolapse (PostMVP), often called fibro-elastic deficiency MVP, is at least in some patients, a specific inherited phenotypic traitPostMVP has both genetic and functional pathophysiological origins Genetic variants in the ARHGAP24 gene, which encodes for the FilGAP protein, cause progressive Post MVP in familial cases, and impair cell adhesion and mechano-transduction capacities.
Collapse
|
6
|
Tan C, Ge ZD, Kurup S, Dyakiv Y, Liu T, Muller WA, Kume T. FOXC1 and FOXC2 Ablation Causes Abnormal Valvular Endothelial Cell Junctions and Lymphatic Vessel Formation in Myxomatous Mitral Valve Degeneration. Arterioscler Thromb Vasc Biol 2024; 44:1944-1959. [PMID: 38989578 PMCID: PMC11335087 DOI: 10.1161/atvbaha.124.320316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Mitral valve (MV) disease including myxomatous degeneration is the most common form of valvular heart disease with an age-dependent frequency. Genetic evidence indicates that mutations of the human transcription factor FOXC1 are associated with MV defects, including MV regurgitation. In this study, we sought to determine whether murine Foxc1 and its closely related factor, Foxc2, are required in valvular endothelial cells (VECs) for the maintenance of MV leaflets, including VEC junctions and the stratified trilaminar ECM (extracellular matrix). METHODS Adult mice carrying tamoxifen-inducible, vascular endothelial cell (EC), and lymphatic EC-specific, compound Foxc1;Foxc2 mutations (ie, EC-Foxc-DKO and lymphatic EC-Foxc-DKO mice, respectively) were used to study the function of Foxc1 and Foxc2 in the maintenance of MVs. The EC and lymphatic EC mutations of Foxc1/c2 were induced at 7 to 8 weeks of age by tamoxifen treatment, and abnormalities in the MVs of these mutant mice were assessed via whole-mount immunostaining, immunohistochemistry/RNAscope, Movat pentachrome/Masson Trichrome staining, and Evans blue injection. RESULTS EC deletions of Foxc1 and Foxc2 in mice resulted in abnormally extended and thicker MVs by causing defects in the regulation of ECM organization with increased proteoglycan and decreased collagen. Notably, reticular adherens junctions were found in VECs of control MV leaflets, and these reticular structures were severely disrupted in EC-Foxc-DKO mice. PROX1 (prospero homeobox protein 1), a key regulator in a subset of VECs on the fibrosa side of MVs, was downregulated in EC-Foxc1/c2 mutant VECs. Furthermore, we determined the precise location of lymphatic vessels in murine MVs, and these lymphatic vessels were aberrantly expanded and dysfunctional in EC-Foxc1/c2 mutant MVs. Lymphatic EC deletion of Foxc1/c2 also resulted in similar structural/ECM abnormalities as seen in EC-Foxc1/c2 mutant MVs. CONCLUSIONS Our results indicate that Foxc1 and Foxc2 are required for maintaining the integrity of the MV, including VEC junctions, ECM organization, and lymphatic vessel formation/function to prevent myxomatous MV degeneration.
Collapse
Affiliation(s)
- Can Tan
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute (C.T., S.K., Y.D., T.L., T.K.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Zhi-Dong Ge
- Departments of Pediatrics, Surgery, and Pathology, Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago (Z.-D.G.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Shreya Kurup
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute (C.T., S.K., Y.D., T.L., T.K.), Feinberg School of Medicine, Northwestern University, Chicago, IL
- Honors College, University of Illinois at Chicago (S.K.)
| | - Yaryna Dyakiv
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute (C.T., S.K., Y.D., T.L., T.K.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Ting Liu
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute (C.T., S.K., Y.D., T.L., T.K.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - William A. Muller
- Department of Pathology (W.A.M.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Tsutomu Kume
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute (C.T., S.K., Y.D., T.L., T.K.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
7
|
Small AM, Yutzey KE, Binstadt BA, Voigts Key K, Bouatia-Naji N, Milan D, Aikawa E, Otto CM, St Hilaire C. Unraveling the Mechanisms of Valvular Heart Disease to Identify Medical Therapy Targets: A Scientific Statement From the American Heart Association. Circulation 2024; 150:e109-e128. [PMID: 38881493 PMCID: PMC11542557 DOI: 10.1161/cir.0000000000001254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Valvular heart disease is a common cause of morbidity and mortality worldwide and has no effective medical therapy. Severe disease is managed with valve replacement procedures, which entail high health care-related costs and postprocedural morbidity and mortality. Robust ongoing research programs have elucidated many important molecular pathways contributing to primary valvular heart disease. However, there remain several key challenges inherent in translating research on valvular heart disease to viable molecular targets that can progress through the clinical trials pathway and effectively prevent or modify the course of these common conditions. In this scientific statement, we review the basic cellular structures of the human heart valves and discuss how these structures change in primary valvular heart disease. We focus on the most common primary valvular heart diseases, including calcific aortic stenosis, bicuspid aortic valves, mitral valve prolapse, and rheumatic heart disease, and outline the fundamental molecular discoveries contributing to each. We further outline potential therapeutic molecular targets for primary valvular heart disease and discuss key knowledge gaps that might serve as future research priorities.
Collapse
|
8
|
Gabriel GC, Ganapathiraju M, Lo CW. The Role of Cilia and the Complex Genetics of Congenital Heart Disease. Annu Rev Genomics Hum Genet 2024; 25:309-327. [PMID: 38724024 DOI: 10.1146/annurev-genom-121222-105345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Congenital heart disease (CHD) can affect up to 1% of live births, and despite abundant evidence of a genetic etiology, the genetic landscape of CHD is still not well understood. A large-scale mouse chemical mutagenesis screen for mutations causing CHD yielded a preponderance of cilia-related genes, pointing to a central role for cilia in CHD pathogenesis. The genes uncovered by the screen included genes that regulate ciliogenesis and cilia-transduced cell signaling as well as many that mediate endocytic trafficking, a cell process critical for both ciliogenesis and cell signaling. The clinical relevance of these findings is supported by whole-exome sequencing analysis of CHD patients that showed enrichment for pathogenic variants in ciliome genes. Surprisingly, among the ciliome CHD genes recovered were many that encoded direct protein-protein interactors. Assembly of the CHD genes into a protein-protein interaction network yielded a tight interactome that suggested this protein-protein interaction may have functional importance and that its disruption could contribute to the pathogenesis of CHD. In light of these and other findings, we propose that an interactome enriched for ciliome genes may provide the genomic context for the complex genetics of CHD and its often-observed incomplete penetrance and variable expressivity.
Collapse
Affiliation(s)
- George C Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; ,
| | - Madhavi Ganapathiraju
- Carnegie Mellon University in Qatar, Doha, Qatar
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA;
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; ,
| |
Collapse
|
9
|
Minvielle Moncla LH, Briend M, Sokhna Sylla M, Mathieu S, Rufiange A, Bossé Y, Mathieu P. Mendelian randomization reveals interactions of the blood proteome and immunome in mitral valve prolapse. COMMUNICATIONS MEDICINE 2024; 4:108. [PMID: 38844506 PMCID: PMC11156961 DOI: 10.1038/s43856-024-00530-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Mitral valve prolapse (MVP) is a common heart disorder characterized by an excessive production of proteoglycans and extracellular matrix in mitral valve leaflets. Large-scale genome-wide association study (GWAS) underlined that MVP is heritable. The molecular underpinnings of the disease remain largely unknown. METHODS We interrogated cross-modality data totaling more than 500,000 subjects including GWAS, 4809 molecules of the blood proteome, and genome-wide expression of mitral valves to identify candidate drivers of MVP. Data were investigated through Mendelian randomization, network analysis, ligand-receptor inference and digital cell quantification. RESULTS In this study, Mendelian randomization identify that 33 blood proteins, enriched in networks for immunity, are associated with the risk of MVP. MVP- associated blood proteins are enriched in ligands for which their cognate receptors are differentially expressed in mitral valve leaflets during MVP and enriched in cardiac endothelial cells and macrophages. MVP-associated blood proteins are involved in the renewal-polarization of macrophages and regulation of adaptive immune response. Cytokine activity profiling and digital cell quantification show in MVP a shift toward cytokine signature promoting M2 macrophage polarization. Assessment of druggability identify CSF1R, CX3CR1, CCR6, IL33, MMP8, ENPEP and angiotensin receptors as actionable targets in MVP. CONCLUSIONS Hence, integrative analysis identifies networks of candidate molecules and cells involved in immune control and remodeling of the extracellular matrix, which drive the risk of MVP.
Collapse
Affiliation(s)
| | - Mewen Briend
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada
| | - Mame Sokhna Sylla
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada
| | - Samuel Mathieu
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada
| | - Anne Rufiange
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada
| | - Yohan Bossé
- Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Patrick Mathieu
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada.
- Department of Surgery, Laval University, Quebec City, QC, Canada.
| |
Collapse
|
10
|
Kawasaki M, Al-Shama RFM, Nariswari FA, Fabrizi B, van den Berg NWE, Wesselink R, Neefs J, Meulendijks ER, Baalman SWE, Driessen AHG, de Groot JR. Primary cilia suppress the fibrotic activity of atrial fibroblasts from patients with atrial fibrillation in vitro. Sci Rep 2024; 14:12470. [PMID: 38816374 PMCID: PMC11139955 DOI: 10.1038/s41598-024-60298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/21/2024] [Indexed: 06/01/2024] Open
Abstract
Atrial fibrosis serves as an arrhythmogenic substrate in atrial fibrillation (AF) and contributes to AF persistence. Treating atrial fibrosis is challenging because atrial fibroblast activity is multifactorial. We hypothesized that the primary cilium regulates the profibrotic response of AF atrial fibroblasts, and explored therapeutic potentials of targeting primary cilia to treat fibrosis in AF. We included 25 patients without AF (non-AF) and 26 persistent AF patients (AF). Immunohistochemistry using a subset of the patients (non-AF: n = 10, AF: n = 10) showed less ciliated fibroblasts in AF versus non-AF. Acetylated α-tubulin protein levels were decreased in AF, while the gene expressions of AURKA and NEDD9 were highly increased in AF patients' left atrium. Loss of primary cilia in human atrial fibroblasts through IFT88 knockdown enhanced expression of ECM genes, including FN1 and COL1A1. Remarkably, restoration or elongation of primary cilia by an AURKA selective inhibitor or lithium chloride, respectively, prevented the increased expression of ECM genes induced by different profibrotic cytokines in atrial fibroblasts of AF patients. Our data reveal a novel mechanism underlying fibrotic substrate formation via primary cilia loss in AF atrial fibroblasts and suggest a therapeutic potential for abrogating atrial fibrosis by restoring primary cilia.
Collapse
Affiliation(s)
- Makiri Kawasaki
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Rushd F M Al-Shama
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Fransisca A Nariswari
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Benedetta Fabrizi
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Nicoline W E van den Berg
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Robin Wesselink
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jolien Neefs
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Eva R Meulendijks
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Sarah W E Baalman
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Antoine H G Driessen
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Joris R de Groot
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Berg K, Gorham J, Lundt F, Seidman J, Brueckner M. Endocardial primary cilia and blood flow are required for regulation of EndoMT during endocardial cushion development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594405. [PMID: 38798559 PMCID: PMC11118576 DOI: 10.1101/2024.05.15.594405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Blood flow is critical for heart valve formation, and cellular mechanosensors are essential to translate flow into transcriptional regulation of development. Here, we identify a role for primary cilia in vivo in the spatial regulation of cushion formation, the first stage of valve development, by regionally controlling endothelial to mesenchymal transition (EndoMT) via modulation of Kruppel-like Factor 4 (Klf4) . We find that high shear stress intracardiac regions decrease endocardial ciliation over cushion development, correlating with KLF4 downregulation and EndoMT progression. Mouse embryos constitutively lacking cilia exhibit a blood-flow dependent accumulation of KLF4 in these regions, independent of upstream left-right abnormalities, resulting in impaired cushion cellularization. snRNA-seq revealed that cilia KO endocardium fails to progress to late-EndoMT, retains endothelial markers and has reduced EndoMT/mesenchymal genes that KLF4 antagonizes. Together, these data identify a mechanosensory role for endocardial primary cilia in cushion development through regional regulation of KLF4.
