1
|
Liu H, Wang X, Wang X, Qiu F, Zhou B. Challenges and hope: latest research trends in the clinical treatment and prognosis of liposarcoma. Front Pharmacol 2025; 16:1529755. [PMID: 40421219 PMCID: PMC12104207 DOI: 10.3389/fphar.2025.1529755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 04/21/2025] [Indexed: 05/28/2025] Open
Abstract
Liposarcoma, as a complex disease, is characterized by intricate interactions between distinct histopathological subtypes and corresponding clinical outcomes, emphasizing the necessity of personalized approaches in diagnosis and treatment strategies. This malignant tumor originating from adipose tissue is classified into different subtypes with specific molecular markers, which not only distinguish them but also guide treatment directions. The main approach for treating liposarcoma is surgical resection, with the aim of complete excision and achieving clean margins (R0 resection) to minimize the risk of recurrence. This surgical principle emphasizes the critical need for precise preoperative planning, and in certain cases, the integration of neoadjuvant therapy may be needed to reduce the tumor to a surgically manageable size. In addition to surgery, systemic therapy plays a key role in the advanced stages of the disease, especially when resistance to traditional treatment arises. The emergence of novel systemic therapies, including chemotherapy, targeted therapy, and immunotherapy, has opened new avenues for treating this challenging malignancy. These systemic therapies are selected on the basis of the specific molecular features of the tumor, highlighting the importance of detailed molecular diagnostics. As our understanding of the molecular basis of liposarcoma deepens, integrating clinical and molecular features is crucial for optimizing treatment outcomes. This comprehensive approach, which combines surgical precision with systemic therapy innovations, will change the treatment landscape for patients with liposarcoma, advancing toward more personalized and effective treatment strategies.
Collapse
Affiliation(s)
- Hongliang Liu
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xi Wang
- Department of Oncology, Women and Children’s Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xiaoyu Wang
- Department of Anesthesiology Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fabo Qiu
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Zhou
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Lyu H, Bao S, Cai L, Wang M, Liu Y, Sun Y, Hu X. The role and research progress of serine metabolism in tumor cells. Front Oncol 2025; 15:1509662. [PMID: 40265021 PMCID: PMC12011608 DOI: 10.3389/fonc.2025.1509662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
Serine is crucial for tumor initiation, progression, and adaptive immunity. Metabolic pathways for serine synthesis, acquisition, and utilization in tumors and tumor-associated cells are influenced by various physiological factors and the tumor microenvironment, leading to metabolic reprogramming and amplification. Excessive serine metabolism promotes abnormal macromolecule biosynthesis, mitochondrial dysfunction, and epigenetic modifications, driving malignant transformation, proliferation, metastasis, immune suppression, and drug resistance in tumor cells. Restricting dietary serine intake or reducing the expression of serine synthetic enzymes can effectively slow tumor growth and extend patient survival. Consequently, targeting serine metabolism has emerged as a novel and promising research focus in cancer research. This paper reviews serine metabolic pathways and their roles in tumor development. It summarizes the influencing factors of serine metabolism. The article explores the significance of serine synthesis and metabolizing enzymes, along with related biomarkers, in tumor diagnosis and treatment, providing new insights for developing targeted therapies that modulate serine metabolism in cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Yang Sun
- School of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaoyang Hu
- School of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Pasquali S, Moura DS, Danks MR, Manasterski PJ, Zaffaroni N, Stacchiotti S, Mondaza-Hernandez JL, Kerrison WGJ, Martin-Broto J, Huang PH, Brunton VG. Preclinical models of soft tissue sarcomas - generation and applications to enhance translational research. Crit Rev Oncol Hematol 2025; 207:104621. [PMID: 39824369 DOI: 10.1016/j.critrevonc.2025.104621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025] Open
Abstract
Soft tissue sarcomas (STS) represent a large group of rare and ultra-rare tumors distinguished by unique morphological, molecular and clinical features. Patients with such rare cancers are generally underrepresented in clinical trials which has limited the introduction of new treatment options and subsequent improvement of patient outcomes. Preclinical models of STS that recapitulate the human disease can aid progress in identifying new effective treatments. However, due to the rarity of these tumors there are limited STS models available. Here we review the existing preclinical models of STS, including patient-derived cell lines and organoids, patient-derived xenografts and genetically engineered mouse models. We discuss the advantages and disadvantages of the different models and describe to what extent they have aided clinical translation. Finally, we consider what can be done in the future to enhance their predictivity in the preclinical setting.
Collapse
Affiliation(s)
- Sandro Pasquali
- Molecular Pharmacology, Department of Experimental Oncology, Fondazione IRCCS Instituto Nazionale dei Tumori di Milano, via G. Amadeo 42, Milano 20133, Italy
| | - David S Moura
- Research Health Institute of Fundacion Jimenez Diaz (IIS/FJD; UAM), Madrid, Spain; Department of Medical Oncology, Fundacion Jimenez Diaz University Hospital, Madrid, Spain; University Hospital General of Villalba, Madrid, Spain
| | - Molly R Danks
- Edinburgh Cancer Research, CRUK Scotland Centre, University of Edinburgh, Crewe Road South, Edinburgh EH4 2RX, UK
| | - Piotr J Manasterski
- Edinburgh Cancer Research, CRUK Scotland Centre, University of Edinburgh, Crewe Road South, Edinburgh EH4 2RX, UK
| | - Nadia Zaffaroni
- Molecular Pharmacology, Department of Experimental Oncology, Fondazione IRCCS Instituto Nazionale dei Tumori di Milano, via G. Amadeo 42, Milano 20133, Italy
| | - Silvia Stacchiotti
- Molecular Pharmacology, Department of Experimental Oncology, Fondazione IRCCS Instituto Nazionale dei Tumori di Milano, via G. Amadeo 42, Milano 20133, Italy
| | - Jose L Mondaza-Hernandez
- Research Health Institute of Fundacion Jimenez Diaz (IIS/FJD; UAM), Madrid, Spain; Department of Medical Oncology, Fundacion Jimenez Diaz University Hospital, Madrid, Spain; University Hospital General of Villalba, Madrid, Spain
| | - William G J Kerrison
- Division of Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road Sutton, London, SM2 5NG, UK
| | - Javier Martin-Broto
- Research Health Institute of Fundacion Jimenez Diaz (IIS/FJD; UAM), Madrid, Spain; Department of Medical Oncology, Fundacion Jimenez Diaz University Hospital, Madrid, Spain; University Hospital General of Villalba, Madrid, Spain
| | - Paul H Huang
- Division of Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road Sutton, London, SM2 5NG, UK
| | - Valerie G Brunton
- Edinburgh Cancer Research, CRUK Scotland Centre, University of Edinburgh, Crewe Road South, Edinburgh EH4 2RX, UK.
