1
|
Houlahan KE, Mangiante L, Sotomayor-Vivas C, Adimoelja A, Park S, Khan A, Pribus SJ, Ma Z, Caswell-Jin JL, Curtis C. Complex rearrangements fuel ER + and HER2 + breast tumours. Nature 2025; 638:510-518. [PMID: 39779850 PMCID: PMC11821522 DOI: 10.1038/s41586-024-08377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025]
Abstract
Breast cancer is a highly heterogeneous disease whose prognosis and treatment as defined by the expression of three receptors-oestrogen receptor (ER), progesterone receptor and human epidermal growth factor receptor 2 (HER2; encoded by ERBB2)-is insufficient to capture the full spectrum of clinical outcomes and therapeutic vulnerabilities. Previously, we demonstrated that transcriptional and genomic profiles define eleven integrative subtypes with distinct clinical outcomes, including four ER+ subtypes with increased risk of relapse decades after diagnosis1,2. Here, to determine whether these subtypes reflect distinct evolutionary histories, interactions with the immune system and pathway dependencies, we established a meta-cohort of 1,828 breast tumours spanning pre-invasive, primary invasive and metastatic disease with whole-genome and transcriptome sequencing. We demonstrate that breast tumours fall along a continuum constrained by three genomic archetypes. The ER+ high-risk integrative subgroup is characterized by complex focal amplifications, similar to HER2+ tumours, including cyclic extrachromosomal DNA amplifications induced by ER through R-loop formation and APOBEC3B-editing, which arise in pre-invasive lesions. By contrast, triple-negative tumours exhibit genome-wide instability and tandem duplications and are enriched for homologous repair deficiency-like signatures, whereas ER+ typical-risk tumours are largely genomically stable. These genomic archetypes, which replicate in an independent cohort of 2,659 primary tumours, are established early during tumorigenesis, sculpt the tumour microenvironment and are conserved in metastatic disease. These complex structural alterations contribute to replication stress and immune evasion, and persist throughout tumour evolution, unveiling potential vulnerabilities.
Collapse
Affiliation(s)
- Kathleen E Houlahan
- Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA, USA
| | - Lise Mangiante
- Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Alvina Adimoelja
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Seongyeol Park
- Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA, USA
| | - Aziz Khan
- Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA, USA
| | - Sophia J Pribus
- Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA, USA
| | - Zhicheng Ma
- Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jennifer L Caswell-Jin
- Department of Medicine (Oncology), School of Medicine, Stanford University, Stanford, CA, USA
| | - Christina Curtis
- Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Medicine (Oncology), School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
2
|
Rodriguez SMB, Tataranu LG, Kamel A, Turliuc S, Rizea RE, Dricu A. Glioblastoma and Immune Checkpoint Inhibitors: A Glance at Available Treatment Options and Future Directions. Int J Mol Sci 2024; 25:10765. [PMID: 39409094 PMCID: PMC11477435 DOI: 10.3390/ijms251910765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Glioblastoma is known to be one of the most aggressive and fatal human cancers, with a poor prognosis and resistance to standard treatments. In the last few years, many solid tumor treatments have been revolutionized with the help of immunotherapy. However, this type of treatment has failed to improve the results in glioblastoma patients. Effective immunotherapeutic strategies may be developed after understanding how glioblastoma achieves tumor-mediated immune suppression in both local and systemic landscapes. Biomarkers may help identify patients most likely to benefit from this type of treatment. In this review, we discuss the use of immunotherapy in glioblastoma, with an emphasis on immune checkpoint inhibitors and the factors that influence clinical response. A Pubmed data search was performed for all existing information regarding immune checkpoint inhibitors used for the treatment of glioblastoma. All data evaluating the ongoing clinical trials involving the use of ICIs either as monotherapy or in combination with other drugs was compiled and analyzed.
Collapse
Affiliation(s)
- Silvia Mara Baez Rodriguez
- Neurosurgical Department, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania; (S.M.B.R.); (A.K.); (R.E.R.)
| | - Ligia Gabriela Tataranu
- Neurosurgical Department, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania; (S.M.B.R.); (A.K.); (R.E.R.)
- Neurosurgical Department, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania
| | - Amira Kamel
- Neurosurgical Department, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania; (S.M.B.R.); (A.K.); (R.E.R.)
| | - Serban Turliuc
- Medical Department, University of Medicine and Pharmacy “G. T. Popa”, 700115 Iasi, Romania;
| | - Radu Eugen Rizea
- Neurosurgical Department, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania; (S.M.B.R.); (A.K.); (R.E.R.)