Collapse
|
12
|
Yu M, Bouatia-Naji N. Insights into the Inherited Basis of Valvular Heart Disease. Curr Cardiol Rep 2024; 26:381-392. [PMID: 38581562 DOI: 10.1007/s11886-024-02041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/08/2024]
Abstract
PURPOSE OF REVIEW: Increases in the availability of genetic data and advances in the tools and methods for their analyses have enabled well-powered genetic association studies that have significantly enhanced our understanding of the genetic factors underlying both rare and common valve diseases. Valvular heart diseases, such as congenital valve malformations and degenerative valve lesions, increase the risk of heart failure, arrhythmias, and sudden death. In this review, we provide an updated overview of our current understanding of the genetic mechanisms underlying valvular heart diseases. With a focus on discoveries from the past 5 years, we describe recent insights into genetic risk and underlying biological pathways. RECENT FINDINGS: Recently acquired knowledge around valvular heart disease genetics has provided important insights into novel mechanisms related to disease pathogenesis. Newly identified risk loci associated valvular heart disease mainly regulate the composition of the extracellular matrix, accelerate the endothelial-to-mesenchymal transition, contribute to cilia formation processes, and play roles in lipid metabolism. Large-scale genomic analyses have identified numerous risk loci, genes, and biological pathways associated with degenerative valve disease and congenital valve malformations. Shared risk genes suggest common mechanistic pathways for various valve pathologies. More recent studies have combined cardiac magnetic resonance imaging and machine learning to offer a novel approach for exploring genotype-phenotype relationships regarding valve disease. Progress in the field holds promise for targeted prevention, particularly through the application of polygenic risk scores, and innovative therapies based on the biological mechanisms for predominant forms of valvular heart diseases.
Collapse
Affiliation(s)
- Mengyao Yu
- Shanghai Pudong Hospital, Human Phenome Institute, Fudan University Pudong Medical Center, Zhangjiang Fudan International Innovation Center, Fundan University, 825 Zhangheng Road, Pudong District, Shanghai, 201203, China.
| | | |
Collapse
|
13
|
Delwarde C, Toquet C, Boureau AS, Le Ruz R, Le Scouarnec S, Mérot J, Kyndt F, Bernstein D, Bernstein JA, Aalberts JJJ, Le Marec H, Schott JJ, Roussel JC, Le Tourneau T, Capoulade R. Filamin A heart valve disease as a genetic cause of inherited bicuspid and tricuspid aortic valve disease. Heart 2024; 110:666-674. [PMID: 38148157 DOI: 10.1136/heartjnl-2023-323491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023] Open
Abstract
OBJECTIVE Variants in the FLNA gene have been associated with mitral valve dystrophy (MVD), and even polyvalvular disease has been reported. This study aimed to analyse the aortic valve and root involvement in FLNA-MVD families and its impact on outcomes. METHODS 262 subjects (37 (18-53) years, 140 male, 79 carriers: FLNA+) from 4 FLNA-MVD families were included. Echocardiography was performed in 185 patients and histological analysis in 3 explanted aortic valves. The outcomes were defined as aortic valve surgery or all-cause mortality. RESULTS Aortic valve alterations were found in 58% of FLNA+ compared with 6% of FLNA- (p<0.001). 9 (13.4%) FLNA+ had bicuspid aortic valve compared with 4 (3.4%) FLNA- (p=0.03). Overall, the transvalvular mean gradient was slightly increased in FLNA+ (4.8 (4.1-6.1) vs 4.0 (2.9-4.9) mm Hg, p=0.02). The sinuses of Valsalva and sinotubular junction diameters were enlarged in FLNA+ subjects (all p<0.05). 8 FLNA+ patients underwent aortic valve surgery (0 in relatives; p<0.001). Myxomatous remodelling with an infiltration of immune cells was observed. Overall survival was similar between FLNA+ versus FLNA- subjects (86±5% vs 85±6%, p=0.36). There was no statistical evidence for an interaction between genetic status and sex (p=0.15), but the survival tended to be impaired in FLNA+ men (p=0.06) whereas not in women (p=0.71). CONCLUSION The patients with FLNA variants present frequent aortic valve disease and worse outcomes. Bicuspid aortic valve is more frequent in patients carrying the FLNA-MVD variants. These unique features should be factored into the management of patients with dystrophic and/or bicuspid aortic valve.
Collapse
Affiliation(s)
- Constance Delwarde
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Nantes, France
| | - Claire Toquet
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Nantes, France
| | - Anne Sophie Boureau
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Nantes, France
| | - Robin Le Ruz
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Nantes, France
| | - Solena Le Scouarnec
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Nantes, France
| | - Jean Mérot
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Nantes, France
| | - Florence Kyndt
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Nantes, France
| | - Daniel Bernstein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Jonathan A Bernstein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Jan J J Aalberts
- Department of Cardiology, Reinier de Graaf Hospital, Delft, Netherlands
| | - Hervé Le Marec
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Nantes, France
| | - Jean-Jacques Schott
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Nantes, France
| | - Jean-Christian Roussel
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Nantes, France
| | - Thierry Le Tourneau
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Nantes, France
| | - Romain Capoulade
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Nantes, France
| |
Collapse
|
14
|
Aikawa E, Blaser MC, Singh SA, Levine RA, Yacoub MH. Challenges and Opportunities in Valvular Heart Disease: From Molecular Mechanisms to the Community. Arterioscler Thromb Vasc Biol 2024; 44:763-767. [PMID: 38536897 PMCID: PMC10977651 DOI: 10.1161/atvbaha.123.319563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Affiliation(s)
- Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark C. Blaser
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sasha A. Singh
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert A. Levine
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
15
|
Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Barone Gibbs B, Beaton AZ, Boehme AK, Commodore-Mensah Y, Currie ME, Elkind MSV, Evenson KR, Generoso G, Heard DG, Hiremath S, Johansen MC, Kalani R, Kazi DS, Ko D, Liu J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Perman SM, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Tsao CW, Urbut SM, Van Spall HGC, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Palaniappan LP. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024; 149:e347-e913. [PMID: 38264914 DOI: 10.1161/cir.0000000000001209] [Citation(s) in RCA: 699] [Impact Index Per Article: 699.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2024 AHA Statistical Update is the product of a full year's worth of effort in 2023 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. The AHA strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional global data, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
16
|
Farhat B, Bordeu I, Jagla B, Ibrahim S, Stefanovic S, Blanc H, Loulier K, Simons BD, Beaurepaire E, Livet J, Pucéat M. Understanding the cell fate and behavior of progenitors at the origin of the mouse cardiac mitral valve. Dev Cell 2024; 59:339-350.e4. [PMID: 38198889 DOI: 10.1016/j.devcel.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/08/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Congenital heart malformations include mitral valve defects, which remain largely unexplained. During embryogenesis, a restricted population of endocardial cells within the atrioventricular canal undergoes an endothelial-to-mesenchymal transition to give rise to mitral valvular cells. However, the identity and fate decisions of these progenitors as well as the behavior and distribution of their derivatives in valve leaflets remain unknown. We used single-cell RNA sequencing (scRNA-seq) of genetically labeled endocardial cells and microdissected mouse embryonic and postnatal mitral valves to characterize the developmental road. We defined the metabolic processes underlying the specification of the progenitors and their contributions to subtypes of valvular cells. Using retrospective multicolor clonal analysis, we describe specific modes of growth and behavior of endocardial cell-derived clones, which build up, in a proper manner, functional valve leaflets. Our data identify how both genetic and metabolic mechanisms specifically drive the fate of a subset of endocardial cells toward their distinct clonal contribution to the formation of the valve.
Collapse
Affiliation(s)
- Batoul Farhat
- INSERM U1251/Aix-Marseille Université, Marseille 13885, France
| | - Ignacio Bordeu
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago 9160000, Chile
| | - Bernd Jagla
- Pasteur Institute UtechS CB & Hub de Bioinformatique et Biostatistiques, C3BI, Paris, France
| | - Stéphanie Ibrahim
- C2VN Aix-Marseille Université, INSERM 1263, INRAE 1260, Marseille 13885, France
| | - Sonia Stefanovic
- C2VN Aix-Marseille Université, INSERM 1263, INRAE 1260, Marseille 13885, France
| | - Hugo Blanc
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, IP Paris, Palaiseau 91120, France
| | - Karine Loulier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
| | - Benjamin D Simons
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 A0W, UK
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, IP Paris, Palaiseau 91120, France
| | - Jean Livet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
| | - Michel Pucéat
- INSERM U1251/Aix-Marseille Université, Marseille 13885, France.
| |
Collapse
|
17
|
Coll M, Fernández-Falgueras A, Iglesias A, Brugada R. Valvulopathies and Genetics: Where are We? Rev Cardiovasc Med 2024; 25:40. [PMID: 39077344 PMCID: PMC11263169 DOI: 10.31083/j.rcm2502040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 07/31/2024] Open
Abstract
Valvulopathies are among the most common cardiovascular diseases, significantly increasing morbidity and mortality. While many valvular heart diseases are acquired later in life, an important genetic component has been described, particularly in mitral valve prolapse and bicuspid aortic valve. These conditions can arise secondary to genetic syndromes such as Marfan disease (associated with mitral valve prolapse) or Turner syndrome (linked to the bicuspid aortic valve) or may manifest in a non-syndromic form. When cardiac valve disease is the primary cause, it can appear in a familial clustering or sporadically, with a clear genetic component. The identification of new genes, regulatory elements, post-transcriptional modifications, and molecular pathways is crucial to identify at-risk familial carriers and for developing novel therapeutic strategies. In the present review we will discuss the numerous genetic contributors of heart valve diseases.
Collapse
Affiliation(s)
- Mònica Coll
- Unitat de Genòmica i Medicina Personalitzada, Laboratori Clínic Territorial, Institut Català de la Salut, 17003 Salt, Spain
- Cardiovascular Genetics Center, University of Girona-Institut d'Investigacions Biomèdiques de Girona (IDIBGI), 17003 Salt, Spain
| | - Anna Fernández-Falgueras
- Unitat de Genòmica i Medicina Personalitzada, Laboratori Clínic Territorial, Institut Català de la Salut, 17003 Salt, Spain
- Cardiovascular Genetics Center, University of Girona-Institut d'Investigacions Biomèdiques de Girona (IDIBGI), 17003 Salt, Spain
- Cardiology Service, Hospital Josep Trueta, University of Girona, 17004 Girona, Spain
| | - Anna Iglesias
- Unitat de Genòmica i Medicina Personalitzada, Laboratori Clínic Territorial, Institut Català de la Salut, 17003 Salt, Spain
- Cardiovascular Genetics Center, University of Girona-Institut d'Investigacions Biomèdiques de Girona (IDIBGI), 17003 Salt, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Center, University of Girona-Institut d'Investigacions Biomèdiques de Girona (IDIBGI), 17003 Salt, Spain
- Cardiology Service, Hospital Josep Trueta, University of Girona, 17004 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28014 Madrid, Spain
- Medical Science Department, School of Medicine, University of Girona, 17004 Girona, Spain
| |
Collapse
|
18
|
Shaikh Qureshi WM, Hentges KE. Functions of cilia in cardiac development and disease. Ann Hum Genet 2024; 88:4-26. [PMID: 37872827 PMCID: PMC10952336 DOI: 10.1111/ahg.12534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023]
Abstract
Errors in embryonic cardiac development are a leading cause of congenital heart defects (CHDs), including morphological abnormalities of the heart that are often detected after birth. In the past few decades, an emerging role for cilia in the pathogenesis of CHD has been identified, but this topic still largely remains an unexplored area. Mouse forward genetic screens and whole exome sequencing analysis of CHD patients have identified enrichment for de novo mutations in ciliary genes or non-ciliary genes, which regulate cilia-related pathways, linking cilia function to aberrant cardiac development. Key events in cardiac morphogenesis, including left-right asymmetric development of the heart, are dependent upon cilia function. Cilia dysfunction during left-right axis formation contributes to CHD as evidenced by the substantial proportion of heterotaxy patients displaying complex CHD. Cilia-transduced signaling also regulates later events during heart development such as cardiac valve formation, outflow tract septation, ventricle development, and atrioventricular septa formation. In this review, we summarize the role of motile and non-motile (primary cilia) in cardiac asymmetry establishment and later events during heart development.