| |
Collapse
|
4
|
Wang W, Aguilar M, Datta S, Alley A, Tadesse M, Wang X, Gao X, Zhang R. Dual inhibitor of MDM2 and NFAT1 for experimental therapy of breast cancer: in vitro and in vivo anticancer activities and newly discovered effects on cancer metabolic pathways. Front Pharmacol 2025; 16:1531667. [PMID: 40046748 PMCID: PMC11879958 DOI: 10.3389/fphar.2025.1531667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/27/2025] [Indexed: 03/09/2025] Open
Abstract
Introduction The oncogene MDM2 has garnered attention not only for its role in cancer as a negative regulator of the tumor suppressor p53 but also for its p53-independent oncogenic activities. MDM2 also involves metabolic reprogramming, such as serine metabolism, respiration, mitochondrial functions, the folate cycle, and redox balance. Traditional MDM2 inhibitors blocking the protein-protein binding between MDM2 and p53 have shown limited clinical success in various stages of clinical trials, most likely due to low efficacy, drug toxicity, and drug resistance, highlighting the need for a novel, p53-independent strategy to inhibit MDM2. The present study investigated the antitumor effects of MA242, a novel MDM2 and NFAT1 inhibitor, in breast cancer models. Methods The anticancer activity and underlying mechanisms of MA242 were evaluated in vitro using breast cancer cell lines with different p53 backgrounds and in vivo using orthotopic and patient-derived xenograft models. Results We demonstrated that MA242 significantly inhibited cell viability and induced apoptosis in breast cancer cells, regardless of p53 status. Metabolic analysis revealed that MA242 notably disrupted nicotinamide metabolism, modified nucleotide metabolism, and elevated cellular oxidative stress by disturbing the redox balance. Furthermore, in animal models, MA242 reduced MDM2 expression and effectively inhibited tumor growth dependent on MDM2 expression without causing host toxicity. Discussion These findings highlight the potential of MA242 as a modulator of cancer metabolism and support its further development as a therapeutic option for aggressive breast cancers.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
- Drug Discovery Institute, University of Houston, Houston, TX, United States
| | - Marlene Aguilar
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Abigail Alley
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Meheret Tadesse
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Xinshi Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Xia Gao
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
- Drug Discovery Institute, University of Houston, Houston, TX, United States
| |
Collapse
|
5
|
Xie F, Niu Y, Chen X, Kong X, Yan G, Zhuang A, Li X, Lian L, Qin D, Zhang Q, Zhang R, Yang K, Xia X, Chen K, Xiao M, Yang C, Wu T, Shen Y, Yu C, Luo C, Lin SH, Li W. Ursodeoxycholic acid inhibits the uptake of cystine through SLC7A11 and impairs de novo synthesis of glutathione. J Pharm Anal 2025; 15:101068. [PMID: 39902457 PMCID: PMC11788867 DOI: 10.1016/j.jpha.2024.101068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/18/2024] [Accepted: 08/03/2024] [Indexed: 02/03/2025] Open
Abstract
Ursodeoxycholic acid (UDCA) is a naturally occurring, low-toxicity, and hydrophilic bile acid (BA) in the human body that is converted by intestinal flora using primary BA. Solute carrier family 7 member 11 (SLC7A11) functions to uptake extracellular cystine in exchange for glutamate, and is highly expressed in a variety of human cancers. Retroperitoneal liposarcoma (RLPS) refers to liposarcoma originating from the retroperitoneal area. Lipidomics analysis revealed that UDCA was one of the most significantly downregulated metabolites in sera of RLPS patients compared with healthy subjects. The augmentation of UDCA concentration (≥25 μg/mL) demonstrated a suppressive effect on the proliferation of liposarcoma cells. [15N2]-cystine and [13C5]-glutamine isotope tracing revealed that UDCA impairs cystine uptake and glutathione (GSH) synthesis. Mechanistically, UDCA binds to the cystine transporter SLC7A11 to inhibit cystine uptake and impair GSH de novo synthesis, leading to reactive oxygen species (ROS) accumulation and mitochondrial oxidative damage. Furthermore, UDCA can promote the anti-cancer effects of ferroptosis inducers (Erastin, RSL3), the murine double minute 2 (MDM2) inhibitors (Nutlin 3a, RG7112), cyclin dependent kinase 4 (CDK4) inhibitor (Abemaciclib), and glutaminase inhibitor (CB839). Together, UDCA functions as a cystine exchange factor that binds to SLC7A11 for antitumor activity, and SLC7A11 is not only a new transporter for BA but also a clinically applicable target for UDCA. More importantly, in combination with other antitumor chemotherapy or physiotherapy treatments, UDCA may provide effective and promising treatment strategies for RLPS or other types of tumors in a ROS-dependent manner.
Collapse
Affiliation(s)
- Fu'an Xie
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yujia Niu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiaobing Chen
- Department of Retroperitoneal Tumor Surgery, Peking University International Hospital, Beijing, 102206, China
| | - Xu Kong
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Guangting Yan
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Aobo Zhuang
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xi Li
- School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Lanlan Lian
- Department of Laboratory Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, 361102, China
| | - Dongmei Qin
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Quan Zhang
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ruyi Zhang
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Kunrong Yang
- Laboratory of Biochemistry and Molecular Biology Research, Department of Clinical Laboratory, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Xiaogang Xia
- Department of Hepatobiliary Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Kun Chen
- Department of Hepatobiliary Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Mengmeng Xiao
- Department of General Surgery, Peking University People's Hospital, Beijing, 100032, China
| | - Chunkang Yang
- Department of Gastrointestinal Surgical Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Ting Wu
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Department of Retroperitoneal Tumor Surgery, Peking University International Hospital, Beijing, 102206, China
| | - Ye Shen
- Department of Management, Jiang Xia Blood Technology Co., Ltd., Shanghai, 200000, China
| | - Chundong Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chenghua Luo
- Department of General Surgery, Peking University People's Hospital, Beijing, 100032, China
| | - Shu-Hai Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wengang Li
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Department of Hepatobiliary Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| |
Collapse
|
6
|
Fefilova E, Kirdeeva Y, Parfenyev S, Daks A, Fedorova O, Sorokina M, Ha NX, Huong TT, Loc VT, Hai PT, Cuong NM, Barlev N, Shuvalov O. MDM2 up-regulates the energy metabolism in NSCLC in a p53-independent manner. Biochem Biophys Res Commun 2025; 743:151169. [PMID: 39693937 DOI: 10.1016/j.bbrc.2024.151169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Although an E3 ligase MDM2 is the major negative regulator of the p53 tumor suppressor, a growing body of evidence suggests its p53-independent oncogenic properties. In particular, MDM2 has been shown to regulate serine metabolism independently of p53 status in several types of neoplasia, including NSCLC. Using the GSEA approach and publicly available molecular data on NSCLC tumors, our bioinformatics data suggest that MDM2 affects a number of metabolic genes, particularly those encoding components of the electron transport chain (ETC). To experimentally elucidate the role of MDM2 in respiration and energy metabolism of NSCLC cell models, we established NSCLC cell lines (WT p53+ A549 and p53-null H1299) overexpressing wild-type MDM2, or its catalytically deficient (C464A) mutant (MUT), or the control vector. Using TMRE staining and SeaHorse energy profiling, we demonstrated that wild-type MDM2, but not its catalytically inactive mutant, significantly increased mitochondrial membrane potential (MMP), glycolysis, respiration, and ATP production in a p53-independent manner. Further, we compared MDM2-associated effects of two natural compounds that, according to our docking experiment data, bind MDM2 with affinities similar to nutlin-3A, ganoderic acid A and berberine. Despite the fact that both nutlin-3A and berberine stabilized the MDM2 protein, they displayed differential effects on energy metabolism. Taken together, our data argue that MDM2 affects energy metabolism likely in a p53-independent manner. These results also highlight another pharmacological dimension of using MDM2-targeting compounds as potent inhibitors of glycolysis and respiration in tumor cells.
Collapse
Affiliation(s)
- Elizaveta Fefilova
- Institute of Cytology, Russian Academy of Sciences, 194064, St. Petersburg, Russia
| | - Yulia Kirdeeva
- Institute of Cytology, Russian Academy of Sciences, 194064, St. Petersburg, Russia
| | - Sergey Parfenyev
- Institute of Cytology, Russian Academy of Sciences, 194064, St. Petersburg, Russia
| | - Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, 194064, St. Petersburg, Russia
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, 194064, St. Petersburg, Russia
| | - Margarita Sorokina
- Almazov National Medical Research Centre, 197341, St. Petersburg, Russia
| | - Nguyen Xuan Ha
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 122100, Hanoi, Viet Nam
| | - Tran Thu Huong
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 122100, Hanoi, Viet Nam
| | - Vu Thanh Loc
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 122100, Hanoi, Viet Nam
| | - Pham The Hai
- University of Sciences and Technology of Hanoi (VAST), 122100, Hanoi, Viet Nam
| | - Nguyen Manh Cuong
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 122100, Hanoi, Viet Nam.
| | - Nickolai Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064, St. Petersburg, Russia; Department of Biomedical Studies, Nazarbayev University School of Medicine, Astana, 001000, Kazakhstan.
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, 194064, St. Petersburg, Russia.
| |
Collapse
|
7
|
Liu H, Wang X, Liu L, Yan B, Qiu F, Zhou B. Targeting liposarcoma: unveiling molecular pathways and therapeutic opportunities. Front Oncol 2024; 14:1484027. [PMID: 39723387 PMCID: PMC11668776 DOI: 10.3389/fonc.2024.1484027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
In recent years, an increasing number of studies have utilized molecular biology techniques to reveal important molecular heterogeneity among different subtypes of liposarcoma. Each subtype exhibits distinct genetic patterns and molecular pathways, which may serve as important targets for molecular therapy. In the present review, we focus on the molecular characteristics, molecular diagnostics, driver genes, and molecular mechanisms of liposarcoma. We also discuss the clinical research progress of related targeted therapies, with an aim to provide a reference and crucial insights for colleagues in the field.