- Neurosurgical Department, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania
| | - Anica Dricu
- Biochemistry Department, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania;
| |
Collapse
|
3
|
Chen M, van den Tempel N, Bhattacharya A, Yu S, Rutgers B, Fehrmann RS, de Haas S, van der Vegt B, van Vugt MA. Functional ex vivo DNA fibre assay to measure replication dynamics in breast cancer tissue. J Pathol 2024; 264:90-100. [PMID: 39022850 DOI: 10.1002/path.6328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024]
Abstract
Replication stress (RS) is a key trait of cancer cells, and a potential actionable target in cancer treatment. Accurate methods to measure RS in tumour samples are currently lacking. DNA fibre analysis has been used as a common technique to measure RS in cell lines. Here, we investigated DNA fibre analysis on fresh breast cancer specimens and correlated DNA replication kinetics to known RS markers and genomic alterations. Fresh, treatment-naïve primary breast cancer samples (n = 74) were subjected to ex vivo DNA fibre analysis to measure DNA replication kinetics. Tumour cell proliferation was confirmed by EdU incorporation and cytokeratin AE1/AE3 (CK) staining. The RS markers phospho-S33-RPA and γH2AX and the RS-inducing proto-oncogenes Cyclin E1 and c-Myc were analysed by immunohistochemistry. Copy number variations (CNVs) were assessed from genome-wide single nucleotide polymorphism (SNP) arrays. We found that the majority of proliferating (EdU-positive) cells in each sample were CK-positive and therefore considered to be tumour cells. DNA fibre lengths varied largely in most tumour samples. The median DNA fibre length showed a significant inverse correlation with pRPA expression (r = -0.29, p = 0.033) but was not correlated with Cyclin E1 or c-Myc expression and global CNVs in this study. Nuclear Cyclin E1 expression showed a positive correlation with pRPA levels (r = 0.481, p < 0.0001), while cytoplasmic Cyclin E1 expression exhibited an inverse association with pRPA expression (r = -0.353, p = 0.002) and a positive association with global CNVs (r = 0.318, p = 0.016). In conclusion, DNA fibre analysis performed with fresh primary breast cancer samples is feasible. Fibre lengths were associated with pRPA expression. Cyclin E1 expression was associated with pRPA and the percentage of CNVs. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Mengting Chen
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nathalie van den Tempel
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arkajyoti Bhattacharya
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Shibo Yu
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bea Rutgers
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudolf Sn Fehrmann
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sander de Haas
- Division of Pathology, Martini Hospital, Groningen, The Netherlands
| | - Bert van der Vegt
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marcel Atm van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Tripathi S, Najem H, Dussold C, Pacheco S, Du R, Sooreshjani M, Hurley L, Chandler JP, Stupp R, Sonabend AM, Horbinski CM, Lukas RV, Xiu J, Lopez G, Nicolaides TP, Brown V, Wadhwani NR, Lam SK, James CD, Rao G, Castro MG, Heimberger AB, DeCuypere M. Pediatric glioma immune profiling identifies TIM3 as a therapeutic target in BRAF fusion pilocytic astrocytoma. J Clin Invest 2024; 134:e177413. [PMID: 39137048 PMCID: PMC11444160 DOI: 10.1172/jci177413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Despite being the leading cause of cancer-related childhood mortality, pediatric gliomas have been relatively understudied, and the repurposing of immunotherapies has not been successful. Whole-transcriptome sequencing, single-cell sequencing, and sequential multiplex immunofluorescence were used to identify an immunotherapeutic strategy that could be applied to multiple preclinical glioma models. MAPK-driven pediatric gliomas have a higher IFN signature relative to other molecular subgroups. Single-cell sequencing identified an activated and cytotoxic microglia (MG) population designated MG-Act in BRAF-fused, MAPK-activated pilocytic astrocytoma (PA), but not in high-grade gliomas or normal brain. T cell immunoglobulin and mucin domain 3 (TIM3) was expressed on MG-Act and on the myeloid cells lining the tumor vasculature but not normal brain vasculature. TIM3 expression became upregulated on immune cells in the PA microenvironment, and anti-TIM3 reprogrammed ex vivo immune cells from human PAs to a proinflammatory cytotoxic phenotype. In a genetically engineered murine model of MAPK-driven, low-grade gliomas, anti-TIM3 treatment increased median survival over IgG- and anti-PD-1-treated mice. Single-cell RNA-Seq data during the therapeutic window of anti-TIM3 revealed enrichment of the MG-Act population. The therapeutic activity of anti-TIM3 was abrogated in mice on the CX3CR1 MG-KO background. These data support the use of anti-TIM3 in clinical trials of pediatric low-grade, MAPK-driven gliomas.
Collapse
Affiliation(s)
- Shashwat Tripathi
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, and
| | - Hinda Najem
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, and
| | - Corey Dussold
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, and
| | - Sebastian Pacheco
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, and
| | - Ruochen Du
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, and
| | - Moloud Sooreshjani
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, and
| | - Lisa Hurley
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, and
| | - James P Chandler
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, and
| | - Roger Stupp
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, and
| | - Adam M Sonabend
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, and
| | - Craig M Horbinski
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, and
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Rimas V Lukas
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, and
| | - Joanne Xiu
- Caris Life Sciences, Phoenix, Arizona, USA
| | | | | | - Valerie Brown
- Department of Pediatrics, Penn State Cancer Institute, Hershey, Pennsylvania, USA
| | | | - Sandi K Lam
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, and
- Division of Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Charles David James
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, and
| | - Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine, Houston Texas, USA
| | - Maria G Castro
- Department of Neurological Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Amy B Heimberger
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, and
| | - Michael DeCuypere
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, and
- Division of Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| |
Collapse
|
5
|
Maxwell MB, Hom-Tedla MS, Yi J, Li S, Rivera SA, Yu J, Burns MJ, McRae HM, Stevenson BT, Coakley KE, Ho J, Gastelum KB, Bell JC, Jones AC, Eskander RN, Dykhuizen EC, Shadel GS, Kaech SM, Hargreaves DC. ARID1A suppresses R-loop-mediated STING-type I interferon pathway activation of anti-tumor immunity. Cell 2024; 187:3390-3408.e19. [PMID: 38754421 PMCID: PMC11193641 DOI: 10.1016/j.cell.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/26/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Clinical trials have identified ARID1A mutations as enriched among patients who respond favorably to immune checkpoint blockade (ICB) in several solid tumor types independent of microsatellite instability. We show that ARID1A loss in murine models is sufficient to induce anti-tumor immune phenotypes observed in ARID1A mutant human cancers, including increased CD8+ T cell infiltration and cytolytic activity. ARID1A-deficient cancers upregulated an interferon (IFN) gene expression signature, the ARID1A-IFN signature, associated with increased R-loops and cytosolic single-stranded DNA (ssDNA). Overexpression of the R-loop resolving enzyme, RNASEH2B, or cytosolic DNase, TREX1, in ARID1A-deficient cells prevented cytosolic ssDNA accumulation and ARID1A-IFN gene upregulation. Further, the ARID1A-IFN signature and anti-tumor immunity were driven by STING-dependent type I IFN signaling, which was required for improved responsiveness of ARID1A mutant tumors to ICB treatment. These findings define a molecular mechanism underlying anti-tumor immunity in ARID1A mutant cancers.
