1
|
Dinoto A, Pacenti M, Mariotto S, Abate D, Lisi V, Satto S, Vogiatzis S, Chiodega V, Carta S, Ferrari S, Barzon L. Serum levels of neurofilament light chain and glial fibrillary acidic protein correlate with disease severity in patients with West Nile virus infection. Emerg Microbes Infect 2025; 14:2447606. [PMID: 39945666 PMCID: PMC11849020 DOI: 10.1080/22221751.2024.2447606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 11/24/2024] [Accepted: 12/22/2024] [Indexed: 02/18/2025]
Abstract
West Nile virus (WNV) is a neurotropic mosquito-borne orthoflavivirus, representing a relevant public health threat. Identification of biomarkers that would predict the course of WNV infection is of interest for the early identification of patients at risk and for supporting decisions on therapeutic interventions. In this study, serum levels of glial fibrillary acidic protein (sGFAP) and neurofilament light chain (sNfL), which are markers of brain tissue damage and inflammation, were analysed in 103 subjects with laboratory-confirmed WNV infection, comprising 13 asymptomatic blood donors, 23 with WN fever (WNF), 50 with encephalitis/meningoencephalitis (E/ME) and 17 with acute flaccid paralysis (AFP). In addition, 55 WNV-negative subjects with fever, encephalitis or healthy asymptomatic were included as controls. Age-adjusted levels of both sNfL and sGFAP were significantly higher in patients with neuroinvasive disease than in those with fever or asymptomatic (both WNV-positive and WNV-negative), suggesting a broad association of these biomarkers with systemic inflammation and brain injury resulting from infection. In WNV patients, the combined analysis of sNfL and sGFAP early after symptom onset allowed discrimination between neuroinvasive disease and fever with 67.2% sensitivity and 91.3% specificity, but not between E/ME and AFP. Furthermore, high levels of sNfL and sGFAP were significantly associated with prolonged hospital stay, intensive care unit admission and the occurrence of death or severe sequelae. Detection of WNV RNA in CSF was associated with increased sGFAP. In conclusion, our study indicates the potential utility of sNfL and sGFAP as biomarkers of WNV disease severity and adverse outcome.
Collapse
Affiliation(s)
- Alessandro Dinoto
- Section of Neurology, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Monia Pacenti
- Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
| | - Sara Mariotto
- Section of Neurology, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Davide Abate
- Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Vittoria Lisi
- Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
| | - Sorsha Satto
- Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
| | | | - Vanessa Chiodega
- Section of Neurology, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Sara Carta
- Section of Neurology, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Sergio Ferrari
- Section of Neurology, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Luisa Barzon
- Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
2
|
Bachiller S, Vitallé J, Camprubí-Ferrer L, García M, Gallego I, López-García M, Galvá MI, Cañizares J, Rivas-Jeremías I, Díaz-Mateos M, Gasca-Capote C, Moral-Turón C, Galán-Villamor L, Fontillón M, Sobrino S, Cisneros JM, López-Cortés LF, Deierborg T, Ruiz-Mateos E. SARS-CoV-2 post-acute sequelae linked to inflammation via extracellular vesicles. Front Immunol 2025; 16:1501666. [PMID: 40330474 PMCID: PMC12052859 DOI: 10.3389/fimmu.2025.1501666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/31/2025] [Indexed: 05/08/2025] Open
Abstract
Background Despite the efficacy of SARS-CoV-2 vaccines in reducing mortality and severe cases of COVID-19, a proportion of survivors experience long-term symptoms, known as post-acute sequelae of SARS-CoV-2 infection (PASC). This study investigates the long-term immunological and neurodegenerative effects associated with extracellular vesicles (EVs) in COVID-19 survivors, 15 months after SARS-CoV-2 infection. Methods 13 Controls and 20 COVID-19 survivors, 15 months after SARS-CoV-2 infection, were recruited. Pro-inflammatory cytokines were analyzed in both plasma and EVs. A deep-immunophenotyping of monocytes, T-cells and dendritic cells (DCs) was performed, along with immunostainings of SARS-CoV-2 in the colon. Results Higher concentrations of pro-inflammatory cytokines and neurofilaments were found in EVs but not in plasma from COVID-19 survivors. Additionally, COVID-19 participants exhibited altered monocyte activation markers and elevated cytokine production upon lipopolysaccharide stimulation. Increased activation markers in CD4+ T-cells and decreased indoleamine 2,3-dioxygenase expression in DCs were observed in COVID-19 participants. Furthermore, the amount of plasmacytoid DCs expressing β7-integrin were higher in COVID-19, potentially associated with the viral persistence observed in the colon. Conclusions COVID-19 survivors exhibit long-term immune dysregulation and neurodegeneration, emphasizing the need for ongoing monitoring of PASC. The cargo of EVs can be a promising tool for early detection of virus-induced neurological disorders.
Collapse
Affiliation(s)
- Sara Bachiller
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Joana Vitallé
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Lluís Camprubí-Ferrer
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Manuel García
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Isabel Gallego
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | | | | | | | - Inmaculada Rivas-Jeremías
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | | | - Carmen Gasca-Capote
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Cristina Moral-Turón
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | | | - María Fontillón
- Service of Pathological Anatomy, Virgen del Rocío University Hospital, Seville, Spain
| | - Salvador Sobrino
- Digestive Service, Virgen del Rocío University Hospital, Seville, Spain
| | - José Miguel Cisneros
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Luis Fernando López-Cortés
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Ezequiel Ruiz-Mateos
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| |
Collapse
|
3
|
Bolotova EV, Zabolotskaya TY, Dudnikova AV, Frolova TI, Tarina ED. [The effectiveness of Cytoflavin in the medical rehabilitation of elderly and senile patients]. TERAPEVT ARKH 2024; 96:1063-1068. [PMID: 39731767 DOI: 10.26442/00403660.2024.11.203034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Indexed: 12/30/2024]
Abstract
AIM Study the effectiveness of Cytoflavin in the medical rehabilitation of elderly and senile patients after pneumonia associated with a new coronavirus infection (COVID-19) at the outpatient stage. MATERIALS AND METHODS A prospective observational randomized study involving 66 patients (45 women and 21 men, average age 66.5±5.1 years) undergoing outpatient medical rehabilitation after pneumonia associated with COVID-19, divided into 2 groups, comparable in age and gender. A standardized comprehensive rehabilitation program was conducted in both groups. Patients of the main group were additionally prescribed Cytoflavin according to the standard regimen. Testing was carried out on scales reflecting the physical condition, degree of asthenization, psycho-emotional and cognitive status (Borg scale, 6-minute walk test, SHAS-scale, Multidimensional Fatigue Inventory, Mini-mental State Examination, Hospital Anxiety and Depression Scale) upon admission to outpatient treatment and upon discharge. RESULTS Against the background of Cytoflavin therapy, positive dynamics was observed in patients of the main group in the form of a decrease in the values of SHAS-scale (86.5 [7.3] vs 56.3 [7.2]; p=0.00001), Multidimensional Fatigue Inventory (68.6 [14.7] vs 43.6 [12.8]; p=0.025); improvements in TSH (383.3 m [48.2] vs 550 m [32.5]; p=0.0248) and the Borg scale 4.5 [1.32] vs 2.2 [0.52]; p=0.038); the severity of cognitive impairment on the Mini-Mental State Examination decreased (26.05 [1.3] vs 28.47 [0.86]; p=0.0001); the emotional background improved - a decrease in the level of anxiety (10.7 [1.25] vs 5.6 [0.81]; p=0.0001) and depression (11.8 [1.48] vs 7.0 [1.24]; p=0.0001). CONCLUSION The standard course of Cytoflavin therapy in the medical rehabilitation of elderly and senile patients after pneumonia associated with COVID-19 significantly reduces the severity of cognitive impairment, fatigue and depressive disorders, improves indicators of the emotional and volitional sphere, increases exercise tolerance.
Collapse
Affiliation(s)
| | - T Y Zabolotskaya
- Kuban State Medical University
- Scientific Research Institute - Ochapovsky Regional Clinic Hospital
| | | | | | - E D Tarina
- Scientific Research Institute - Ochapovsky Regional Clinic Hospital
| |
Collapse
|
4
|
Devarakonda SS, Basha S, Pithakumar A, L B T, Mukunda DC, Rodrigues J, K A, Biswas S, Pai AR, Belurkar S, Mahato KK. Molecular mechanisms of neurofilament alterations and its application in assessing neurodegenerative disorders. Ageing Res Rev 2024; 102:102566. [PMID: 39481763 DOI: 10.1016/j.arr.2024.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Neurofilaments are intermediate filaments present in neurons. These provide structural support and maintain the size and shape of the neurons. Dysregulation, mutation, and aggregation of neurofilaments raise the levels of these proteins in the blood and cerebrospinal fluid (CSF), which are characteristic features of axonal damage and certain rare neurological diseases, such as Giant Axonal Neuropathy and Charcot-Mare-Tooth disease. Understanding the structure, dynamics, and function of neurofilaments has been greatly enhanced by a diverse range of biochemical and preclinical investigations conducted over more than four decades. Recently, there has been a resurgence of interest in post-translational modifications of neurofilaments, such as phosphorylation, aggregation, mutation, oxidation, etc. Over the past twenty years, several rare disorders have been studied from structural alterations of neurofilaments. These disorders are monitored by fluid biomarkers such as neurofilament light chains. Currently, there are many tools, such as Enzyme-Linked Immunosorbent Assay, Electrochemiluminescence Assay, Single-Molecule Array, Western/immunoblotting, etc., in use to assess the neurofilament proteins in Blood and CSF. However, all these techniques utilize expensive, non-specific, or antibody-based methods, which make them unsuitable for routine screening of neurodegenerative disorders. This provides room to search for newer sensitive, cost-effective, point-of-care tools for rapid screening of the disease. For a long time, the molecular mechanisms of neurofilaments have been poorly understood due to insufficient research attempts, and a deeper understanding of them remains elusive. Therefore, this review aims to highlight the available literature on molecular mechanisms of neurofilaments and the function of neurofilaments in axonal transport, axonal conduction, axonal growth, and neurofilament aggregation, respectively. Further, this review discusses the role of neurofilaments as potential biomarkers for the identification of several neurodegenerative diseases in clinical laboratory practice.
Collapse
Affiliation(s)
| | - Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Anjana Pithakumar
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Thoshna L B
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | | | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Ameera K
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Shimul Biswas
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Aparna Ramakrishna Pai
- Department of Neurology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Sushma Belurkar
- Department of Pathology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India.
| |
Collapse
|
5
|
Calcagno A, Cusato J, Cinque P, Marchetti G, Bernasconi D, Trunfio M, Bruzzesi E, Rusconi S, Gabrieli A, Muscatello A, Antinori A, Ripamonti D, Gulminetti R, Antonucci M, Nozza S. Serum and CSF biomarkers in asymptomatic patients during primary HIV infection: a randomized study. Brain 2024; 147:3742-3750. [PMID: 39171829 PMCID: PMC11907231 DOI: 10.1093/brain/awae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/29/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
It is debated whether CNS involvement begins during acute human immunodeficiency virus (HIV) infection in persons without meningitis/encephalitis and whether specific antiretroviral drugs or combinations would be beneficial. Neurologically asymptomatic participants enrolled in a randomized and controlled study comparing three combination antiretroviral regimens (tenofovir alafenamide/emtricitabine plus dolutegravir; darunavir; or both) during primary HIV infection were enrolled. Serum and CSF were collected at baseline and at 12 and 48 (serum only) weeks after treatment initiation. Single molecule array was used to measure neurofilament light chain (NFL), total tau protein (Tau), brain-derived neurotrophic factor, glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase. We assessed the longitudinal change in biomarkers over time, in addition to the change in the prevalence of serum NFL concentrations above previously published age-adjusted cut-offs (7 pg/ml if 5-18 years, 10 pg/ml if 18-51 years, 15 pg/ml if 51-61 years, 20 pg/ml if 61-70 years and 35 pg/ml if >70 years). Serum was available from 47 participants at all time points, and CSF was available from 13 participants at baseline and 7 at Week 12. We observed a significant direct serum-to-CSF correlation for NFL (ρ = 0.692, P = 0.009), GFAP (ρ = 0.659, P = 0.014) and brain-derived neurotrophic factor (ρ = 0.587, P = 0.045). Serum (ρ = 0.560, P = 0.046) and CSF NFL (ρ = 0.582, P = 0.037) concentrations were directly associated with CSF HIV RNA levels. We observed a significant decrease over time in serum NFL (P = 0.006) and GFAP (P = 0.006) but not in the other biomarkers. No significant difference was observed among the treatment arms. At baseline, serum and CSF age-adjusted NFL levels were above age-adjusted cut-offs in 23 (48.9%) and four participants (30.8%), respectively; considering serum NFL, this proportion was lower at Weeks 12 (31.9%, P = 0.057) and 48 (27.7%, P = 0.13). A relevant proportion of neurologically asymptomatic participants had abnormal CSF and serum NFL levels during primary HIV infection. NFL and GFAP decreased in serum following combination antiretroviral therapy without significant differences among the treatment arms.
Collapse
Affiliation(s)
- Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, 10149 Turin, Italy
| | - Jessica Cusato
- Laboratory of Clinical Pharmacology and Pharmacogenetics, University of Turin, 10149 Turin, Italy
| | - Paola Cinque
- Infectious Diseases Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, 20142 Milan, Italy
- School of Medicine and Surgery, University of Milan, 20122 Milan, Italy
| | - Davide Bernasconi
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre - B4 School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Department of Clinical Research and Innovation, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Mattia Trunfio
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, 10149 Turin, Italy
- HIV Neurobehavioral Research Program, Department of Psychiatry, University of California, UCSD, La Jolla, CA 92093-0021, USA
| | - Elena Bruzzesi
- Infectious Diseases Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Stefano Rusconi
- School of Medicine and Surgery, University of Milan, 20122 Milan, Italy
- SC Malattie Infettive, Ospedale di Legnano, ASST Ovest Milanese, 20025 Legnano, Italy
| | - Arianna Gabrieli
- Dipartimento di Scienze Biomediche e Cliniche (DIBIC), 20157 Milan, Italy
| | - Antonio Muscatello
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Andrea Antinori
- Clinical Infectious Diseases Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy
| | - Diego Ripamonti
- Infectious Disease Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Roberto Gulminetti
- Division of Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Miriam Antonucci
- SCDU Infectious Diseases, Amedeo di Savoia Hospital, ASL Città di Torino, 10149 Turin, Italy
| | - Silvia Nozza
- Infectious Diseases Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| |
Collapse
|
6
|
Gutman EG, Salvio AL, Fernandes RA, Duarte LA, Raposo-Vedovi JV, Alcaraz HF, Teixeira MA, Passos GF, de Medeiros KQM, Hammerle MB, Pires KL, Vasconcelos CCF, Leon LAA, Figueiredo CP, Alves-Leon SV. Long COVID: plasma levels of neurofilament light chain in mild COVID-19 patients with neurocognitive symptoms. Mol Psychiatry 2024; 29:3106-3116. [PMID: 38678084 PMCID: PMC11449780 DOI: 10.1038/s41380-024-02554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024]
Abstract
It is well known the potential of severe acute respiratory coronavirus type 2 (SARS-CoV-2) infection to induce post-acute sequelae, a condition called Long COVID. This syndrome includes several symptoms, but the central nervous system (CNS) main one is neurocognitive dysfunction. Recently it has been demonstrated the relevance of plasma levels of neurofilament light chain (pNfL), as a biomarker of early involvement of the CNS in COVID-19. The aim of this study was to investigate the relationship between pNfL in patients with post-acute neurocognitive symptoms and the potential of NfL as a prognostic biomarker in these cases. A group of 63 long COVID patients ranging from 18 to 59 years-old were evaluated, submitted to a neurocognitive battery assessment, and subdivided in different groups, according to results. Plasma samples were collected during the long COVID assessment and used for measurement of pNfL with the Single molecule array (SIMOA) assays. Levels of pNfL were significantly higher in long COVID patients with neurocognitive symptoms when compared to HC (p = 0.0031). Long COVID patients with cognitive impairment and fatigue symptoms presented higher pNfL levels when compared to long COVID patients without these symptoms, individually and combined (p = 0.0263, p = 0.0480, and 0.0142, respectively). Correlation analysis showed that levels of cognitive lost and exacerbation of fatigue in the neurocognitive evaluation had a significative correlation with higher pNfL levels (p = 0.0219 and 0.0255, respectively). Previous reports suggested that pNfL levels are related with higher risk of severity and predict lethality of COVID-19. Our findings demonstrate that SARS-CoV-2 infection seems to have a long-term impact on the brain, even in patients who presented mild acute disease. NfL measurements might be useful to identify CNS involvement in long COVID associated with neurocognitive symptoms and to identify who will need continuous monitoring and treatment support.
Collapse
Affiliation(s)
- Elisa Gouvea Gutman
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, RJ, ZIP CODE 20211-040, Brazil
- Clinical Medicine post-graduation program, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Andreza Lemos Salvio
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, RJ, ZIP CODE 20211-040, Brazil
| | - Renan Amphilophio Fernandes
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, RJ, ZIP CODE 20211-040, Brazil
| | - Larissa Araujo Duarte
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, RJ, ZIP CODE 20211-040, Brazil
- Clinical Medicine post-graduation program, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jessica Vasques Raposo-Vedovi
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, RJ, ZIP CODE 20211-040, Brazil
| | - Helena França Alcaraz
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, RJ, ZIP CODE 20211-040, Brazil
| | - Milene Ataíde Teixeira
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, RJ, ZIP CODE 20211-040, Brazil
| | | | | | - Mariana Beiral Hammerle
- Division of Neurology, Gaffrée and Guinle University Hospital, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, RJ, Brazil
| | - Karina Lebeis Pires
- Division of Neurology, Gaffrée and Guinle University Hospital, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, RJ, Brazil
| | | | | | | | - Soniza Vieira Alves-Leon
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, RJ, ZIP CODE 20211-040, Brazil.