Collapse
Affiliation(s)
- Wasay Mohiuddin Shaikh Qureshi
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| | - Kathryn E. Hentges
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| |
Collapse
|
19
|
Delgado V, Ajmone Marsan N, Bonow RO, Hahn RT, Norris RA, Zühlke L, Borger MA. Degenerative mitral regurgitation. Nat Rev Dis Primers 2023; 9:70. [PMID: 38062018 PMCID: PMC11895844 DOI: 10.1038/s41572-023-00478-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 12/18/2023]
Abstract
Degenerative mitral regurgitation is a major threat to public health and affects at least 24 million people worldwide, with an estimated 0.88 million disability-adjusted life years and 34,000 deaths in 2019. Improving access to diagnostic testing and to timely curative therapies such as surgical mitral valve repair will improve the outcomes of many individuals. Imaging such as echocardiography and cardiac magnetic resonance allow accurate diagnosis and have provided new insights for a better definition of the most appropriate timing for intervention. Advances in surgical techniques allow minimally invasive treatment with durable results that last for ≥20 years. Transcatheter therapies can provide good results in select patients who are considered high risk for surgery and have a suitable anatomy; the durability of such repairs is up to 5 years. Translational science has provided new knowledge on the pathophysiology of degenerative mitral regurgitation and may pave the road to the development of medical therapies that could be used to halt the progression of the disease.
Collapse
Affiliation(s)
| | - Nina Ajmone Marsan
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Robert O Bonow
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rebecca T Hahn
- Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Russell A Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Liesl Zühlke
- South African Medical Research Council, Cape Town, South Africa
- Division of Paediatric Cardiology, Department of Paediatrics, Institute of Child Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Michael A Borger
- University Department of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| |
Collapse
|
20
|
Ren Z, Mao X, Wang S, Wang X. Cilia-related diseases. J Cell Mol Med 2023; 27:3974-3979. [PMID: 37830491 PMCID: PMC10746950 DOI: 10.1111/jcmm.17990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
More and more attention is paid to diseases such as internal transfer and brain malformation which are caused by the abnormal morphogenesis of cilia. These cilia-related diseases are divided into two categories: ciliopathy resulting from defects of primary cilia and primary ciliary dyskinesia (PCD) caused by functional dysregulation of motile cilia. Cilia are widely distributed, and their related diseases can cover many human organs and tissues. Recent studies prove that primary cilia play a key role in maintaining homeostasis in the cardiovascular system. However, molecular mechanisms of cilia-related diseases remain elusive. Here, we reviewed recent research progresses on characteristics, molecular mechanisms and treatment methods of ciliopathy and PCD. Our review is beneficial to the further research on the pathogenesis and treatment strategies of cilia-related diseases.
Collapse
Affiliation(s)
- Zhanhong Ren
- Hubei Key Laboratory of Diabetes and AngiopathyMedicine Research Institute, Xianning Medical College, Hubei University of Science and TechnologyXianningP. R. China
| | - Xiaoxiao Mao
- Hubei Key Laboratory of Diabetes and AngiopathyMedicine Research Institute, Xianning Medical College, Hubei University of Science and TechnologyXianningP. R. China
- School of Basic Medical SciencesXianning Medical College, Hubei University of Science and TechnologyXianningP. R. China
| | - Siqi Wang
- Hubei Key Laboratory of Diabetes and AngiopathyMedicine Research Institute, Xianning Medical College, Hubei University of Science and TechnologyXianningP. R. China
| | - Xin Wang
- School of Mathematics and StatisticsHubei University of Science and TechnologyXianningP. R. China
| |
Collapse
|
21
|
Iske J, Roesel MJ, Cesarovic N, Pitts L, Steiner A, Knoedler L, Nazari-Shafti TZ, Akansel S, Jacobs S, Falk V, Kempfert J, Kofler M. The Potential of Intertwining Gene Diagnostics and Surgery for Mitral Valve Prolapse. J Clin Med 2023; 12:7441. [PMID: 38068501 PMCID: PMC10707074 DOI: 10.3390/jcm12237441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/18/2023] [Accepted: 11/29/2023] [Indexed: 12/13/2024] Open
Abstract
Mitral valve prolapse (MVP) is common among heart valve disease patients, causing severe mitral regurgitation (MR). Although complications such as cardiac arrhythmias and sudden cardiac death are rare, the high prevalence of the condition leads to a significant number of such events. Through next-generation gene sequencing approaches, predisposing genetic components have been shown to play a crucial role in the development of MVP. After the discovery of the X-linked inheritance of filamin A, autosomal inherited genes were identified. In addition, the study of sporadic MVP identified several genes, including DZIP1, TNS1, LMCD1, GLIS1, PTPRJ, FLYWCH, and MMP2. The early screening of these genetic predispositions may help to determine the patient population at risk for severe complications of MVP and impact the timing of reconstructive surgery. Surgical mitral valve repair is an effective treatment option for MVP, resulting in excellent short- and long-term outcomes. Repair rates in excess of 95% and low complication rates have been consistently reported for minimally invasive mitral valve repair performed in high-volume centers. We therefore conceptualize a potential preventive surgical strategy for the treatment of MVP in patients with genetic predisposition, which is currently not considered in guideline recommendations. Further genetic studies on MVP pathology and large prospective clinical trials will be required to support such an approach.
Collapse
Affiliation(s)
- Jasper Iske
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute of Health, 10117 Berlin, Germany
| | - Maximilian J. Roesel
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Nikola Cesarovic
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Department of Health Sciences and Technology, ETH Zuerich, 8092 Zuerich, Switzerland
| | - Leonard Pitts
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | | | - Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Timo Z. Nazari-Shafti
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin, Berlin, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Serdar Akansel
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Stephan Jacobs
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin, Berlin, 13353 Berlin, Germany
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Joerg Kempfert
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Markus Kofler
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
22
|
Levy S, Sharaf Dabbagh G, Giudicessi JR, Haqqani H, Khanji MY, Obeng-Gyimah E, Betts MN, Ricci F, Asatryan B, Bouatia-Naji N, Nazarian S, Chahal CAA. Genetic mechanisms underlying arrhythmogenic mitral valve prolapse: Current and future perspectives. Heart Rhythm O2 2023; 4:581-591. [PMID: 37744942 PMCID: PMC10513923 DOI: 10.1016/j.hroo.2023.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Mitral valve prolapse (MVP) is a heart valve disease that is often familial, affecting 2%-3% of the general population. MVP with or without mitral regurgitation can be associated with an increased risk of ventricular arrhythmias and sudden cardiac death (SCD). Research on familial MVP has specifically focused on genetic factors, which may explain the heritable component of the disease estimated to be present in 20%-35%. Furthermore, the structural and electrophysiological substrates underlying SCD/ventricular arrhythmia risk in MVP have been studied postmortem and in the electrophysiology laboratory, respectively. Understanding how familial MVP and rhythm disorders are related may help patients with MVP by individualizing risk and working to develop effective management strategies. This contemporary, state-of-the-art, expert review focuses on genetic factors and familial components that underlie MVP and arrhythmia and encapsulates clinical, genetic, and electrophysiological issues that should be the objectives of future research.
Collapse
Affiliation(s)
- Sydney Levy
- Byram Hills High School, Armonk, New York
- Harvard College, Cambridge, Massachusetts
| | - Ghaith Sharaf Dabbagh
- Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, Pennsylvania
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan
| | - John R. Giudicessi
- Divisions of Heart Rhythm Services and Circulatory Failure, Departments of Cardiovascular Medicine, Molecular Pharmacology, and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | | | - Mohammed Y. Khanji
- Byram Hills High School, Armonk, New York
- NIHR Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- Newham University Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Edmond Obeng-Gyimah
- Clinical Cardiac Electrophysiology, VT and Complex Ablation Program, WellSpan Health, York, Pennsylvania
| | - Megan N. Betts
- Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, Pennsylvania
| | - Fabrizio Ricci
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Fondazione Villaserena per la Ricerca, Città Sant’Angelo, Italy
| | - Babken Asatryan
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Saman Nazarian
- Division of Cardiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - C. Anwar A. Chahal
- Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, Pennsylvania
- Barts Heart Centre, Barts Health NHS Trust, London, West Smithfield, United Kingdom
- Cardiac Electrophysiology, Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
23
|
Rahbari-Oskoui FF. Management of Hypertension and Associated Cardiovascular Disease in Autosomal Dominant Polycystic Kidney Disease. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:417-428. [PMID: 38097332 DOI: 10.1053/j.akdh.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 12/18/2023]
Abstract
Autosomal dominant polycystic kidney disease is the most commonly inherited disease of the kidneys affecting an estimated 12,000,000 people in the world. Autosomal dominant polycystic kidney disease is a systemic disease, with a wide range of associated features that includes hypertension, valvular heart diseases, cerebral aneurysms, aortic aneurysms, liver cysts, abdominal hernias, diverticulosis, gross hematuria, urinary tract infections, nephrolithiasis, pancreatic cysts, and seminal vesicle cysts. The cardiovascular anomalies are somewhat different than in the general population and also chronic kidney disease population, with higher morbidity and mortality rates. This review will focus on cardiovascular diseases associated with autosomal dominant polycystic kidney disease and their management.
Collapse
Affiliation(s)
- Frederic F Rahbari-Oskoui
- Director of the PKD Center of Excellence, Department of Medicine-Renal Division, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, GA.
| |
Collapse
|
24
|
Tan C, Kurup S, Dyakiv Y, Kume T. FOXC1 and FOXC2 maintain mitral valve endothelial cell junctions, extracellular matrix, and lymphatic vessels to prevent myxomatous degeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555455. [PMID: 37693499 PMCID: PMC10491158 DOI: 10.1101/2023.08.30.555455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background Mitral valve (MV) disease including myxomatous degeneration is the most common form of valvular heart disease with an age-dependent frequency. Genetic evidence indicates mutations of the transcription factor FOXC1 are associated with MV defects, including mitral valve regurgitation. In this study, we sought to determine whether murine Foxc1 and its closely related factor, Foxc2, are required in valvular endothelial cells (VECs) for the maintenance of MV leaflets, including VEC junctions and the stratified trilaminar extracellular matrix (ECM). Methods Adult mice carrying tamoxifen-inducible, endothelial cell (EC)-specific, compound Foxc1;Foxc2 mutations (i.e., EC-Foxc-DKO mice) were used to study the function of Foxc1 and Foxc2 in the maintenance of mitral valves. The EC-mutations of Foxc1/c2 were induced at 7 - 8 weeks of age by tamoxifen treatment, and abnormalities in the MVs of EC-Foxc-DKO mice were assessed via whole-mount immunostaining, immunohistochemistry, and Movat pentachrome/Masson's Trichrome staining. Results EC-deletions of Foxc1 and Foxc2 in mice resulted in abnormally extended and thicker mitral valves by causing defects in regulation of ECM organization with increased proteoglycan and decreased collagen. Notably, reticular adherens junctions were found in VECs of control MV leaflets, and these reticular structures were severely disrupted in EC-Foxc1/c2 mutant mice. PROX1, a key regulator in a subset of VECs on the fibrosa side of MVs, was downregulated in EC-Foxc1/c2 mutant VECs. Furthermore, we determined the precise location of lymphatic vessels in murine MVs, and these lymphatic vessels were aberrantly expanded in EC-Foxc1/c2 mutant mitral valves. Conclusions Our results indicate that Foxc1 and Foxc2 are required for maintaining the integrity of the MV, including VEC junctions, ECM organization, and lymphatic vessels to prevent myxomatous mitral valve degeneration.