Collapse
Affiliation(s)
- Matthew B Maxwell
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92092, USA; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Marianne S Hom-Tedla
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Gynecologic Oncology, University of California, San Diego, San Diego, CA, USA
| | - Jawoon Yi
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Shitian Li
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92092, USA; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Samuel A Rivera
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92092, USA; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jingting Yu
- Integrative Genomics and Bioinformatics Core, Salk Institute of Biological Studies, La Jolla, CA 92037, USA
| | - Mannix J Burns
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Helen M McRae
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Braden T Stevenson
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Katherine E Coakley
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Gynecologic Oncology, University of California, San Diego, San Diego, CA, USA
| | - Josephine Ho
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | - Joshua C Bell
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Alexander C Jones
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ramez N Eskander
- Center for Personalized Cancer Therapy and Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Gerald S Shadel
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Diana C Hargreaves
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
6
|
Arrieta VA, Gould A, Kim KS, Habashy KJ, Dmello C, Vázquez-Cervantes GI, Palacín-Aliana I, McManus G, Amidei C, Gomez C, Dhiantravan S, Chen L, Zhang DY, Saganty R, Cholak ME, Pandey S, McCord M, McCortney K, Castro B, Ward R, Muzzio M, Bouchoux G, Desseaux C, Canney M, Carpentier A, Zhang B, Miska JM, Lesniak MS, Horbinski CM, Lukas RV, Stupp R, Lee-Chang C, Sonabend AM. Ultrasound-mediated delivery of doxorubicin to the brain results in immune modulation and improved responses to PD-1 blockade in gliomas. Nat Commun 2024; 15:4698. [PMID: 38844770 PMCID: PMC11156895 DOI: 10.1038/s41467-024-48326-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Given the marginal penetration of most drugs across the blood-brain barrier, the efficacy of various agents remains limited for glioblastoma (GBM). Here we employ low-intensity pulsed ultrasound (LIPU) and intravenously administered microbubbles (MB) to open the blood-brain barrier and increase the concentration of liposomal doxorubicin and PD-1 blocking antibodies (aPD-1). We report results on a cohort of 4 GBM patients and preclinical models treated with this approach. LIPU/MB increases the concentration of doxorubicin by 2-fold and 3.9-fold in the human and murine brains two days after sonication, respectively. Similarly, LIPU/MB-mediated blood-brain barrier disruption leads to a 6-fold and a 2-fold increase in aPD-1 concentrations in murine brains and peritumoral brain regions from GBM patients treated with pembrolizumab, respectively. Doxorubicin and aPD-1 delivered with LIPU/MB upregulate major histocompatibility complex (MHC) class I and II in tumor cells. Increased brain concentrations of doxorubicin achieved by LIPU/MB elicit IFN-γ and MHC class I expression in microglia and macrophages. Doxorubicin and aPD-1 delivered with LIPU/MB results in the long-term survival of most glioma-bearing mice, which rely on myeloid cells and lymphocytes for their efficacy. Overall, this translational study supports the utility of LIPU/MB to potentiate the antitumoral activities of doxorubicin and aPD-1 for GBM.
Collapse
Affiliation(s)
- Víctor A Arrieta
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- PECEM, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Andrew Gould
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kwang-Soo Kim
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karl J Habashy
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Crismita Dmello
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Gustavo I Vázquez-Cervantes
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Irina Palacín-Aliana
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Deparment of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Graysen McManus
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Christina Amidei
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Cristal Gomez
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Silpol Dhiantravan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Li Chen
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Daniel Y Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ruth Saganty
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Meghan E Cholak
- Department of Medicine, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Surya Pandey
- Department of Medicine, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Matthew McCord
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Deparment of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kathleen McCortney
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Brandyn Castro
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Rachel Ward
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Miguel Muzzio
- Life Sciences Group, IIT Research Institute, Chicago, IL, USA
| | | | | | | | - Alexandre Carpentier
- Sorbonne Université, Inserm, CNRS, UMR S 1127, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Neurochirurgie, Paris, France
| | - Bin Zhang
- Department of Medicine, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jason M Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Craig M Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Rimas V Lukas
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Roger Stupp
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Medicine, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Adam M Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
7
|
Ngoi NYL, Pilié PG, McGrail DJ, Zimmermann M, Schlacher K, Yap TA. Targeting ATR in patients with cancer. Nat Rev Clin Oncol 2024; 21:278-293. [PMID: 38378898 DOI: 10.1038/s41571-024-00863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Pharmacological inhibition of the ataxia telangiectasia and Rad3-related protein serine/threonine kinase (ATR; also known as FRAP-related protein (FRP1)) has emerged as a promising strategy for cancer treatment that exploits synthetic lethal interactions with proteins involved in DNA damage repair, overcomes resistance to other therapies and enhances antitumour immunity. Multiple novel, potent ATR inhibitors are being tested in clinical trials using biomarker-directed approaches and involving patients across a broad range of solid cancer types; some of these inhibitors have now entered phase III trials. Further insight into the complex interactions of ATR with other DNA replication stress response pathway components and with the immune system is necessary in order to optimally harness the potential of ATR inhibitors in the clinic and achieve hypomorphic targeting of the various ATR functions. Furthermore, a deeper understanding of the diverse range of predictive biomarkers of response to ATR inhibitors and of the intraclass differences between these agents could help to refine trial design and patient selection strategies. Key challenges that remain in the clinical development of ATR inhibitors include the optimization of their therapeutic index and the development of rational combinations with these agents. In this Review, we detail the molecular mechanisms regulated by ATR and their clinical relevance, and discuss the challenges that must be addressed to extend the benefit of ATR inhibitors to a broad population of patients with cancer.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Patrick G Pilié
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Katharina Schlacher
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
8
|
Tan J, Egelston CA, Guo W, Stark JM, Lee PP. STING signalling compensates for low tumour mutation burden to drive anti-tumour immunity. EBioMedicine 2024; 101:105035. [PMID: 38401418 PMCID: PMC10904200 DOI: 10.1016/j.ebiom.2024.105035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 01/30/2024] [Accepted: 02/11/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND While mutation-derived neoantigens are well recognized in generating anti-tumour T cell response, increasing evidences highlight the complex association between tumour mutation burden (TMB) and tumour infiltrating lymphocytes (TILs). The exploration of non-TMB determinants of active immune response could improve the prognosis prediction and provide guidance for current immunotherapy. METHODS The transcriptomic and whole exome sequence data in The Cancer Genome Atlas were used to examine the relationship between TMB and exhausted CD8+ T cells (Tex), as an indicator of tumour antigen-specific T cells across nine major cancer types. Computational clustering analysis was performed on 4510 tumours to identify different immune profiles. NanoString gene expression analysis and single cell RNA-seq analysis using fresh human breast cancer were performed for finding validation. FINDINGS TMB was found to be poorly correlated with active immune response in various cancer types. Patient clustering analysis revealed a group of tumours with abundant Tex but low TMB. In those tumours, we observed significantly higher expression of the stimulator of interferon genes (STING) signalling. Dendritic cells, particularly those of BATF3+ lineage, were also found to be essential for accumulation of Tex within tumours. Mechanistically, loss of genomic and cellular integrity, marked by decreased DNA damage repair, defective replication stress response, and increased apoptosis were shown to drive STING activation. INTERPRETATION These results highlight that TMB alone does not fully predict tumour immune profiles, with STING signalling compensating for low TMB in non-hypermutated tumours to enhance anti-tumour immunity. Translating these results, STING agonists may benefit patients with non-hypermutated tumours. STING activation may serve as an additional biomarker to predict response to immune checkpoint blockades alongside TMB. Our research also unravelled the interplay between genomic instability and STING activation, informing potential combined chemotherapy targeting the axis of genomic integrity and immunotherapy. FUNDING City of Hope Christopher Family Endowed Innovation Fund for Alzheimer's Disease and Breast Cancer Research in honor of Vineta Christopher; Breast Cancer Alliance Early Career Investigator Award; National Cancer Institute of the National Institutes of Health under award number R01CA256989 and R01CA240392.