- Department of Neurology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
7
|
Kammeyer R, Chapman K, Furniss A, Hsieh E, Fuhlbrigge R, Ogbu EA, Boackle S, Zell J, Nair KV, Borko TL, Cooper JC, Bennett JL, Piquet AL. Blood-based biomarkers of neuronal and glial injury in active major neuropsychiatric systemic lupus erythematosus. Lupus 2024; 33:1116-1129. [PMID: 39148457 PMCID: PMC11405133 DOI: 10.1177/09612033241272961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
BACKGROUND Neuropsychiatric systemic lupus erythematosus (NPSLE) is a poorly understood and heterogeneous manifestation of SLE. Common major NPSLE syndromes include strokes, seizures, myelitis, and aseptic meningitis. Easily obtainable biomarkers are needed to assist in early diagnosis and improve outcomes for NPSLE. A frequent end-result of major syndromes is neuronal or glial injury. Blood-based neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) have been utilized as markers for monitoring disease activity and/or severity in other neurodegenerative and neuroinflammatory diseases; however, they have not been evaluated in active major NPSLE. METHODS This was a case-control study. We enrolled patients aged 12-60 years with active major NPSLE, SLE without active major NPSLE, and healthy controls. Active NPSLE was defined as being <6 months from last new or worsening neuropsychiatric symptom. Demographics, clinical data, and serum or plasma biosamples were collected. RESULTS Thirteen patients with active major NPSLE, 13 age/sex/kidney function matched SLE controls without active major NPSLE, and 13 age/sex matched healthy controls (mean ages 26.8, 27.3, 26.6 years) were included. 92% of each group were female. Major syndromes included stroke (5), autonomic disorder (3), demyelinating disease (2), aseptic meningitis (2), sensorimotor polyneuropathy (2), cranial neuropathy (1), seizures (1), and myelopathy (2). Mean (standard deviation) blood NfL and GFAP were 3.6 pg/ml (2.0) and 50.4 pg/ml (15.0), respectively, for the healthy controls. Compared to healthy controls, SLE without active major NPSLE had mean blood NfL and GFAP levels 1.3 pg/ml (p = .42) and 1.2 pg/ml higher (p = .53), respectively. Blood NfL was on average 17.9 pg/ml higher (95% CI: 9.2, 34.5; p < .001) and blood GFAP was on average 3.2 pg/ml higher (95% CI: 1.9, 5.5; p < .001) for cases of active major NPSLE compared to SLE without active major NPSLE. In a subset of 6 patients sampled at multiple time points, blood NfL and GFAP decreased after immunotherapy. CONCLUSIONS Blood NfL and GFAP levels are elevated in persons with SLE with active major NPSLE compared to disease matched controls and may lower after immunotherapy initiation. Larger and longitudinal studies are needed to ascertain their utility in a clinical setting.
Collapse
Affiliation(s)
- Ryan Kammeyer
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kimberly Chapman
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anna Furniss
- Adult and Child Center for Outcomes Research and Delivery Science (ACCORDS), University of Colorado School of Medicine, Aurora, CO, USA
| | - Elena Hsieh
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Robert Fuhlbrigge
- Department of Pediatrics-Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ekemini A Ogbu
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - JoAnn Zell
- Department of Medicine-Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kavita V Nair
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Tyler L Borko
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jennifer C Cooper
- Department of Pediatrics-Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jeffrey L Bennett
- Departments of Neurology and Ophthalmology, Programs in Neuroscience and Immunology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Amanda L Piquet
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
8
|
Salvio AL, Fernandes RA, Ferreira HFA, Duarte LA, Gutman EG, Raposo-Vedovi JV, Filho CHFR, da Costa Nunes Pimentel Coelho WL, Passos GF, Andraus MEC, da Costa Gonçalves JP, Cavalcanti MG, Amaro MP, Kader R, de Andrade Medronho R, Figueiredo CP, Amado-Leon LA, Alves-Leon SV. High Levels of NfL, GFAP, TAU, and UCH-L1 as Potential Predictor Biomarkers of Severity and Lethality in Acute COVID-19. Mol Neurobiol 2024; 61:3545-3558. [PMID: 37996731 PMCID: PMC11087339 DOI: 10.1007/s12035-023-03803-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Few studies showed that neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), total tubulin-associated unit (TAU), and ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1) may be related to neurological manifestations and severity during and after SARS-CoV-2 infection. The objective of this work was to investigate the relationship among nervous system biomarkers (NfL, TAU, GFAP, and UCH-L1), biochemical parameters, and viral loads with heterogeneous outcomes in a cohort of severe COVID-19 patients admitted in Intensive Care Unit (ICU) of a university hospital. For that, 108 subjects were recruited within the first 5 days at ICU. In parallel, 16 mild COVID-19 patients were enrolled. Severe COVID-19 group was divided between "deceased" and "survivor." All subjects were positive for SARS-CoV-2 detection. NfL, total TAU, GFAP, and UCH-L1 quantification in plasma was performed using SIMOA SR-X platform. Of 108 severe patients, 36 (33.33%) presented neurological manifestation and 41 (37.96%) died. All four biomarkers - GFAP, NfL, TAU, and UCH-L1 - were significantly higher among deceased patients in comparison to survivors (p < 0.05). Analyzing biochemical biomarkers, higher Peak Serum Ferritin, D-Dimer Peak, Gamma-glutamyltransferase, and C-Reactive Protein levels were related to death (p < 0.0001). In multivariate analysis, GFAP, NfL, TAU, UCH-L1, and Peak Serum Ferritin levels were correlated to death. Regarding SARS-CoV-2 viral load, no statistical difference was observed for any group. Thus, Ferritin, NFL, GFAP, TAU, and UCH-L1 are early biomarkers of severity and lethality of SARS-COV-2 infection and may be important tools for therapeutic decision-making in the acute phase of disease.
Collapse
Affiliation(s)
- Andreza Lemos Salvio
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, 22290-240, Brazil
| | - Renan Amphilophio Fernandes
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, 22290-240, Brazil
| | - Helena França Alcaraz Ferreira
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, 22290-240, Brazil
| | - Larissa Araujo Duarte
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, 22290-240, Brazil
| | - Elisa Gouvea Gutman
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, 22290-240, Brazil
| | - Jessica Vasques Raposo-Vedovi
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, 22290-240, Brazil
| | | | | | | | - Maria Emília Cosenza Andraus
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - João Paulo da Costa Gonçalves
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, 22290-240, Brazil
| | - Marta Guimarães Cavalcanti
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
- Epidemiology and Evaluation Service, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Marisa Pimentel Amaro
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
- School of Medicine, Post-Graduate Program in Infectious and Parasitic Diseases, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Rafael Kader
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
- School of Medicine, Post-Graduate Program in Infectious and Parasitic Diseases, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Roberto de Andrade Medronho
- Epidemiology and Evaluation Service, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | | | - Luciane Almeida Amado-Leon
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil.
| | - Soniza Vieira Alves-Leon
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, 22290-240, Brazil.
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil.
| |
Collapse
|
9
|
Boesl F, Goereci Y, Schweitzer F, Finke C, Schild AK, Bittner S, Steffen F, Schröder M, Quitschau A, Heine J, Warnke C, Franke C. Cognitive decline in post-COVID-19 syndrome does not correspond with persisting neuronal or astrocytic damage. Sci Rep 2024; 14:5326. [PMID: 38438479 PMCID: PMC10912552 DOI: 10.1038/s41598-024-55881-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/27/2024] [Indexed: 03/06/2024] Open
Abstract
Cognitive impairment is the most frequent symptom reported in post-COVID-19 syndrome (PCS). Aetiology of cognitive impairment in PCS is still to be determined. Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) are increased in acute COVID-19. Their role as biomarkers in other neurological disorders is under debate. We analysed serum levels of NfL and GFAP as markers for neuronal and astrocytic damage in 53 patients presenting to a PCS Neurology outpatient clinic. Only individuals with self-reported cognitive complaints were included. In these individuals, cognitive complaints were further assessed by comprehensive neuropsychological assessment (NPA). Patients were categorized into subgroups of subjective cognitive decline, single domain impairment, or multi-domain impairment. Serum NfL was in normal range, however an increase of serum GFAP was detected in 4% of patients. Serum NfL and GFAP levels correlated with each other, even when adjusting for patient age (r = 0.347, p = 0.012). NPA showed deficits in 70%; 40% showing impairment in several tested domains. No significant differences were found between serum NfL- and GFAP-levels comparing patients with subjective cognitive decline, single domain impairment, or multi-domain impairment. Persistent neuronal or astrocytic damage did not correlate with cognitive impairment in PCS.
Collapse
Affiliation(s)
- Fabian Boesl
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Yasemin Goereci
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Finja Schweitzer
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carsten Finke
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Ann-Katrin Schild
- Department of Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Rhine-Main Neuroscience Network (rmn2), Mainz, Germany
| | - Falk Steffen
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Rhine-Main Neuroscience Network (rmn2), Mainz, Germany
| | - Maria Schröder
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Anneke Quitschau
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Josephine Heine
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Clemens Warnke
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christiana Franke
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| |
Collapse
|
10
|
Wang M, Wang J, Ren Y, Lu L, Xiong W, Li L, Xu S, Tang M, Yuan Y, Xie Y, Li W, Chen L, Zhou D, Ying B, Li J. Current clinical findings of acute neurological syndromes after SARS-CoV-2 infection. MedComm (Beijing) 2024; 5:e508. [PMID: 38463395 PMCID: PMC10924641 DOI: 10.1002/mco2.508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 03/12/2024] Open
Abstract
Neuro-COVID, a condition marked by persistent symptoms post-COVID-19 infection, notably affects various organs, with a particular focus on the central nervous system (CNS). Despite scant evidence of SARS-CoV-2 invasion in the CNS, the increasing incidence of Neuro-COVID cases indicates the onset of acute neurological symptoms early in infection. The Omicron variant, distinguished by heightened neurotropism, penetrates the CNS via the olfactory bulb. This direct invasion induces inflammation and neuronal damage, emphasizing the need for vigilance regarding potential neurological complications. Our multicenter study represents a groundbreaking revelation, documenting the definite presence of SARS-CoV-2 in the cerebrospinal fluid (CSF) of a significant proportion of Neuro-COVID patients. Furthermore, notable differences emerged between RNA-CSF-positive and negative patients, encompassing aspects such as blood-brain barrier integrity, extent of neuronal damage, and the activation status of inflammation. Despite inherent limitations, this research provides pivotal insights into the intricate interplay between SARS-CoV-2 and the CNS, underscoring the necessity for ongoing research to fully comprehend the virus's enduring effects on the CNS. The findings underscore the urgency of continuous investigation Neuro-COVID to unravel the complexities of this relationship, and pivotal in addressing the long-term consequences of COVID-19 on neurological health.
Collapse
Affiliation(s)
- Minjin Wang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Department of Laboratory MedicineWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐inspired TechnologyWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Jierui Wang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐inspired TechnologyWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Yan Ren
- Department of Laboratory MedicineWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Lu Lu
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐inspired TechnologyWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Weixi Xiong
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐inspired TechnologyWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Lifeng Li
- Genskey Medical biotechnology Company LimitedBeijingChina
| | - Songtao Xu
- National Institute for Viral Disease Control and PreventionChinese Center for Disease Control and PreventionBeijingChina
| | - Meng Tang
- Department of Laboratory MedicineWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Yushang Yuan
- Department of Laboratory MedicineWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Yi Xie
- Department of Laboratory MedicineWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Weimin Li
- Department of Respiratory and Critical Care MedicineWest China HospitalSichuan UniversityChengduSichuanChina
| | - Lei Chen
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐inspired TechnologyWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Dong Zhou
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐inspired TechnologyWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Binwu Ying
- Department of Laboratory MedicineWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Jinmei Li
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐inspired TechnologyWest China Hospital of Sichuan UniversityChengduSichuanChina
| |
Collapse
|
11
|
Duindam HB, Mengel D, Kox M, Göpfert JC, Kessels RPC, Synofzik M, Pickkers P, Abdo WF. Systemic inflammation relates to neuroaxonal damage associated with long-term cognitive dysfunction in COVID-19 patients. Brain Behav Immun 2024; 117:510-520. [PMID: 38336025 DOI: 10.1016/j.bbi.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/23/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Cognitive deficits are increasingly recognized as a long-term sequela of severe COVID-19. The underlying processes and molecular signatures associated with these long-term neurological sequalae of COVID-19 remain largely unclear, but may be related to systemic inflammation-induced effects on the brain. We studied the systemic inflammation-brain interplay and its relation to development of long-term cognitive impairment in patients who survived severe COVID-19. Trajectories of systemic inflammation and neuroaxonal damage blood biomarkers during ICU admission were analyzed and related to long-term cognitive outcomes. METHODS Prospective longitudinal cohort study of patients with severe COVID-19 surviving ICU admission. During admission, blood was sampled consecutively to assess levels of inflammatory cytokines and neurofilament light chain (NfL) using an ultrasensitive multiplex Luminex assay and single molecule array technique (Simoa). Cognitive functioning was evaluated using a comprehensive neuropsychological assessment six months after ICU-discharge. RESULTS Ninety-six patients (median [IQR] age 61 [55-69] years) were enrolled from March 2020 to June 2021 and divided into two cohorts: those who received no COVID-19-related immunotherapy (n = 28) and those treated with either dexamethasone or dexamethasone and tocilizumab (n = 68). Plasma NfL concentrations increased in 95 % of patients during their ICU stay, from median [IQR] 23 [18-38] pg/mL at admission to 250 [160-271] pg/mL after 28 days, p < 0.001. Besides age, glomerular filtration rate, immunomodulatory treatment, and C-reactive protein, more specific markers of systemic inflammation at day 14 (i.e., interleukin (IL)-8, tumour necrosis factor, and IL-1 receptor antagonist) were significant predictors of blood NfL levels at day 14 of ICU admission (R2 = 44 %, p < 0.001), illustrating the association between sustained systemic inflammation and neuroaxonal damage. Twenty-six patients (27 %) exhibited cognitive impairment six months after discharge from the ICU. NfL concentrations showed a more pronounced increase in patients that developed cognitive impairment (p = 0.03). Higher NfL predicted poorer outcome in information processing speed (Trail Making Test A, r = -0.26, p = 0.01; Letter Digit Substitution Test, r = -0.24, p = 0.02). DISCUSSION Prolonged systemic inflammation in critically ill COVID-19 patients is related to neuroaxonal damage and subsequent long-term cognitive impairment. Moreover, our findings suggest that plasma NfL concentrations during ICU stay may possess prognostic value in predicting future long-term cognitive impairment in patients that survived severe COVID-19.
Collapse
Affiliation(s)
- H B Duindam
- Radboud University Medical Center, Department of Intensive Care Medicine, Nijmegen, the Netherlands
| | - D Mengel
- Center for Neurology and Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - M Kox
- Radboud University Medical Center, Department of Intensive Care Medicine, Nijmegen, the Netherlands
| | - J C Göpfert
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - R P C Kessels
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands; Radboud University Medical Center, Department of Medical Psychology and Radboudumc Alzheimer Center, Nijmegen, the Netherlands; Vincent van Gogh Institute for Psychiatry, Venray, the Netherlands
| | - M Synofzik
- Center for Neurology and Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - P Pickkers
- Radboud University Medical Center, Department of Intensive Care Medicine, Nijmegen, the Netherlands
| | - W F Abdo
- Radboud University Medical Center, Department of Intensive Care Medicine, Nijmegen, the Netherlands.
| |
Collapse
|
12
|
Irwin KE, Sheth U, Wong PC, Gendron TF. Fluid biomarkers for amyotrophic lateral sclerosis: a review. Mol Neurodegener 2024; 19:9. [PMID: 38267984 PMCID: PMC10809579 DOI: 10.1186/s13024-023-00685-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/21/2023] [Indexed: 01/26/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of upper and lower motor neurons. Presently, three FDA-approved drugs are available to help slow functional decline for patients with ALS, but no cure yet exists. With an average life expectancy of only two to five years after diagnosis, there is a clear need for biomarkers to improve the care of patients with ALS and to expedite ALS treatment development. Here, we provide a review of the efforts made towards identifying diagnostic, prognostic, susceptibility/risk, and response fluid biomarkers with the intent to facilitate a more rapid and accurate ALS diagnosis, to better predict prognosis, to improve clinical trial design, and to inform interpretation of clinical trial results. Over the course of 20 + years, several promising fluid biomarker candidates for ALS have emerged. These will be discussed, as will the exciting new strategies being explored for ALS biomarker discovery and development.
Collapse
Affiliation(s)
- Katherine E Irwin
- Department of Pathology, Johns Hopkins Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins Medicine, Baltimore, MD, 21205, USA
| | - Udit Sheth
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Philip C Wong
- Department of Pathology, Johns Hopkins Medicine, Baltimore, MD, 21205, USA.
- Department of Neuroscience, Johns Hopkins Medicine, Baltimore, MD, 21205, USA.
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
13
|
Domingues KZA, Cobre AF, Lazo REL, Amaral LS, Ferreira LM, Tonin FS, Pontarolo R. Systematic review and evidence gap mapping of biomarkers associated with neurological manifestations in patients with COVID-19. J Neurol 2024; 271:1-23. [PMID: 38015300 DOI: 10.1007/s00415-023-12090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/29/2023]
Abstract
OBJECTIVE This study aimed to synthesize the existing evidence on biomarkers related to coronavirus disease 2019 (COVID-19) patients who presented neurological events. METHODS A systematic review of observational studies (any design) following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines and the Cochrane Collaboration recommendations was performed (PROSPERO: CRD42021266995). Searches were conducted in PubMed and Scopus (updated April 2023). The methodological quality of nonrandomized studies was assessed using the Newcastle‒Ottawa Scale (NOS). An evidence gap map was built considering the reported biomarkers and NOS results. RESULTS Nine specific markers of glial activation and neuronal injury were mapped from 35 studies published between 2020 and 2023. A total of 2,237 adult patients were evaluated in the included studies, especially during the acute phase of COVID-19. Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) biomarkers were the most frequently assessed (n = 27 studies, 77%, and n = 14 studies, 40%, respectively). Although these biomarkers were found to be correlated with disease severity and worse outcomes in the acute phase in several studies (p < 0.05), they were not necessarily associated with neurological events. Overall, 12 studies (34%) were judged as having low methodological quality, 9 (26%) had moderate quality, and 9 (26%) had high quality. CONCLUSIONS Different neurological biomarkers in neurosymptomatic COVID-19 patients were identified in observational studies. Although the evidence is still scarce and conflicting for some biomarkers, well-designed longitudinal studies should further explore the pathophysiological role of NfL, GFAP, and tau protein and their potential use for COVID-19 diagnosis and management.