Collapse
Affiliation(s)
- Hongliang Liu
- Department of Hepatobiliary and Pancreatic Surgery & Retroperitoneal Tumor Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xi Wang
- Department of Oncology, Women and Children’s Hospital Affiliated to Qingdao University, Qingdao, China
| | - Lingyan Liu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Bingsong Yan
- Department of Hepatobiliary Surgery, Women and Children’s Hospital Affiliated to Qingdao University, Qingdao, China
| | - Fabo Qiu
- Department of Hepatobiliary and Pancreatic Surgery & Retroperitoneal Tumor Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Zhou
- Department of Hepatobiliary and Pancreatic Surgery & Retroperitoneal Tumor Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Zhang H, Xu J, Long Y, Maimaitijiang A, Su Z, Li W, Li J. Unraveling the Guardian: p53's Multifaceted Role in the DNA Damage Response and Tumor Treatment Strategies. Int J Mol Sci 2024; 25:12928. [PMID: 39684639 DOI: 10.3390/ijms252312928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
DNA damage can lead to mutations that can alter the function of oncogenes or tumor suppressor genes, thus promoting the development of cancer. p53 plays a multifaceted and complex role in the DNA damage response and cancer progression and is known as the 'guardian of the gene'. When DNA damage occurs, p53 is activated through a series of post-translational modifications, which stabilize the protein and enhance its function as a transcription factor. It regulates processes including cell cycle checkpoints, DNA repair and apoptosis, thereby preventing the spread of damaged DNA and maintaining genome integrity. On the one hand, p53 can initiate cell cycle arrest and induce cells to enter the G1/S and G2/M checkpoints, preventing cells with damaged DNA from continuing to proliferate and gaining time for DNA repair. At the same time, p53 can promote the activation of DNA repair pathways, including base excision repair, nucleotide excision repair and other repair pathways, to ensure the integrity of genetic material. If the damage is too severe to repair, p53 will trigger the apoptosis process to eliminate potential cancer risks in time. p53 also plays a pivotal role in cancer progression. Mutations in the p53 gene are frequently found in many cancers, and the mutated p53 not only loses its normal tumor suppressor function but may even acquire pro-cancer activity. Therefore, we also discuss therapeutic strategies targeting the p53 pathway, such as the use of small-molecule drugs to restore the function of wild-type p53, the inhibition of negative regulatory factors and synthetic lethality approaches for p53-deficient tumors. This review therefore highlights the important role of p53 in maintaining genomic stability and its potential in therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Han Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Jianxiong Xu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Yuxuan Long
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Ayitila Maimaitijiang
- School of Pharmaceutical Science, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Zhengding Su
- School of Pharmaceutical Science, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Wenfang Li
- School of Pharmaceutical Science, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
9
|
Manteaux G, Amsel A, Riquier-Morcant B, Prieto Romero J, Gayte L, Fourneaux B, Larroque M, Gruel N, Quignot C, Perot G, Jacq S, Cisse MY, Pomiès P, Sengenes C, Chibon F, Heuillet M, Bellvert F, Watson S, Carrere S, Firmin N, Riscal R, Linares LK. A metabolic crosstalk between liposarcoma and muscle sustains tumor growth. Nat Commun 2024; 15:7940. [PMID: 39266552 PMCID: PMC11393074 DOI: 10.1038/s41467-024-51827-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/20/2024] [Indexed: 09/14/2024] Open
Abstract
Dedifferentiated and Well-differentiated liposarcoma are characterized by a systematic amplification of the Murine Double Minute 2 (MDM2) oncogene. We demonstrate that p53-independent metabolic functions of chromatin-bound MDM2 are exacerbated in liposarcoma and mediate an addiction to serine metabolism to sustain tumor growth. However, the origin of exogenous serine remains unclear. Here, we show that elevated serine levels in mice harboring liposarcoma-patient derived xenograft, released by distant muscle is essential for liposarcoma cell survival. Repressing interleukine-6 expression, or treating liposarcoma cells with Food and Drugs Administration (FDA) approved anti-interleukine-6 monoclonal antibody, decreases de novo serine synthesis in muscle, impairs proliferation, and increases cell death in vitro and in vivo. This work reveals a metabolic crosstalk between muscle and liposarcoma tumor and identifies anti-interleukine-6 as a plausible treatment for liposarcoma patients.
Collapse
Affiliation(s)
- Gabrielle Manteaux
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Alix Amsel
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Blanche Riquier-Morcant
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Jaime Prieto Romero
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Laurie Gayte
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Benjamin Fourneaux
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Marion Larroque
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Nadège Gruel
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France
| | - Chloé Quignot
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France
| | - Gaelle Perot
- INSERM UMR 1037, Centre de Recherche en Cancérologie de Toulouse, Université Paul Sabatier Toulouse-III, Toulouse, France
| | - Solenn Jacq
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Madi Y Cisse
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Pascal Pomiès
- PhyMedExp, University of Montpellier-INSERM-CNRS, Montpellier, France
| | - Coralie Sengenes
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
| | - Frédéric Chibon
- INSERM UMR 1037, Centre de Recherche en Cancérologie de Toulouse, Université Paul Sabatier Toulouse-III, Toulouse, France
| | - Maud Heuillet
- Toulouse Biotechnologie Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Floriant Bellvert
- Toulouse Biotechnologie Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Sarah Watson
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France
- Department of Medical Oncology, Institut Curie Hospital, Paris, France
| | - Sebastien Carrere
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Nelly Firmin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Romain Riscal
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.
| | - Laetitia K Linares
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.
| |
Collapse
|
10
|
Franza A, Fabbroni C, Pasquali S, Casali PG, Sanfilippo R. New targeted therapies in liposarcoma: state of art and future perspectives. Curr Opin Oncol 2024; 36:291-296. [PMID: 38726840 DOI: 10.1097/cco.0000000000001055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW Liposarcomas (LPSs) represent the most common soft tissue sarcoma (STS) subtype, and exhibit distinct clinical molecular features according to histological subgroup. Chemotherapy (ChT), and in particular anthracycline-based schedules, still remains the standard of treatment for all LPS forms. However, given the increasing knowledge gained throughout last years about LPS molecular biology and their genomic profiling, new therapeutic alternatives with targeted drugs are now to be considered. In this review, we will highlight most promising ongoing and published clinical trials regarding targeted therapies in LPSs and provide some insights about future approaches and possible new treatment options for this rare disease. RECENT FINDINGS Among all the explored targets, mouse double minute 2 homolog amplification and CKD4-Rb axis inhibition seem to be the most promising target in well differentiated/dedifferentiated LPS subtype. On the other hand, myxoid LPS is known to have a particular sensitivity for trabectedin, which acts like a targeted drug due to its specific action on cellular DNA. In addition to these, multiple other strategies are now being evaluated in LPSs, including the administration of immune-checkpoint inhibitors (ICIs) and 'new-old' cytotoxic agents, such as cabazitaxel, in a continuously growing scenario. SUMMARY Although preliminary, results of recently published and ongoing examined clinical trials will hopefully be translated in clinical practice in the next future, leading the way to future research in this rare disease.
Collapse
Affiliation(s)
- Andrea Franza
- Medical Oncology Unit 2, Fondazione IRCCS Istituto Nazionale dei Tumori
| | - Chiara Fabbroni
- Medical Oncology Unit 2, Fondazione IRCCS Istituto Nazionale dei Tumori
| | - Sandro Pasquali
- Molecular Pharmacology, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori
| | - Paolo Giovanni Casali
- Medical Oncology Unit 2, Fondazione IRCCS Istituto Nazionale dei Tumori
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | | |
Collapse
|
11
|
Wang W, Albadari N, Du Y, Fowler JF, Sang HT, Xian W, McKeon F, Li W, Zhou J, Zhang R. MDM2 Inhibitors for Cancer Therapy: The Past, Present, and Future. Pharmacol Rev 2024; 76:414-453. [PMID: 38697854 PMCID: PMC11068841 DOI: 10.1124/pharmrev.123.001026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 05/05/2024] Open
Abstract
Since its discovery over 35 years ago, MDM2 has emerged as an attractive target for the development of cancer therapy. MDM2's activities extend from carcinogenesis to immunity to the response to various cancer therapies. Since the report of the first MDM2 inhibitor more than 30 years ago, various approaches to inhibit MDM2 have been attempted, with hundreds of small-molecule inhibitors evaluated in preclinical studies and numerous molecules tested in clinical trials. Although many MDM2 inhibitors and degraders have been evaluated in clinical trials, there is currently no Food and Drug Administration (FDA)-approved MDM2 inhibitor on the market. Nevertheless, there are several current clinical trials of promising agents that may overcome the past failures, including agents granted FDA orphan drug or fast-track status. We herein summarize the research efforts to discover and develop MDM2 inhibitors, focusing on those that induce MDM2 degradation and exert anticancer activity, regardless of the p53 status of the cancer. We also describe how preclinical and clinical investigations have moved toward combining MDM2 inhibitors with other agents, including immune checkpoint inhibitors. Finally, we discuss the current challenges and future directions to accelerate the clinical application of MDM2 inhibitors. In conclusion, targeting MDM2 remains a promising treatment approach, and targeting MDM2 for protein degradation represents a novel strategy to downregulate MDM2 without the side effects of the existing agents blocking p53-MDM2 binding. Additional preclinical and clinical investigations are needed to finally realize the full potential of MDM2 inhibition in treating cancer and other chronic diseases where MDM2 has been implicated. SIGNIFICANCE STATEMENT: Overexpression/amplification of the MDM2 oncogene has been detected in various human cancers and is associated with disease progression, treatment resistance, and poor patient outcomes. This article reviews the previous, current, and emerging MDM2-targeted therapies and summarizes the preclinical and clinical studies combining MDM2 inhibitors with chemotherapy and immunotherapy regimens. The findings of these contemporary studies may lead to safer and more effective treatments for patients with cancers overexpressing MDM2.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Najah Albadari
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Yi Du
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Josef F Fowler
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Hannah T Sang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Wa Xian
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Frank McKeon
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Wei Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Jia Zhou
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| |
Collapse
|
12
|
Bacher S, Schmitz ML. Understanding and Therapeutic Targeting of the p53 Network. Cancers (Basel) 2023; 15:4461. [PMID: 37760430 PMCID: PMC10527094 DOI: 10.3390/cancers15184461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Signaling networks function as highly intertwined regulatory hubs rather than linear cascades with a single endpoint [...].