Collapse
Affiliation(s)
- Jiayi Tan
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA; Irell & Manella Graduate School of Biological Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Colt A Egelston
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Weihua Guo
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Peter P Lee
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
9
|
Hardaker EL, Sanseviero E, Karmokar A, Taylor D, Milo M, Michaloglou C, Hughes A, Mai M, King M, Solanki A, Magiera L, Miragaia R, Kar G, Standifer N, Surace M, Gill S, Peter A, Talbot S, Tohumeken S, Fryer H, Mostafa A, Mulgrew K, Lam C, Hoffmann S, Sutton D, Carnevalli L, Calero-Nieto FJ, Jones GN, Pierce AJ, Wilson Z, Campbell D, Nyoni L, Martins CP, Baker T, Serrano de Almeida G, Ramlaoui Z, Bidar A, Phillips B, Boland J, Iyer S, Barrett JC, Loembé AB, Fuchs SY, Duvvuri U, Lou PJ, Nance MA, Gomez Roca CA, Cadogan E, Critichlow SE, Fawell S, Cobbold M, Dean E, Valge-Archer V, Lau A, Gabrilovich DI, Barry ST. The ATR inhibitor ceralasertib potentiates cancer checkpoint immunotherapy by regulating the tumor microenvironment. Nat Commun 2024; 15:1700. [PMID: 38402224 PMCID: PMC10894296 DOI: 10.1038/s41467-024-45996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/09/2024] [Indexed: 02/26/2024] Open
Abstract
The Ataxia telangiectasia and Rad3-related (ATR) inhibitor ceralasertib in combination with the PD-L1 antibody durvalumab demonstrated encouraging clinical benefit in melanoma and lung cancer patients who progressed on immunotherapy. Here we show that modelling of intermittent ceralasertib treatment in mouse tumor models reveals CD8+ T-cell dependent antitumor activity, which is separate from the effects on tumor cells. Ceralasertib suppresses proliferating CD8+ T-cells on treatment which is rapidly reversed off-treatment. Ceralasertib causes up-regulation of type I interferon (IFNI) pathway in cancer patients and in tumor-bearing mice. IFNI is experimentally found to be a major mediator of antitumor activity of ceralasertib in combination with PD-L1 antibody. Improvement of T-cell function after ceralasertib treatment is linked to changes in myeloid cells in the tumor microenvironment. IFNI also promotes anti-proliferative effects of ceralasertib on tumor cells. Here, we report that broad immunomodulatory changes following intermittent ATR inhibition underpins the clinical therapeutic benefit and indicates its wider impact on antitumor immunity.
Collapse
Affiliation(s)
| | | | | | - Devon Taylor
- Oncology R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
| | - Marta Milo
- Oncology R&D, AstraZeneca, Cambridge, UK
| | | | | | - Mimi Mai
- Oncology R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
| | | | | | | | | | - Gozde Kar
- Oncology R&D, AstraZeneca, Cambridge, UK
| | - Nathan Standifer
- Oncology R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
- Tempest Therapeutics, Brisbane, CA, USA
| | | | - Shaan Gill
- Oncology R&D, AstraZeneca, Cambridge, UK
| | | | | | | | | | - Ali Mostafa
- Oncology R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
| | - Kathy Mulgrew
- Oncology R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
| | | | | | - Daniel Sutton
- Imaging and Data Analytics, AstraZeneca, Cambridge, UK
| | | | | | | | - Andrew J Pierce
- Oncology R&D, AstraZeneca, Cambridge, UK
- Crescendo Biologics Limited, Cambridge, UK
| | | | | | | | | | | | | | | | - Abdel Bidar
- CPSS, Imaging, AstraZeneca, Gothenburg, Sweden
| | - Benjamin Phillips
- Data Sciences & Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Joseph Boland
- Oncology R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
| | - Sonia Iyer
- Oncology R&D, AstraZeneca, Boston, MA, USA
| | | | | | - Serge Y Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Umamaheswar Duvvuri
- UPMC Department of Otolaryngology and UPMC Hillman Cancer Center, 200 Lothrop St. Suite 500, Pittsburg, PA, 15213, USA
| | - Pei-Jen Lou
- National Taiwan University Hospital, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City, 10002, Taiwan
| | - Melonie A Nance
- VA Pittsburgh Healthcare System, University Drive C, Pittsburg, PA, 15240, USA
| | - Carlos Alberto Gomez Roca
- Institut Claudius Regaud-Cancer Comprehensive Center, 1 Avenue Irene Joliot-Curie, IUCT-O, Toulouse, 31059 Cedex 9, France
| | | | | | | | - Mark Cobbold
- Oncology R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
| | - Emma Dean
- Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - Alan Lau
- Oncology R&D, AstraZeneca, Cambridge, UK
| | | | | |
Collapse
|
10
|
Elguindy M, Young JS, Mondal I, Lu RO, Ho WS. Glioma-Immune Cell Crosstalk in Tumor Progression. Cancers (Basel) 2024; 16:308. [PMID: 38254796 PMCID: PMC10813573 DOI: 10.3390/cancers16020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Glioma progression is a complex process controlled by molecular factors that coordinate the crosstalk between tumor cells and components of the tumor microenvironment (TME). Among these, immune cells play a critical role in cancer survival and progression. The complex interplay between cancer cells and the immune TME influences the outcome of immunotherapy and other anti-cancer therapies. Here, we present an updated view of the pro- and anti-tumor activities of the main myeloid and lymphocyte cell populations in the glioma TME. We review the underlying mechanisms involved in crosstalk between cancer cells and immune cells that enable gliomas to evade the immune system and co-opt these cells for tumor growth. Lastly, we discuss the current and experimental therapeutic options being developed to revert the immunosuppressive activity of the glioma TME. Knowledge of the complex interplay that elapses between tumor and immune cells may help develop new combination treatments able to overcome tumor immune evasion mechanisms and enhance response to immunotherapies.