Collapse
Affiliation(s)
- K Z A Domingues
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, PR, 80210-170, Brazil
| | - A F Cobre
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, PR, 80210-170, Brazil
| | - R E L Lazo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, PR, 80210-170, Brazil
| | - L S Amaral
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, PR, 80210-170, Brazil
| | - L M Ferreira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, PR, 80210-170, Brazil
| | - F S Tonin
- H&TRC- Health & Technology Research Center, ESTeSL, Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096, Lisbon, Portugal
| | - R Pontarolo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, PR, 80210-170, Brazil.
| |
Collapse
|
14
|
Rasmi Y, Shokati A, Hatamkhani S, Farnamian Y, Naderi R, Jalali L. Assessment of the relationship between the dopaminergic pathway and severe acute respiratory syndrome coronavirus 2 infection, with related neuropathological features, and potential therapeutic approaches in COVID-19 infection. Rev Med Virol 2024; 34:e2506. [PMID: 38282395 DOI: 10.1002/rmv.2506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 07/06/2023] [Accepted: 12/17/2023] [Indexed: 01/30/2024]
Abstract
Dopamine is a known catecholamine neurotransmitter involved in several physiological processes, including motor control, motivation, reward, cognition, and immune function. Dopamine receptors are widely distributed throughout the nervous system and in immune cells. Several viruses, including human immunodeficiency virus and Japanese encephalitis virus, can use dopaminergic receptors to replicate in the nervous system and are involved in viral neuropathogenesis. In addition, studies suggest that dopaminergic receptors may play a role in the progression and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. When SARS-CoV-2 binds to angiotensin-converting enzyme 2 receptors on the surface of neuronal cells, the spike protein of the virus can bind to dopaminergic receptors on neighbouring cells to accelerate its life cycle and exacerbate neurological symptoms. In addition, recent research has shown that dopamine is an important regulator of the immune-neuroendocrine system. Most immune cells express dopamine receptors and other dopamine-related proteins, indicating the importance of dopaminergic immune regulation. The increase in dopamine concentration during SARS-CoV2 infection may reduce immunity (innate and adaptive) that promotes viral spread, which could lead to neuronal damage. In addition, dopaminergic signalling in the nervous system may be affected by SARS-CoV-2 infection. COVID -19 can cause various neurological symptoms as it interacts with the immune system. One possible treatment strategy for COVID -19 patients could be the use of dopamine antagonists. To fully understand how to protect the neurological system and immune cells from the virus, we need to study the pathophysiology of the dopamine system in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yousef Rasmi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ameneh Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shima Hatamkhani
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Yeganeh Farnamian
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ladan Jalali
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
15
|
Taquet M, Skorniewska Z, Zetterberg H, Geddes JR, Mummery CJ, Chalmers JD, Ho LP, Horsley A, Marks M, Poinasamy K, Raman B, Leavy OC, Richardson M, Elneima O, McAuley HJC, Shikotra A, Singapuri A, Sereno M, Saunders RM, Harris VC, Houchen-Wolloff L, Mansoori P, Greening NJ, Harrison EM, Docherty AB, Lone NI, Quint J, Greenhalf W, Wain LV, Brightling CE, Evans RE, Harrison PJ, Koychev I. Post-acute COVID-19 neuropsychiatric symptoms are not associated with ongoing nervous system injury. Brain Commun 2023; 6:fcad357. [PMID: 38229877 PMCID: PMC10789589 DOI: 10.1093/braincomms/fcad357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 10/23/2023] [Accepted: 12/23/2023] [Indexed: 01/18/2024] Open
Abstract
A proportion of patients infected with severe acute respiratory syndrome coronavirus 2 experience a range of neuropsychiatric symptoms months after infection, including cognitive deficits, depression and anxiety. The mechanisms underpinning such symptoms remain elusive. Recent research has demonstrated that nervous system injury can occur during COVID-19. Whether ongoing neural injury in the months after COVID-19 accounts for the ongoing or emergent neuropsychiatric symptoms is unclear. Within a large prospective cohort study of adult survivors who were hospitalized for severe acute respiratory syndrome coronavirus 2 infection, we analysed plasma markers of nervous system injury and astrocytic activation, measured 6 months post-infection: neurofilament light, glial fibrillary acidic protein and total tau protein. We assessed whether these markers were associated with the severity of the acute COVID-19 illness and with post-acute neuropsychiatric symptoms (as measured by the Patient Health Questionnaire for depression, the General Anxiety Disorder assessment for anxiety, the Montreal Cognitive Assessment for objective cognitive deficit and the cognitive items of the Patient Symptom Questionnaire for subjective cognitive deficit) at 6 months and 1 year post-hospital discharge from COVID-19. No robust associations were found between markers of nervous system injury and severity of acute COVID-19 (except for an association of small effect size between duration of admission and neurofilament light) nor with post-acute neuropsychiatric symptoms. These results suggest that ongoing neuropsychiatric symptoms are not due to ongoing neural injury.
Collapse
Affiliation(s)
- Maxime Taquet
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Oxford OX3 7JX, UK
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal 413 90, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 413 90, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London WC1N 3BG, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - John R Geddes
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Oxford OX3 7JX, UK
| | - Catherine J Mummery
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
| | - James D Chalmers
- University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Ling-Pei Ho
- MRC Human Immunology Unit, University of Oxford, Oxford OX3 9DS, UK
| | - Alex Horsley
- Division of Infection, Immunity & Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Michael Marks
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
- Hospital for Tropical Diseases, University College London Hospital, London WC1E 6JD, UK
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | | | - Betty Raman
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Olivia C Leavy
- Department of Population Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Matthew Richardson
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE3 9QP, UK
| | - Omer Elneima
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE3 9QP, UK
| | - Hamish J C McAuley
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE3 9QP, UK
| | - Aarti Shikotra
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE5 4PW, UK
| | - Amisha Singapuri
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE3 9QP, UK
| | - Marco Sereno
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE3 9QP, UK
| | - Ruth M Saunders
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE3 9QP, UK
| | - Victoria Claire Harris
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE3 9QP, UK
- University Hospitals of Leicester NHS Trust, Leicester LE5 4PW, UK
| | - Linzy Houchen-Wolloff
- Centre for Exercise and Rehabilitation Science, NIHR Leicester Biomedical Research Centre-Respiratory, University of Leicester, Leicester LE5 4PW, UK
- Department of Respiratory Sciences, University of Leicester, Leicester LE1 9HN, UK
- Therapy Department, University Hospitals of Leicester, NHS Trust, Leicester LE5 4PW, UK
| | | | - Neil J Greening
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE3 9QP, UK
| | - Ewen M Harrison
- Centre for Medical Informatics, The Usher Institute, University of Edinburgh, Edinburgh EH16 4SS, UK
| | - Annemarie B Docherty
- Centre for Medical Informatics, The Usher Institute, University of Edinburgh, Edinburgh EH16 4SS, UK
| | - Nazir I Lone
- Usher Institute, University of Edinburgh, Edinburgh EH16 4SS, UK
- Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh EH16 4SA, UK
| | - Jennifer Quint
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - William Greenhalf
- University of Liverpool, Liverpool L69 3BX, UK
- The CRUK Liverpool Experimental Cancer Medicine Centre, Liverpool L69 3GL, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool L7 8YE, UK
| | - Louise V Wain
- Department of Population Health Sciences, University of Leicester, Leicester LE1 7RH, UK
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE3 9QP, UK
| | - Christopher E Brightling
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE3 9QP, UK
| | - Rachael E Evans
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE3 9QP, UK
- University Hospitals of Leicester NHS Trust, Leicester LE5 4PW, UK
| | - Paul J Harrison
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Oxford OX3 7JX, UK
| | - Ivan Koychev
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| |
Collapse
|
16
|
Huang Z, Haile K, Gedefaw L, Lau BWM, Jin L, Yip SP, Huang CL. Blood Biomarkers as Prognostic Indicators for Neurological Injury in COVID-19 Patients: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:15738. [PMID: 37958721 PMCID: PMC10649265 DOI: 10.3390/ijms242115738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has been linked to various neurological complications. This meta-analysis assessed the relationship between glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) levels in the blood and neurological injury in COVID-19 patients. A comprehensive search of various databases was conducted until 18 August 2023, to find studies reporting GFAP and NfL blood levels in COVID-19 patients with neurological complications. GFAP and NfL levels were estimated between COVID-19 patients and healthy controls, and meta-analyses were performed using RevMan 5.4 software for analysis. In the 21 collected studies, it was found that COVID-19 patients had significantly higher levels of pooled GFAP (SMD = 0.52; 95% CI: 0.31, 0.73; p ≤ 0.001) and NfL (SMD = 0.60; 95% CI: 0.37, 0.82; p ≤ 0.001) when compared to the healthy controls. The pooled GFAP (SMD = 0.86; 95% CI: 0.26, 1.45; p ≤ 0.01) and NfL (SMD = 0.87; 95% CI: 0.48, 1.26; p ≤ 0.001) were significantly higher in non-survivors. These findings indicate a significant association between COVID-19 severity and elevated levels of GFAP and NfL, suggesting that GFAP and NfL could serve as potential diagnostic and prognostic markers for the early detection and monitoring of COVID-19-related neurological injuries.
Collapse
Affiliation(s)
- Zhiwei Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.H.); (L.G.); (L.J.)
| | - Kassahun Haile
- Department of Medical Laboratory Science, Wolkite University, Wolkite P.O. Box 07, Ethiopia;
| | - Lealem Gedefaw
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.H.); (L.G.); (L.J.)
| | - Benson Wui-Man Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Ling Jin
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.H.); (L.G.); (L.J.)
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.H.); (L.G.); (L.J.)
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.H.); (L.G.); (L.J.)
| |
Collapse
|
17
|
Körtvelyessy P, Diekämper E, Ruprecht K, Endres M, Stubbemann P, Kurth F, Graw JA, Menk M, Kuhle J, Wohlrab F. Serum neurofilament light chain in COVID-19 and the influence of renal function. Eur J Med Res 2023; 28:389. [PMID: 37770938 PMCID: PMC10537078 DOI: 10.1186/s40001-023-01375-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023] Open
Abstract
COVID-19 is associated with various neurological symptoms. Serum neurofilament light chain (sNfL) is a robust marker for neuroaxonal injury. Recent studies have shown that elevated levels of sNfL are associated with unfavorable outcome in COVID-19 patients. However, neuroaxonal injury is rare in COVID-19, and renal dysfunction and hypoxia, both of which are known in severe COVID-19, can also increase sNfL levels. Thus, the meaning and mechanisms of sNfL elevation in COVID-19 patients remain unclear. We evaluated sNfL levels in 48 patients with COVID-19 (mean age = 63 years) and correlated them to clinical outcome, the form of oxygen therapy, and creatinine. Levels of sNfL were age adjusted and compared with normal values and z-scores. COVID-19 patients treated with nasal cannula had normal sNfL levels (mean sNfL = 19.6 pg/ml) as well as patients with high-flow treatment (mean sNfL = 40.8 pg/ml). Serum NfL levels were statistically significantly higher in COVID-19 patients treated with mechanical ventilation on intensive care unit (ICU) (mean sNfL = 195.7 pg/ml, p < 0.01). There was a strong correlation between sNfL elevation and unfavorable outcome in COVID-19 patients (p < 0.01). However, serum creatinine levels correlated directly and similarly with sNfL elevation and with unfavorable outcome in COVID-19 patients (p < 0.01). Additionally, multivariate analysis for serum creatinine and sNfL showed that both variables are jointly associated with clinical outcomes. Our results identify renal dysfunction as an important possible confounder for sNfL elevation in COVID-19. Thus, serum creatinine and renal dysfunction should be strongly considered in studies evaluating sNfL as a biomarker in COVID-19.
Collapse
Affiliation(s)
- Peter Körtvelyessy
- Department of Neurology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12200, Berlin, Germany.
- German Center for Neurodegenerative Diseases (DZNE) in Magdeburg, 39120, Magdeburg, Germany.
| | - Elena Diekämper
- German Center for Neurodegenerative Diseases (DZNE) in Magdeburg, 39120, Magdeburg, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Matthias Endres
- Department of Neurology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) in Berlin, 10117, Berlin, Germany
| | - Paula Stubbemann
- Department of Pneumology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, 13533, Berlin, Germany
| | - Florian Kurth
- Department of Pneumology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, 13533, Berlin, Germany
| | - Jan Adriaan Graw
- Department of Anaesthesiology and Operative Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, 13533, Berlin, Germany
- Department of Anesthesiology and Intensive Care Medicine, Universitätsklinikum Ulm, Ulm University, 89081, Ulm, Germany
| | - Mario Menk
- Department of Anaesthesiology and Operative Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, 13533, Berlin, Germany
| | - Jens Kuhle
- MS Center, Neurology and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University Basel, Basel, Switzerland
| | - Felix Wohlrab
- Department of Neurology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| |
Collapse
|
18
|
Wesselingh R. Prevalence, pathogenesis and spectrum of neurological symptoms in COVID-19 and post-COVID-19 syndrome: a narrative review. Med J Aust 2023; 219:230-236. [PMID: 37660309 DOI: 10.5694/mja2.52063] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 09/05/2023]
Abstract
Neurological symptoms are not uncommon during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and reflect a broad spectrum of neurological disorders of which clinicians should be aware. The underlying pathogenesis of neurological disease in coronavirus disease 2019 (COVID-19) may be due to four mechanisms of nervous system dysfunction and injury: i) direct viral neurological invasion; ii) immune dysregulation; iii) endothelial dysfunction and coagulopathy; and iv) severe systemic COVID-19 disease. Neurological manifestations of acute COVID-19 include headache, peripheral neuropathies, seizures, encephalitis, Guillain-Barré syndrome, and cerebrovascular disease. Commonly reported long term neurological sequelae of COVID-19 are cognitive dysfunction and dysautonomia, which despite being associated with severe acute disease are also seen in people with mild disease. Assessment of cognitive dysfunction after COVID-19 is confounded by a high prevalence of comorbid fatigue, anxiety, and mood disorders. However, other markers of neuroaxonal breakdown suggest no significant neuronal injury apart from during severe acute COVID-19. The long term impact of COVID-19 on neurological diseases remains uncertain and requires ongoing vigilance.
Collapse
Affiliation(s)
- Robb Wesselingh
- Monash University, Melbourne, VIC
- Alfred Hospital, Melbourne, VIC
| |
Collapse
|
19
|
Bark L, Larsson IM, Wallin E, Simrén J, Zetterberg H, Lipcsey M, Frithiof R, Rostami E, Hultström M. Central nervous system biomarkers GFAp and NfL associate with post-acute cognitive impairment and fatigue following critical COVID-19. Sci Rep 2023; 13:13144. [PMID: 37573366 PMCID: PMC10423244 DOI: 10.1038/s41598-023-39698-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 07/29/2023] [Indexed: 08/14/2023] Open
Abstract
A high proportion of patients with coronavirus disease 2019 (COVID-19) experience post-acute COVID-19, including neuropsychiatric symptoms. Objective signs of central nervous system (CNS) damage can be investigated using CNS biomarkers such as glial fibrillary acidic protein (GFAp), neurofilament light chain (NfL) and total tau (t-tau). We have examined whether CNS biomarkers can predict fatigue and cognitive impairment 3-6 months after discharge from the intensive care unit (ICU) in critically ill COVID-19 patients. Fifty-seven COVID-19 patients admitted to the ICU were included with analysis of CNS biomarkers in blood at the ICU and at follow up. Cognitive dysfunction and fatigue were assessed with the Montreal Cognitive Assessment (MoCA) and the Multidimensional Fatigue inventory (MFI-20). Elevated GFAp at follow-up 3-6 months after ICU discharge was associated to the development of mild cognitive dysfunction (p = 0.01), especially in women (p = 0.005). Patients who experienced different dimensions of fatigue at follow-up had significantly lower GFAp in both the ICU and at follow-up, specifically in general fatigue (p = 0.009), physical fatigue (p = 0.004), mental fatigue (p = 0.001), and reduced motivation (p = 0.001). Women showed a more pronounced decrease in GFAp compared to men, except for in mental fatigue where men showed a more pronounced GFAp decrease compared to women. NfL concentration at follow-up was lower in patients who experienced reduced motivation (p = 0.004). Our findings suggest that GFAp and NfL are associated with neuropsychiatric outcome after critical COVID-19.Trial registration The study was registered à priori (clinicaltrials.gov: NCT04316884 registered on 2020-03-13 and NCT04474249 registered on 2020-06-29).