Collapse
Affiliation(s)
- Can Tan
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Shreya Kurup
- Honors College, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yaryna Dyakiv
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Tsutomu Kume
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
25
|
Zhu W, Lo CW. Insights into the genetic architecture of congenital heart disease from animal modeling. Zool Res 2023; 44:577-590. [PMID: 37147909 PMCID: PMC10236297 DOI: 10.24272/j.issn.2095-8137.2022.463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/28/2023] [Indexed: 05/07/2023] Open
Abstract
Congenital heart disease (CHD) is observed in up to 1% of live births and is one of the leading causes of mortality from birth defects. While hundreds of genes have been implicated in the genetic etiology of CHD, their role in CHD pathogenesis is still poorly understood. This is largely a reflection of the sporadic nature of CHD, as well as its variable expressivity and incomplete penetrance. We reviewed the monogenic causes and evidence for oligogenic etiology of CHD, as well as the role of de novo mutations, common variants, and genetic modifiers. For further mechanistic insight, we leveraged single-cell data across species to investigate the cellular expression characteristics of genes implicated in CHD in developing human and mouse embryonic hearts. Understanding the genetic etiology of CHD may enable the application of precision medicine and prenatal diagnosis, thereby facilitating early intervention to improve outcomes for patients with CHD.
Collapse
Affiliation(s)
- Wenjuan Zhu
- Chinese University of Hong Kong, Hong Kong SAR, China
- Kunming Institute of Zoology-Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Hong Kong SAR, China
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15201 USA. E-mail:
| |
Collapse
|
26
|
van Kampen A, Morningstar JE, Goudot G, Ingels N, Wenk JF, Nagata Y, Yaghoubian KM, Norris RA, Borger MA, Melnitchouk S, Levine RA, Jensen MO. Utilization of Engineering Advances for Detailed Biomechanical Characterization of the Mitral-Ventricular Relationship to Optimize Repair Strategies: A Comprehensive Review. Bioengineering (Basel) 2023; 10:601. [PMID: 37237671 PMCID: PMC10215167 DOI: 10.3390/bioengineering10050601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The geometrical details and biomechanical relationships of the mitral valve-left ventricular apparatus are very complex and have posed as an area of research interest for decades. These characteristics play a major role in identifying and perfecting the optimal approaches to treat diseases of this system when the restoration of biomechanical and mechano-biological conditions becomes the main target. Over the years, engineering approaches have helped to revolutionize the field in this regard. Furthermore, advanced modelling modalities have contributed greatly to the development of novel devices and less invasive strategies. This article provides an overview and narrative of the evolution of mitral valve therapy with special focus on two diseases frequently encountered by cardiac surgeons and interventional cardiologists: ischemic and degenerative mitral regurgitation.
Collapse
Affiliation(s)
- Antonia van Kampen
- Division of Cardiac Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Leipzig Heart Centre, University Clinic of Cardiac Surgery, 02189 Leipzig, Germany
| | - Jordan E. Morningstar
- Department of Regenerative Medicine and Cell Biology, University of South Carolina, Charleston, SC 29425, USA
| | - Guillaume Goudot
- Cardiac Ultrasound Laboratory, Department of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Neil Ingels
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jonathan F. Wenk
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40508, USA;
| | - Yasufumi Nagata
- Cardiac Ultrasound Laboratory, Department of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Koushiar M. Yaghoubian
- Division of Cardiac Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Russell A. Norris
- Department of Regenerative Medicine and Cell Biology, University of South Carolina, Charleston, SC 29425, USA
| | - Michael A. Borger
- Leipzig Heart Centre, University Clinic of Cardiac Surgery, 02189 Leipzig, Germany
| | - Serguei Melnitchouk
- Division of Cardiac Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Robert A. Levine
- Cardiac Ultrasound Laboratory, Department of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Morten O. Jensen
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
27
|
Nagata Y, Bertrand PB, Baliyan V, Kochav J, Kagan RD, Ujka K, Alfraidi H, van Kampen A, Morningstar JE, Dal-Bianco JP, Melnitchouk S, Holmvang G, Borger MA, Moore R, Hua L, Sultana R, Calle PV, Yum B, Guerrero JL, Neilan TG, Picard MH, Kim J, Delling FN, Hung J, Norris RA, Weinsaft JW, Levine RA. Abnormal Mechanics Relate to Myocardial Fibrosis and Ventricular Arrhythmias in Patients With Mitral Valve Prolapse. Circ Cardiovasc Imaging 2023; 16:e014963. [PMID: 37071717 PMCID: PMC10108844 DOI: 10.1161/circimaging.122.014963] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/08/2023] [Indexed: 04/20/2023]
Abstract
BACKGROUND The relation between ventricular arrhythmia and fibrosis in mitral valve prolapse (MVP) is reported, but underlying valve-induced mechanisms remain unknown. We evaluated the association between abnormal MVP-related mechanics and myocardial fibrosis, and their association with arrhythmia. METHODS We studied 113 patients with MVP with both echocardiogram and gadolinium cardiac magnetic resonance imaging for myocardial fibrosis. Two-dimensional and speckle-tracking echocardiography evaluated mitral regurgitation, superior leaflet and papillary muscle displacement with associated exaggerated basal myocardial systolic curling, and myocardial longitudinal strain. Follow-up assessed arrhythmic events (nonsustained or sustained ventricular tachycardia or ventricular fibrillation). RESULTS Myocardial fibrosis was observed in 43 patients with MVP, predominantly in the basal-midventricular inferior-lateral wall and papillary muscles. Patients with MVP with fibrosis had greater mitral regurgitation, prolapse, and superior papillary muscle displacement with basal curling and more impaired inferior-posterior basal strain than those without fibrosis (P<0.001). An abnormal strain pattern with distinct peaks pre-end-systole and post-end-systole in inferior-lateral wall was frequent in patients with fibrosis (81 versus 26%, P<0.001) but absent in patients without MVP with basal inferior-lateral wall fibrosis (n=20). During median follow-up of 1008 days, 36 of 87 patients with MVP with >6-month follow-up developed ventricular arrhythmias associated (univariable) with fibrosis, greater prolapse, mitral annular disjunction, and double-peak strain. In multivariable analysis, double-peak strain showed incremental risk of arrhythmia over fibrosis. CONCLUSIONS Basal inferior-posterior myocardial fibrosis in MVP is associated with abnormal MVP-related myocardial mechanics, which are potentially associated with ventricular arrhythmia. These associations suggest pathophysiological links between MVP-related mechanical abnormalities and myocardial fibrosis, which also may relate to ventricular arrhythmia and offer potential imaging markers of increased arrhythmic risk.
Collapse
Affiliation(s)
- Yasufumi Nagata
- Cardiac Ultrasound Laboratory (Y.N., P.B.B., H.A., J.P.D.-B., L.H., M.H.P., J.H., R.A.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Philippe B. Bertrand
- Cardiac Ultrasound Laboratory (Y.N., P.B.B., H.A., J.P.D.-B., L.H., M.H.P., J.H., R.A.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Vinit Baliyan
- Department of Radiology (V.B., G.H.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jonathan Kochav
- Greenberg Cardiology Division, Department of Medicine, Weill Cornell Medical College, New York, NY (J. Kochav, R.D.K., R.S., P.V.C., B.Y., J. Kim, J.W.W.)
| | - Ruth D. Kagan
- Greenberg Cardiology Division, Department of Medicine, Weill Cornell Medical College, New York, NY (J. Kochav, R.D.K., R.S., P.V.C., B.Y., J. Kim, J.W.W.)
| | - Kristian Ujka
- School of Cardiovascular Disease, University of Pisa, Italy (K.U.)
| | - Hassan Alfraidi
- Cardiac Ultrasound Laboratory (Y.N., P.B.B., H.A., J.P.D.-B., L.H., M.H.P., J.H., R.A.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Antonia van Kampen
- Cardiac Surgery (A.v.K., S.M.), Massachusetts General Hospital, Harvard Medical School, Boston
- University Department for Cardiac Surgery, Leipzig Heart Center, University of Leipzig, Saxony, Germany (A.v.K., M.A.B.)
| | - Jordan E. Morningstar
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston (J.E.M., R.M., R.A.N.)
| | - Jacob P. Dal-Bianco
- Cardiac Ultrasound Laboratory (Y.N., P.B.B., H.A., J.P.D.-B., L.H., M.H.P., J.H., R.A.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Serguei Melnitchouk
- Cardiac Surgery (A.v.K., S.M.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Godtfred Holmvang
- Department of Radiology (V.B., G.H.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Michael A. Borger
- University Department for Cardiac Surgery, Leipzig Heart Center, University of Leipzig, Saxony, Germany (A.v.K., M.A.B.)
| | - Reece Moore
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston (J.E.M., R.M., R.A.N.)
| | - Lanqi Hua
- Cardiac Ultrasound Laboratory (Y.N., P.B.B., H.A., J.P.D.-B., L.H., M.H.P., J.H., R.A.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Razia Sultana
- Greenberg Cardiology Division, Department of Medicine, Weill Cornell Medical College, New York, NY (J. Kochav, R.D.K., R.S., P.V.C., B.Y., J. Kim, J.W.W.)
| | - Pablo Villar Calle
- Greenberg Cardiology Division, Department of Medicine, Weill Cornell Medical College, New York, NY (J. Kochav, R.D.K., R.S., P.V.C., B.Y., J. Kim, J.W.W.)
| | - Brian Yum
- Greenberg Cardiology Division, Department of Medicine, Weill Cornell Medical College, New York, NY (J. Kochav, R.D.K., R.S., P.V.C., B.Y., J. Kim, J.W.W.)
| | - J. Luis Guerrero
- Surgical Cardiovascular Laboratory (J.L.G.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Tomas G. Neilan
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston (T.G.N.)
| | - Michael H. Picard
- Cardiac Ultrasound Laboratory (Y.N., P.B.B., H.A., J.P.D.-B., L.H., M.H.P., J.H., R.A.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jiwon Kim
- Greenberg Cardiology Division, Department of Medicine, Weill Cornell Medical College, New York, NY (J. Kochav, R.D.K., R.S., P.V.C., B.Y., J. Kim, J.W.W.)
| | - Francesca N. Delling
- Division of Cardiovascular Medicine, University of California, San Francisco (F.N.D.)
| | - Judy Hung
- Cardiac Ultrasound Laboratory (Y.N., P.B.B., H.A., J.P.D.-B., L.H., M.H.P., J.H., R.A.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Russell A. Norris
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston (J.E.M., R.M., R.A.N.)
| | - Jonathan W. Weinsaft
- Greenberg Cardiology Division, Department of Medicine, Weill Cornell Medical College, New York, NY (J. Kochav, R.D.K., R.S., P.V.C., B.Y., J. Kim, J.W.W.)
| | - Robert A. Levine
- Cardiac Ultrasound Laboratory (Y.N., P.B.B., H.A., J.P.D.-B., L.H., M.H.P., J.H., R.A.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
28
|
Morleo M, Pezzella N, Franco B. Proteome balance in ciliopathies: the OFD1 protein example. Trends Mol Med 2023; 29:201-217. [PMID: 36494254 DOI: 10.1016/j.molmed.2022.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
The balance of protein synthesis and degradation is finely regulated and influences cellular homeostasis and biological processes (e.g., embryonic development and neuronal plasticity). Recent data demonstrated that centrosomal/ciliary proteins enable proteome control in response to spatial or microenvironmental stimuli. Here, we discuss recent discoveries regarding the role in the balance of the proteome of centrosomal/ciliary proteins associated with genetic disorders known as ciliopathies. In particular, OFD1 was the first example of a ciliopathy protein controlling both protein expression and autophagic/proteasomal degradation. Understanding the role of proteome balance in the pathogenesis of the clinical manifestations of ciliopathies may pave the way to the identification of a wide range of putative novel therapeutic targets for these conditions.