Collapse
Affiliation(s)
| | | | | | | | - Winson S. Ho
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
11
|
Li Y, Dobrolecki LE, Sallas C, Zhang X, Kerr TD, Bisht D, Wang Y, Awasthi S, Kaundal B, Wu S, Peng W, Mendillo ML, Lu Y, Jeter CR, Peng G, Liu J, Westin SN, Sood AK, Lewis MT, Das J, Yi SS, Bedford MT, McGrail DJ, Sahni N. PRMT blockade induces defective DNA replication stress response and synergizes with PARP inhibition. Cell Rep Med 2023; 4:101326. [PMID: 38118413 PMCID: PMC10772459 DOI: 10.1016/j.xcrm.2023.101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/07/2023] [Accepted: 11/17/2023] [Indexed: 12/22/2023]
Abstract
Multiple cancers exhibit aberrant protein arginine methylation by both type I arginine methyltransferases, predominately protein arginine methyltransferase 1 (PRMT1) and to a lesser extent PRMT4, and by type II PRMTs, predominately PRMT5. Here, we perform targeted proteomics following inhibition of PRMT1, PRMT4, and PRMT5 across 12 cancer cell lines. We find that inhibition of type I and II PRMTs suppresses phosphorylated and total ATR in cancer cells. Loss of ATR from PRMT inhibition results in defective DNA replication stress response activation, including from PARP inhibitors. Inhibition of type I and II PRMTs is synergistic with PARP inhibition regardless of homologous recombination function, but type I PRMT inhibition is more toxic to non-malignant cells. Finally, we demonstrate that the combination of PARP and PRMT5 inhibition improves survival in both BRCA-mutant and wild-type patient-derived xenografts without toxicity. Taken together, these results demonstrate that PRMT5 inhibition may be a well-tolerated approach to sensitize tumors to PARP inhibition.
Collapse
Affiliation(s)
- Yang Li
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lacey E Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Christina Sallas
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Xudong Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Travis D Kerr
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Deepa Bisht
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yalong Wang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sharad Awasthi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Babita Kaundal
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siqi Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Weiyi Peng
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yiling Lu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Collene R Jeter
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Jishnu Das
- Center for Systems Immunology, Department of Immunology, and Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - S Stephen Yi
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Interdisciplinary Life Sciences Graduate Programs (ILSGP), College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA; Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, USA; Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
12
|
Zhang J, Dai H, Huo L, Burks JK, McGrail DJ, Lin SY. Cytosolic DNA accumulation promotes breast cancer immunogenicity via a STING-independent pathway. J Immunother Cancer 2023; 11:e007560. [PMID: 37907220 PMCID: PMC10619126 DOI: 10.1136/jitc-2023-007560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) has revolutionized cancer treatment. However, ICB alone has demonstrated only benefit in a small subset of patients with breast cancer. Recent studies have shown that agents targeting DNA damage response improve the efficacy of ICB and promote cytosolic DNA accumulation. However, recent clinical trials have shown that these agents are associated with hematological toxicities. More effective therapeutic strategies are urgently needed. METHODS Primary triple negative breast cancer tumors were stained for cytosolic single-stranded DNA (ssDNA) using multiplex immunohistochemical staining. To increase cytosolic ssDNA, we genetically silenced TREX1. The role of tumor cytosolic ssDNA in promoting tumor immunogenicity and antitumor immune response was evaluated using murine breast cancer models. RESULTS We found the tumorous cytosolic ssDNA is associated with tumor-infiltrating lymphocyte in patients with triple negative breast cancer. TREX1 deficiency triggered a STING-independent innate immune response via DDX3X. Cytosolic ssDNA accumulation in tumors due to TREX1 deletion is sufficient to drastically improve the efficacy of ICB. We further identified a cytosolic ssDNA inducer CEP-701, which sensitized breast tumors to ICB without the toxicities associated with inhibiting DNA damage response. CONCLUSIONS This work demonstrated that cytosolic ssDNA accumulation promotes breast cancer immunogenicity and may be a novel therapeutic strategy to improve the efficacy of ICB with minimal toxicities.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hui Dai
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lei Huo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jared K Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, Texas, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, Texas, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
13
|
Kornepati AVR, Rogers CM, Sung P, Curiel TJ. The complementarity of DDR, nucleic acids and anti-tumour immunity. Nature 2023; 619:475-486. [PMID: 37468584 DOI: 10.1038/s41586-023-06069-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/11/2023] [Indexed: 07/21/2023]
Abstract
Immune checkpoint blockade (ICB) immunotherapy is a first-line treatment for selected cancers, yet the mechanisms of its efficacy remain incompletely understood. Furthermore, only a minority of patients with cancer benefit from ICB, and there is a lack of fully informative treatment response biomarkers. Selectively exploiting defects in DNA damage repair is also a standard treatment for cancer, spurred by enhanced understanding of the DNA damage response (DDR). DDR and ICB are closely linked-faulty DDR produces immunogenic cancer neoantigens that can increase the efficacy of ICB therapy, and tumour mutational burden is a good but imperfect biomarker for the response to ICB. DDR studies in ICB efficacy initially focused on contributions to neoantigen burden. However, a growing body of evidence suggests that ICB efficacy is complicated by the immunogenic effects of nucleic acids generated from exogenous DNA damage or endogenous processes such as DNA replication. Chemotherapy, radiation, or selective DDR inhibitors (such as PARP inhibitors) can generate aberrant nucleic acids to induce tumour immunogenicity independently of neoantigens. Independent of their functions in immunity, targets of immunotherapy such as cyclic GMP-AMP synthase (cGAS) or PD-L1 can crosstalk with DDR or the DNA repair machinery to influence the response to DNA-damaging agents. Here we review the rapidly evolving, multifaceted interfaces between DDR, nucleic acid immunogenicity and immunotherapy efficacy, focusing on ICB. Understanding these interrelated processes could explain ICB treatment failures and reveal novel exploitable therapeutic vulnerabilities in cancers. We conclude by addressing major unanswered questions and new research directions.
Collapse
Affiliation(s)
- Anand V R Kornepati
- Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, TX, USA
| | - Cody M Rogers
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, USA
| | - Patrick Sung
- Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, TX, USA
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, USA
- University of Texas Health San Antonio MD Anderson Cancer Center, San Antonio, TX, USA
| | - Tyler J Curiel
- Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, TX, USA.