Collapse
Affiliation(s)
| | - M. Lienhard Schmitz
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Friedrichstrasse 24, 35392 Giessen, Germany;
| |
Collapse
|
13
|
Bevill SM, Casaní-Galdón S, El Farran CA, Cytrynbaum EG, Macias KA, Oldeman SE, Oliveira KJ, Moore MM, Hegazi E, Adriaens C, Najm FJ, Demetri GD, Cohen S, Mullen JT, Riggi N, Johnstone SE, Bernstein BE. Impact of supraphysiologic MDM2 expression on chromatin networks and therapeutic responses in sarcoma. CELL GENOMICS 2023; 3:100321. [PMID: 37492096 PMCID: PMC10363746 DOI: 10.1016/j.xgen.2023.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/09/2023] [Accepted: 04/14/2023] [Indexed: 07/27/2023]
Abstract
Amplification of MDM2 on supernumerary chromosomes is a common mechanism of P53 inactivation across tumors. Here, we investigated the impact of MDM2 overexpression on chromatin, gene expression, and cellular phenotypes in liposarcoma. Three independent regulatory circuits predominate in aggressive, dedifferentiated tumors. RUNX and AP-1 family transcription factors bind mesenchymal gene enhancers. P53 and MDM2 co-occupy enhancers and promoters associated with P53 signaling. When highly expressed, MDM2 also binds thousands of P53-independent growth and stress response genes, whose promoters engage in multi-way topological interactions. Overexpressed MDM2 concentrates within nuclear foci that co-localize with PML and YY1 and could also contribute to P53-independent phenotypes associated with supraphysiologic MDM2. Importantly, we observe striking cell-to-cell variability in MDM2 copy number and expression in tumors and models. Whereas liposarcoma cells are generally sensitive to MDM2 inhibitors and their combination with pro-apoptotic drugs, MDM2-high cells tolerate them and may underlie the poor clinical efficacy of these agents.
Collapse
Affiliation(s)
- Samantha M. Bevill
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Salvador Casaní-Galdón
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Chadi A. El Farran
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Eli G. Cytrynbaum
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kevin A. Macias
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Sylvie E. Oldeman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Kayla J. Oliveira
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Molly M. Moore
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Esmat Hegazi
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Carmen Adriaens
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Fadi J. Najm
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - George D. Demetri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| | - Sonia Cohen
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - John T. Mullen
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nicolò Riggi
- Department of Cell and Tissue Genomics (CTG), Genentech Inc, South San Francisco, CA 94080, USA
| | - Sarah E. Johnstone
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Bradley E. Bernstein
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
Watson S, Gruel N, Le Loarer F. New developments in the pathology and molecular biology of retroperitoneal sarcomas. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2023; 49:1053-1060. [PMID: 35151525 DOI: 10.1016/j.ejso.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/22/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Retroperitoneal sarcomas (RPS) refer to a heterogeneous group of malignancies of mesenchymal origin developing from retroperitoneal tissues and vessels. The most frequent RPS are well differentiated/dedifferentiated liposarcomas and leiomyosarcomas, but other rare histological subtypes can be observed. Over the last decade, significant advances have been made in the pathological and molecular characterization of sarcomas. These advances have led to major changes in their diagnostic management as well as in the development of new therapeutic strategies based on tumor biology and microenvironment. This review describes the current knowledge and recent findings in the pathology and molecular biology of the most frequent RPS subtypes.
Collapse
Affiliation(s)
- Sarah Watson
- INSERM U830, Équipe Labellisée Ligue Nationale Contre le Cancer, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France; Department of Medical Oncology, Institut Curie Hospital, Paris, France.
| | - Nadege Gruel
- INSERM U830, Équipe Labellisée Ligue Nationale Contre le Cancer, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - François Le Loarer
- Department of Pathology, Institut Bergonie, Bordeaux, France; INSERM U1218, Unité ACTION, Institut Bergonie, Bordeaux, France; University of Bordeaux, Talence, France
| |
Collapse
|
15
|
Shen J, Wang Q, Mao Y, Gao W, Duan S. Targeting the p53 signaling pathway in cancers: Molecular mechanisms and clinical studies. MedComm (Beijing) 2023; 4:e288. [PMID: 37256211 PMCID: PMC10225743 DOI: 10.1002/mco2.288] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Tumor suppressor p53 can transcriptionally activate downstream genes in response to stress, and then regulate the cell cycle, DNA repair, metabolism, angiogenesis, apoptosis, and other biological responses. p53 has seven functional domains and 12 splice isoforms, and different domains and subtypes play different roles. The activation and inactivation of p53 are finely regulated and are associated with phosphorylation/acetylation modification and ubiquitination modification, respectively. Abnormal activation of p53 is closely related to the occurrence and development of cancer. While targeted therapy of the p53 signaling pathway is still in its early stages and only a few drugs or treatments have entered clinical trials, the development of new drugs and ongoing clinical trials are expected to lead to the widespread use of p53 signaling-targeted therapy in cancer treatment in the future. TRIAP1 is a novel p53 downstream inhibitor of apoptosis. TRIAP1 is the homolog of yeast mitochondrial intermembrane protein MDM35, which can play a tumor-promoting role by blocking the mitochondria-dependent apoptosis pathway. This work provides a systematic overview of recent basic research and clinical progress in the p53 signaling pathway and proposes that TRIAP1 is an important therapeutic target downstream of p53 signaling.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Yunan Mao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Wei Gao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| |
Collapse
|
16
|
Marcellino BK, Yang X, Kaniskan HÜ, Brady C, Chen H, Chen K, Qiu X, Clementelli C, Herschbein L, Li Z, Elghaity-beckley S, Arandela J, Kelly B, Hoffman R, Liu J, Xiong Y, Jin J, Shih AH. An MDM2 degrader for treatment of acute leukemias. Leukemia 2023; 37:370-378. [PMID: 36309559 PMCID: PMC9899314 DOI: 10.1038/s41375-022-01735-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 02/06/2023]
Abstract
In acute myeloid leukemia (AML), p53 tumor suppressor activity can be reduced due to enhanced expression of MDM2 which promotes the degradation of p53. In TP53 wild-type malignancies, therapy with small molecule antagonists of MDM2 results in antileukemic activity. Current treatment strategies, however, have been limited by poor tolerability and incomplete clinical activity. We have developed a proteolysis-targeting chimera (PROTAC) MS3227 that targets MDM2 by recruiting the E3 ligase Von Hippel-Lindau, resulting in proteasome-dependent degradation of MDM2. In WT TP53 leukemia cell lines, MS3227 led to activation of p53 targets p21, PUMA, and MDM2 and resulted in cell-cycle arrest, apoptosis, and decreased viability. The catalytic PROTAC MS3227 led to more potent activation when compared to a stoichiometric inhibitor, in part by dampening the negative feedback mechanism in the p53 - MDM2 circuit. The effectiveness of MS3227 was also observed in primary patient specimens with selectivity towards leukemic blasts. The addition of MS3227 enhanced the activity of other anti-leukemic agents including azacytidine, cytarabine, and venetoclax. In particular, MS3227 treatment was shown to downregulate MCL-1, a known mediator of resistance to venetoclax. A PROTAC-based approach may provide a means of improving MDM2 inhibition to gain greater therapeutic potential in AML.