Collapse
Affiliation(s)
- Lovisa Bark
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University Hospital, Uppsala University, Entr. 70, Floor 2, 75185, Uppsala, Sweden.
| | - Ing-Marie Larsson
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University Hospital, Uppsala University, Entr. 70, Floor 2, 75185, Uppsala, Sweden
| | - Ewa Wallin
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University Hospital, Uppsala University, Entr. 70, Floor 2, 75185, Uppsala, Sweden
| | - Joel Simrén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Miklos Lipcsey
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University Hospital, Uppsala University, Entr. 70, Floor 2, 75185, Uppsala, Sweden
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Robert Frithiof
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University Hospital, Uppsala University, Entr. 70, Floor 2, 75185, Uppsala, Sweden
| | - Elham Rostami
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Michael Hultström
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University Hospital, Uppsala University, Entr. 70, Floor 2, 75185, Uppsala, Sweden
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada
- Lady Davis Institute of Medical Research, Jewish General Hospital, Montréal, QC, Canada
| |
Collapse
|
20
|
Díez-Cirarda M, Yus-Fuertes M, Sanchez-Sanchez R, Gonzalez-Rosa JJ, Gonzalez-Escamilla G, Gil-Martínez L, Delgado-Alonso C, Gil-Moreno MJ, Valles-Salgado M, Cano-Cano F, Ojeda-Hernandez D, Gomez-Ruiz N, Oliver-Mas S, Benito-Martín MS, Jorquera M, de la Fuente S, Polidura C, Selma-Calvo B, Arrazola J, Matias-Guiu J, Gomez-Pinedo U, Matias-Guiu JA. Hippocampal subfield abnormalities and biomarkers of pathologic brain changes: from SARS-CoV-2 acute infection to post-COVID syndrome. EBioMedicine 2023; 94:104711. [PMID: 37453364 PMCID: PMC10366393 DOI: 10.1016/j.ebiom.2023.104711] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Cognitive deficits are among the main disabling symptoms in COVID-19 patients and post-COVID syndrome (PCS). Within brain regions, the hippocampus, a key region for cognition, has shown vulnerability to SARS-CoV-2 infection. Therefore, in vivo detailed evaluation of hippocampal changes in PCS patients, validated on post-mortem samples of COVID-19 patients at the acute phase, would shed light into the relationship between COVID-19 and cognition. METHODS Hippocampal subfields volume, microstructure, and perfusion were evaluated in 84 PCS patients and compared to 33 controls. Associations with blood biomarkers, including glial fibrillary acidic protein (GFAP), myelin oligodendrocyte glycoprotein (MOG), eotaxin-1 (CCL11) and neurofilament light chain (NfL) were evaluated. Besides, biomarker immunodetection in seven hippocampal necropsies of patients at the acute phase were contrasted against eight controls. FINDINGS In vivo analyses revealed that hippocampal grey matter atrophy is accompanied by altered microstructural integrity, hypoperfusion, and functional connectivity changes in PCS patients. Hippocampal structural and functional alterations were related to cognitive dysfunction, particularly attention and memory. GFAP, MOG, CCL11 and NfL biomarkers revealed alterations in PCS, and showed associations with hippocampal volume changes, in selective hippocampal subfields. Moreover, post mortem histology showed the presence of increased GFAP and CCL11 and reduced MOG concentrations in the hippocampus in post-mortem samples at the acute phase. INTERPRETATION The current results evidenced that PCS patients with cognitive sequalae present brain alterations related to cognitive dysfunction, accompanied by a cascade of pathological alterations in blood biomarkers, indicating axonal damage, astrocyte alterations, neuronal injury, and myelin changes that are already present from the acute phase. FUNDING Nominative Grant FIBHCSC 2020 COVID-19. Department of Health, Community of Madrid. Instituto de Salud Carlos III through the project INT20/00079, co-funded by European Regional Development Fund "A way to make Europe" (JAMG). Instituto de Salud Carlos III (ISCIII) through Sara Borrell postdoctoral fellowship Grant No. CD22/00043) and co-funded by the European Union (MDC). Instituto de Salud Carlos III through a predoctoral contract (FI20/000145) (co-funded by European Regional Development Fund "A way to make Europe") (MVS). Fundación para el Conocimiento Madri+d through the project G63-HEALTHSTARPLUS-HSP4 (JAMG, SOM).
Collapse
Affiliation(s)
- Maria Díez-Cirarda
- Department of Neurology, Hospital Clínico San Carlos, "San Carlos" Health Research Institute (IdISCC), Universidad Complutense de Madrid, Madrid, Spain.
| | - Miguel Yus-Fuertes
- Department of Radiology, Hospital Clínico San Carlos, "San Carlos" Health Research Institute (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | | | - Javier J Gonzalez-Rosa
- Institute of Research and Biomedical Innovation of Cadiz (INiBICA), Cadiz 11009, Spain; Department of Psychology, University of Cadiz, Cadiz 11003, Spain
| | - Gabriel Gonzalez-Escamilla
- Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | - Lidia Gil-Martínez
- Department of Radiology, Hospital Clínico San Carlos, "San Carlos" Health Research Institute (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Cristina Delgado-Alonso
- Department of Neurology, Hospital Clínico San Carlos, "San Carlos" Health Research Institute (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Maria Jose Gil-Moreno
- Department of Neurology, Hospital Clínico San Carlos, "San Carlos" Health Research Institute (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Maria Valles-Salgado
- Department of Neurology, Hospital Clínico San Carlos, "San Carlos" Health Research Institute (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Fatima Cano-Cano
- Institute of Research and Biomedical Innovation of Cadiz (INiBICA), Cadiz 11009, Spain
| | - Denise Ojeda-Hernandez
- Department of Neurology, Hospital Clínico San Carlos, "San Carlos" Health Research Institute (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Natividad Gomez-Ruiz
- Department of Radiology, Hospital Clínico San Carlos, "San Carlos" Health Research Institute (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Silvia Oliver-Mas
- Department of Neurology, Hospital Clínico San Carlos, "San Carlos" Health Research Institute (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - María Soledad Benito-Martín
- Department of Neurology, Hospital Clínico San Carlos, "San Carlos" Health Research Institute (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Manuela Jorquera
- Department of Radiology, Hospital Clínico San Carlos, "San Carlos" Health Research Institute (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Sarah de la Fuente
- Department of Neurology, Hospital Clínico San Carlos, "San Carlos" Health Research Institute (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Carmen Polidura
- Department of Radiology, Hospital Clínico San Carlos, "San Carlos" Health Research Institute (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Belén Selma-Calvo
- Department of Neurology, Hospital Clínico San Carlos, "San Carlos" Health Research Institute (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Juan Arrazola
- Department of Radiology, Hospital Clínico San Carlos, "San Carlos" Health Research Institute (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Jorge Matias-Guiu
- Department of Neurology, Hospital Clínico San Carlos, "San Carlos" Health Research Institute (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Ulises Gomez-Pinedo
- Department of Neurology, Hospital Clínico San Carlos, "San Carlos" Health Research Institute (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Jordi A Matias-Guiu
- Department of Neurology, Hospital Clínico San Carlos, "San Carlos" Health Research Institute (IdISCC), Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
21
|
Comeau D, Martin M, Robichaud GA, Chamard-Witkowski L. Neurological manifestations of post-acute sequelae of COVID-19: which liquid biomarker should we use? Front Neurol 2023; 14:1233192. [PMID: 37545721 PMCID: PMC10400889 DOI: 10.3389/fneur.2023.1233192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
Long COVID syndrome, also known as post-acute sequelae of COVID-19 (PASC), is characterized by persistent symptoms lasting 3-12 weeks post SARS-CoV-2 infection. Patients suffering from PASC can display a myriad of symptoms that greatly diminish quality of life, the most frequent being neuropsychiatric. Thus, there is an eminent need to diagnose and treat PASC related neuropsychiatric manifestation (neuro-PASC). Evidence suggests that liquid biomarkers could potentially be used in the diagnosis and monitoring of patients. Undoubtedly, such biomarkers would greatly benefit clinicians in the management of patients; however, it remains unclear if these can be reliably used in this context. In this mini review, we highlight promising liquid (blood and cerebrospinal fluid) biomarkers, namely, neuronal injury biomarkers NfL, GFAP, and tau proteins as well as neuroinflammatory biomarkers IL-6, IL-10, TNF-α, and CPR associated with neuro-PASC and discuss their limitations in clinical applicability.
Collapse
Affiliation(s)
- Dominique Comeau
- Dr. Georges-L. Dumont University Hospital Centre, Clinical Research Sector, Vitalité Health Network, Moncton, NB, Canada
| | - Mykella Martin
- Centre de Formation médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, NB, Canada
| | - Gilles A. Robichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
- The New Brunswick Center for Precision Medicine, Moncton, NB, Canada
- The Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Ludivine Chamard-Witkowski
- Centre de Formation médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, NB, Canada
- Department of Neurology, Dr. Georges-L. Dumont University Hospital Centre, Moncton, NB, Canada
| |
Collapse
|
22
|
Prabhakaran D, Day GS, Munipalli B, Rush BK, Pudalov L, Niazi SK, Brennan E, Powers HR, Durvasula R, Athreya A, Blackmon K. Neurophenotypes of COVID-19: Risk factors and recovery outcomes. Brain Behav Immun Health 2023; 30:100648. [PMID: 37293441 PMCID: PMC10239310 DOI: 10.1016/j.bbih.2023.100648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/24/2023] [Accepted: 06/03/2023] [Indexed: 06/10/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) infection is associated with risk of persistent neurocognitive and neuropsychiatric complications. It is unclear whether the neuropsychological manifestations of COVID-19 present as a uniform syndrome or as distinct neurophenotypes with differing risk factors and recovery outcomes. We examined post-acute neuropsychological profiles following SARS-CoV-2 infection in 205 patients recruited from inpatient and outpatient populations, using an unsupervised machine learning cluster analysis, with objective and subjective measures as input features. This resulted in three distinct post-COVID clusters. In the largest cluster (69%), cognitive functions were within normal limits, although mild subjective attention and memory complaints were reported. Vaccination was associated with membership in this "normal cognition" phenotype. Cognitive impairment was present in the remaining 31% of the sample but clustered into two differentially impaired groups. In 16% of participants, memory deficits, slowed processing speed, and fatigue were predominant. Risk factors for membership in the "memory-speed impaired" neurophenotype included anosmia and more severe COVID-19 infection. In the remaining 15% of participants, executive dysfunction was predominant. Risk factors for membership in this milder "dysexecutive" neurophenotype included disease-nonspecific factors such as neighborhood deprivation and obesity. Recovery outcomes at 6-month follow-up differed across neurophenotypes, with the normal cognition group showing improvement in verbal memory and psychomotor speed, the dysexecutive group showing improvement in cognitive flexibility, and the memory-speed impaired group showing no objective improvement and relatively worse functional outcomes compared to the other two clusters. These results indicate that there are multiple post-acute neurophenotypes of COVID-19, with different etiological pathways and recovery outcomes. This information may inform phenotype-specific approaches to treatment.
Collapse
Affiliation(s)
- Divya Prabhakaran
- Mayo Clinic, Center for Individualized Medicine, Jacksonville, FL, USA
- University of California, San Diego, Radiation Medicine and Applied Sciences, San Diego, CA, USA
| | - Gregory S Day
- Mayo Clinic, Department of Neurology, Jacksonville, FL, USA
| | - Bala Munipalli
- Mayo Clinic, Department of General Internal Medicine, Jacksonville, FL, USA
| | - Beth K Rush
- Mayo Clinic, Department of Psychiatry and Psychology, Jacksonville, FL, USA
| | - Lauren Pudalov
- Mayo Clinic, Department of Psychiatry and Psychology, Jacksonville, FL, USA
| | - Shehzad K Niazi
- Mayo Clinic, Department of Psychiatry and Psychology, Jacksonville, FL, USA
| | - Emily Brennan
- Mayo Clinic, Robert D. and Patricia E. Kern Center for the Science of Healthcare Delivery, Jacksonville, FL, USA
| | - Harry R Powers
- Mayo Clinic, Division of Infectious Diseases, Jacksonville, FL, USA
| | - Ravi Durvasula
- Mayo Clinic, Division of Infectious Diseases, Jacksonville, FL, USA
| | - Arjun Athreya
- Mayo Clinic, Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, MN, USA
- Mayo Clinic, Department of Psychiatry and Psychology, Rochester, MN, USA
| | - Karen Blackmon
- Mayo Clinic, Department of Psychiatry and Psychology, Jacksonville, FL, USA
| |
Collapse
|
23
|
Telser J, Grossmann K, Weideli OC, Hillmann D, Aeschbacher S, Wohlwend N, Velez L, Kuhle J, Maleska A, Benkert P, Risch C, Conen D, Risch M, Risch L. Concentrations of Serum Brain Injury Biomarkers Following SARS-CoV-2 Infection in Individuals with and without Long-COVID-Results from the Prospective Population-Based COVI-GAPP Study. Diagnostics (Basel) 2023; 13:2167. [PMID: 37443561 DOI: 10.3390/diagnostics13132167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
It is unknown whether neurological symptoms are associated with brain injury after SARS-CoV-2 infections and whether brain injury and related symptoms also emerge in Long-COVID patients. Biomarkers such as serum neurofilament light chain (sNfL) and glial fibrillary acidic protein (sGFAP) can be used to elucidate neuro-axonal and astroglial injuries. We investigated whether these biomarkers are associated with COVID-19 infection status, associated symptoms and Long-COVID. From 146 individuals of the general population with a post-acute, mild-to-moderate SARS-CoV-2 infection, sNfL and sGFAP were measured before, during and after (five and ten months) the infection. Individual symptoms and Long-COVID status were assessed using questionnaires. Neurological associated symptoms were described for individuals after a mild and moderate COVID-19 infection; however, sNfL (p = 0.74) and sGFAP (p = 0.24) did not change and were not associated with headache (p = 0.51), fatigue (p = 0.93), anosmia (p = 0.77) or ageusia (p = 0.47). In Long-COVID patients, sGFAP (p = 0.038), but not sNfL (p = 0.58), significantly increased but was not associated with neurological associated symptoms. Long-COVID status, but not post-acute SARS-CoV-2 infections, may be associated with astroglial injury/activation, even if neurological associated symptoms were not correlated.
Collapse
Affiliation(s)
- Julia Telser
- Dr. Risch Medical Laboratory, 9490 Vaduz, Liechtenstein
- Dr. Risch Medical Laboratory, 9470 Buchs, Switzerland
- Faculty of Medical Sciences, Private University in the Principality of Liechtenstein (UFL), 9495 Triesen, Liechtenstein
| | - Kirsten Grossmann
- Dr. Risch Medical Laboratory, 9490 Vaduz, Liechtenstein
- Faculty of Medical Sciences, Private University in the Principality of Liechtenstein (UFL), 9495 Triesen, Liechtenstein
| | - Ornella C Weideli
- Dr. Risch Medical Laboratory, 9490 Vaduz, Liechtenstein
- Soneva Fushi, Boduthakurufaanu Magu, Male 20077, Maldives
| | | | - Stefanie Aeschbacher
- Dr. Risch Medical Laboratory, 9490 Vaduz, Liechtenstein
- Department of Cardiology, University Hospital of Basel, 4031 Basel, Switzerland
| | - Niklas Wohlwend
- Dr. Risch Medical Laboratory, 9490 Vaduz, Liechtenstein
- Faculty of Medicine, University of Bern, 3012 Bern, Switzerland
| | - Laura Velez
- Dr. Risch Medical Laboratory, 9490 Vaduz, Liechtenstein
- University of St. Gallen, 9000 St. Gallen, Switzerland
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, MS Center and Research Center of Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Aleksandra Maleska
- Neurologic Clinic and Policlinic, MS Center and Research Center of Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Pascal Benkert
- Neurologic Clinic and Policlinic, MS Center and Research Center of Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Corina Risch
- Dr. Risch Medical Laboratory, 9490 Vaduz, Liechtenstein
- Dr. Risch Medical Laboratory, 9470 Buchs, Switzerland
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, ON L8L 2X2, Canada
| | - Martin Risch
- Dr. Risch Medical Laboratory, 9490 Vaduz, Liechtenstein
- Dr. Risch Medical Laboratory, 9470 Buchs, Switzerland
- Division of Laboratory Medicine, Kantonsspital Graubünden, 7000 Chur, Switzerland
| | - Lorenz Risch
- Dr. Risch Medical Laboratory, 9490 Vaduz, Liechtenstein
- Dr. Risch Medical Laboratory, 9470 Buchs, Switzerland
- Faculty of Medical Sciences, Private University in the Principality of Liechtenstein (UFL), 9495 Triesen, Liechtenstein
| |
Collapse
|
24
|
Bircak-Kuchtova B, Chung HY, Wickel J, Ehler J, Geis C. Neurofilament light chains to assess sepsis-associated encephalopathy: Are we on the track toward clinical implementation? Crit Care 2023; 27:214. [PMID: 37259091 DOI: 10.1186/s13054-023-04497-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
Sepsis is the most common cause of admission to intensive care units worldwide. Sepsis patients frequently suffer from sepsis-associated encephalopathy (SAE) reflecting acute brain dysfunction. SAE may result in increased mortality, extended length of hospital stay, and long-term cognitive dysfunction. The diagnosis of SAE is based on clinical assessments, but a valid biomarker to identify and confirm SAE and to assess SAE severity is missing. Several blood-based biomarkers indicating neuronal injury have been evaluated in sepsis and their potential role as early diagnosis and prognostic markers has been studied. Among those, the neuroaxonal injury marker neurofilament light chain (NfL) was identified to potentially serve as a prognostic biomarker for SAE and to predict long-term cognitive impairment. In this review, we summarize the current knowledge of biomarkers, especially NfL, in SAE and discuss a possible future clinical application considering existing limitations.