- University of Texas Health San Antonio MD Anderson Cancer Center, San Antonio, TX, USA.
- Department of Medicine, University of Texas Health, San Antonio, TX, USA.
- Dartmouth Health, Dartmouth Cancer Center and the Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
14
|
Mauro S, Bolognesi MM, Villa N, Capitoli G, Furia L, Mascadri F, Zucchini N, Totis M, Faretta M, Galimberti S, Bovo G, Cattoretti G. A DNA damage response-like phenotype defines a third of colon cancers at onset. FASEB J 2023; 37:e23020. [PMID: 37342943 DOI: 10.1096/fj.202300132r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/12/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023]
Abstract
Colon adenocarcinoma (COAD) has a limited range of diversified, personalized therapeutic opportunities, besides DNA hypermutating cases; thus, both new targets or broadening existing strategies for personalized intervention are of interest. Routinely processed material from 246 untreated COADs with clinical follow-up was probed for evidence of DNA damage response (DDR), that is, the gathering of DDR-associated molecules at discrete nuclear spots, by multiplex immunofluorescence and immunohistochemical staining for DDR complex proteins (γH2AX, pCHK2, and pNBS1). We also tested the cases for type I interferon response, T-lymphocyte infiltration (TILs), and mutation mismatch repair defects (MMRd), known to be associated with defects of DNA repair. FISH analysis for chromosome 20q copy number variations was obtained. A total of 33.7% of COAD display a coordinated DDR on quiescent, non-senescent, non-apoptotic glands, irrespective of TP53 status, chromosome 20q abnormalities, and type I IFN response. Clinicopathological parameters did not differentiate DDR+ cases from the other cases. TILs were equally present in DDR and non-DDR cases. DDR+ MMRd cases were preferentially retaining wild-type MLH1. The outcome after 5FU-based chemotherapy was not different in the two groups. DDR+ COAD represents a subgroup not aligned with known diagnostic, prognostic, or therapeutic categories, with potential new targeted treatment opportunities, exploiting the DNA damage repair pathways.
Collapse
Affiliation(s)
- Stefania Mauro
- Pathology, Vimercate Hospital, ASST-Brianza, Vimercate, Italy
| | - Maddalena M Bolognesi
- Pathology, Department of Medicine and Surgery, Universitá di Milano-Bicocca, Monza, Italy
| | - Nicoletta Villa
- Genetics, Fondazione IRCCS San Gerardo dei Tintori Monza, Monza, Italy
| | - Giulia Capitoli
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, Universitá di Milano-Bicocca, Monza, Italy
| | - Laura Furia
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesco Mascadri
- Pathology, Department of Medicine and Surgery, Universitá di Milano-Bicocca, Monza, Italy
| | - Nicola Zucchini
- Pathology, Fondazione IRCCS San Gerardo dei Tintori Monza, Monza, Italy
| | - Mauro Totis
- GI Surgery, Fondazione IRCCS San Gerardo dei Tintori Monza, Monza, Italy
| | - Mario Faretta
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Stefania Galimberti
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, Universitá di Milano-Bicocca, Monza, Italy
| | - Giorgio Bovo
- Pathology, Vimercate Hospital, ASST-Brianza, Vimercate, Italy
| | - Giorgio Cattoretti
- Pathology, Department of Medicine and Surgery, Universitá di Milano-Bicocca, Monza, Italy
- Pathology, Fondazione IRCCS San Gerardo dei Tintori Monza, Monza, Italy
| |
Collapse
|
15
|
Dmello C, Zhao J, Chen L, Gould A, Castro B, Arrieta VA, Zhang DY, Kim KS, Kanojia D, Zhang P, Miska J, Yeeravalli R, Habashy K, Saganty R, Kang SJ, Fares J, Liu C, Dunn G, Bartom E, Schipma MJ, Hsu PD, Alghamri MS, Lesniak MS, Heimberger AB, Rabadan R, Lee-Chang C, Sonabend AM. Checkpoint kinase 1/2 inhibition potentiates anti-tumoral immune response and sensitizes gliomas to immune checkpoint blockade. Nat Commun 2023; 14:1566. [PMID: 36949040 PMCID: PMC10033639 DOI: 10.1038/s41467-023-36878-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/21/2023] [Indexed: 03/24/2023] Open
Abstract
Whereas the contribution of tumor microenvironment to the profound immune suppression of glioblastoma (GBM) is clear, tumor-cell intrinsic mechanisms that regulate resistance to CD8 T cell mediated killing are less understood. Kinases are potentially druggable targets that drive tumor progression and might influence immune response. Here, we perform an in vivo CRISPR screen to identify glioma intrinsic kinases that contribute to evasion of tumor cells from CD8 T cell recognition. The screen reveals checkpoint kinase 2 (Chek2) to be the most important kinase contributing to escape from CD8 T-cell recognition. Genetic depletion or pharmacological inhibition of Chek2 with blood-brain-barrier permeable drugs that are currently being evaluated in clinical trials, in combination with PD-1 or PD-L1 blockade, lead to survival benefit in multiple preclinical glioma models. Mechanistically, loss of Chek2 enhances antigen presentation, STING pathway activation and PD-L1 expression in mouse gliomas. Analysis of human GBMs demonstrates that Chek2 expression is inversely associated with antigen presentation and T-cell activation. Collectively, these results support Chek2 as a promising target for enhancement of response to immune checkpoint blockade therapy in GBM.
Collapse
Affiliation(s)
- Crismita Dmello
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Junfei Zhao
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Li Chen
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Andrew Gould
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Brandyn Castro
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Section of Neurological Surgery, University of Chicago Medicine, Chicago, IL, USA
| | - Victor A Arrieta
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daniel Y Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kwang-Soo Kim
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Deepak Kanojia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Peng Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ragini Yeeravalli
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karl Habashy
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ruth Saganty
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Seong Jae Kang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Connor Liu
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Gavin Dunn
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St Louis, MO, USA
| | - Elizabeth Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - Matthew J Schipma
- NUSeq Core, Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Patrick D Hsu
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Mahmoud S Alghamri
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Amy B Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Raul Rabadan
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
- Department of Neurology, Department of Pathology, Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Adam M Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
16
|
Lückerath K, Trajkovic-Arsic M, Mona CE. Fibroblast Activation Protein Inhibitor Theranostics. PET Clin 2023:S1556-8598(23)00019-6. [PMID: 36990945 DOI: 10.1016/j.cpet.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Fibroblast activation protein (FAP)-radioligand therapy might be effective in some patients without being curative. FAP-radioligands deliver ionizing radiation directly to FAP+ cancer-associated fibroblasts and, in some cancers, to FAP+ tumor cells; in addition, they indirectly irradiate FAP- cells in tumor tissue via cross-fire and bystander effects. Here, we discuss the potential to improve FAP-radioligand therapy through interfering with DNA damage repair, immunotherapy, and co-targeting cancer-associated fibroblasts. As the molecular and cellular effects of FAP-radioligands on the tumor and its microenvironment have not been investigated yet, we call for future research to close this gap in knowledge, which prevents the development of more effective FAP-radioligand therapies.