Collapse
Affiliation(s)
- Bridget K. Marcellino
- Department of Medicine, Division of Hematology Oncology and Tisch Cancer Institute (TCI), Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY
| | - Xiaobao Yang
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences, and Neuroscience, Tisch Cancer Institute (TCI) Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, NY
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences, and Neuroscience, Tisch Cancer Institute (TCI) Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, NY
| | - Claudia Brady
- Department of Medicine, Division of Hematology Oncology and Tisch Cancer Institute (TCI), Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY
| | - He Chen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences, and Neuroscience, Tisch Cancer Institute (TCI) Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, NY
| | - Karie Chen
- Department of Medicine, Division of Hematology Oncology and Tisch Cancer Institute (TCI), Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY
| | - Xing Qiu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences, and Neuroscience, Tisch Cancer Institute (TCI) Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, NY
| | - Cara Clementelli
- Department of Medicine, Division of Hematology Oncology and Tisch Cancer Institute (TCI), Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY
| | - Lauren Herschbein
- Department of Medicine, Division of Hematology Oncology and Tisch Cancer Institute (TCI), Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY
| | - Zhijun Li
- University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Sebastian Elghaity-beckley
- Department of Medicine, Division of Hematology Oncology and Tisch Cancer Institute (TCI), Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY
| | - Joann Arandela
- Department of Medicine, Division of Hematology Oncology and Tisch Cancer Institute (TCI), Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY
| | - Brianna Kelly
- Department of Medicine, Division of Hematology Oncology and Tisch Cancer Institute (TCI), Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY
| | - Ronald Hoffman
- Department of Medicine, Division of Hematology Oncology and Tisch Cancer Institute (TCI), Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences, and Neuroscience, Tisch Cancer Institute (TCI) Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, NY
| | - Yue Xiong
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Cullgen Inc., San Diego, CA, USA.
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences, and Neuroscience, Tisch Cancer Institute (TCI) Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, NY, USA.
| | - Alan H. Shih
- Department of Medicine, Division of Hematology Oncology and Tisch Cancer Institute (TCI), Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY,Corresponding authors, AHS (), JJ (), and YX ()
| |
Collapse
|
17
|
circRNA_0067717 promotes paclitaxel resistance in nasopharyngeal carcinoma by acting as a scaffold for TRIM41 and p53. Cell Oncol 2023; 46:677-695. [PMID: 36705889 DOI: 10.1007/s13402-023-00776-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
PURPOSE Circular RNAs (circRNAs) play important roles in tumour progression. This study aimed to explore the mechanism of hsa_circ_0067717 (termed circRNA_0067717) promoting paclitaxel resistance in nasopharyngeal carcinoma (NPC). METHODS We assayed CNE-1 and HNE-2 parental cell lines and the corresponding paclitaxel-resistant NPC cell lines using circRNA microarrays. RNA pull-down assay, RNA immunoprecipitation, and RNA fluorescence in situ hybridization were used to identify the molecular mechanisms. RESULTS Here, we confirm that circRNA_0067717 is significantly upregulated in NPC paclitaxel-resistant cells and is associated with paclitaxel resistance in NPC. Mechanistically, circRNA_0067717 functions as a scaffold for TRIM41 protein (a ubiquitin E3 ligase) and p53 protein. In nasopharyngeal carcinoma paclitaxel-resistant cells, the highly expressed circRNA_0067717 can bind to more TRIM41 and p53 protein, promoting TRIM41-induced p53 ubiquitination and degradation, resulting in a decrease in p53 protein level. Moreover, the 1-176 nt area of circRNA_0067717 and the 301-425 nt region of circRNA_0067717 are the binding sites for p53 and TRIM41, respectively. The resistance of NPC cells to paclitaxel can be reduced by blocking these binding regions of circRNA_0067717. CONCLUSION We demonstrate that circRNA_0067717 acts as a scaffold for TRIM41 and p53, enhancing paclitaxel chemoresistance in NPC by promoting TRIM41-induced p53 degradation via ubiquitination.
Collapse
|
18
|
Bharti SK, Shannon BA, Sharma RK, Levin AS, Morris CD, Bhujwalla ZM, Fayad LM. Characterization of lipomatous tumors with high-resolution 1H MRS at 17.6T: Do benign lipomas, atypical lipomatous tumors and liposarcomas have a distinct metabolic signature? Front Oncol 2022; 12:920560. [PMID: 36158671 PMCID: PMC9500232 DOI: 10.3389/fonc.2022.920560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022] Open
Abstract
Background Distinguishing between some benign lipomas (BLs), atypical lipomatous tumors (ALTs), and dedifferentiated liposarcomas (DDLs) can be challenging due to overlapping magnetic resonance imaging characteristics, and poorly understood molecular mechanisms underlying the malignant transformation of liposarcomas. Purpose To identify metabolic biomarkers of the lipomatous tumor spectrum by examining human tissue specimens using high-resolution 1H magnetic resonance spectroscopy (MRS). Materials and methods In this prospective study, human tissue specimens were obtained from participants who underwent surgical resection for radiologically-indeterminate lipomatous tumors between November 2016 and May 2019. Tissue specimens were obtained from normal subcutaneous fat (n=9), BLs (n=10), ALTs (n=7) and DDLs (n=8). Extracts from specimens were examined with high-resolution MRS at 17.6T. Computational modeling of pattern recognition-based cluster analysis was utilized to identify significant differences in metabolic signatures between the lipomatous tumor types. Results Significant differences between BLs and ALTs were observed for multiple metabolites, including leucine, valine, branched chain amino acids, alanine, acetate, glutamine, and formate. DDLs were distinguished from ALTs by increased glucose and lactate, and increased phosphatidylcholine. Multivariate principal component analysis showed clear clustering identifying distinct metabolic signatures of the tissue types. Conclusion Metabolic signatures identified in 1H MR spectra of lipomatous tumors provide new insights into malignant progression and metabolic targeting. The metabolic patterns identified provide the foundation of developing noninvasive MRS or PET imaging biomarkers to distinguish between BLs, ALTs, and DDLs.
Collapse
Affiliation(s)
- Santosh Kumar Bharti
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Brett A. Shannon
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Raj Kumar Sharma
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Adam S. Levin
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Carol D. Morris
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zaver M. Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Laura M. Fayad, ; Zaver M. Bhujwalla,
| | - Laura M. Fayad
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Musculoskeletal Radiology, The Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Laura M. Fayad, ; Zaver M. Bhujwalla,
| |
Collapse
|
19
|
Lieto E, Cardella F, Erario S, Del Sorbo G, Reginelli A, Galizia G, Urraro F, Panarese I, Auricchio A. Giant retroperitoneal liposarcoma treated with radical conservative surgery: A case report and review of literature. World J Clin Cases 2022; 10:6636-6646. [PMID: 35979304 PMCID: PMC9294896 DOI: 10.12998/wjcc.v10.i19.6636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/19/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Retroperitoneal liposarcoma (RLPS) is a rare malignant tumor of the connective tissue and usually grows to a large size, undetected. Diagnosis is currently based on collective findings from clinical examinations and computed tomography (CT) and magnetic resonance imaging, the latter of which show a fat density mass and possible surrounding organ involvement. Surgical resection is the main therapeutic strategy. The efficacy and safety of further therapeutic choices, such as chemotherapy and radiotherapy, are still controversial. CASE SUMMARY A 61-year-old man presented with complaint of a large left inguinal mass that had appeared suddenly, after a slight exertion. Ultrasonography revealed an omental inguinal hernia. During further clinical examination, an enormous palpable abdominal mass, continuing from the left inguinal location, was observed. CT revealed a giant RLPS, with remarkable mass effect and wide visceral dislocation. After multidisciplinary consultation, surgical intervention was performed. Subsequent neoadjuvant chemotherapy and radiotherapy were precluded by the mass' large size and retroperitoneal localization, features typically associated with non-response to these types of treatment. Instead, the patient underwent conservative treatment via radical surgical excision. After 1 year, his clinical condition remained good, with no radiological signs of recurrence. CONCLUSION Conservative treatment via surgery resulted in a successful outcome for a large RLPS.