Collapse
Affiliation(s)
- Barbora Bircak-Kuchtova
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Ha-Yeun Chung
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany.
| | - Jonathan Wickel
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| | - Johannes Ehler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747, Jena, Germany
| | - Christian Geis
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| |
Collapse
|
25
|
Abdelhak A, Barba L, Romoli M, Benkert P, Conversi F, D'Anna L, Masvekar RR, Bielekova B, Prudencio M, Petrucelli L, Meschia JF, Erben Y, Furlan R, De Lorenzo R, Mandelli A, Sutter R, Hert L, Epple V, Marastoni D, Sellner J, Steinacker P, Aamodt AH, Heggelund L, Dyrhol-Riise AM, Virhammar J, Fällmar D, Rostami E, Kumlien E, Blennow K, Zetterberg H, Tumani H, Sacco S, Green AJ, Otto M, Kuhle J, Ornello R, Foschi M, Abu-Rumeileh S. Prognostic performance of blood neurofilament light chain protein in hospitalized COVID-19 patients without major central nervous system manifestations: an individual participant data meta-analysis. J Neurol 2023:10.1007/s00415-023-11768-1. [PMID: 37184659 PMCID: PMC10183689 DOI: 10.1007/s00415-023-11768-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS To investigate the prognostic value of blood neurofilament light chain protein (NfL) levels in the acute phase of coronavirus disease 2019 (COVID-19). METHODS We conducted an individual participant data (IPD) meta-analysis after screening on MEDLINE and Scopus to May 23rd 2022. We included studies with hospitalized adult COVID-19 patients without major COVID-19-associated central nervous system (CNS) manifestations and with a measurement of blood NfL in the acute phase as well as data regarding at least one clinical outcome including intensive care unit (ICU) admission, need of mechanical ventilation (MV) and death. We derived the age-adjusted measures NfL Z scores and conducted mixed-effects modelling to test associations between NfL Z scores and other variables, encompassing clinical outcomes. Summary receiver operating characteristic curves (SROCs) were used to calculate the area under the curve (AUC) for blood NfL. RESULTS We identified 382 records, of which 7 studies were included with a total of 669 hospitalized COVID-19 cases (mean age 66.2 ± 15.0 years, 68.1% males). Median NfL Z score at admission was elevated compared to the age-corrected reference population (2.37, IQR: 1.13-3.06, referring to 99th percentile in healthy controls). NfL Z scores were significantly associated with disease duration and severity. Higher NfL Z scores were associated with a higher likelihood of ICU admission, need of MV, and death. SROCs revealed AUCs of 0.74, 0.80 and 0.71 for mortality, need of MV and ICU admission, respectively. CONCLUSIONS Blood NfL levels were elevated in the acute phase of COVID-19 patients without major CNS manifestations and associated with clinical severity and poor outcome. The marker might ameliorate the performance of prognostic multivariable algorithms in COVID-19.
Collapse
Affiliation(s)
- Ahmed Abdelhak
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, USA
| | - Lorenzo Barba
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Michele Romoli
- Department of Neuroscience, Neurology Unit, Maurizio Bufalini Hospital, AUSL Romagna, Cesena, Italy
| | - Pascal Benkert
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Francesco Conversi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Lucio D'Anna
- Department of Stroke and Neuroscience, Charing Cross Hospital, Imperial College London NHS Healthcare Trust, London, UK
- Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
| | - Ruturaj R Masvekar
- Neuroimmunological Diseases Section, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Bibiana Bielekova
- Neuroimmunological Diseases Section, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA
| | - James F Meschia
- Department of Neurology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Young Erben
- Division of Vascular and Endovascular Surgery, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Roberto Furlan
- Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
- Institute of Experimental Neurology, Division of Neuroscience, Vita e Salute San Raffaele University, Milan, Italy
| | - Rebecca De Lorenzo
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessandra Mandelli
- Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Raoul Sutter
- Department of Acute Medical Care, Intensive Care Unit, University Hospital Basel, Basel, Switzerland
| | - Lisa Hert
- Department of Acute Medical Care, Intensive Care Unit, University Hospital Basel, Basel, Switzerland
| | - Varenka Epple
- Department of Neurology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Damiano Marastoni
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Johann Sellner
- Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, Mistelbach, Austria
| | - Petra Steinacker
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Lars Heggelund
- Department of Internal Medicine, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Anne Margarita Dyrhol-Riise
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Johan Virhammar
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
| | - David Fällmar
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Elham Rostami
- Department of Medical Sciences, Uppsala University, Neurosurgery,, Sweden
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Eva Kumlien
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Simona Sacco
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Ari J Green
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, USA
| | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Jens Kuhle
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Raffaele Ornello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Matteo Foschi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
- Department of Neuroscience, Neurology Unit, S.Maria Delle Croci Hospital of Ravenna, AUSL Romagna, Ravenna, Italy.
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
26
|
Rogatzki MJ, Szeghy RE, Stute NL, Province VM, Augenreich MA, Stickford JL, Stickford AS, Hanson ED, Ratchford SM. Plasma UCHL1, GFAP, Tau, and NfL Are Not Different in Young Healthy Persons With Mild COVID-19 Symptoms Early in the Pandemic: A Pilot Study. Neurotrauma Rep 2023; 4:330-341. [PMID: 37284701 PMCID: PMC10240333 DOI: 10.1089/neur.2023.0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Elevated levels of brain injury biomarkers have been found primarily in middle-aged or older persons experiencing moderate-to-severe COVID-19 symptoms. However, there is little research in young adults, and there is concern that COVID-19 causes brain injury even in the absence of moderate-to-severe symptoms. Therefore, the purpose of our study was to investigate whether neurofilament light (NfL), glial fibrillary acidic protein (GFAP), tau, or ubiquitin carboxyl-terminal esterase L1 (UCHL1) are elevated in the plasma of young adults with mild COVID-19 symptoms. Twelve participants diagnosed with COVID-19 had plasma collected 1, 2, 3, and 4 months after diagnosis to determine whether NfL, GFAP, tau, and UCHL1 concentrations increased over time or whether plasma concentrations were elevated compared with COVID-19-naïve participants. We also compared plasma NfL, GFAP, tau, and UCHL1 concentrations between sexes. Our results showed no difference between NfL, GFAP, tau, and UCHL1 concentrations in COVID-19-naïve participants and COVID-19-positive participants at any of the four time points (p = 0.771). Within the COVID-19-positive participants, UCHL1 levels were higher at month 3 after diagnosis compared to month 1 or month 2 (p = 0.027). Between sexes, females were found to have higher UCHL1 (p = 0.003) and NfL (p = 0.037) plasma concentrations compared to males, whereas males had higher plasma tau concentrations than females (p = 0.024). Based on our data, it appears that mild COVID-19 in young adults does not increase plasma NfL, GFAP, tau, or UCHL1.
Collapse
Affiliation(s)
- Matthew J. Rogatzki
- Department of Public Health and Exercise Science, Appalachian State University, Boone, North Carolina, USA
| | - Rachel E. Szeghy
- Department of Public Health and Exercise Science, Appalachian State University, Boone, North Carolina, USA
| | - Nina L. Stute
- School of Kinesiology, Auburn University, Auburn, Alabama, USA
| | - Valesha M. Province
- Department of Cardiovascular and Metabolic Sciences, The Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Marc A. Augenreich
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA
| | - Jonathon L. Stickford
- Department of Public Health and Exercise Science, Appalachian State University, Boone, North Carolina, USA
| | - Abigail S.L. Stickford
- Department of Public Health and Exercise Science, Appalachian State University, Boone, North Carolina, USA
| | - Erik D. Hanson
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Stephen M. Ratchford
- Department of Public Health and Exercise Science, Appalachian State University, Boone, North Carolina, USA
| |
Collapse
|
27
|
Sonneville R, Dangayach NS, Newcombe V. Neurological complications of critically ill COVID-19 patients. Curr Opin Crit Care 2023; 29:61-67. [PMID: 36880556 DOI: 10.1097/mcc.0000000000001029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
PURPOSE OF REVIEW COVID-19 and systemic critical illness are both associated with neurological complications. We provide an update on the diagnosis and critical care management of adult patients with neurological complications of COVID-19. RECENT FINDINGS Large prospective multicentre studies conducted in the adult population over the last 18 months improved current knowledge on severe neurological complications of COVID-19. In COVID-19 patients presenting with neurological symptoms, a multimodal diagnostic workup (including CSF analysis, brain MRI, and EEG) may identify different syndromes associated with distinct trajectories and outcomes. Acute encephalopathy, which represents the most common neurological presentation of COVID-19, is associated with hypoxemia, toxic/metabolic derangements, and systemic inflammation. Other less frequent complications include cerebrovascular events, acute inflammatory syndromes, and seizures, which may be linked to more complex pathophysiological processes. Neuroimaging findings include infarction, haemorrhagic stroke, encephalitis, microhaemorrhages and leukoencephalopathy. In the absence of structural brain injury, prolonged unconsciousness is usually fully reversible, warranting a cautious approach for prognostication. Advanced quantitative MRI may provide useful insights into the extent and pathophysiology of the consequences of COVID-19 infection including atrophy and functional imaging changes in the chronic phase. SUMMARY Our review highlights the importance of a multimodal approach for the accurate diagnosis and management of complications of COVID-19, both at the acute phase and in the long-term.
Collapse
Affiliation(s)
- Romain Sonneville
- Université Paris Cité, IAME, INSERM UMR1137
- AP-HP, Hôpital Bichat - Claude Bernard, Department of Intensive Care Medicine, F-75018 Paris, France
| | - Neha S Dangayach
- Neurocritical Care Division, Departments of Neurosurgery and Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Virginia Newcombe
- University Division of Anaesthesia, Department of Medicine, University of Cambridge, United Kingdom
| |
Collapse
|
28
|
Fontes-Dantas FL, Fernandes GG, Gutman EG, De Lima EV, Antonio LS, Hammerle MB, Mota-Araujo HP, Colodeti LC, Araújo SM, Froz GM, da Silva TN, Duarte LA, Salvio AL, Pires KL, Leon LA, Vasconcelos CCF, Romão L, Savio LEB, Silva JL, da Costa R, Clarke JR, Da Poian AT, Alves-Leon SV, Passos GF, Figueiredo CP. SARS-CoV-2 Spike protein induces TLR4-mediated long-term cognitive dysfunction recapitulating post-COVID-19 syndrome in mice. Cell Rep 2023; 42:112189. [PMID: 36857178 PMCID: PMC9935273 DOI: 10.1016/j.celrep.2023.112189] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/16/2022] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Cognitive dysfunction is often reported in patients with post-coronavirus disease 2019 (COVID-19) syndrome, but its underlying mechanisms are not completely understood. Evidence suggests that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike protein or its fragments are released from cells during infection, reaching different tissues, including the CNS, irrespective of the presence of the viral RNA. Here, we demonstrate that brain infusion of Spike protein in mice has a late impact on cognitive function, recapitulating post-COVID-19 syndrome. We also show that neuroinflammation and hippocampal microgliosis mediate Spike-induced memory dysfunction via complement-dependent engulfment of synapses. Genetic or pharmacological blockage of Toll-like receptor 4 (TLR4) signaling protects animals against synapse elimination and memory dysfunction induced by Spike brain infusion. Accordingly, in a cohort of 86 patients who recovered from mild COVID-19, the genotype GG TLR4-2604G>A (rs10759931) is associated with poor cognitive outcome. These results identify TLR4 as a key target to investigate the long-term cognitive dysfunction after COVID-19 infection in humans and rodents.
Collapse
Affiliation(s)
- Fabricia L. Fontes-Dantas
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil,Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Gabriel G. Fernandes
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Elisa G. Gutman
- Translational Neuroscience Laboratory (LabNet), Post-Graduate Program in Neurology, Federal University of Rio de Janeiro State, Rio de Janeiro, RJ, Brazil,Clinical Medicine Post-graduation Program, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Emanuelle V. De Lima
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Leticia S. Antonio
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mariana B. Hammerle
- Clinical Medicine Post-graduation Program, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Hannah P. Mota-Araujo
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lilian C. Colodeti
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Suzana M.B. Araújo
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gabrielle M. Froz
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Talita N. da Silva
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Larissa A. Duarte
- Translational Neuroscience Laboratory (LabNet), Post-Graduate Program in Neurology, Federal University of Rio de Janeiro State, Rio de Janeiro, RJ, Brazil,Clinical Medicine Post-graduation Program, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Andreza L. Salvio
- Translational Neuroscience Laboratory (LabNet), Post-Graduate Program in Neurology, Federal University of Rio de Janeiro State, Rio de Janeiro, RJ, Brazil
| | - Karina L. Pires
- Neurology Department, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ, Brazil
| | - Luciane A.A. Leon
- Laboratório de Desenvolvimento Tecnológico em Virologia, IOC/FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | - Luciana Romão
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luiz Eduardo B. Savio
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jerson L. Silva
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Robson da Costa
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Julia R. Clarke
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Andrea T. Da Poian
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil,Corresponding author
| | - Soniza V. Alves-Leon
- Translational Neuroscience Laboratory (LabNet), Post-Graduate Program in Neurology, Federal University of Rio de Janeiro State, Rio de Janeiro, RJ, Brazil,Division of Neurology, Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil,Corresponding author
| | - Giselle F. Passos
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil,Corresponding author
| | - Claudia P. Figueiredo
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil,Corresponding author
| |
Collapse
|
29
|
Wesselingh R, Wesselingh SL. An eye to the future: Acute and long-term neuro-ophthalmological and neurological complications of COVID-19. Clin Exp Ophthalmol 2023. [PMID: 36908238 DOI: 10.1111/ceo.14221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
COVID-19 has had a significant impact on the global population and has produced compelling evidence of non-pulmonary organ dysfunction, including the nervous system. It is vital that specialists in ophthalmology and neurology are informed of the potential complications of COVID-19 and gain a deeper understanding of how COVID-19 can cause diseases of the nervous system. In this review we detail four possible mechanisms by which COVID-19 infection may result in neurological or neuro-ophthalmological complications: (1) Toxic and metabolic effects of severe pulmonary COVID-19 disease on the neural axis including hypoxia and the systemic hyper-inflammatory state, (2) endothelial dysfunction, (3) dysimmune responses directed again the neuroaxis, and (4) direct neuro-invasion and injury by the virus itself. We explore the pathological evidence for each of these and how they may link to neuro-ophthalmological disorders. Finally, we explore the evidence for long-term neurological and neuro-ophthalmological complications of COVID-19, with a focus on neurodegeneration.
Collapse
Affiliation(s)
- Robb Wesselingh
- Department of Neurosciences, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, 3004, Australia
- Department of Neurology, Alfred Health, 55 Commercial Road, Melbourne, 3004, Australia
| | - Steve L Wesselingh
- South Australian Health and Medical Research Institute, North Terrace, Adelaide, 5000, Australia
| |
Collapse
|
30
|
Prabhakaran D, Day GS, Munipalli B, Rush BK, Pudalov L, Niazi SK, Brennan E, Powers HR, Durvasula R, Athreya A, Blackmon K. Neurophenotypes of COVID-19: risk factors and recovery outcomes. RESEARCH SQUARE 2023:rs.3.rs-2363210. [PMID: 36597538 PMCID: PMC9810229 DOI: 10.21203/rs.3.rs-2363210/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Coronavirus disease 2019 (COVID-19) infection is associated with risk of persistent neurocognitive and neuropsychiatric complications, termed "long COVID". It is unclear whether the neuropsychological manifestations of COVID-19 present as a uniform syndrome or as distinct neurophenotypes with differing risk factors and recovery outcomes. We examined post-acute neuropsychological profiles following SARS-CoV-2 infection in 205 patients recruited from inpatient and outpatient populations, using an unsupervised machine learning cluster analysis, with objective and subjective measures as input features. This resulted in three distinct post-COVID clusters. In the largest cluster (69%), cognitive functions were within normal limits, although mild subjective attention and memory complaints were reported. Vaccination was associated with membership in this "normal cognition" phenotype. Cognitive impairment was present in the remaining 31% of the sample but clustered into two differentially impaired groups. In 16% of participants, memory deficits, slowed processing speed, and fatigue were predominant. Risk factors for membership in the "memory-speed impaired" neurophenotype included anosmia and more severe COVID-19 infection. In the remaining 15% of participants, executive dysfunction was predominant. Risk factors for membership in this milder "dysexecutive" neurophenotype included disease-nonspecific factors such as neighborhood deprivation and obesity. Recovery outcomes at 6-month follow-up differed across neurophenotypes, with the normal cognition group showing improvement in verbal memory and psychomotor speed, the dysexecutive group showing improvement in cognitive flexibility, and the memory-speed impaired group showing no objective improvement and relatively worse functional outcomes compared to the other two clusters. These results indicate that there are multiple post-acute neurophenotypes of long COVID, with different etiological pathways and recovery outcomes. This information may inform phenotype-specific approaches to treatment.
Collapse
|
31
|
Abu-Rumeileh S, Abdelhak A, Foschi M, D'Anna L, Russo M, Steinacker P, Kuhle J, Tumani H, Blennow K, Otto M. The multifaceted role of neurofilament light chain protein in non-primary neurological diseases. Brain 2023; 146:421-437. [PMID: 36083979 PMCID: PMC9494370 DOI: 10.1093/brain/awac328] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
The advancing validation and exploitation of CSF and blood neurofilament light chain protein as a biomarker of neuroaxonal damage has deeply changed the current diagnostic and prognostic approach to neurological diseases. Further, recent studies have provided evidence of potential new applications of this biomarker also in non-primary neurological diseases. In the present review we summarize the state of the art, future perspectives, but also limitations, of neurofilament light chain protein as a CSF and blood biomarker in several medical fields, including intensive care medicine, surgery, internal medicine and psychiatry. In particular, neurofilament light chain protein is associated with the degree of neurological impairment and outcome in patients admitted to intensive care units or in the perioperative phase and it seems to be highly interconnected with cardiovascular risk factors. Beyond that, interesting diagnostic and prognostic insights have been provided by the investigation of neurofilament light chain protein in psychiatric disorders as well as in the current coronavirus disease-19 pandemic and in normal ageing. Altogether, current data outline a multifaceted applicability of CSF and blood neurofilament light chain protein ranging from the critical clinical setting to the development of precision medicine models suggesting a strict interplay between the nervous system pathophysiology and the health-illness continuum.