Collapse
Affiliation(s)
- Katharina Lückerath
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Marija Trajkovic-Arsic
- Division of Solid Tumor Translational Oncology, DKTK and German Cancer Research Center (DKFZ) Partner Side Essen, Hufelandstrasse 15, 45147, Germany; Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Christine E Mona
- Ahmanson Translational Theranostic Division, Department of Molecular and Medical Pharmacology, University of California Los Angeles, 650 Charles E Young Drive S, Los Angeles, CA 90095, USA.
| |
Collapse
|
17
|
Arrieta VA, Dmello C, McGrail DJ, Brat DJ, Lee-Chang C, Heimberger AB, Chand D, Stupp R, Sonabend AM. Immune checkpoint blockade in glioblastoma: from tumor heterogeneity to personalized treatment. J Clin Invest 2023; 133:e163447. [PMID: 36647828 PMCID: PMC9843050 DOI: 10.1172/jci163447] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Immune checkpoint blockade (ICB) has revolutionized modern cancer therapy, arousing great interest in the neuro-oncology community. While several reports show that subsets of patients with glioma exhibit durable responses to immunotherapy, the efficacy of this treatment has not been observed for unselected patient populations, preventing its broad clinical implementation for gliomas and glioblastoma (GBM). To exploit the maximum therapeutic potential of ICB for patients with glioma, understanding the different aspects of glioma-related tumor immune responses is of critical importance. In this Review, we discuss contributing factors that distinguish subsets of patients with glioma who may benefit from ICB. Specifically, we discuss (a) the complex interaction between the tumor immune microenvironment and glioma cells as a potential influence on immunotherapy responses; (b) promising biomarkers for responses to immune checkpoint inhibitors; and (c) the potential contributions of peripheral immune cells to therapeutic responses.
Collapse
Affiliation(s)
- Víctor A. Arrieta
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Program of Combined Studies in Medicine (PECEM), Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Crismita Dmello
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniel J. McGrail
- Center for Immunotherapy and Precision Immuno-Oncology and
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Daniel J. Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Dhan Chand
- Agenus Bio, Lexington, Massachusetts, USA
| | - Roger Stupp
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Adam M. Sonabend
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
18
|
Zhou Z, Saluja AK, Houchen CW, Li M. Replication stress identifies novel molecular classification associated with treatment outcomes in pancreatic cancer. Pancreatology 2023; 23:82-89. [PMID: 36435734 DOI: 10.1016/j.pan.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Replication stress is a prominent hallmark of tumor cells, which is crucial for maintaining genomic integrity. However, it remains poorly understood whether replication stress can serve as a surrogate biomarker to indicate prognosis and treatment response of pancreatic cancer. METHODS Transcriptomic and clinical data were obtained from The Cancer Genome Atlas and literature. An integrated signature of 18 replication-stress associated genes (termed as REST18) was established using the cox proportional hazards regression analysis. Tumors were sorted into REST18-low and REST18-high groups. Survival analysis, gene set enrichment analysis and composition of immune cells were compared between these tumors. RESULTS Patients with REST18-high tumors showed worse prognoses than those with REST18-low tumors in the TCGA database and the finding is validated in an independent cohort of pancreatic cancer. Comparison of REST18 model and other molecular classifications showed that REST18-high tumors are positively correlated to basal-like or squamous phenotypes, which have higher metastasis potential. DNA repair pathway is enriched in the REST18-high tumors. Analysis of tumor immune microenvironment found that REST18-high tumors are characterized with "immune-cold" features. Univariate and multivariate analysis show that REST18 is an independent risk factor for overall survival and predicts outcomes of chemotherapy in pancreatic cancer. CONCLUSION REST18 is a novel biomarker to indicate prognosis and treatment response of chemotherapy in pancreatic cancer.
Collapse
Affiliation(s)
- Zhijun Zhou
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anuj K Saluja
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Courtney W Houchen
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Min Li
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
19
|
Abstract
High-fidelity DNA replication is critical for the faithful transmission of genetic information to daughter cells. Following genotoxic stress, specialized DNA damage tolerance pathways are activated to ensure replication fork progression. These pathways include translesion DNA synthesis, template switching and repriming. In this Review, we describe how DNA damage tolerance pathways impact genome stability, their connection with tumorigenesis and their effects on cancer therapy response. We discuss recent findings that single-strand DNA gap accumulation impacts chemoresponse and explore a growing body of evidence that suggests that different DNA damage tolerance factors, including translesion synthesis polymerases, template switching proteins and enzymes affecting single-stranded DNA gaps, represent useful cancer targets. We further outline how the consequences of DNA damage tolerance mechanisms could inform the discovery of new biomarkers to refine cancer therapies.
Collapse
Affiliation(s)
- Emily Cybulla
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
20
|
Slade L, Biswas D, Kienesberger PC, Pulinilkunnil T. Loss of transcription factor EB dysregulates the G1/S transition and DNA replication in mammary epithelial cells. J Biol Chem 2022; 298:102692. [PMID: 36372230 PMCID: PMC9764199 DOI: 10.1016/j.jbc.2022.102692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) poses significant challenges for treatment given the lack of targeted therapies and increased probability of relapse. It is pertinent to identify vulnerabilities in TNBC and develop newer treatments. Our prior research demonstrated that transcription factor EB (TFEB) is necessary for TNBC survival by regulating DNA repair, apoptosis signaling, and the cell cycle. However, specific mechanisms by which TFEB targets DNA repair and cell cycle pathways are unclear, and whether these effects dictate TNBC survival is yet to be determined. Here, we show that TFEB knockdown decreased the expression of genes and proteins involved in DNA replication and cell cycle progression in MDA-MB-231 TNBC cells. DNA replication was decreased in cells lacking TFEB, as measured by EdU incorporation. TFEB silencing in MDA-MB-231 and noncancerous MCF10A cells impaired progression through the S-phase following G1/S synchronization; however, this proliferation defect could not be rescued by co-knockdown of suppressor RB1. Instead, TFEB knockdown reduced origin licensing in G1 and early S-phase MDA-MB-231 cells. TFEB silencing was associated with replication stress in MCF10A but not in TNBC cells. Lastly, we identified that TFEB knockdown renders TNBC cells more sensitive to inhibitors of Aurora Kinase A, a protein facilitating mitosis. Thus, inhibition of TFEB impairs cell cycle progress by decreasing origin licensing, leading to delayed entry into the S-phase, while rendering TNBC cells sensitive to Aurora kinase A inhibitors and decreasing cell viability. In contrast, TFEB silencing in noncancerous cells is associated with replication stress and leads to G1/S arrest.