Collapse
Affiliation(s)
- Eva Lieto
- Department of Traslational Medical Sciences, University of Campania "L. Vanvitelli", Naples 80128, Campania, Italy
| | - Francesca Cardella
- Department of Traslational Medical Sciences, University of Campania "L. Vanvitelli", Naples 80128, Campania, Italy
| | - Silvia Erario
- Department of Traslational Medical Sciences, University of Campania "L. Vanvitelli", Naples 80128, Campania, Italy
| | - Giovanni Del Sorbo
- Department of Traslational Medical Sciences, University of Campania "L. Vanvitelli", Naples 80128, Campania, Italy
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples 80138, Campania, Italy
| | - Gennaro Galizia
- Department of Traslational Medical Sciences, University of Campania "L. Vanvitelli", Naples 80128, Campania, Italy
| | - Fabrizio Urraro
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples 80138, Campania, Italy
| | - Iacopo Panarese
- Depatment of Pathology Unit-Menthal Health, University of Campania "L. Vanvitelli", Naples 80132, Campania, Italy
| | - Annamaria Auricchio
- Department of Traslational Medical Sciences, University of Campania "L. Vanvitelli", Naples 80128, Campania, Italy
| |
Collapse
|
20
|
Li F, Boon ACM, Michelson AP, Foraker RE, Zhan M, Payne PRO. Estrogen hormone is an essential sex factor inhibiting inflammation and immune response in COVID-19. Sci Rep 2022; 12:9462. [PMID: 35676404 PMCID: PMC9175532 DOI: 10.1038/s41598-022-13585-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 05/25/2022] [Indexed: 01/18/2023] Open
Abstract
Although vaccines have been evaluated and approved for SARS-CoV-2 infection prevention, there remains a lack of effective treatments to reduce the mortality of COVID-19 patients already infected with SARS-CoV-2. The global data on COVID-19 showed that men have a higher mortality rate than women. We further observed that the proportion of mortality of females increases starting from around the age of 55 significantly. Thus, sex is an essential factor associated with COVID-19 mortality, and sex related genetic factors could be interesting mechanisms and targets for COVID-19 treatment. However, the associated sex factors and signaling pathways remain unclear. Here, we propose to uncover the potential sex associated factors using systematic and integrative network analysis. The unique results indicated that estrogens, e.g., estrone and estriol, (1) interacting with ESR1/2 receptors, (2) can inhibit SARS-CoV-2 caused inflammation and immune response signaling in host cells; and (3) estrogens are associated with the distinct fatality rates between male and female COVID-19 patients. Specifically, a high level of estradiol protects young female COVID-19 patients, and estrogens drop to an extremely low level in females after about 55 years of age causing the increased fatality rate of women. In conclusion, estrogen, interacting with ESR1/2 receptors, is an essential sex factor that protects COVID-19 patients from death by inhibiting inflammation and immune response caused by SARS-CoV-2 infection. Moreover, medications boosting the down-stream signaling of ESR1/ESR2, or inhibiting the inflammation and immune-associated targets on the signaling network can be potentially effective or synergistic combined with other existing drugs for COVID-19 treatment.
Collapse
Affiliation(s)
- Fuhai Li
- Institute for Informatics (I2), Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| | - Adrianus C M Boon
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Andrew P Michelson
- Institute for Informatics (I2), Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Pulmonary and Critical Care Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Randi E Foraker
- Institute for Informatics (I2), Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Ming Zhan
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD, USA
| | - Philip R O Payne
- Institute for Informatics (I2), Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
21
|
Vibert J, Watson S. The Molecular Biology of Soft Tissue Sarcomas: Current Knowledge and Future Perspectives. Cancers (Basel) 2022; 14:2548. [PMID: 35626152 PMCID: PMC9139698 DOI: 10.3390/cancers14102548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/15/2022] [Accepted: 05/21/2022] [Indexed: 02/04/2023] Open
Abstract
Soft tissue sarcomas are malignant tumors of mesenchymal origin, encompassing a large spectrum of entities that were historically classified according to their histological characteristics. Over the last decades, molecular biology has allowed a better characterization of these tumors, leading to the incorporation of multiple molecular features in the latest classification of sarcomas as well as to molecularly-guided therapeutic strategies. This review discusses the main uses of molecular biology in current practice for the diagnosis and treatment of soft tissue sarcomas, in addition to perspectives for this rapidly evolving field of research.
Collapse
Affiliation(s)
- Julien Vibert
- INSERM U830, Équipe Labellisée Ligue Nationale Contre le Cancer, Diversity and Plasticity of Childhood Tumors Lab, Institut Curie Research Center, PSL Research University, 75005 Paris, France;
| | - Sarah Watson
- INSERM U830, Équipe Labellisée Ligue Nationale Contre le Cancer, Diversity and Plasticity of Childhood Tumors Lab, Institut Curie Research Center, PSL Research University, 75005 Paris, France;
- Department of Medical Oncology, Institut Curie Hospital, 75005 Paris, France
| |
Collapse
|
22
|
The diagnostic utility of DNA copy number analysis of core needle biopsies from soft tissue and bone tumors. J Transl Med 2022; 102:838-845. [PMID: 35318454 PMCID: PMC9309094 DOI: 10.1038/s41374-022-00770-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 12/03/2022] Open
Abstract
Morphologic and immunohistochemical analysis of preoperative core needle biopsies (CNB) is important in the management of patients with soft tissue and bone tumors (STBTs). Most SBTB subtypes have more or less extensive DNA copy number aberrations (CNA), potentially providing useful diagnostic information. To evaluate the technical feasibility of single nucleotide polymorphism (SNP) array analysis and the diagnostic usefulness of the copy number profiles, we studied CNBs from 171 patients with suspected STBTs. SNP array analysis could be performed on 168 (98%) of the samples. The CNA profile was compatible with the CNB diagnosis in 87% of the cases. Discrepant cases were dominated by false-negative results due to nonrepresentative material or contamination with normal cells. 70 genomic profiles were indicative of specific histopathologic tumor entities and in agreement with the corresponding CNB diagnoses in 83%. In 96 of the cases with aberrant CNA profiles, the SNP profiles were of sufficient quality for segmentation, allowing clustering analysis on the basis of the Jaccard similarity index. The analysis of these segment files showed three major CNA clusters, based on the complexity levels and the predominance of gains versus losses. For 43 of these CNB samples, we had SNP array data also from their corresponding surgical samples. In 33 of these pairs, the two corresponding samples clustered next to each other, with Jaccard scores ranging from 0.61 to 0.99 (median 0.96). Also, for those tumor pairs that did not cluster together, the Jaccard scores were relatively high (median 0.9). 10 cases showed discrepant results, mainly due to varying degrees of normal cell contamination or technical issues. Thus, the copy number profile seen in a CNB is typically highly representative of the major cell population in the tumor.
Collapse
|
23
|
Li F, Boon AC, Michelson AP, Foraker RE, Zhan M, Payne PR. Estrogen Hormone Is an Essential Sex Factor Inhibiting Inflammation and Immune Response in COVID-19. RESEARCH SQUARE 2021:rs.3.rs-936900. [PMID: 34611658 PMCID: PMC8491851 DOI: 10.21203/rs.3.rs-936900/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although vaccines have been evaluated and approved for SARS-CoV-2 infection prevention, there remains a lack of effective treatments to reduce the mortality of COVID-19 patients already infected with SARS-CoV-2. The global data of COVID-19 showed that men have a higher mortality rate than women. We further observed that the proportion of mortality of female increases starting from around the age of 55 significantly. Thus, sex is an essential factor associated with COVID-19 mortality, and sex related genetic factors could be interesting mechanisms and targets for COVID-19 treatment. However, the associated sex factors and signaling pathways remain unclear. Here, we propose to uncover the potential sex associated factors using systematic and integrative network analysis. The unique results indicated that estrogen hormones (ER), e.g., estrone and estriol, 1) interacting with ESR1/2 receptors, 2) can inhibit SARS-CoV-2 caused inflammation and immune response signaling in host cells; and 3) estrogen hormone is associated with the distinct fatality rates between male and female COVID-19 patients. Specifically, a high level of estradiol protecting young female COVID-19 patients, and estrogen loss to an extremely low level in females after about 55 years of age causing the increased fatality rate of women. In conclusion, estrogen hormone, interacting with ESR1/2 receptors, is an essential sex factor that protects COVID-19 patients by inhibiting inflammation and immune response caused by SARS-CoV-2 infection. Medications perturb the down-stream of ESR1/ESR2 to inhibit the inflammation and immune response can be effective or synergistic combined with other existing drugs for COVID-19 treatment.
Collapse
Affiliation(s)
- Fuhai Li
- Institute for Informatics (I2), Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Adrianus C.M. Boon
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Andrew P. Michelson
- Institute for Informatics (I2), Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Pulmonary and Critical Care Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Randi E. Foraker
- Institute for Informatics (I2), Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Ming Zhan
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD, USA
| | - Philip R.O. Payne
- Institute for Informatics (I2), Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
24
|
Schroeder BA, LaFranzo NA, LaFleur BJ, Gittelman RM, Vignali M, Zhang S, Flanagan KC, Rytlewski J, Riolobos L, Schulte BC, Kim TS, Chen E, Smythe KS, Wagner MJ, Mantilla JG, Campbell JS, Pierce RH, Jones RL, Cranmer LD, Pollack SM. CD4+ T cell and M2 macrophage infiltration predict dedifferentiated liposarcoma patient outcomes. J Immunother Cancer 2021; 9:jitc-2021-002812. [PMID: 34465597 PMCID: PMC8413967 DOI: 10.1136/jitc-2021-002812] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 01/13/2023] Open
Abstract
Background Dedifferentiated liposarcoma (DDLPS) is one of the most common soft tissue sarcoma subtypes and is devastating in the advanced/metastatic stage. Despite the observation of clinical responses to PD-1 inhibitors, little is known about the immune microenvironment in relation to patient prognosis. Methods We performed a retrospective study of 61 patients with DDLPS. We completed deep sequencing of the T-cell receptor (TCR) β-chain and RNA sequencing for predictive modeling, evaluating both immune markers and tumor escape genes. Hierarchical clustering and recursive partitioning were employed to elucidate relationships of cellular infiltrates within the tumor microenvironment, while an immune score for single markers was created as a predictive tool. Results Although many DDLPS samples had low TCR clonality, high TCR clonality combined with low T-cell fraction predicted lower 3-year overall survival (p=0.05). Higher levels of CD14+ monocytes (p=0.02) inversely correlated with 3-year recurrence-free survival (RFS), while CD4+ T-cell infiltration (p=0.05) was associated with a higher RFS. Genes associated with longer RFS included PD-1 (p=0.003), ICOS (p=0.006), BTLA (p=0.033), and CTLA4 (p=0.02). In a composite immune score, CD4+ T cells had the strongest positive predictive value, while CD14+ monocytes and M2 macrophages had the strongest negative predictive values. Conclusions Immune cell infiltration predicts clinical outcome in DDLPS, with CD4+ cells associated with better outcomes; CD14+ cells and M2 macrophages are associated with worse outcomes. Future checkpoint inhibitor studies in DDLPS should incorporate immunosequencing and gene expression profiling techniques that can generate immune landscape profiles.