Collapse
Affiliation(s)
- Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Ahmed Abdelhak
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, USA
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Matteo Foschi
- Department of Neuroscience, Neurology Unit – S. Maria delle Croci Hospital of Ravenna, AUSL Romagna, Ravenna, Italy
| | - Lucio D'Anna
- Department of Stroke and Neuroscience, Charing Cross Hospital, Imperial College London, NHS Healthcare Trust, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Michele Russo
- Department of Cardiology, S. Maria dei Battuti Hospital, AULSS 2 Veneto, Conegliano, Italy
| | - Petra Steinacker
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Markus Otto
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
32
|
Transient Changes in the Plasma of Astrocytic and Neuronal Injury Biomarkers in COVID-19 Patients without Neurological Syndromes. Int J Mol Sci 2023; 24:ijms24032715. [PMID: 36769057 PMCID: PMC9917569 DOI: 10.3390/ijms24032715] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
The levels of several glial and neuronal plasma biomarkers have been found to increase during the acute phase in COVID-19 patients with neurological symptoms. However, replications in patients with minor or non-neurological symptoms are needed to understand their potential as indicators of CNS injury or vulnerability. Plasma levels of glial fibrillary acidic protein (GFAP), neurofilament light chain protein (NfL), and total Tau (T-tau) were determined by Single molecule array (Simoa) immunoassays in 45 samples from COVID-19 patients in the acute phase of infection [moderate (n = 35), or severe (n = 10)] with minor or non-neurological symptoms; in 26 samples from fully recovered patients after ~2 months of clinical follow-up [moderate (n = 23), or severe (n = 3)]; and in 14 non-infected controls. Plasma levels of the SARS-CoV-2 receptor, angiotensin-converting enzyme 2 (ACE2), were also determined by Western blot. Patients with COVID-19 without substantial neurological symptoms had significantly higher plasma concentrations of GFAP, a marker of astrocytic activation/injury, and of NfL and T-tau, markers of axonal damage and neuronal degeneration, compared with controls. All these biomarkers were correlated in COVID-19 patients at the acute phase. Plasma GFAP, NfL and T-tau levels were all normalized after recovery. Recovery was also observed in the return to normal values of the quotient between the ACE2 fragment and circulating full-length species, following the change noticed in the acute phase of infection. None of these biomarkers displayed differences in plasma samples at the acute phase or recovery when the COVID-19 subjects were sub-grouped according to occurrence of minor symptoms at re-evaluation 3 months after the acute episode (so called post-COVID or "long COVID"), such as asthenia, myalgia/arthralgia, anosmia/ageusia, vision impairment, headache or memory loss. Our study demonstrated altered plasma GFAP, NfL and T-tau levels in COVID-19 patients without substantial neurological manifestation at the acute phase of the disease, providing a suitable indication of CNS vulnerability; but these biomarkers fail to predict the occurrence of delayed minor neurological symptoms.
Collapse
|
33
|
Association of admission serum levels of neurofilament light chain and in-hospital mortality in geriatric patients with COVID-19. J Neurol 2023; 270:37-43. [PMID: 36114298 PMCID: PMC9483416 DOI: 10.1007/s00415-022-11373-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 01/07/2023]
|
34
|
Caselli RJ, Chen Y, Chen K, Bauer RJ, Locke DE, Woodruff BK. Cognition Before and After COVID-19 Disease in Older Adults: An Exploratory Study. J Alzheimers Dis 2023; 91:1049-1058. [PMID: 36502320 PMCID: PMC10234095 DOI: 10.3233/jad-220435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Older age is a major risk factor for severe COVID-19 disease which has been associated with a variety of neurologic complications, both acutely and chronically. OBJECTIVE We sought to determine whether milder COVID-19 disease in older vulnerable individuals is also associated with cognitive and behavioral sequelae. METHODS Neuropsychological, behavioral, and clinical outcomes before and after contracting COVID-19 disease, were compared in members of two ongoing longitudinal studies, the Arizona APOE Cohort and the national Alzheimer's Disease Research Center (ADRC). RESULTS 152 APOE and 852 ADRC cohort members, mean age overall roughly 70 years, responded to a survey that indicated 21 APOE and 57 ADRC members had contracted COVID-19 before their ensuing (post-COVID) study visit. The mean interval between test sessions that preceded and followed COVID was 2.2 years and 1.2 years respectively for the APOE and ADRC cohorts. The magnitude of change between the pre and post COVID test sessions did not differ on any neuropsychological measure in either cohort. There was, however, a greater increase in informant (but not self) reported cognitive change in the APOE cohort (p = 0.018), but this became nonsignificant after correcting for multiple comparisons. CONCLUSION Overall members of both cohorts recovered well despite their greater age-related vulnerability to more severe disease.
Collapse
Affiliation(s)
| | - Yinghua Chen
- Division of Biostatistics, Banner Alzheimer Institute, Phoenix, AZ, USA
| | - Kewei Chen
- Division of Biostatistics, Banner Alzheimer Institute, Phoenix, AZ, USA
| | - Robert J. Bauer
- Division of Biostatistics, Banner Alzheimer Institute, Phoenix, AZ, USA
| | - Dona E.C. Locke
- Division of Neuropsychology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | | |
Collapse
|
35
|
Sahin BE, Celikbilek A, Kocak Y, Ilanbey B, Saltoglu GT, Konar NM, Hizmali L. Neurological symptoms and neuronal damage markers in acute COVID-19: Is there a correlation? A pilot study. J Med Virol 2023; 95:e28240. [PMID: 36262025 PMCID: PMC9874781 DOI: 10.1002/jmv.28240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/26/2022] [Accepted: 10/17/2022] [Indexed: 01/27/2023]
Abstract
A wide spectrum of neurological symptoms (NS) has been described in patients with COVID-19. We examined the plasma levels of neuron-specific enolase (NSE) and neurofilament light chain (NFL) together, as neuronal damage markers, and their relationships with clinical severity in patients with NS at acute COVID-19. A total of 20 healthy controls and 59 patients with confirmed COVID-19 were enrolled in this pilot prospective study. Serum NSE and NFL levels were measured by using the enzyme-linked immunoassay method from serum samples. Serum NSE levels were found to be significantly higher in the severe group than in the nonsevere group (p = 0.034). However, serum NFL levels were similar between the control and disease groups (p > 0.05). For the mild group, serum NFL levels were significantly higher in patients with the sampling time ≥5 days than in those with the sampling time <5 days (p = 0.019). However, no significant results for NSE and NFL were obtained in patients with either single or multiple NS across the groups (p > 0.05). Increased serum NSE levels were associated with disease severity regardless of accompanied NS in patients with acute COVID-19 infection. However, serum NFL levels may have a role at the subacute phase of COVID-19.
Collapse
Affiliation(s)
- Burc E. Sahin
- Department of NeurologyKirsehir Ahi Evran University Faculty of MedicineKirsehirTurkey
| | - Asuman Celikbilek
- Department of NeurologyKirsehir Ahi Evran University Faculty of MedicineKirsehirTurkey
| | - Yusuf Kocak
- Department of NeurologyKirsehir Ahi Evran University Faculty of MedicineKirsehirTurkey
| | - Bilal Ilanbey
- Department of BiochemistryKirsehir Ahi Evran University Faculty of MedicineKirsehirTurkey
| | - Gamze T. Saltoglu
- Department of BiochemistryKirsehir Ahi Evran University Faculty of MedicineKirsehirTurkey
| | - Naime M. Konar
- Department of Biostatistics and Medical InformaticsKirsehir Ahi Evran University Faculty of MedicineKirsehirTurkey
| | - Lokman Hizmali
- Department of Clinical Microbiology and Infectious DiseasesKirsehir Ahi Evran University Faculty of MedicineKirsehirTurkey
| |
Collapse
|
36
|
Kolicheski A, Turcano P, Tamvaka N, McLean PJ, Springer W, Savica R, Ross OA. Early-Onset Parkinson's Disease: Creating the Right Environment for a Genetic Disorder. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2353-2367. [PMID: 36502340 PMCID: PMC9837689 DOI: 10.3233/jpd-223380] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) by its common understanding is a late-onset sporadic movement disorder. However, there is a need to recognize not only the fact that PD pathogenesis expands beyond (or perhaps to) the brain but also that many early-onset patients develop motor signs before the age of 50 years. Indeed, studies have shown that it is likely the protein aggregation observed in the brains of patients with PD precedes the motor symptoms by perhaps a decade. Studies on early-onset forms of PD have shown it to be a heterogeneous disease with multiple genetic and environmental factors determining risk of different forms of disease. Genetic and neuropathological evidence suggests that there are α-synuclein centric forms (e.g., SNCA genomic triplication), and forms that are driven by a breakdown in mitochondrial function and specifically in the process of mitophagy and clearance of damaged mitochondria (e.g., PARKIN and PINK1 recessive loss-of-function mutations). Aligning genetic forms with recognized environmental influences will help better define patients, aid prognosis, and hopefully lead to more accurately targeted clinical trial design. Work is now needed to understand the cross-talk between these two pathomechanisms and determine a sense of independence, it is noted that autopsies studies for both have shown the presence or absence of α-synuclein aggregation. The integration of genetic and environmental data is critical to understand the etiology of early-onset forms of PD and determine how the different pathomechanisms crosstalk.
Collapse
Affiliation(s)
- Ana Kolicheski
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Pierpaolo Turcano
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA,
Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Nicole Tamvaka
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Pamela J. McLean
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA,
Department of Medicine, University College Dublin, Dublin, Ireland,
Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA,Department of Biology, University of NorthFlorida, Jacksonville, FL, USA,Correspondence to: Owen A. Ross, PhD, Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA. Tel.: +1 904 953 6280; Fax: +1 904 953 7370; E-mail:
| |
Collapse
|
37
|
Chung H, Wickel J, Oswald M, Dargvainiene J, Rupp J, Rohde G, Witzenrath M, Leypoldt F, König R, Pletz MW, Geis C, CAPNETZ Study Group. Neurofilament light chain levels predict encephalopathy and outcome in community-acquired pneumonia. Ann Clin Transl Neurol 2022; 10:204-212. [PMID: 36479924 PMCID: PMC9930427 DOI: 10.1002/acn3.51711] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Serum neurofilament light chain (sNfL) is a biomarker for neuroaxonal damage and has been found to be elevated in several neurological diseases with neuronal destruction. New onset of confusion is a hallmark of severity in infections. The objective of this study was to determine whether sNfL levels are increased in patients with community-acquired pneumonia (CAP) and if increased sNfL levels are associated with disease-associated confusion or disease severity. METHODS In this observational study, sNfL levels were determined with single-molecule array technology in CAP patients of the CAPNETZ cohort with validated CRB (confusion, respiratory rate, and blood pressure)-65 score. We determined associations between log-transformed sNfL concentrations, well-defined clinical characteristics, and unfavorable outcome in multivariable analyses. Receiver operating characteristic (ROC) analysis was performed to assess the prediction accuracy of sNfL levels for confusion in CAP patients. RESULTS sNfL concentrations were evaluated in 150 CAP patients. Patients with confusion had higher sNfL levels as compared to non-confusion patients of comparable overall disease severity. ROC analysis of sNfL and confusion provided an area under the curve (AUC) of 0.73 (95% CI 0.62-0.82). Log-transformed sNfL levels were not associated with general disease severity. In a logistic regression analysis, log2-sNfL was identified as a strong predictor for an unfavorable outcome. INTERPRETATION sNfL levels are specifically associated with confusion and not with pneumonia disease severity, thus reflecting a potential objective marker for encephalopathy in these patients. Furthermore, sNfL levels are also associated with unfavorable outcome in these patients and might help clinicians to identify patients at risk.
Collapse
Affiliation(s)
- Ha‐Yeun Chung
- Section of Translational Neuroimmunology, Department of NeurologyJena University HospitalJenaGermany,Center for Sepsis Control and CareJena University HospitalJenaGermany
| | - Jonathan Wickel
- Section of Translational Neuroimmunology, Department of NeurologyJena University HospitalJenaGermany,Center for Sepsis Control and CareJena University HospitalJenaGermany
| | - Marcus Oswald
- Systems Biology Research Group, Institute for Infectious Diseases and Infection Control (IIMK)Jena University HospitalJenaGermany
| | - Justina Dargvainiene
- Neuroimmunology, Institute of Clinical Chemistry and Department of Neurology, UKSH Kiel/LübeckKiel UniversityKielGermany
| | - Jan Rupp
- Department of Infectious Diseases and MicrobiologyUniversity Hospital Schleswig‐HolsteinLübeckGermany,CAPNETZ STIFTUNGHannoverGermany
| | - Gernot Rohde
- CAPNETZ STIFTUNGHannoverGermany,Biomedical Research in Endstage in Obstructive Lung Disease Hannover (BREATH)German Center for Lung Research (DZL)HannoverGermany,Department of Respiratory Medicine, Medical Clinic IFrankfurt University Hospital, Goethe University FrankfurtFrankfurt/MainGermany
| | - Martin Witzenrath
- CAPNETZ STIFTUNGHannoverGermany,Department of Infectious Diseases and Respiratory MedicineCharité – Universitätsmedizin BerlinBerlinGermany
| | - Frank Leypoldt
- Neuroimmunology, Institute of Clinical Chemistry and Department of Neurology, UKSH Kiel/LübeckKiel UniversityKielGermany
| | - Rainer König
- Systems Biology Research Group, Institute for Infectious Diseases and Infection Control (IIMK)Jena University HospitalJenaGermany
| | - Mathias W. Pletz
- Center for Sepsis Control and CareJena University HospitalJenaGermany,CAPNETZ STIFTUNGHannoverGermany,Institute of Infectious Diseases and Infection ControlJena University HospitalJenaGermany
| | - Christian Geis
- Section of Translational Neuroimmunology, Department of NeurologyJena University HospitalJenaGermany,Center for Sepsis Control and CareJena University HospitalJenaGermany
| | | |
Collapse
|
38
|
Plantone D, Locci S, Bergantini L, Manco C, Cortese R, Meocci M, Cavallaro D, d'Alessandro M, Bargagli E, De Stefano N. Brain neuronal and glial damage during acute COVID-19 infection in absence of clinical neurological manifestations. J Neurol Neurosurg Psychiatry 2022; 93:1343-1348. [PMID: 36137741 DOI: 10.1136/jnnp-2022-329933] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/29/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND To assess whether SARS-CoV-2 infection may affect the central nervous system, specifically neurons and glia cells, even without clinical neurological involvement. METHODS In this single centre prospective study, serum levels of neurofilament light chain (sNfL) and glial fibrillar acidic protein (sGFAp) were assessed using SimoaTM assay Neurology 2-Plex B Assay Kit, in 148 hospitalised patients with COVID-19 without clinical neurological manifestations and compared them to 53 patients with interstitial pulmonary fibrosis (IPF) and 108 healthy controls (HCs). RESULTS Age and sex-corrected sNfL levels were higher in patients with COVID-19 (median log10-sNfL 1.41; IQR 1.04-1.83) than patients with IPF (median log10-sNfL 1.18; IQR 0.98-1.38; p<0.001) and HCs (median log10-sNfL 0.89; IQR 0.72-1.14; p<0.001). Likewise, age and sex-corrected sGFAP levels were higher in patients with COVID-19 (median log10-sGFAP 2.26; IQR 2.02-2.53) in comparison with patients with IPF (median log10-sGFAP 2.15; IQR 1.94-2.30; p<0.001) and HCs (median log10-sGFAP 1.87; IQR 0.64-2.09; p<0.001). No significant difference was found between patients with HCs and IPF (p=0.388 for sNfL and p=0.251 for sGFAp). In patients with COVID-19, a prognostic model with mortality as dependent variable (26/148 patients died during hospitalisation) and sNfl, sGFAp and age as independent variables, showed an area under curve of 0.72 (95% CI 0.59 to 0.84; negative predictive value (NPV) (%):80,positive predictive value (PPV)(%): 84; p=0.0008). CONCLUSION The results of our study suggest that neuronal and glial degeneration can occur in patients with COVID-19 regardless of overt clinical neurological manifestations. With age, levels of sNfl and GFAp can predict in-hospital COVID-19-associated mortality and might be useful to assess COVID-19 patient prognostic profile.