Collapse
Affiliation(s)
- Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Nunziana Pezzella
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine program, University of Naples Federico II, Naples, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine program, University of Naples Federico II, Naples, Italy; Medical Genetics, Department of Translational Medicine, University of Naples 'Federico II', Via Sergio Pansini, 80131, Naples, Italy.
| |
Collapse
|
29
|
Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Beaton AZ, Boehme AK, Buxton AE, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Fugar S, Generoso G, Heard DG, Hiremath S, Ho JE, Kalani R, Kazi DS, Ko D, Levine DA, Liu J, Ma J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Virani SS, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation 2023; 147:e93-e621. [PMID: 36695182 DOI: 10.1161/cir.0000000000001123] [Citation(s) in RCA: 2185] [Impact Index Per Article: 1092.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2023 Statistical Update is the product of a full year's worth of effort in 2022 by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. The American Heart Association strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional COVID-19 (coronavirus disease 2019) publications, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
30
|
Delwarde C, Capoulade R, Mérot J, Le Scouarnec S, Bouatia-Naji N, Yu M, Huttin O, Selton-Suty C, Sellal JM, Piriou N, Schott JJ, Dina C, Le Tourneau T. Genetics and pathophysiology of mitral valve prolapse. Front Cardiovasc Med 2023; 10:1077788. [PMID: 36873395 PMCID: PMC9978496 DOI: 10.3389/fcvm.2023.1077788] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Mitral valve prolapse (MVP) is a common condition affecting 2-3% of the general population, and the most complex form of valve pathology, with a complication rate up to 10-15% per year in advanced stages. Complications include mitral regurgitation which can lead to heart failure and atrial fibrillation, but also life-threatening ventricular arrhythmia and cardiovascular death. Sudden death has been recently brought to the forefront of MVP disease, increasing the complexity of management and suggesting that MVP condition is not properly understood. MVP can occur as part of syndromic conditions such as Marfan syndrome, but the most common form is non-syndromic, isolated or familial. Although a specific X-linked form of MVP was initially identified, autosomal dominant inheritance appears to be the primary mode of transmission. MVP can be stratified into myxomatous degeneration (Barlow), fibroelastic deficiency, and Filamin A-related MVP. While FED is still considered a degenerative disease associated with aging, myxomatous MVP and FlnA-MVP are recognized as familial pathologies. Deciphering genetic defects associated to MVP is still a work in progress; although FLNA, DCHS1, and DZIP1 have been identified as causative genes in myxomatous forms of MVP thanks to familial approaches, they explain only a small proportion of MVP. In addition, genome-wide association studies have revealed the important role of common variants in the development of MVP, in agreement with the high prevalence of this condition in the population. Furthermore, a potential genetic link between MVP and ventricular arrhythmia or a specific type of cardiomyopathy is considered. Animal models that allow to advance in the genetic and pathophysiological knowledge of MVP, and in particular those that can be easily manipulated to express a genetic defect identified in humans are detailed. Corroborated by genetic data and animal models, the main pathophysiological pathways of MVP are briefly addressed. Finally, genetic counseling is considered in the context of MVP.
Collapse
Affiliation(s)
- Constance Delwarde
- Nantes Université, CHU Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France
| | - Romain Capoulade
- Nantes Université, CHU Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France
| | - Jean Mérot
- Nantes Université, CHU Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France
| | - Solena Le Scouarnec
- Nantes Université, CHU Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France
| | | | - Mengyao Yu
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Olivier Huttin
- Service de Cardiologie, Institut Lorrain du Coeur et des Vaisseaux Louis Mathieu, CHU de Nancy, Nancy, France
| | - Christine Selton-Suty
- Service de Cardiologie, Institut Lorrain du Coeur et des Vaisseaux Louis Mathieu, CHU de Nancy, Nancy, France
| | - Jean-Marc Sellal
- Service de Cardiologie, Institut Lorrain du Coeur et des Vaisseaux Louis Mathieu, CHU de Nancy, Nancy, France
| | - Nicolas Piriou
- Nantes Université, CHU Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France
| | - Jean-Jacques Schott
- Nantes Université, CHU Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France
| | - Christian Dina
- Nantes Université, CHU Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France
| | - Thierry Le Tourneau
- Nantes Université, CHU Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France
| |
Collapse
|
31
|
Effect of Age on Heart Rate Variability in Patients with Mitral Valve Prolapse: An Observational Study. J Clin Med 2022; 12:jcm12010165. [PMID: 36614965 PMCID: PMC9820965 DOI: 10.3390/jcm12010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Age is an important determinant of heart rate variability (HRV) in healthy individuals. The incidence of arrhythmia is high in patients with mitral valve prolapse (MVP). However, the correlation of HRV in patients with MVP in different age groups is not well established. We presumed that increasing age would be prospectively associated with declining HRV measurement in MVP. Sixty patients with MVP and 120 control individuals were included and underwent 24 h HRV analysis. No significant difference was found in all parameters calculated in the time domain or in the frequency domain between the two groups. However, as patients' age increased, a significant time domain (SDNN, RMSSD, NN50, and pNN50) decline was found in the MVP group, but not in the control group. This suggests that patients with MVP may have autonomic nervous system involvement that increases the risk of arrhythmia and heart disease with increasing age.
Collapse
|
32
|
Delling FN, Noseworthy PA, Adams DH, Basso C, Borger M, Bouatia-Naji N, Elmariah S, Evans F, Gerstenfeld E, Hung J, Le Tourneau T, Lewis J, Miller MA, Norris RA, Padala M, Perazzolo-Marra M, Shah DJ, Weinsaft JW, Enriquez-Sarano M, Levine RA. Research Opportunities in the Treatment of Mitral Valve Prolapse: JACC Expert Panel. J Am Coll Cardiol 2022; 80:2331-2347. [PMID: 36480975 PMCID: PMC9981237 DOI: 10.1016/j.jacc.2022.09.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/31/2022] [Accepted: 09/12/2022] [Indexed: 12/10/2022]
Abstract
In light of the adverse prognosis related to severe mitral regurgitation, heart failure, or sudden cardiac death in a subset of patients with mitral valve prolapse (MVP), identifying those at higher risk is key. For the first time in decades, researchers have the means to rapidly advance discovery in the field of MVP thanks to state-of-the-art imaging techniques, novel omics methodologies, and the potential for large-scale collaborations using web-based platforms. The National Heart, Lung, and Blood Institute recently initiated a webinar-based workshop to identify contemporary research opportunities in the treatment of MVP. This report summarizes 3 specific areas in the treatment of MVP that were the focus of the workshop: 1) improving management of degenerative mitral regurgitation and associated left ventricular systolic dysfunction; 2) preventing sudden cardiac death in MVP; and 3) understanding the mechanisms and progression of MVP through genetic studies and small and large animal models, with the potential of developing medical therapies.
Collapse
Affiliation(s)
- Francesca N Delling
- Department of Medicine (Cardiovascular Division), University of California-San Francisco, San Francisco, California, USA.
| | - Peter A Noseworthy
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - David H Adams
- Department of Cardiovascular Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Cristina Basso
- Cardiovascular Pathology, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | | | | | - Sammy Elmariah
- Department of Medicine (Cardiovascular Division), University of California-San Francisco, San Francisco, California, USA; Department of Medicine, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Frank Evans
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Edward Gerstenfeld
- Department of Medicine (Cardiovascular Division), University of California-San Francisco, San Francisco, California, USA
| | - Judy Hung
- Department of Medicine, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thierry Le Tourneau
- Nantes Université, CHU Nantes, CNRS, INSERM, l'Institut du Thorax, Nantes, France
| | - John Lewis
- Heart Valve Voice US, Washington, DC, USA
| | - Marc A Miller
- Helmsley Electrophysiology Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Russell A Norris
- Department of Regenerative Medicine and Cell Biology, Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Muralidhar Padala
- Department of Surgery (Cardiothoracic Surgery Division), Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Dipan J Shah
- Department of Cardiology, Houston Methodist, Weill Cornell Medical College, Houston, Texas, USA
| | | | | | - Robert A Levine
- Massachusetts General Hospital Cardiac Ultrasound Laboratory, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Jaouadi H, Théron A, Hourdain J, Martel H, Nguyen K, Habachi R, Deharo JC, Collart F, Avierinos JF, Zaffran S. SCN5A Variants as Genetic Arrhythmias Triggers for Familial Bileaflet Mitral Valve Prolapse. Int J Mol Sci 2022; 23:ijms232214447. [PMID: 36430924 PMCID: PMC9692711 DOI: 10.3390/ijms232214447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Mitral valve prolapse (MVP) is a common valvular heart defect with variable outcomes. Several studies reported MVP as an underestimated cause of life-threatening arrhythmias and sudden cardiac death (SCD), mostly in young adult women. Herein, we report a clinical and genetic investigation of a family with bileaflet MVP and a history of syncopes and resuscitated sudden cardiac death. Using family based whole exome sequencing, we identified two missense variants in the SCN5A gene. A rare variant SCN5A:p.Ala572Asp and the well-known functional SCN5A:p.His558Arg polymorphism. Both variants are shared between the mother and her daughter with a history of resuscitated SCD and syncopes, respectively. The second daughter with prodromal MVP as well as her healthy father and sister carried only the SCN5A:p.His558Arg polymorphism. Our study is highly suggestive of the contribution of SCN5A mutations as the potential genetic cause of the electric instability leading to ventricular arrhythmias in familial MVP cases with syncope and/or SCD history.
Collapse
Affiliation(s)
- Hager Jaouadi
- Marseille Medical Genetics, INSERM, Aix Marseille Université, U1251 Marseille, France
- Correspondence: (H.J.); (S.Z.); Tel.: +33-4-9132-4936 (H.J. & S.Z.); Fax: +33-4-9179-7227 (H.J. & S.Z.)
| | - Alexis Théron
- Marseille Medical Genetics, INSERM, Aix Marseille Université, U1251 Marseille, France
- Department of Cardiac Surgery, La Timone Hospital, 13005 Marseille, France
| | - Jérôme Hourdain
- Department of Cardiology, La Timone Hospital, 13005 Marseille, France
| | - Hélène Martel
- Department of Cardiology, La Timone Hospital, 13005 Marseille, France
| | - Karine Nguyen
- Marseille Medical Genetics, INSERM, Aix Marseille Université, U1251 Marseille, France
- Department of Medical Genetics, Timone Enfant Hospital, 13005 Marseille, France
| | - Raja Habachi
- Department of Cardiology, La Timone Hospital, 13005 Marseille, France
| | | | - Frédéric Collart
- Department of Cardiac Surgery, La Timone Hospital, 13005 Marseille, France
| | - Jean-François Avierinos
- Marseille Medical Genetics, INSERM, Aix Marseille Université, U1251 Marseille, France
- Department of Cardiology, La Timone Hospital, 13005 Marseille, France
| | - Stéphane Zaffran
- Marseille Medical Genetics, INSERM, Aix Marseille Université, U1251 Marseille, France
- Correspondence: (H.J.); (S.Z.); Tel.: +33-4-9132-4936 (H.J. & S.Z.); Fax: +33-4-9179-7227 (H.J. & S.Z.)
| |
Collapse
|
34
|
Yan S, Peng Y, Lu J, Shakil S, Shi Y, Crossman DK, Johnson WH, Liu S, Rokosh DG, Lincoln J, Wang Q, Jiao K. Differential requirement for DICER1 activity during the development of mitral and tricuspid valves. J Cell Sci 2022; 135:jcs259783. [PMID: 35946425 PMCID: PMC9482344 DOI: 10.1242/jcs.259783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022] Open
Abstract
Mitral and tricuspid valves are essential for unidirectional blood flow in the heart. They are derived from similar cell sources, and yet congenital dysplasia affecting both valves is clinically rare, suggesting the presence of differential regulatory mechanisms underlying their development. Here, we specifically inactivated Dicer1 in the endocardium during cardiogenesis and found that Dicer1 deletion caused congenital mitral valve stenosis and regurgitation, whereas it had no impact on other valves. We showed that hyperplastic mitral valves were caused by abnormal condensation and extracellular matrix (ECM) remodeling. Our single-cell RNA sequencing analysis revealed impaired maturation of mesenchymal cells and abnormal expression of ECM genes in mutant mitral valves. Furthermore, expression of a set of miRNAs that target ECM genes was significantly lower in tricuspid valves compared to mitral valves, consistent with the idea that the miRNAs are differentially required for mitral and tricuspid valve development. We thus reveal miRNA-mediated gene regulation as a novel molecular mechanism that differentially regulates mitral and tricuspid valve development, thereby enhancing our understanding of the non-association of inborn mitral and tricuspid dysplasia observed clinically.