Collapse
Affiliation(s)
- Brett A Schroeder
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | | | | | - Shihong Zhang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | - Laura Riolobos
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | - Brian C Schulte
- Division of Oncology, Northwestern University Department of Medicine, Chicago, Illinois, USA
| | - Teresa S Kim
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Eleanor Chen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Kimberly S Smythe
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michael J Wagner
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Division of Oncology, University of Washington, Seattle, Washington, USA
| | - Jose G Mantilla
- Pathology, University of Washington Medical Center, Seattle, Washington, USA
| | | | - Robert H Pierce
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Robin L Jones
- Sarcoma, Royal Marsden Hospital NHS Trust, London, UK
| | - Lee D Cranmer
- Seattle Cancer Care Alliance, Seattle, Washington, USA
| | - Seth M Pollack
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA .,Division of Oncology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
25
|
Lu J, Wood D, Ingley E, Koks S, Wong D. Update on genomic and molecular landscapes of well-differentiated liposarcoma and dedifferentiated liposarcoma. Mol Biol Rep 2021; 48:3637-3647. [PMID: 33893924 DOI: 10.1007/s11033-021-06362-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/16/2021] [Indexed: 01/13/2023]
Abstract
Well-differentiated liposarcoma (WDLPS) is the most frequent subtype of liposarcoma and may transform into dedifferentiated liposarcoma (DDLPS) which is a more aggressive subtype. Retroperitoneal lesions of WDLPS/DDLPS tend to recur repeatedly due to incomplete resections, and adjuvant chemotherapy and radiotherapy have little effect on patient survival. Consequently, identifying therapeutic targets and developing targeted drugs is critical for improving the outcome of WDLPS/DDLPS patients. In this review, we summarised the mutational landscape of WDLPS/DDLPS from recent studies focusing on potential oncogenic drivers and the development of molecular targeted drugs for DDLPS. Due to the limited number of studies on the molecular networks driving WDLPS to DDLPS development, we looked at other dedifferentiation-related tumours to identify potential parallel mechanisms that could be involved in the dedifferentiation process generating DDLPS.
Collapse
Affiliation(s)
- Jun Lu
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, 6009, Australia. .,Cell Signalling Group, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia.
| | - David Wood
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Evan Ingley
- Cell Signalling Group, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia.,Discipline of Medical, Molecular and Forensic Sciences, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6009, Australia
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, WA, 6009, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6009, Australia
| | - Daniel Wong
- Anatomical Pathology, PathWest, QEII Medical Centre, Perth, WA, 6009, Australia
| |
Collapse
|
26
|
Sciot R. MDM2 Amplified Sarcomas: A Literature Review. Diagnostics (Basel) 2021; 11:diagnostics11030496. [PMID: 33799733 PMCID: PMC8001728 DOI: 10.3390/diagnostics11030496] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/10/2023] Open
Abstract
Murine Double Minute Clone 2, located at 12q15, is an oncogene that codes for an oncoprotein of which the association with p53 was discovered 30 years ago. The most important function of MDM2 is to control p53 activity; it is in fact the best documented negative regulator of p53. Mutations of the tumor suppressor gene p53 represent the most frequent genetic change in human cancers. By overexpressing MDM2, cancer cells have another means to block p53. The sarcomas in which MDM2 amplification is a hallmark are well-differentiated liposarcoma/atypical lipomatous tumor, dedifferentiated liposarcoma, intimal sarcoma, and low-grade osteosarcoma. The purpose of this review is to summarize the typical clinical, histopathological, immunohistochemical, and genetic features of these tumors.
Collapse
Affiliation(s)
- Raf Sciot
- Department of Pathology, University Hospital, University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
27
|
Linking Serine/Glycine Metabolism to Radiotherapy Resistance. Cancers (Basel) 2021; 13:cancers13061191. [PMID: 33801846 PMCID: PMC8002185 DOI: 10.3390/cancers13061191] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Hyperactivation of the de novo serine/glycine biosynthesis across different cancer types and its critical contribution in tumor initiation, progression, and therapy resistance indicate the relevance of serine/glycine metabolism-targeted therapies as therapeutic intervention in cancer. In this review, we specifically focus on the contribution of the de novo serine/glycine biosynthesis pathway to radioresistance. We provide a future perspective on how de novo serine/glycine biosynthesis inhibition and serine-free diets may improve the outcome of radiotherapy. Future research in this field is needed to better understand serine/glycine metabolic reprogramming of cancer cells in response to radiation and the influence of this pathway in the tumor microenvironment, which may provide the rationale for the optimal combination therapies. Abstract The activation of de novo serine/glycine biosynthesis in a subset of tumors has been described as a major contributor to tumor pathogenesis, poor outcome, and treatment resistance. Amplifications and mutations of de novo serine/glycine biosynthesis enzymes can trigger pathway activation; however, a large group of cancers displays serine/glycine pathway overexpression induced by oncogenic drivers and unknown regulatory mechanisms. A better understanding of the regulatory network of de novo serine/glycine biosynthesis activation in cancer might be essential to unveil opportunities to target tumor heterogeneity and therapy resistance. In the current review, we describe how the activation of de novo serine/glycine biosynthesis in cancer is linked to treatment resistance and its implications in the clinic. To our knowledge, only a few studies have identified this pathway as metabolic reprogramming of cancer cells in response to radiation therapy. We propose an important contribution of de novo serine/glycine biosynthesis pathway activation to radioresistance by being involved in cancer cell viability and proliferation, maintenance of cancer stem cells (CSCs), and redox homeostasis under hypoxia and nutrient-deprived conditions. Current approaches for inhibition of the de novo serine/glycine biosynthesis pathway provide new opportunities for therapeutic intervention, which in combination with radiotherapy might be a promising strategy for tumor control and ultimately eradication. Further research is needed to gain molecular and mechanistic insight into the activation of this pathway in response to radiation therapy and to design sophisticated stratification methods to select patients that might benefit from serine/glycine metabolism-targeted therapies in combination with radiotherapy.
Collapse
|
28
|
Lahalle A, Lacroix M, De Blasio C, Cissé MY, Linares LK, Le Cam L. The p53 Pathway and Metabolism: The Tree That Hides the Forest. Cancers (Basel) 2021; 13:cancers13010133. [PMID: 33406607 PMCID: PMC7796211 DOI: 10.3390/cancers13010133] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The p53 pathway is a major tumor suppressor pathway that prevents the propagation of abnormal cells by regulating DNA repair, cell cycle progression, cell death, or senescence. The multiple cellular processes regulated by p53 were more recently extended to the control of metabolism, and many studies support the notion that perturbations of p53-associated metabolic activities are linked to cancer development. Converging lines of evidence support the notion that, in addition to p53, other key components of this molecular cascade are also important regulators of metabolism. Here, we illustrate the underestimated complexity of the metabolic network controlled by the p53 pathway and show how its perturbation contributes to human diseases including cancer, aging, and metabolic diseases. Abstract The p53 pathway is functionally inactivated in most, if not all, human cancers. The p53 protein is a central effector of numerous stress-related molecular cascades. p53 controls a safeguard mechanism that prevents accumulation of abnormal cells and their transformation by regulating DNA repair, cell cycle progression, cell death, or senescence. The multiple cellular processes regulated by p53 were more recently extended to the control of metabolism and many studies support the notion that perturbations of p53-associated metabolic activities are linked to cancer development, as well as to other pathophysiological conditions including aging, type II diabetes, and liver disease. Although much less documented than p53 metabolic activities, converging lines of evidence indicate that other key components of this tumor suppressor pathway are also involved in cellular metabolism through p53-dependent as well as p53-independent mechanisms. Thus, at least from a metabolic standpoint, the p53 pathway must be considered as a non-linear pathway, but the complex metabolic network controlled by these p53 regulators and the mechanisms by which their activities are coordinated with p53 metabolic functions remain poorly understood. In this review, we highlight some of the metabolic pathways controlled by several central components of the p53 pathway and their role in tissue homeostasis, metabolic diseases, and cancer.