Collapse
|
21
|
Zhang J, Chan DW, Lin SY. Exploiting DNA Replication Stress as a Therapeutic Strategy for Breast Cancer. Biomedicines 2022; 10:2775. [PMID: 36359297 PMCID: PMC9687274 DOI: 10.3390/biomedicines10112775] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 09/19/2023] Open
Abstract
Proliferating cells rely on DNA replication to ensure accurate genome duplication. Cancer cells, including breast cancer cells, exhibit elevated replication stress (RS) due to the uncontrolled oncogenic activation, loss of key tumor suppressors, and defects in the DNA repair machinery. This intrinsic vulnerability provides a great opportunity for therapeutic exploitation. An increasing number of drug candidates targeting RS in breast cancer are demonstrating promising efficacy in preclinical and early clinical trials. However, unresolved challenges lie in balancing the toxicity of these drugs while maintaining clinical efficacy. Furthermore, biomarkers of RS are urgently required to guide patient selection. In this review, we introduce the concept of targeting RS, detail the current therapies that target RS, and highlight the integration of RS with immunotherapies for breast cancer treatment. Additionally, we discuss the potential biomarkers to optimizing the efficacy of these therapies. Together, the continuous advances in our knowledge of targeting RS would benefit more patients with breast cancer.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
22
|
So JY, Ohm J, Lipkowitz S, Yang L. Triple negative breast cancer (TNBC): Non-genetic tumor heterogeneity and immune microenvironment: Emerging treatment options. Pharmacol Ther 2022; 237:108253. [PMID: 35872332 PMCID: PMC9378710 DOI: 10.1016/j.pharmthera.2022.108253] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 12/17/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by extensive intra-tumoral heterogeneity, and frequently develops resistance to therapies. Tumor heterogeneity and lack of biomarkers are thought to be some of the most difficult challenges driving therapeutic resistance and relapse. This review will summarize current therapy for TNBC, studies in treatment resistance and relapse, including data from recent single cell sequencing. We will discuss changes in both the transcriptome and epigenome of TNBC, and we will review mechanisms regulating the immune microenvironment. Lastly, we will provide new perspective in patient stratification, and treatment options targeting transcriptome dysregulation and the immune microenvironment of TNBC patients.
Collapse
Affiliation(s)
- Jae Young So
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joyce Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Stan Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Yang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
23
|
Cao TQ, Wainwright DA, Lee-Chang C, Miska J, Sonabend AM, Heimberger AB, Lukas RV. Next Steps for Immunotherapy in Glioblastoma. Cancers (Basel) 2022; 14:4023. [PMID: 36011015 PMCID: PMC9406905 DOI: 10.3390/cancers14164023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Outcomes for glioblastoma (GBM) patients undergoing standard of care treatment remain poor. Here we discuss the portfolio of previously investigated immunotherapies for glioblastoma, including vaccine therapy and checkpoint inhibitors, as well as novel emerging therapeutic approaches. In addition, we explore the factors that potentially influence response to immunotherapy, which should be considered in future research aimed at improving immunotherapy efficacy.
Collapse
Affiliation(s)
- Toni Q. Cao
- Department of Neurology, Northwestern University, Chicago, IL 60611, USA
| | - Derek A. Wainwright
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
- Department of Medicine, Division of Hematology/Oncology, Northwestern University, Chicago, IL 60611, USA
- Department of Neuroscience, Northwestern University, Chicago, IL 60611, USA
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL 60611, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| | - Jason Miska
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| | - Adam M. Sonabend
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| | - Rimas V. Lukas
- Department of Neurology, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| |
Collapse
|
24
|
Challenges in glioblastoma immunotherapy: mechanisms of resistance and therapeutic approaches to overcome them. Br J Cancer 2022; 127:976-987. [DOI: 10.1038/s41416-022-01864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/23/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022] Open
|
25
|
Gutierrez C, Vilas CK, Wu CJ, Al'Khafaji AM. Functionalized Lineage Tracing Can Enable the Development of Homogenization-Based Therapeutic Strategies in Cancer. Front Immunol 2022; 13:859032. [PMID: 35603167 PMCID: PMC9120583 DOI: 10.3389/fimmu.2022.859032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
The therapeutic landscape across many cancers has dramatically improved since the introduction of potent targeted agents and immunotherapy. Nonetheless, success of these approaches is too often challenged by the emergence of therapeutic resistance, fueled by intratumoral heterogeneity and the immense evolutionary capacity inherent to cancers. To date, therapeutic strategies have attempted to outpace the evolutionary tempo of cancer but frequently fail, resulting in lack of tumor response and/or relapse. This realization motivates the development of novel therapeutic approaches which constrain evolutionary capacity by reducing the degree of intratumoral heterogeneity prior to treatment. Systematic development of such approaches first requires the ability to comprehensively characterize heterogeneous populations over the course of a perturbation, such as cancer treatment. Within this context, recent advances in functionalized lineage tracing approaches now afford the opportunity to efficiently measure multimodal features of clones within a tumor at single cell resolution, enabling the linkage of these features to clonal fitness over the course of tumor progression and treatment. Collectively, these measurements provide insights into the dynamic and heterogeneous nature of tumors and can thus guide the design of homogenization strategies which aim to funnel heterogeneous cancer cells into known, targetable phenotypic states. We anticipate the development of homogenization therapeutic strategies to better allow for cancer eradication and improved clinical outcomes.
Collapse
Affiliation(s)
- Catherine Gutierrez
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Caroline K Vilas
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - Catherine J Wu
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | | |
Collapse
|