Collapse
Affiliation(s)
- Shun Yan
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Yin Peng
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jin Lu
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Saima Shakil
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Yang Shi
- Department of Population Health Science, and Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - David K. Crossman
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Walter H. Johnson
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shanrun Liu
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Donald G. Rokosh
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Joy Lincoln
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- The Herma Heart Institute, Division of Pediatric Cardiology, Children's Wisconsin, Milwaukee, WI 53226, USA
| | - Qin Wang
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, August, GA 30912, USA
| | - Kai Jiao
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
35
|
Delwarde C, Toquet C, Aumond P, Kayvanjoo AH, Foucal A, Le Vely B, Baudic M, Lauzier B, Blandin S, Véziers J, Paul-Gilloteaux P, Lecointe S, Baron E, Massaiu I, Poggio P, Rémy S, Anegon I, Le Marec H, Monassier L, Schott JJ, Mass E, Barc J, Le Tourneau T, Merot J, Capoulade R. Multimodality imaging and transciptomics to phenotype mitral valve dystrophy in a unique knock-in Filamin-A rat model. Cardiovasc Res 2022; 119:759-771. [PMID: 36001550 DOI: 10.1093/cvr/cvac136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/29/2022] [Accepted: 07/26/2022] [Indexed: 11/12/2022] Open
Abstract
AIMS Degenerative mitral valve dystrophy (MVD) leading to mitral valve prolapse is the most frequent form of MV disease, and there is currently no pharmacological treatment available. The limited understanding of the pathophysiological mechanisms leading to MVD limits our ability to identify therapeutic targets. This study aimed to reveal the main pathophysiological pathways involved in MVD via the multimodality imaging and transcriptomic analysis of the new and unique Knock-In (KI) rat model for the FlnA-P637Q mutation associated-MVD. METHODS AND RESULTS WT and KI rats were evaluated morphologically, functionally, and histologically between 3-week-old and 3-to-6-month-old based on Doppler echocardiography, 3D micro-computed tomography (microCT), and standard histology. RNA-sequencing and Assay for Transposase-Accessible Chromatin (ATAC-seq) were performed on 3-week-old WT and KI mitral valves and valvular cells, respectively, to highlight the main signaling pathways associated with MVD. Echocardiographic exploration confirmed MV elongation (2.0 ± 0.1 mm versus 1.8 ± 0.1, p = 0.001), as well as MV thickening and prolapse in KI animals compared to WT at 3 weeks. 3D MV volume quantified by microCT was significantly increased in KI animals (+58% versus WT, p = 0.02). Histological analyses revealed a myxomatous remodeling in KI MV characterized by proteoglycans accumulation. A persistent phenotype was observed in adult KI rats. Signaling pathways related to extracellular matrix homeostasis, response to molecular stress, epithelial cell migration, endothelial to mesenchymal transition, chemotaxis and immune cell migration, were identified based on RNA-seq analysis. ATAC-seq analysis points to the critical role of TGF-β and inflammation in the disease. CONCLUSION The KI FlnA-P637Q rat model mimics human myxomatous mitral valve dystrophy, offering a unique opportunity to decipher pathophysiological mechanisms related to this disease. Extracellular matrix organization, epithelial cell migration, response to mechanical stress, and a central contribution of immune cells are highlighted as the main signaling pathways leading to myxomatous mitral valve dystrophy. Our findings pave the road to decipher underlying molecular mechanisms and the specific role of distinct cell populations in this context.
Collapse
Affiliation(s)
- Constance Delwarde
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Claire Toquet
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Pascal Aumond
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Amir Hossein Kayvanjoo
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn; 53115 Bonn, Germany
| | - Adrien Foucal
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Benjamin Le Vely
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Manon Baudic
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Benjamin Lauzier
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Stéphanie Blandin
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UAR 3556, F-44000 Nantes, France
| | - Joëlle Véziers
- INSERM, UMR 1229, RMeS, CHU Nantes PHU4 OTONN, Nantes Univ, Nantes, France
| | - Perrine Paul-Gilloteaux
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France.,Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UAR 3556, F-44000 Nantes, France
| | - Simon Lecointe
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Estelle Baron
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | | | - Paolo Poggio
- Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - Séverine Rémy
- INSERM UMR 1064-CR2TI, Transgenic Rats ImmunoPhenomic, Nantes, France
| | - Ignacio Anegon
- INSERM UMR 1064-CR2TI, Transgenic Rats ImmunoPhenomic, Nantes, France
| | - Hervé Le Marec
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Laurent Monassier
- Laboratoire de Pharmacologie et Toxicologie NeuroCardiovasculaire UR7296, Université de Strasbourg, Strasbourg, France
| | - Jean Jacques Schott
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Elvira Mass
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn; 53115 Bonn, Germany
| | - Julien Barc
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Thierry Le Tourneau
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Jean Merot
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Romain Capoulade
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| |
Collapse
|
36
|
Hedgehog Morphogens Act as Growth Factors Critical to Pre- and Postnatal Cardiac Development and Maturation: How Primary Cilia Mediate Their Signal Transduction. Cells 2022; 11:cells11121879. [PMID: 35741008 PMCID: PMC9221318 DOI: 10.3390/cells11121879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
Primary cilia are crucial for normal cardiac organogenesis via the formation of cyto-architectural, anatomical, and physiological boundaries in the developing heart and outflow tract. These tiny, plasma membrane-bound organelles function in a sensory-integrative capacity, interpreting both the intra- and extra-cellular environments and directing changes in gene expression responses to promote, prevent, and modify cellular proliferation and differentiation. One distinct feature of this organelle is its involvement in the propagation of a variety of signaling cascades, most notably, the Hedgehog cascade. Three ligands, Sonic, Indian, and Desert hedgehog, function as growth factors that are most commonly dependent on the presence of intact primary cilia, where the Hedgehog receptors Patched-1 and Smoothened localize directly within or at the base of the ciliary axoneme. Hedgehog signaling functions to mediate many cell behaviors that are critical for normal embryonic tissue/organ development. However, inappropriate activation and/or upregulation of Hedgehog signaling in postnatal and adult tissue is known to initiate oncogenesis, as well as the pathogenesis of other diseases. The focus of this review is to provide an overview describing the role of Hedgehog signaling and its dependence upon the primary cilium in the cell types that are most essential for mammalian heart development. We outline the breadth of developmental defects and the consequential pathologies resulting from inappropriate changes to Hedgehog signaling, as it pertains to congenital heart disease and general cardiac pathophysiology.
Collapse
|
37
|
Roselli C, Yu M, Nauffal V, Georges A, Yang Q, Love K, Weng LC, Delling FN, Maurya SR, Schrölkamp M, Tfelt-Hansen J, Hagège A, Jeunemaitre X, Debette S, Amouyel P, Guan W, Muehlschlegel JD, Body SC, Shah S, Samad Z, Kyryachenko S, Haynes C, Rienstra M, Le Tourneau T, Probst V, Roussel R, Wijdh-Den Hamer IJ, Siland JE, Knowlton KU, Jacques Schott J, Levine RA, Benjamin EJ, Vasan RS, Horne BD, Muhlestein JB, Benfari G, Enriquez-Sarano M, Natale A, Mohanty S, Trivedi C, Shoemaker MB, Yoneda ZT, Wells QS, Baker MT, Farber-Eger E, Michelena HI, Lundby A, Norris RA, Slaugenhaupt SA, Dina C, Lubitz SA, Bouatia-Naji N, Ellinor PT, Milan DJ. Genome-wide association study reveals novel genetic loci: a new polygenic risk score for mitral valve prolapse. Eur Heart J 2022; 43:1668-1680. [PMID: 35245370 PMCID: PMC9649914 DOI: 10.1093/eurheartj/ehac049] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/18/2021] [Accepted: 02/01/2022] [Indexed: 11/12/2022] Open
Abstract
AIMS Mitral valve prolapse (MVP) is a common valvular heart disease with a prevalence of >2% in the general adult population. Despite this high incidence, there is a limited understanding of the molecular mechanism of this disease, and no medical therapy is available for this disease. We aimed to elucidate the genetic basis of MVP in order to better understand this complex disorder. METHODS AND RESULTS We performed a meta-analysis of six genome-wide association studies that included 4884 cases and 434 649 controls. We identified 14 loci associated with MVP in our primary analysis and 2 additional loci associated with a subset of the samples that additionally underwent mitral valve surgery. Integration of epigenetic, transcriptional, and proteomic data identified candidate MVP genes including LMCD1, SPTBN1, LTBP2, TGFB2, NMB, and ALPK3. We created a polygenic risk score (PRS) for MVP and showed an improved MVP risk prediction beyond age, sex, and clinical risk factors. CONCLUSION We identified 14 genetic loci that are associated with MVP. Multiple analyses identified candidate genes including two transforming growth factor-β signalling molecules and spectrin β. We present the first PRS for MVP that could eventually aid risk stratification of patients for MVP screening in a clinical setting. These findings advance our understanding of this common valvular heart disease and may reveal novel therapeutic targets for intervention.