Collapse
Affiliation(s)
- Airelle Lahalle
- Université de Montpellier, F-34090 Montpellier, France; (A.L.); (M.L.); (C.D.B.); (L.K.L.)
- IRCM, Institut de Recherche en Cancérologie de Montpellier, F-34298 Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
- INSERM, Institut National de la Santé et de la Recherche Médicale, U1194, F-24298 Montpellier, France
- Equipe Labellisée Ligue Contre le Cancer, F-75013 Paris, France
| | - Matthieu Lacroix
- Université de Montpellier, F-34090 Montpellier, France; (A.L.); (M.L.); (C.D.B.); (L.K.L.)
- IRCM, Institut de Recherche en Cancérologie de Montpellier, F-34298 Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
- INSERM, Institut National de la Santé et de la Recherche Médicale, U1194, F-24298 Montpellier, France
- Equipe Labellisée Ligue Contre le Cancer, F-75013 Paris, France
| | - Carlo De Blasio
- Université de Montpellier, F-34090 Montpellier, France; (A.L.); (M.L.); (C.D.B.); (L.K.L.)
- IRCM, Institut de Recherche en Cancérologie de Montpellier, F-34298 Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
- INSERM, Institut National de la Santé et de la Recherche Médicale, U1194, F-24298 Montpellier, France
- Equipe Labellisée Ligue Contre le Cancer, F-75013 Paris, France
| | - Madi Y. Cissé
- Department of Molecular Metabolism, Harvard, T.H Chan School of Public Health, Boston, MA 02115, USA;
| | - Laetitia K. Linares
- Université de Montpellier, F-34090 Montpellier, France; (A.L.); (M.L.); (C.D.B.); (L.K.L.)
- IRCM, Institut de Recherche en Cancérologie de Montpellier, F-34298 Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
- INSERM, Institut National de la Santé et de la Recherche Médicale, U1194, F-24298 Montpellier, France
| | - Laurent Le Cam
- Université de Montpellier, F-34090 Montpellier, France; (A.L.); (M.L.); (C.D.B.); (L.K.L.)
- IRCM, Institut de Recherche en Cancérologie de Montpellier, F-34298 Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
- INSERM, Institut National de la Santé et de la Recherche Médicale, U1194, F-24298 Montpellier, France
- Equipe Labellisée Ligue Contre le Cancer, F-75013 Paris, France
- Correspondence:
| |
Collapse
|
29
|
Jin G, Wang C, Jia D, Qian W, Yin C, Wang D, Yang Q, Li T, Zheng A. Next Generation Sequencing Reveals Pathogenic and Actionable Genetic Alterations of Soft Tissue Sarcoma in Chinese Patients: A Single Center Experience. Technol Cancer Res Treat 2021; 20:15330338211068964. [PMID: 34939467 PMCID: PMC8721396 DOI: 10.1177/15330338211068964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 11/11/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Next generation sequencing (NGS) has systematically investigated the genomic landscape of soft tissue sarcoma (STS) in Western patients, but few reports have described the utility of NGS in identifying pathogenic and targetable mutations in Asian patients. Methods: We review our single center experience of identifying the genomic profile and feasible genetic mutations in 65 Chinese patients with STS by NGS. Results: On average, 3.35 mutations were identified per patient (range, 0-28), and at least one mutation could be detected in 95.4% (62/65) of patients. TP53, MDM2, CDK4, KDR, and NF1 were the most frequent mutation genes in Chinese STS patients. Actionable mutations were discovered in 36.9% (24/65) of patients, and clinical benefit was achieved in 4 patients treated with corresponding molecular targeted therapies. Conclusions: Our study describes the mutation profile of Chinese STS patients by a single center experience. Some patients have achieved improved clinical outcomes by adopting treatment based on the results of genetic testing. NGS may affect clinical decision-making as a routine clinical test for patients with STS.
Collapse
Affiliation(s)
- Gu Jin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | | | - Dongdong Jia
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Wenkang Qian
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | | | | | | | - Tao Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Aiwen Zheng
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
30
|
Wang W, Zou W. Amino Acids and Their Transporters in T Cell Immunity and Cancer Therapy. Mol Cell 2020; 80:384-395. [PMID: 32997964 PMCID: PMC7655528 DOI: 10.1016/j.molcel.2020.09.006] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/01/2020] [Accepted: 09/07/2020] [Indexed: 12/25/2022]
Abstract
Metabolism reprogramming is critical for both cancer progression and effective immune responses in the tumor microenvironment. Amino acid metabolism in different cells and their cross-talk shape tumor immunity and therapy efficacy in patients with cancer. In this review, we focus on multiple amino acids and their transporters, solute carrier (SLC) members. We discuss their involvement in regulation of immune responses in the tumor microenvironment and assess their associations with cancer immunotherapy, chemotherapy, and radiation therapy, and we review their potential as targets for cancer therapy. We stress the necessity to understand individual amino acids and their transporters in different cell subsets, the molecular intersection between amino acid metabolism, and effective T cell immunity and its relevance in cancer therapies.
Collapse
Affiliation(s)
- Weimin Wang
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Graduate Program in Immunology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Graduate Program in Cancer Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.
| |
Collapse
|
31
|
Patt A, Demoret B, Stets C, Bill KL, Smith P, Vijay A, Patterson A, Hays J, Hoang M, Chen JL, Mathé EA. MDM2-Dependent Rewiring of Metabolomic and Lipidomic Profiles in Dedifferentiated Liposarcoma Models. Cancers (Basel) 2020; 12:cancers12082157. [PMID: 32759684 PMCID: PMC7463633 DOI: 10.3390/cancers12082157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 01/01/2023] Open
Abstract
Dedifferentiated liposarcoma (DDLPS) is an aggressive mesenchymal cancer marked by amplification of MDM2, an inhibitor of the tumor suppressor TP53. DDLPS patients with higher MDM2 amplification have lower chemotherapy sensitivity and worse outcome than patients with lower MDM2 amplification. We hypothesized that MDM2 amplification levels may be associated with changes in DDLPS metabolism. Six patient-derived DDLPS cell line models were subject to comprehensive metabolomic (Metabolon) and lipidomic (SCIEX 5600 TripleTOF-MS) profiling to assess associations with MDM2 amplification and their responses to metabolic perturbations. Comparing metabolomic profiles between MDM2 higher and lower amplification cells yielded a total of 17 differentially abundant metabolites across both panels (FDR < 0.05, log2 fold change < 0.75), including ceramides, glycosylated ceramides, and sphingomyelins. Disruption of lipid metabolism through statin administration resulted in a chemo-sensitive phenotype in MDM2 lower cell lines only, suggesting that lipid metabolism may be a large contributor to the more aggressive nature of MDM2 higher DDLPS tumors. This study is the first to provide comprehensive metabolomic and lipidomic characterization of DDLPS cell lines and provides evidence for MDM2-dependent differential molecular mechanisms that are critical factors in chemoresistance and could thus affect patient outcome.
Collapse
Affiliation(s)
- Andrew Patt
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA;
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Dr., Rockville, MD 20892, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Bryce Demoret
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (B.D.); (C.S.); (K.-L.B.); (J.H.); (M.H.)
| | - Colin Stets
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (B.D.); (C.S.); (K.-L.B.); (J.H.); (M.H.)
| | - Kate-Lynn Bill
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (B.D.); (C.S.); (K.-L.B.); (J.H.); (M.H.)
| | - Philip Smith
- The Huck Institutes of Life Sciences, Penn State University, State College, PA 16802, USA; (P.S.); (A.V.); (A.P.)
| | - Anitha Vijay
- The Huck Institutes of Life Sciences, Penn State University, State College, PA 16802, USA; (P.S.); (A.V.); (A.P.)
| | - Andrew Patterson
- The Huck Institutes of Life Sciences, Penn State University, State College, PA 16802, USA; (P.S.); (A.V.); (A.P.)
| | - John Hays
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (B.D.); (C.S.); (K.-L.B.); (J.H.); (M.H.)
| | - Mindy Hoang
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (B.D.); (C.S.); (K.-L.B.); (J.H.); (M.H.)
| | - James L. Chen
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (B.D.); (C.S.); (K.-L.B.); (J.H.); (M.H.)
- Correspondence: (J.L.C.); (E.A.M.)
| | - Ewy A. Mathé
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA;
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Dr., Rockville, MD 20892, USA
- Correspondence: (J.L.C.); (E.A.M.)
| |
Collapse
|