Collapse
Affiliation(s)
- Domenico Plantone
- Centre of Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Sara Locci
- Centre of Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Laura Bergantini
- Centre of Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Carlo Manco
- Centre of Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Rosa Cortese
- Centre of Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Martina Meocci
- Centre of Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Dalila Cavallaro
- Centre of Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Miriana d'Alessandro
- Centre of Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Elena Bargagli
- Centre of Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Nicola De Stefano
- Centre of Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
39
|
Needham EJ, Ren AL, Digby RJ, Norton EJ, Ebrahimi S, Outtrim JG, Chatfield DA, Manktelow AE, Leibowitz MM, Newcombe VFJ, Doffinger R, Barcenas-Morales G, Fonseca C, Taussig MJ, Burnstein RM, Samanta RJ, Dunai C, Sithole N, Ashton NJ, Zetterberg H, Gisslén M, Edén A, Marklund E, Openshaw PJM, Dunning J, Griffiths MJ, Cavanagh J, Breen G, Irani SR, Elmer A, Kingston N, Summers C, Bradley JR, Taams LS, Michael BD, Bullmore ET, Smith KGC, Lyons PA, Coles AJ, Menon DK, Cambridge NeuroCOVID Group
AnwarFahimAllinsonKierenBhattiJunaidBullmoreEdward TChatfieldDorothy AChristmasDavidColesAlasdair JColesJonathan PCorreiaMartaDasTilakFletcherPaul CJubbAlasdair WLupsonVictoria CManktelowAnne EMenonDavid KMichellAndrewNeedhamEdward JNewcombeVirginia F JOuttrimJoanne GPointonLindaRodgersChristopher TRoweJames BRuaCatarinaSitholeNyarieSpindlerLennart R BStamatakisEmmanuel ATaylorJonathanValerioFernandaWidmerBarryWilliamsGuy BChinneryPatrick F, CITIID-NIHR COVID-19 BioResource Collaboration
AllisonJohnAlvioGiseleAnsaripourAliBakerSharonBakerStephenBergamaschiLauraBermperiAretiBetancourtArianaBiggsHeatherBongSze-HowBowerGeorgieBradleyJohn RBrookesKarenBuckeAshleaBullmanBenBunclarkKatherineButcherHelenCaddySarahCalderJoCallerLauraCannaLauraCaputoDanielaChandlerMattChaudhryYasminChinneryPatrickClapham-RileyDebbieCooperDanielCossettiChiaraCrucusioCherryCruzIsabelCurranMartinCoudertJerome DBieEckart M D D DeJesusRnalie DeSaAloka DeDeanAnne-MareeDempseyKatieDewhurstEleanorStefanoGiovanni diDomingoJasonDouganGordonDunmoreBenjamin JElmerAnneEppingMadelineFaheyCodieFawkeStuartFeltwellTheresaFernandezChristianFullerStewartFurlongAnitaGeorganaIlianaGeorgeAnneGleadallNickGoodfellowIan GGräfStefanGravesBarbaraGrayJenniferGrenfellRichardGuptaRavindra KHallGrantHamiltonWilliamHarrisJulieHeinSabineHessChristophHewittSarahHinchAndrewHodgsonJoshHosmilloMyraHolmesElaineHouldcroftCharlotteHuangChristopherHuhnOisínHunterKelvinIversTasminJahunAminuJacksonSarahJarvisIsobelJonesEmmaJonesHeatherJoseSherlyJosipovićMašaKasanickiMaryKennetJaneKhokharFahadKingYvonneKingstonNathalieKourampaJennyGresleyEmma LeLaurentiElisaLegchenkoEkaterinaLehnerPaul JLewisDanielLiEmilyLingerRachelLyonsPaul AMackayMichaelMarioniJohn CMarsdenJimmyMartinJenniferMataraCeciliaMathesonNicholas JMcMahonCarolineMeadowsAnneMeloySarahMendozaVivienMeredithLukeMendeNicoleMesciaFedericaMichaelAliceMoultonAlexeiMichelRachelMwauraLucyMuldoonFrancescaNiceFrancescaO’BrienCrionaOcayaCharmainO’DonnellCiaraOkechaGeorginaOmarjeeOmmarOvingtonNigelOwehandWillem HPapadiaSofiaParaschivRoxanaParmarSurendraPascualeCiroPattersonCarolinePenkettChristopherPeralesMarlynPereraMariannePhelanIsabelPinckertMaltePointonLindaPolgarovaPetraPolwarthGaryPondNicolePriceJaneRanganathVenkateshPublicoCherryRastallRebeccaRibeiroCarlaRichozNathanRomashovaVeronikaRossiSabrinaRowlandsJaneRuffoloValentinaSambrookJenniferSaundersCarolineYarkoniNatalia SavinykhSchonKatherineSelvanMayurunSharmaRahulShihJoySmithKenneth G CSpencerSarahStefanucciLucaStarkHannahStephensJonathanStirrupsKathleen EStrezleckiMateuszSummersCharlotteSutcliffeRachelThaventhiranJames E DTillyTobiasTongZhenTordesillasHugoTreacyCarmenToshnerMarkTownsendPaulTreacyCarmenTurnerLoriVargasPhoebeVergeseBensivon ZiegenweidtJulieWalkerNeilWatsonLauraWebsterJenniferWeekesMichael PWilsonNicola KWoodJenniferWorsleyJienieanWylotMartaYakovlevaAnnaZerrudoCissy Yong and Julie-Anne, Cambridge NIHR Clinical Research Facility
SaundersCarolineElmerAnne. Brain injury in COVID-19 is associated with dysregulated innate and adaptive immune responses. Brain 2022; 145:4097-4107. [PMID: 36065116 PMCID: PMC9494359 DOI: 10.1093/brain/awac321] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/24/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
COVID-19 is associated with neurological complications including stroke, delirium and encephalitis. Furthermore, a post-viral syndrome dominated by neuropsychiatric symptoms is common, and is seemingly unrelated to COVID-19 severity. The true frequency and underlying mechanisms of neurological injury are unknown, but exaggerated host inflammatory responses appear to be a key driver of COVID-19 severity. We investigated the dynamics of, and relationship between, serum markers of brain injury [neurofilament light (NfL), glial fibrillary acidic protein (GFAP) and total tau] and markers of dysregulated host response (autoantibody production and cytokine profiles) in 175 patients admitted with COVID-19 and 45 patients with influenza. During hospitalization, sera from patients with COVID-19 demonstrated elevations of NfL and GFAP in a severity-dependent manner, with evidence of ongoing active brain injury at follow-up 4 months later. These biomarkers were associated with elevations of pro-inflammatory cytokines and the presence of autoantibodies to a large number of different antigens. Autoantibodies were commonly seen against lung surfactant proteins but also brain proteins such as myelin associated glycoprotein. Commensurate findings were seen in the influenza cohort. A distinct process characterized by elevation of serum total tau was seen in patients at follow-up, which appeared to be independent of initial disease severity and was not associated with dysregulated immune responses unlike NfL and GFAP. These results demonstrate that brain injury is a common consequence of both COVID-19 and influenza, and is therefore likely to be a feature of severe viral infection more broadly. The brain injury occurs in the context of dysregulation of both innate and adaptive immune responses, with no single pathogenic mechanism clearly responsible.
Collapse
Affiliation(s)
- Edward J Needham
- Correspondence to: Edward Needham Department of Clinical Neurosciences University of Cambridge, Cambridge, UK E-mail:
| | - Alexander L Ren
- Division of Anaesthesia, Department of Medicine, University of Cambridge, UK
| | - Richard J Digby
- Division of Anaesthesia, Department of Medicine, University of Cambridge, UK
| | - Emma J Norton
- Division of Anaesthesia, Department of Medicine, University of Cambridge, UK
| | - Soraya Ebrahimi
- Division of Anaesthesia, Department of Medicine, University of Cambridge, UK
| | - Joanne G Outtrim
- Division of Anaesthesia, Department of Medicine, University of Cambridge, UK
| | - Doris A Chatfield
- Division of Anaesthesia, Department of Medicine, University of Cambridge, UK
| | - Anne E Manktelow
- Division of Anaesthesia, Department of Medicine, University of Cambridge, UK
| | - Maya M Leibowitz
- Division of Anaesthesia, Department of Medicine, University of Cambridge, UK
| | | | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Addenbrooke’s Hospital, Cambridge, UK
| | | | - Claudia Fonseca
- Cambridge Protein Arrays Ltd, Babraham Research Campus, Cambridge, UK
| | - Michael J Taussig
- Cambridge Protein Arrays Ltd, Babraham Research Campus, Cambridge, UK
| | - Rowan M Burnstein
- Division of Anaesthesia, Department of Medicine, University of Cambridge, UK
| | - Romit J Samanta
- Division of Anaesthesia, Department of Medicine, University of Cambridge, UK
| | - Cordelia Dunai
- Clinical Infection Microbiology and Neuroimmunology, Institute of Infection, Veterinary and Ecological Science, Liverpool, UK
| | - Nyarie Sithole
- Department of Infectious Diseases, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Arden Edén
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emelie Marklund
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Jake Dunning
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Michael J Griffiths
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jonathan Cavanagh
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Gerome Breen
- Department of Social Genetic and Developmental Psychiatry, King’s College London, London, UK
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Neurology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Anne Elmer
- Cambridge Clinical Research Centre, NIHR Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | - Nathalie Kingston
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Charlotte Summers
- Division of Anaesthesia, Department of Medicine, University of Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - John R Bradley
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Leonie S Taams
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) and Department Inflammation Biology, School of Immunology and Microbial Sciences, King’s College London, Guy's Campus, London, UK
| | - Benedict D Michael
- Clinical Infection Microbiology and Neuroimmunology, Institute of Infection, Veterinary and Ecological Science, Liverpool, UK
| | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain and Mind Sciences, Cambridge Biomedical Campus, Cambridge, UK
| | - Kenneth G C Smith
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - Paul A Lyons
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - Alasdair J Coles
- Department of Clinical Neurosciences, University of Cambridge, UK
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, UK
| | | | | | | |
Collapse
|
40
|
Erben Y, Prudencio M, Marquez CP, Jansen-West KR, Heckman MG, White LJ, Dunmore JA, Cook CN, Lilley MT, Qosja N, Song Y, Hanna Al Shaikh R, Daughrity LM, Bartfield JL, Day GS, Oskarsson B, Nicholson KA, Wszolek ZK, Hoyne JB, Gendron TF, Meschia JF, Petrucelli L. Neurofilament light chain and vaccination status associate with clinical outcomes in severe COVID-19. iScience 2022; 25:105272. [PMID: 36213006 PMCID: PMC9531935 DOI: 10.1016/j.isci.2022.105272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/13/2022] [Accepted: 09/30/2022] [Indexed: 02/08/2023] Open
Abstract
Blood neurofilament light chain (NFL) is proposed to serve as an estimate of disease severity in hospitalized patients with coronavirus disease 2019 (COVID-19). We show that NFL concentrations in plasma collected from 880 patients with COVID-19 within 5 days of hospital admission were elevated compared to controls. Higher plasma NFL associated with worse clinical outcomes including the need for mechanical ventilation, intensive care, prolonged hospitalization, and greater functional disability at discharge. No difference in the studied clinical outcomes between black/African American and white patients was found. Finally, vaccination associated with less disability at time of hospital discharge. In aggregate, our findings support the utility of measuring NFL shortly after hospital admission to estimate disease severity and show that race does not influence clinical outcomes caused by COVID-19 assuming equivalent access to care, and that vaccination may lessen the degree of COVID-19-caused disability.
Collapse
Affiliation(s)
- Young Erben
- Division of Vascular and Endovascular Surgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Christopher P. Marquez
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Michael G. Heckman
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Launia J. White
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Judith A. Dunmore
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Casey N. Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | | | - Neda Qosja
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yuping Song
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Rana Hanna Al Shaikh
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | - Gregory S. Day
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Björn Oskarsson
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Katharine A. Nicholson
- Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital (MGH), Boston, MA 02114, USA
| | | | - Jonathan B. Hoyne
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Tania F. Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - James F. Meschia
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| |
Collapse
|
41
|
Petzold A. The 2022 Lady Estelle Wolfson lectureship on neurofilaments. J Neurochem 2022; 163:179-219. [PMID: 35950263 PMCID: PMC9826399 DOI: 10.1111/jnc.15682] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Neurofilament proteins (Nf) have been validated and established as a reliable body fluid biomarker for neurodegenerative pathology. This review covers seven Nf isoforms, Nf light (NfL), two splicing variants of Nf medium (NfM), two splicing variants of Nf heavy (NfH),α -internexin (INA) and peripherin (PRPH). The genetic and epigenetic aspects of Nf are discussed as relevant for neurodegenerative diseases and oncology. The comprehensive list of mutations for all Nf isoforms covers Amyotrophic Lateral Sclerosis, Charcot-Marie Tooth disease, Spinal muscular atrophy, Parkinson Disease and Lewy Body Dementia. Next, emphasis is given to the expanding field of post-translational modifications (PTM) of the Nf amino acid residues. Protein structural aspects are reviewed alongside PTMs causing neurodegenerative pathology and human autoimmunity. Molecular visualisations of NF PTMs, assembly and stoichiometry make use of Alphafold2 modelling. The implications for Nf function on the cellular level and axonal transport are discussed. Neurofilament aggregate formation and proteolytic breakdown are reviewed as relevant for biomarker tests and disease. Likewise, Nf stoichiometry is reviewed with regard to in vitro experiments and as a compensatory mechanism in neurodegeneration. The review of Nf across a spectrum of 87 diseases from all parts of medicine is followed by a critical appraisal of 33 meta-analyses on Nf body fluid levels. The review concludes with considerations for clinical trial design and an outlook for future research.
Collapse
Affiliation(s)
- Axel Petzold
- Department of NeurodegenerationQueen Square Insitute of Neurology, UCLLondonUK
| |
Collapse
|
42
|
Alvarez M, Trent E, Goncalves BDS, Pereira DG, Puri R, Frazier NA, Sodhi K, Pillai SS. Cognitive dysfunction associated with COVID-19: Prognostic role of circulating biomarkers and microRNAs. Front Aging Neurosci 2022; 14:1020092. [PMID: 36268187 PMCID: PMC9577202 DOI: 10.3389/fnagi.2022.1020092] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is renowned as a multi-organ disease having subacute and long-term effects with a broad spectrum of clinical manifestations. The evolving scientific and clinical evidence demonstrates that the frequency of cognitive impairment after COVID-19 is high and it is crucial to explore more clinical research and implement proper diagnostic and treatment strategies. Several central nervous system complications have been reported as comorbidities of COVID-19. The changes in cognitive function associated with neurodegenerative diseases develop slowly over time and are only diagnosed at an already advanced stage of molecular pathology. Hence, understanding the common links between COVID-19 and neurodegenerative diseases will broaden our knowledge and help in strategizing prognostic and therapeutic approaches. The present review focuses on the diverse neurodegenerative changes associated with COVID-19 and will highlight the importance of major circulating biomarkers and microRNAs (miRNAs) associated with the disease progression and severity. The literature analysis showed that major proteins associated with central nervous system function, such as Glial fibrillary acidic protein, neurofilament light chain, p-tau 181, Ubiquitin C-terminal hydrolase L1, S100 calcium-binding protein B, Neuron-specific enolase and various inflammatory cytokines, were significantly altered in COVID-19 patients. Furthermore, among various miRNAs that are having pivotal roles in various neurodegenerative diseases, miR-146a, miR-155, Let-7b, miR-31, miR-16 and miR-21 have shown significant dysregulation in COVID-19 patients. Thus the review consolidates the important findings from the numerous studies to unravel the underlying mechanism of neurological sequelae in COVID-19 and the possible association of circulatory biomarkers, which may serve as prognostic predictors and therapeutic targets in future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sneha S. Pillai
- Department of Surgery, Biomedical Sciences and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| |
Collapse
|
43
|
Abstract
SARS-CoV-2, the virus that causes coronavirus disease (COVID)-19, has become a persistent global health threat. Individuals who are symptomatic for COVID-19 frequently exhibit respiratory illness, which is often accompanied by neurological symptoms of anosmia and fatigue. Mounting clinical data also indicate that many COVID-19 patients display long-term neurological disorders postinfection such as cognitive decline, which emphasizes the need to further elucidate the effects of COVID-19 on the central nervous system. In this review article, we summarize an emerging body of literature describing the impact of SARS-CoV-2 infection on central nervous system (CNS) health and highlight important areas of future investigation.
Collapse
Affiliation(s)
- Nick R. Natale
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Global Biothreats Graduate Training Program, University of Virginia, Charlottesville, VA, USA
| | - John R. Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Global Biothreats Graduate Training Program, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - William A. Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Global Biothreats Graduate Training Program, University of Virginia, Charlottesville, VA, USA
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
44
|
Rau A, Schroeter N, Blazhenets G, Dressing A, Walter LI, Kellner E, Bormann T, Mast H, Wagner D, Urbach H, Weiller C, Meyer PT, Reisert M, Hosp JA. Widespread white matter oedema in subacute COVID-19 patients with neurological symptoms. Brain 2022; 145:3203-3213. [PMID: 35675908 PMCID: PMC9214163 DOI: 10.1093/brain/awac045] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/30/2021] [Accepted: 01/23/2022] [Indexed: 12/04/2022] Open
Abstract
While neuropathological examinations in patients who died from COVID-19 revealed inflammatory changes in cerebral white matter, cerebral MRI frequently fails to detect abnormalities even in the presence of neurological symptoms. Application of multi-compartment diffusion microstructure imaging (DMI), that detects even small volume shifts between the compartments (intra-axonal, extra-axonal and free water/CSF) of a white matter model, is a promising approach to overcome this discrepancy. In this monocentric prospective study, a cohort of 20 COVID-19 inpatients (57.3 ± 17.1 years) with neurological symptoms (e.g. delirium, cranial nerve palsies) and cognitive impairments measured by the Montreal Cognitive Assessment (MoCA test; 22.4 ± 4.9; 70% below the cut-off value <26/30 points) underwent DMI in the subacute stage of the disease (29.3 ± 14.8 days after positive PCR). A comparison of whole-brain white matter DMI parameters with a matched healthy control group (n = 35) revealed a volume shift from the intra- and extra-axonal space into the free water fraction (V-CSF). This widespread COVID-related V-CSF increase affected the entire supratentorial white matter with maxima in frontal and parietal regions. Streamline-wise comparisons between COVID-19 patients and controls further revealed a network of most affected white matter fibres connecting widespread cortical regions in all cerebral lobes. The magnitude of these white matter changes (V-CSF) was associated with cognitive impairment measured by the MoCA test (r = -0.64, P = 0.006) but not with olfactory performance (r = 0.29, P = 0.12). Furthermore, a non-significant trend for an association between V-CSF and interleukin-6 emerged (r = 0.48, P = 0.068), a prominent marker of the COVID-19 related inflammatory response. In 14/20 patients who also received cerebral 18F-FDG PET, V-CSF increase was associated with the expression of the previously defined COVID-19-related metabolic spatial covariance pattern (r = 0.57; P = 0.039). In addition, the frontoparietal-dominant pattern of neocortical glucose hypometabolism matched well to the frontal and parietal focus of V-CSF increase. In summary, DMI in subacute COVID-19 patients revealed widespread volume shifts compatible with vasogenic oedema, affecting various supratentorial white matter tracts. These changes were associated with cognitive impairment and COVID-19 related changes in 18F-FDG PET imaging.