Collapse
Affiliation(s)
- Carolina Roselli
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mengyao Yu
- Université de Paris, PARCC, Inserm, F-75015 Paris, France
| | - Victor Nauffal
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Adrien Georges
- Université de Paris, PARCC, Inserm, F-75015 Paris, France
| | - Qiong Yang
- School of Public Health, Boston University, Boston, MA, USA
| | - Katie Love
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Lu Chen Weng
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Francesca N Delling
- Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
| | - Svetlana R Maurya
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, København 2200, Denmark
| | - Maren Schrölkamp
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, København 2200, Denmark
| | - Jacob Tfelt-Hansen
- Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Albert Hagège
- Université de Paris, PARCC, Inserm, F-75015 Paris, France
- Assistance Publique–Hôpitaux de Paris, Departments of Cardiology and Genetics, Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Xavier Jeunemaitre
- Université de Paris, PARCC, Inserm, F-75015 Paris, France
- Assistance Publique–Hôpitaux de Paris, Departments of Cardiology and Genetics, Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Stéphanie Debette
- Bordeaux Population Health Research Center, Inserm Center U1219, University of Bordeaux, Bordeaux, France
- Department of Neurology, Bordeaux University Hospital, Inserm U1219, Bordeaux, France
| | - Philippe Amouyel
- Univ. Lille, Inserm, Centre Hosp. Univ Lille, Institut Pasteur de Lille, UMR1167 – RID-AGE- Risk factors and molecular determinants of aging-related diseases, F-59000 Lille, France
| | - Wyliena Guan
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Jochen D Muehlschlegel
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Simon C Body
- Department of Anesthesiology, Boston University School of Medicine, Boston, MA, USA
| | - Svati Shah
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Zainab Samad
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | | | - Carol Haynes
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Michiel Rienstra
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Thierry Le Tourneau
- l’institut du thorax, INSERM, CNRS, Univ Nantes, CHU Nantes, Nantes, France
- l’institut du thorax, CHU Nantes, Nantes, France
| | - Vincent Probst
- l’institut du thorax, INSERM, CNRS, Univ Nantes, CHU Nantes, Nantes, France
| | - Ronan Roussel
- Cordeliers Research Centre, ImMeDiab Team, INSERM, Université de Paris, Paris, France
- Hôpital Bichat-Claude-Bernard, APHP, Department of Diabetology, Paris, France
| | - Inez J Wijdh-Den Hamer
- Department of Cardiothoracic Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Joylene E Siland
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Kirk U Knowlton
- Intermountain Medical Center Heart Institute, Salt Lake City, UT, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | | | - Robert A Levine
- Cardiac Ultrasound Laboratory, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Emelia J Benjamin
- National Heart, Lung, and Blood Institute’s and Boston University’s, The Framingham Heart Study, Framingham, MA, USA
- Section of Cardiovascular Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Ramachandran S Vasan
- School of Public Health, Boston University, Boston, MA, USA
- National Heart, Lung, and Blood Institute’s and Boston University’s, The Framingham Heart Study, Framingham, MA, USA
- School of Medicine, Boston University, Boston, MA, USA
| | - Benjamin D Horne
- Intermountain Medical Center Heart Institute, Salt Lake City, UT, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Joseph B Muhlestein
- Intermountain Medical Center Heart Institute, Salt Lake City, UT, USA
- Cardiology Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Giovanni Benfari
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St David’s Medical Center, Austin, TX, USA
| | - Sanghamitra Mohanty
- Texas Cardiac Arrhythmia Institute, St David’s Medical Center, Austin, TX, USA
| | - Chintan Trivedi
- Texas Cardiac Arrhythmia Institute, St David’s Medical Center, Austin, TX, USA
| | - Moore B Shoemaker
- Department of Medicine, Division of Cardiovascular Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zachary T Yoneda
- Department of Medicine, Division of Cardiovascular Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Quinn S Wells
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael T Baker
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric Farber-Eger
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Alicia Lundby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, København 2200, Denmark
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, København 2200, Denmark
| | - Russell A Norris
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Susan A Slaugenhaupt
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Christian Dina
- l’institut du thorax, INSERM, CNRS, Univ Nantes, CHU Nantes, Nantes, France
| | - Steven A Lubitz
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | | | - Patrick T Ellinor
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - David J Milan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Leducq Foundation, Boston, MA 02110, USA
| |
Collapse
|
38
|
Pype LL, Bertrand PB, Paelinck BP, Heidbuchel H, Van Craenenbroeck EM, Van De Heyning CM. Left Ventricular Remodeling in Non-syndromic Mitral Valve Prolapse: Volume Overload or Concomitant Cardiomyopathy? Front Cardiovasc Med 2022; 9:862044. [PMID: 35498019 PMCID: PMC9039519 DOI: 10.3389/fcvm.2022.862044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/07/2022] [Indexed: 01/11/2023] Open
Abstract
Mitral valve prolapse (MVP) is a common valvular disorder that can be associated with mitral regurgitation (MR), heart failure, ventricular arrhythmias and sudden cardiac death. Given the prognostic impact of these conditions, it is important to evaluate not only mitral valve morphology and regurgitation, but also the presence of left ventricular (LV) function and remodeling. To date, several possible hypotheses have been proposed regarding the underlying mechanisms of LV remodeling in the context of non-syndromic MVP, but the exact pathophysiological explanation remains elusive. Overall, volume overload related to severe MR is considered the main cause of LV dilatation in MVP. However, significant LV remodeling has been observed in patients with MVP and no/mild MR, particularly in patients with bileaflet MVP or Barlow's disease, generating several new hypotheses. Recently, the concept of "prolapse volume" was introduced, adding a significant volume load to the LV on top of the transvalvular MR volume. Another possible hypothesis is the existence of a concomitant cardiomyopathy, supported by the link between MVP and myocardial fibrosis. The origin of this cardiomyopathy could be either genetic, a second hit (e.g., on top of genetic predisposition) and/or frequent ventricular ectopic beats. This review provides an overview of the different mechanisms and remaining questions regarding LV remodeling in non-syndromic MVP. Since technical specifications of imaging modalities impact the evaluation of MR severity and LV remodeling, and therefore might influence clinical decision making in these patients, this review will also discuss assessment of MVP using different imaging modalities.
Collapse
Affiliation(s)
- Lobke L. Pype
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
- Genetics, Pharmacology and Physiopathology of Heart, Vasculature and Skeleton (GENCOR) Research Group, University of Antwerp, Antwerp, Belgium
| | - Philippe B. Bertrand
- Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium
- Cardio and Organ Systems (COST) Resarch Group, Hasselt University, Hasselt, Belgium
| | - Bernard P. Paelinck
- Genetics, Pharmacology and Physiopathology of Heart, Vasculature and Skeleton (GENCOR) Research Group, University of Antwerp, Antwerp, Belgium
- Department of Cardiac Surgery, Antwerp University Hospital, Antwerp, Belgium
| | - Hein Heidbuchel
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
- Genetics, Pharmacology and Physiopathology of Heart, Vasculature and Skeleton (GENCOR) Research Group, University of Antwerp, Antwerp, Belgium
| | - Emeline M. Van Craenenbroeck
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
- Genetics, Pharmacology and Physiopathology of Heart, Vasculature and Skeleton (GENCOR) Research Group, University of Antwerp, Antwerp, Belgium
| | - Caroline M. Van De Heyning
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
- Genetics, Pharmacology and Physiopathology of Heart, Vasculature and Skeleton (GENCOR) Research Group, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
39
|
Kohl P, Greiner J, Rog-Zielinska EA. Electron microscopy of cardiac 3D nanodynamics: form, function, future. Nat Rev Cardiol 2022; 19:607-619. [PMID: 35396547 DOI: 10.1038/s41569-022-00677-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 11/09/2022]
Abstract
The 3D nanostructure of the heart, its dynamic deformation during cycles of contraction and relaxation, and the effects of this deformation on cell function remain largely uncharted territory. Over the past decade, the first inroads have been made towards 3D reconstruction of heart cells, with a native resolution of around 1 nm3, and of individual molecules relevant to heart function at a near-atomic scale. These advances have provided access to a new generation of data and have driven the development of increasingly smart, artificial intelligence-based, deep-learning image-analysis algorithms. By high-pressure freezing of cardiomyocytes with millisecond accuracy after initiation of an action potential, pseudodynamic snapshots of contraction-induced deformation of intracellular organelles can now be captured. In combination with functional studies, such as fluorescence imaging, exciting insights into cardiac autoregulatory processes at nano-to-micro scales are starting to emerge. In this Review, we discuss the progress in this fascinating new field to highlight the fundamental scientific insight that has emerged, based on technological breakthroughs in biological sample preparation, 3D imaging and data analysis; to illustrate the potential clinical relevance of understanding 3D cardiac nanodynamics; and to predict further progress that we can reasonably expect to see over the next 10 years.
Collapse
Affiliation(s)
- Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Engineering, University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Joachim Greiner
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eva A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
40
|
Djenoune L, Berg K, Brueckner M, Yuan S. A change of heart: new roles for cilia in cardiac development and disease. Nat Rev Cardiol 2022; 19:211-227. [PMID: 34862511 PMCID: PMC10161238 DOI: 10.1038/s41569-021-00635-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 12/27/2022]
Abstract
Although cardiac abnormalities have been observed in a growing class of human disorders caused by defective primary cilia, the function of cilia in the heart remains an underexplored area. The primary function of cilia in the heart was long thought to be restricted to left-right axis patterning during embryogenesis. However, new findings have revealed broad roles for cilia in congenital heart disease, valvulogenesis, myocardial fibrosis and regeneration, and mechanosensation. In this Review, we describe advances in our understanding of the mechanisms by which cilia function contributes to cardiac left-right axis development and discuss the latest findings that highlight a broader role for cilia in cardiac development. Specifically, we examine the growing line of evidence connecting cilia function to the pathogenesis of congenital heart disease. Furthermore, we also highlight research from the past 10 years demonstrating the role of cilia function in common cardiac valve disorders, including mitral valve prolapse and aortic valve disease, and describe findings that implicate cardiac cilia in mechanosensation potentially linking haemodynamic and contractile forces with genetic regulation of cardiac development and function. Finally, given the presence of cilia on cardiac fibroblasts, we also explore the potential role of cilia in fibrotic growth and summarize the evidence implicating cardiac cilia in heart regeneration.
Collapse
Affiliation(s)
- Lydia Djenoune
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathryn Berg
- Department of Paediatrics, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Martina Brueckner
- Department of Paediatrics, Yale University School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
| | - Shiaulou Yuan
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
Malignant Mitral Valve Prolapse: Risk and Prevention of Sudden Cardiac Death. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2022; 24:61-86. [PMID: 35784809 PMCID: PMC9241643 DOI: 10.1007/s11936-022-00956-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Purpose of review The purpose of this review is to explore the prevalence and risk factors for a malignant phenotype in mitral valve prolapse (MVP) characterized by life-threatening ventricular arrhythmias and sudden cardiac arrest and death (SCD), including mechanistic and pathophysiologic findings and mechanism-based potential therapies. Recent findings A malignant phenotype in MVP characterized by life-threatening arrhythmias has long been recognized, although MVP is often benign. Efforts to identify this malignant phenotype have revealed potential risk factors for SCD that include elongated, myxomatous leaflets, ECG changes and complex ventricular ectopy. More recently, malignant MVP has been associated with myocardial fibrosis in the papillary muscles and inferobasal left ventricular wall. This localization suggests a central role of prolapse-induced mechanical forces on the myocardium in creating an arrhythmogenic substrate and triggering life-threatening arrhythmias. This mechanism for fibrosis is also consistent with imaging evidence of prolapse-induced mechanical changes in the papillary muscles and inferobasal left ventricular wall. Currently, no therapy to prevent SCD in malignant MVP has been established and limited clinical data are available. Mechanistic information and prospective study have the potential to identify patients at risk of SCD and preventive strategies. Summary Malignant MVP relates to unique properties and mechanical abnormalities in the mitral valve apparatus and adjacent myocardium. Increased understanding of disease mechanisms and determinants of arrhythmias is needed to establish effective therapies.
Collapse
|
42
|
Primary Cilia and Their Role in Acquired Heart Disease. Cells 2022; 11:cells11060960. [PMID: 35326411 PMCID: PMC8946116 DOI: 10.3390/cells11060960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/10/2022] Open
Abstract
Primary cilia are non-motile plasma membrane extrusions that display a variety of receptors and mechanosensors. Loss of function results in ciliopathies, which have been strongly linked with congenital heart disease, as well as abnormal development and function of most organ systems. Adults with congenital heart disease have high rates of acquired heart failure, and usually die from a cardiac cause. Here we explore primary cilia’s role in acquired heart disease. Intraflagellar Transport 88 knockout results in reduced primary cilia, and knockout from cardiac endothelium produces myxomatous degeneration similar to mitral valve prolapse seen in adult humans. Induced primary cilia inactivation by other mechanisms also produces excess myocardial hypertrophy and altered scar architecture after ischemic injury, as well as hypertension due to a lack of vascular endothelial nitric oxide synthase activation and the resultant left ventricular dysfunction. Finally, primary cilia have cell-to-cell transmission capacity which, when blocked, leads to progressive left ventricular hypertrophy and heart failure, though this mechanism has not been fully established. Further research is still needed to understand primary cilia’s role in adult cardiac pathology, especially heart failure.
Collapse
|
43
|
Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Ferguson JF, Generoso G, Ho JE, Kalani R, Khan SS, Kissela BM, Knutson KL, Levine DA, Lewis TT, Liu J, Loop MS, Ma J, Mussolino ME, Navaneethan SD, Perak AM, Poudel R, Rezk-Hanna M, Roth GA, Schroeder EB, Shah SH, Thacker EL, VanWagner LB, Virani SS, Voecks JH, Wang NY, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation 2022; 145:e153-e639. [PMID: 35078371 DOI: 10.1161/cir.0000000000001052] [Citation(s) in RCA: 3089] [Impact Index Per Article: 1029.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2022 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population and an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, and the global burden of cardiovascular disease and healthy life expectancy. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
44
|
Abstract
As populations age worldwide, the burden of valvular heart disease has grown exponentially, and so has the proportion of affected women. Although rheumatic valve disease is declining in high-income countries, degenerative age-related causes are rising. Calcific aortic stenosis and degenerative mitral regurgitation affect a significant proportion of elderly women, particularly those with comorbidities. Women with valvular heart disease have been underrepresented in many of the landmark studies which form the basis for guideline recommendations. As a consequence, surgical referrals in women have often been delayed, with worse postoperative outcomes compared with men. As described in this review, a more recent effort to include women in research studies and clinical trials has increased our knowledge about sex-based differences in epidemiology, pathophysiology, diagnostic criteria, treatment options, outcomes, and prognosis.