Collapse
Affiliation(s)
- Alexander Rau
- Department of Neuroradiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils Schroeter
- Department of Neurology and Clinical Neuroscience, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ganna Blazhenets
- Department of Nuclear Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrea Dressing
- Department of Neurology and Clinical Neuroscience, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Freiburg Brain Imaging Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lea I Walter
- Department of Neurology and Clinical Neuroscience, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elias Kellner
- Department of Medical Physics, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Bormann
- Department of Neurology and Clinical Neuroscience, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Freiburg Brain Imaging Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hansjörg Mast
- Department of Neuroradiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dirk Wagner
- Department of Internal Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cornelius Weiller
- Department of Neurology and Clinical Neuroscience, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Freiburg Brain Imaging Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Reisert
- Department of Medical Physics, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Stereotactic and Functional Neurosurgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jonas A Hosp
- Department of Neurology and Clinical Neuroscience, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
45
|
Neurocognitive screening in patients following SARS-CoV-2 infection: tools for triage. BMC Neurol 2022; 22:285. [PMID: 35907815 PMCID: PMC9338515 DOI: 10.1186/s12883-022-02817-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/23/2022] [Indexed: 02/05/2023] Open
Abstract
Background Cognitive complaints are common in patients recovering from Coronavirus Disease 2019 (COVID-19), yet their etiology is often unclear. We assess factors that contribute to cognitive impairment in ambulatory versus hospitalized patients during the sub-acute stage of recovery. Methods In this cross-sectional study, participants were prospectively recruited from a hospital-wide registry. All patients tested positive for SARS-CoV-2 infection using a real-time reverse transcriptase polymerase-chain-reaction assay. Patients ≤ 18 years-of-age and those with a pre-existing major neurocognitive disorder were excluded. Participants completed an extensive neuropsychological questionnaire and a computerized cognitive screen via remote telemedicine platform. Rates of subjective and objective neuropsychological impairment were compared between the ambulatory and hospitalized groups. Factors associated with impairment were explored separately within each group. Results A total of 102 patients (76 ambulatory, 26 hospitalized) completed the symptom inventory and neurocognitive tests 24 ± 22 days following laboratory confirmation of SARS-CoV-2 infection. Hospitalized and ambulatory patients self-reported high rates of cognitive impairment (27–40%), without differences between the groups. However, hospitalized patients showed higher rates of objective impairment in visual memory (30% vs. 4%; p = 0.001) and psychomotor speed (41% vs. 15%; p = 0.008). Objective cognitive test performance was associated with anxiety, depression, fatigue, and pain in the ambulatory but not the hospitalized group. Conclusions Focal cognitive deficits are more common in hospitalized than ambulatory patients. Cognitive performance is associated with neuropsychiatric symptoms in ambulatory but not hospitalized patients. Objective neurocognitive measures can provide essential information to inform neurologic triage and should be included as endpoints in clinical trials. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-022-02817-9.
Collapse
|
46
|
Gusdon AM, Faraday N, Aita JS, Kumar S, Mehta I, Choi HA, Cleland JL, Robinson K, McCullough LD, Ng DK, Kannan RM, Kannan S. Dendrimer nanotherapy for severe COVID-19 attenuates inflammation and neurological injury markers and improves outcomes in a phase2a clinical trial. Sci Transl Med 2022; 14:eabo2652. [PMID: 35857827 DOI: 10.1126/scitranslmed.abo2652] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hyperinflammation triggered by SARS-CoV-2 is a major cause of disease severity, with activated macrophages implicated in this response. OP-101, a hydroxyl-polyamidoamine dendrimer-N-acetylcysteine conjugate that specifically targets activated macrophages, improves outcomes in preclinical models of systemic inflammation and neuroinflammation. In this multicenter, randomized, double-blind, placebo-controlled, adaptive phase 2a trial, we evaluated safety and preliminary efficacy of OP-101 in patients with severe COVID-19. Twenty-four patients classified as having severe COVID-19 with a baseline World Health Organization seven-point ordinal scale of ≥5 were randomized to receive a single intravenous dose of placebo (n = 7 patients) or OP-101 at 2 (n = 6), 4 (n = 6), or 8 mg/kg (n = 5 patients). All study participants received standard of care, including corticosteroids. OP-101 at 4 mg/kg was better than placebo at decreasing inflammatory markers; OP-101 at 4 and 8 mg/kg was better than placebo at reducing neurological injury markers, (neurofilament light chain and glial fibrillary acidic protein). Risk for the composite outcome of mechanical ventilation or death at 30 and 60 days after treatment was 71% (95% CI: 29%, 96%) for placebo and 18% (95% CI: 4%, 43%; P = 0.021) for the pooled OP-101 treatment arms. At 60 days, 3 of 7 patients given placebo and 14 of 17 OP-101-treated patients were surviving. No drug-related adverse events were reported. These data show that OP-101 was well tolerated and may have potential to treat systemic inflammation and neuronal injury, reducing morbidity and mortality in hospitalized patients with severe COVID-19.
Collapse
Affiliation(s)
- Aaron M Gusdon
- Department of Neurosurgery, The University of Texas, McGovern Medical School, Memorial Hermann Hospital, Houston, TX, USA
| | - Nauder Faraday
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John S Aita
- Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA
| | - Sunil Kumar
- Broward Health Medical Center, Fort Lauderdale, FL, USA
| | - Ishan Mehta
- Emory University School of Medicine, Atlanta, GA, USA
| | - HuiMahn A Choi
- Department of Neurosurgery, The University of Texas, McGovern Medical School, Memorial Hermann Hospital, Houston, TX, USA
| | | | | | - Louise D McCullough
- Department of Neurology, The University of Texas, McGovern Medical School, Memorial Hermann Hospital, Houston, TX, USA
| | - Derek K Ng
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rangaramanujam M Kannan
- Department of Ophthalmology, Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University SOM, Baltimore, MD, USA
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
47
|
Smeele PJ, Vermunt L, Blok S, Duitman JW, van Agtmael M, Algera AG, Appelman B, van Baarle F, Bax D, Beudel M, Bogaard HJ, Bomers M, Bonta P, Bos L, Botta M, de Brabander J, de Bree G, de Bruin S, Buis DTP, Bugiani M, Bulle E, Chekrouni N, Chouchane O, Cloherty A, Dijkstra M, Dongelmans DA, Duijvelaar E, Dujardin RWG, Elbers P, Fleuren L, Geerlings S, Geijtenbeek T, Girbes A, Goorhuis B, Grobusch MP, Hafkamp F, Hagens L, Hamann J, Harris V, Hemke R, Hermans SM, Heunks L, Hollmann M, Horn J, Hovius JW, de Jong MD, Koning R, Lim EHT, van Mourik N, Nellen J, Nossent EJ, Olie S, Paulus F, Peters E, Pina-Fuentes DAI, van der Poll T, Preckel B, Raasveld J, Reijnders T, de Rotte MCFJ, Schippers JR, Schinkel M, Schultz MJ, Schrauwen FAP, Schuurman A, Schuurmans J, Sigaloff K, Slim MA, Smeele P, Smit M, Stijnis CS, Stilma W, Teunissen C, Thoral P, Tsonas AM, Tuinman PR, van der Valk M, Veelo D, Volleman C, de Vries H, Vught LA, van Vugt M, Wouters D, Zwinderman AH(K, Brouwer MC, Wiersinga WJ, Vlaar APJ, van de Beek D, Nossent EJ, van Agtmael MA, Heunks LMA, Horn J, Bogaard HJ, Teunissen CE, AmsterdamUMC COVID-19 Biobank. Neurofilament light increases over time in severe COVID-19 and is associated with delirium. Brain Commun 2022; 4:fcac195. [PMID: 35938070 PMCID: PMC9351727 DOI: 10.1093/braincomms/fcac195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/05/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Neurological monitoring in sedated Intensive Care Unit patients is constrained by the lack of reliable blood-based biomarkers. Neurofilament light is a cross-disease biomarker for neuronal damage with potential clinical applicability for monitoring Intensive Care Unit patients. We studied the trajectory of neurofilament light over a month in Intensive Care Unit patients diagnosed with severe COVID-19 and explored its relation to clinical outcomes and pathophysiological predictors. Data were collected over a month in 31 Intensive Care Unit patients (166 plasma samples) diagnosed with severe COVID-19 at Amsterdam University Medical Centre, and in the first week after emergency department admission in 297 patients with COVID-19 (635 plasma samples) admitted to Massachusetts General hospital. We observed that Neurofilament light increased in a non-linear fashion in the first month of Intensive Care Unit admission and increases faster in the first week of Intensive Care Unit admission when compared with mild-moderate COVID-19 cases. We observed that baseline Neurofilament light did not predict mortality when corrected for age and renal function. Peak neurofilament light levels were associated with a longer duration of delirium after extubation in Intensive Care Unit patients. Disease severity, as measured by the sequential organ failure score, was associated to higher neurofilament light values, and tumour necrosis factor alpha levels at baseline were associated with higher levels of neurofilament light at baseline and a faster increase during admission. These data illustrate the dynamics of Neurofilament light in a critical care setting and show associations to delirium, disease severity and markers for inflammation. Our study contributes to determine the clinical utility and interpretation of neurofilament light levels in Intensive Care Unit patients.
Collapse
Affiliation(s)
- Patrick J Smeele
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC , Amsterdam , the Netherlands
- Department of Pulmonary Medicine, Amsterdam University Medical Centre , Amsterdam 1081 HV , the Netherlands
| | - Lisa Vermunt
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC , Amsterdam , the Netherlands
| | - Siebe Blok
- Department of Pulmonary Medicine, Amsterdam University Medical Centre , Amsterdam 1081 HV , the Netherlands
| | - Jan Willem Duitman
- Department of Pulmonary Medicine, Amsterdam University Medical Centre , Amsterdam 1081 HV , the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Esther J Nossent
- Department of Pulmonary Medicine, Amsterdam University Medical Centre , Amsterdam 1081 HV , the Netherlands
| | - Michiel A van Agtmael
- Department of Internal Medicine, Amsterdam University Medical Centre , Amsterdam 1081 HV , the Netherlands
| | - Leo M A Heunks
- Department of Intensive Care Medicine, Amsterdam University Medical Centre , Amsterdam 1081 HV , the Netherlands
| | - Janneke Horn
- Department of Intensive Care Medicine, Amsterdam University Medical Centre , Amsterdam 1081 HV , the Netherlands
| | - Harm Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam University Medical Centre , Amsterdam 1081 HV , the Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC , Amsterdam , the Netherlands
| | | |
Collapse
|
48
|
Serum neurofilament light chain levels in Covid-19 patients without major neurological manifestations. J Neurol 2022; 269:5691-5701. [PMID: 35781535 PMCID: PMC9252542 DOI: 10.1007/s00415-022-11233-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/27/2022]
Abstract
Background Increased serum levels of neurofilament light chain (sNFL), a biomarker of neuroaxonal damage, have been reported in patients with Covid-19. We aimed at investigating whether sNFL is increased in Covid-19 patients without major neurological manifestations, is associated with disease severity, respiratory and routine blood parameters, and changes longitudinally in the short term. Methods sNFL levels were measured with single molecule array (Simoa) technology in 57 hospitalized Covid-19 patients without major neurological manifestations and in 30 neurologically healthy controls. Patients were evaluated for PaO2/FiO2 ratio on arterial blood gas, Brescia Respiratory Covid Severity Scale (BRCSS), white blood cell counts, serum C-reactive protein (CRP), plasma D-dimer, plasma fibrinogen, and serum creatinine at admission. In 20 patients, NFL was also measured on serum samples obtained at a later timepoint during the hospital stay. Results Covid-19 patients had higher baseline sNFL levels compared to controls, regardless of disease severity. Baseline sNFL correlated with serum CRP and plasma D-dimer in patients with mild disease, but was not associated with measures of respiratory impairment. Longitudinal sNFL levels tended to be higher than baseline ones, albeit not significantly, and correlated with serum CRP and plasma D-dimer. The PaO2/FiO2 ratio was not associated with longitudinal sNFL, whereas BRCSS only correlated with longitudinal sNFL variation. Conclusions We provide neurochemical evidence of subclinical axonal damage in Covid-19 also in the absence of major neurological manifestations. This is apparently not fully explained by hypoxic injury; rather, systemic inflammation might promote this damage. However, a direct neurotoxic effect of SARS-CoV-2 cannot be excluded.
Collapse
|
49
|
Page VJ, Watne LO, Heslegrave A, Clark A, McAuley DF, Sanders RD, Zetterberg H. Plasma neurofilament light chain protein as a predictor of days in delirium and deep sedation, mortality and length of stay in critically ill patients. EBioMedicine 2022; 80:104043. [PMID: 35533500 PMCID: PMC9092506 DOI: 10.1016/j.ebiom.2022.104043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/28/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022] Open
Abstract
Background Delirium predicts poor outcomes, however identifying patients with the worst outcomes is challenging. Plasma neurofilament light protein (NfL) is a sensitive indicator of neuronal damage. We undertook an exploratory observational study to determine the association between plasma NfL and delirium in the critically ill. Methods MoDUS was a randomised placebo-controlled delirium trial of simvastatin done in an UK adult general ICU. We measured NfL levels in plasma samples using a Single molecule array (Simoa) platform. We explored associations between patient's plasma NfL levels and number of delirium days, and clinical outcomes. The control group for baseline NfL were preoperative patients undergoing major surgery. Findings The majority of critically ill patients already had a high NfL level on admission. Patients with higher plasma NfL levels at days one and three spent more days in delirium or deep sedation. Patients with zero or one day in delirium or deep sedation had day one mean concentrations of 37.8 pg/ml (SD 32.6) compared with 96.5 pg/ml (SD 106.1)) for patients with two days or more, p-value 0.002 linear mixed effects model. Survivors discharged before 14 days had lower mean plasma NfL concentrations compared to those with longer hospital stays and/or who died within six months. The area under ROC curve for predicting death within six months using day one NfL was 0.81 (0.7,0.9). Interpretation Measurement of plasma NfL within three days of admission may be useful to identify those patients with worse clinical outcomes, and as an enrichment strategy for future delirium interventional trials in the critically ill. Funding Alzheimer's Society UK, UK Dementia Research Institute.
Collapse
Affiliation(s)
- Valerie J Page
- Department of Anaesthesia, Intensive Care Unit, Watford General Hospital, Vicarage Road, Watford WD18 0HB, UK; Faculty of Medicine, Imperial College, South Kensington Campus, London SW7 2AZ, UK.
| | - Leiv Otto Watne
- Department of Geriatric Medicine, Oslo Delirium Research Group, Oslo University Hospital, Oslo, Norway
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Allan Clark
- Norwich Clinical Trials Unit, University of East Anglia, Norwich, UK
| | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, The Queen's University of Belfast, Health Sciences Building, Belfast, Northern Ireland, UK; Royal Victoria Hospital, Belfast Health and Social Care Trust, Grosvenor Road, Belfast, Northern Ireland, UK
| | - Robert D Sanders
- Sydney Medical School/Central Clinical School, The University of Sydney, NSW 2006, Australia
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| |
Collapse
|
50
|
Liu YH, Chen Y, Wang QH, Wang LR, Jiang L, Yang Y, Chen X, Li Y, Cen Y, Xu C, Zhu J, Li W, Wang YR, Zhang LL, Liu J, Xu ZQ, Wang YJ. One-Year Trajectory of Cognitive Changes in Older Survivors of COVID-19 in Wuhan, China: A Longitudinal Cohort Study. JAMA Neurol 2022; 79:509-517. [PMID: 35258587 PMCID: PMC8905512 DOI: 10.1001/jamaneurol.2022.0461] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Importance Determining the long-term impact of COVID-19 on cognition is important to inform immediate steps in COVID-19 research and health policy. Objective To investigate the 1-year trajectory of cognitive changes in older COVID-19 survivors. Design, Setting, and Participants This cohort study recruited 3233 COVID-19 survivors 60 years and older who were discharged from 3 COVID-19-designated hospitals in Wuhan, China, from February 10 to April 10, 2020. Their uninfected spouses (N = 466) were recruited as a control population. Participants with preinfection cognitive impairment, a concomitant neurological disorder, or a family history of dementia were excluded, as well as those with severe cardiac, hepatic, or kidney disease or any kind of tumor. Follow-up monitoring cognitive functioning and decline took place at 6 and 12 months. A total of 1438 COVID-19 survivors and 438 control individuals were included in the final follow-up. COVID-19 was categorized as severe or nonsevere following the American Thoracic Society guidelines. Main Outcomes and Measures The main outcome was change in cognition 1 year after patient discharge. Cognitive changes during the first and second 6-month follow-up periods were assessed using the Informant Questionnaire on Cognitive Decline in the Elderly and the Telephone Interview of Cognitive Status-40, respectively. Based on the cognitive changes observed during the 2 periods, cognitive trajectories were classified into 4 categories: stable cognition, early-onset cognitive decline, late-onset cognitive decline, and progressive cognitive decline. Multinomial and conditional logistical regression models were used to identify factors associated with risk of cognitive decline. Results Among the 3233 COVID-19 survivors and 1317 uninfected spouses screened, 1438 participants who were treated for COVID-19 (691 male [48.05%] and 747 female [51.95%]; median [IQR] age, 69 [66-74] years) and 438 uninfected control individuals (222 male [50.68%] and 216 female [49.32%]; median [IQR] age, 67 [66-74] years) completed the 12-month follow-up. The incidence of cognitive impairment in survivors 12 months after discharge was 12.45%. Individuals with severe cases had lower Telephone Interview of Cognitive Status-40 scores than those with nonsevere cases and control individuals at 12 months (median [IQR]: severe, 22.50 [16.00-28.00]; nonsevere, 30.00 [26.00-33.00]; control, 31.00 [26.00-33.00]). Severe COVID-19 was associated with a higher risk of early-onset cognitive decline (odds ratio [OR], 4.87; 95% CI, 3.30-7.20), late-onset cognitive decline (OR, 7.58; 95% CI, 3.58-16.03), and progressive cognitive decline (OR, 19.00; 95% CI, 9.14-39.51), while nonsevere COVID-19 was associated with a higher risk of early-onset cognitive decline (OR, 1.71; 95% CI, 1.30-2.27) when adjusting for age, sex, education level, body mass index, and comorbidities. Conclusions and Relevance In this cohort study, COVID-19 survival was associated with an increase in risk of longitudinal cognitive decline, highlighting the importance of immediate measures to deal with this challenge.
Collapse
Affiliation(s)
- Yu-Hui Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yang Chen
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Qing-Hua Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ling-Ru Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Li Jiang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ying Yang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xian Chen
- Department of Anaesthesiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ying Li
- Department of Ophthalmology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yuan Cen
- Department of Orthopedics, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Cheng Xu
- Department of Oncology, General Hospital of the Central Theatre Command of the People's Liberation Army, Wuhan, China
| | - Jie Zhu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wei Li
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ye-Ran Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Li-Li Zhang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Juan Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zhi-Qiang Xu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|