Collapse
Affiliation(s)
| | - Joanna Chikwe
- Department of Cardiac Surgery, Smidt Heart Institute at Cedars-Sinai, Los Angeles, CA (J.C.)
| | - Rebecca T Hahn
- Division of Cardiology, New York Presbyterian Columbia Heart Valve Center, Columbia University Medical Center (R.T.H.)
| | - Judy W Hung
- Division of Cardiology, Harvard Medical School, Massachusetts General Hospital, Boston (J.W.H.)
| | - Francesca N Delling
- Division of Cardiology, University of California, San Francisco (J.T.D., F.N.D.)
| |
Collapse
|
45
|
Moore KS, Moore R, Fulmer DB, Guo L, Gensemer C, Stairley R, Glover J, Beck TC, Morningstar JE, Biggs R, Muhkerjee R, Awgulewitsch A, Norris RA. DCHS1, Lix1L, and the Septin Cytoskeleton: Molecular and Developmental Etiology of Mitral Valve Prolapse. J Cardiovasc Dev Dis 2022; 9:62. [PMID: 35200715 PMCID: PMC8874669 DOI: 10.3390/jcdd9020062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Mitral valve prolapse (MVP) is a common cardiac valve disease that often progresses to serious secondary complications requiring surgery. MVP manifests as extracellular matrix disorganization and biomechanically incompetent tissues in the adult setting. However, MVP has recently been shown to have a developmental basis, as multiple causal genes expressed during embryonic development have been identified. Disease phenotypes have been observed in mouse models with human MVP mutations as early as birth. This study focuses on the developmental function of DCHS1, one of the first genes to be shown as causal in multiple families with non-syndromic MVP. By using various biochemical techniques as well as mouse and cell culture models, we demonstrate a unique link between DCHS1-based cell adhesions and the septin-actin cytoskeleton through interactions with cytoplasmic protein Lix1-Like (LIX1L). This DCHS1-LIX1L-SEPT9 axis interacts with and promotes filamentous actin organization to direct cell-ECM alignment and valve tissue shape.
Collapse
Affiliation(s)
- Kelsey S. Moore
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Reece Moore
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Diana B. Fulmer
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Lilong Guo
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Cortney Gensemer
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Rebecca Stairley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Janiece Glover
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Tyler C. Beck
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Jordan E. Morningstar
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Rachel Biggs
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Rupak Muhkerjee
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Alexander Awgulewitsch
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Russell A. Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| |
Collapse
|
46
|
Arrhythmic Mitral Valve Prolapse and Mitral Annular Disjunction: Clinical Features, Pathophysiology, Risk Stratification, and Management. J Cardiovasc Dev Dis 2022; 9:jcdd9020061. [PMID: 35200714 PMCID: PMC8879620 DOI: 10.3390/jcdd9020061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/11/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
Mitral valve prolapse (MVP) is a common cause of valvular heart disease. Although many patients with MVP have a benign course, there is increasing recognition of an arrhythmic phenotype associated with ventricular arrhythmias and sudden cardiac death (SCD). Pathophysiologic mechanisms associated with arrhythmias include cardiac fibrosis, mechanical stress induced changes in ventricular refractory periods, as well as electrophysiologic changes in Purkinje fibers. Clinically, a variety of risk factors including demographic, electrocardiographic, and imaging characteristics help to identify patients with MVP at the highest at risk of SCD and arrhythmias. Once identified, recent advances in treatment including device therapy, catheter ablation, and surgical interventions show promising outcomes. In this review, we will summarize the incidence of ventricular arrhythmias and SCD in patients with MVP, the association with mitral annular disjunction, mechanisms of arrhythmogenesis, methods for arrhythmic and SCD risk stratification including findings with multimodality imaging, and treatments for the primary and secondary prevention of SCD.
Collapse
|
47
|
Yu M, Tcheandjieu C, Georges A, Xiao K, Tejeda H, Dina C, Le Tourneau T, Fiterau M, Judy R, Tsao NL, Amgalan D, Munger CJ, Engreitz JM, Damrauer SM, Bouatia-Naji N, Priest JR. Computational estimates of annular diameter reveal genetic determinants of mitral valve function and disease. JCI Insight 2022; 7:146580. [PMID: 35132965 PMCID: PMC8855800 DOI: 10.1172/jci.insight.146580] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
The fibrous annulus of the mitral valve plays an important role in valvular function and cardiac physiology, while normal variation in the size of cardiovascular anatomy may share a genetic link with common and rare disease. We derived automated estimates of mitral valve annular diameter in the 4-chamber view from 32,220 MRI images from the UK Biobank at ventricular systole and diastole as the basis for GWAS. Mitral annular dimensions corresponded to previously described anatomical norms, and GWAS inclusive of 4 population strata identified 10 loci, including possibly novel loci (GOSR2, ERBB4, MCTP2, MCPH1) and genes related to cardiac contractility (BAG3, TTN, RBFOX1). ATAC-Seq of primary mitral valve tissue localized multiple variants to regions of open chromatin in biologically relevant cell types and rs17608766 to an algorithmically predicted enhancer element in GOSR2. We observed strong genetic correlation with measures of contractility and mitral valve disease and clinical correlations with heart failure, cerebrovascular disease, and ventricular arrhythmias. Polygenic scoring of mitral valve annular diameter in systole was predictive of risk mitral valve prolapse across 4 cohorts. In summary, genetic and clinical studies of mitral valve annular diameter revealed genetic determinants of mitral valve biology, while highlighting clinical associations. Polygenic determinants of mitral valve annular diameter may represent an independent risk factor for mitral prolapse. Overall, computationally estimated phenotypes derived at scale from medical imaging represent an important substrate for genetic discovery and clinical risk prediction.
Collapse
Affiliation(s)
| | - Catherine Tcheandjieu
- Department of Pediatrics and.,Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Adrien Georges
- Paris Cardiovascular Research Center, INSERM, University of Paris, Paris, France
| | - Ke Xiao
- College of Information & Computer Sciences at University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | | | - Christian Dina
- University of Nantes, INSERM, CNRS, CHU Nantes, The Thorax Institute, Nantes, France
| | - Thierry Le Tourneau
- University of Nantes, INSERM, CNRS, CHU Nantes, The Thorax Institute, Nantes, France
| | - Madalina Fiterau
- College of Information & Computer Sciences at University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Renae Judy
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Noah L Tsao
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dulguun Amgalan
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA.,Basic Science & Engineering Initiative & Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford, California, USA
| | - Chad J Munger
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA.,Basic Science & Engineering Initiative & Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford, California, USA
| | - Jesse M Engreitz
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA.,Basic Science & Engineering Initiative & Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford, California, USA
| | - Scott M Damrauer
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nabila Bouatia-Naji
- Paris Cardiovascular Research Center, INSERM, University of Paris, Paris, France
| | - James R Priest
- Department of Pediatrics and.,Chan-Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
48
|
|
49
|
Morningstar JE, Gensemer C, Moore R, Fulmer D, Beck TC, Wang C, Moore K, Guo L, Sieg F, Nagata Y, Bertrand P, Spampinato RA, Glover J, Poelzing S, Gourdie RG, Watts K, Richardson WJ, Levine RA, Borger MA, Norris RA. Mitral Valve Prolapse Induces Regionalized Myocardial Fibrosis. J Am Heart Assoc 2021; 10:e022332. [PMID: 34873924 PMCID: PMC9075228 DOI: 10.1161/jaha.121.022332] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023]
Abstract
Background Mitral valve prolapse (MVP) is one of the most common forms of cardiac valve disease and affects 2% to 3% of the population. Previous imaging reports have indicated that myocardial fibrosis is common in MVP and described its association with sudden cardiac death. These data combined with evidence for postrepair ventricular dysfunction in surgical patients with MVP support a link between fibrosis and MVP. Methods and Results We performed histopathologic analysis of left ventricular (LV) biopsies from peripapillary regions, inferobasal LV wall and apex on surgical patients with MVP, as well as in a mouse model of human MVP (Dzip1S14R/+). Tension-dependent molecular pathways were subsequently assessed using both computational modeling and cyclical stretch of primary human cardiac fibroblasts in vitro. Histopathology of LV biopsies revealed regionalized fibrosis in the peripapillary myocardium that correlated with increased macrophages and myofibroblasts. The MVP mouse model exhibited similar regional increases in collagen deposition that progress over time. As observed in the patient biopsies, increased macrophages and myofibroblasts were observed in fibrotic areas within the murine heart. Computational modeling revealed tension-dependent profibrotic cellular and molecular responses consistent with fibrosis locations related to valve-induced stress. These simulations also identified mechanosensing primary cilia as involved in profibrotic pathways, which was validated in vitro and in human biopsies. Finally, in vitro stretching of primary human cardiac fibroblasts showed that stretch directly activates profibrotic pathways and increases extracellular matrix protein production. Conclusions The presence of prominent regional LV fibrosis in patients and mice with MVP supports a relationship between MVP and progressive damaging effects on LV structure before overt alterations in cardiac function. The regionalized molecular and cellular changes suggest a reactive response of the papillary and inferobasal myocardium to increased chordal tension from a prolapsing valve. These studies raise the question whether surgical intervention on patients with MVP should occur earlier than indicated by current guidelines to prevent advanced LV fibrosis and potentially reduce residual risk of LV dysfunction and sudden cardiac death.
Collapse
Affiliation(s)
| | | | - Reece Moore
- Medical University of South CarolinaCharlestonSC
| | - Diana Fulmer
- Medical University of South CarolinaCharlestonSC
| | | | | | - Kelsey Moore
- Medical University of South CarolinaCharlestonSC
| | - Lilong Guo
- Medical University of South CarolinaCharlestonSC
| | - Franz Sieg
- Leipzig Heart InstituteUniversity of LeipzigGermany
| | - Yasufumi Nagata
- Cardiac Ultrasound LaboratoryCardiology DivisionMassachusetts General HospitalBostonMA
| | - Philippe Bertrand
- Cardiac Ultrasound LaboratoryCardiology DivisionMassachusetts General HospitalBostonMA
| | | | | | - Stephen Poelzing
- Center for Heart and Reparative Medicine ResearchFralin Biomedical Research InstituteVirginia TechRoanokeVA
| | - Robert G. Gourdie
- Center for Heart and Reparative Medicine ResearchFralin Biomedical Research InstituteVirginia TechRoanokeVA
| | - Kelsey Watts
- Biomedical Data Science and Informatics ProgramDepartment of BioengineeringClemson UniversityClemsonSC
| | - William J. Richardson
- Biomedical Data Science and Informatics ProgramDepartment of BioengineeringClemson UniversityClemsonSC
| | - Robert A. Levine
- Cardiac Ultrasound LaboratoryCardiology DivisionMassachusetts General HospitalBostonMA
| | | | | |
Collapse
|
50
|
Gunawan F, Priya R, Stainier DYR. Sculpting the heart: Cellular mechanisms shaping valves and trabeculae. Curr Opin Cell Biol 2021; 73:26-34. [PMID: 34147705 DOI: 10.1016/j.ceb.2021.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
The transformation of the heart from a simple tube to a complex organ requires the orchestration of several morphogenetic processes. Two structures critical for cardiac function, the cardiac valves and the trabecular network, are formed through extensive tissue morphogenesis-endocardial cell migration, deadhesion and differentiation into fibroblast-like cells during valve formation, and cardiomyocyte delamination and apico-basal depolarization during trabeculation. Here, we review current knowledge of how these specialized structures acquire their shape by focusing on the underlying cellular behaviors and molecular mechanisms, highlighting findings from in vivo models and briefly discussing the recent advances in cardiac cell culture and organoids.
Collapse
Affiliation(s)
- Felix Gunawan
- Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, Bad Nauheim 61231, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany; Excellence Cluster Cardio-Pulmonary Institute (CPI), Bad Nauheim, Frankfurt, Giessen, Germany.
| | - Rashmi Priya
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, Bad Nauheim 61231, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany; Excellence Cluster Cardio-Pulmonary Institute (CPI), Bad Nauheim, Frankfurt, Giessen, Germany.
| |
Collapse
|