1
|
Kharel Y, Huang T, Dunnavant K, Foster D, Souza GMPR, Nimchuk KE, Merchak AR, Pavelec CM, Juskiewicz ZJ, Alexander SS, Gaultier A, Abbott SBG, Shin JB, Isakson BE, Xu W, Leitinger N, Santos WL, Lynch KR. Assessment of Spinster homologue 2 (Spns2)-dependent transport of sphingosine-1-phosphate as a therapeutic target. Br J Pharmacol 2025; 182:2014-2030. [PMID: 39894457 DOI: 10.1111/bph.17456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/21/2024] [Accepted: 12/17/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND AND PURPOSE Sphingosine-1-phosphate (S1P) receptor modulator (SRM) drugs suppress immune system function by disrupting lymphocyte trafficking, but SRMs are broadly immunosuppressive with on-target liabilities. Another strategy to modulate the immune system is to block S1P transport. This study tests the hypothesis that blockers of S1P transport (STBs) mediated by Spinster homologue 2 (Spns2) approximate the efficacy of SRMs without their adverse events. EXPERIMENTAL APPROACH We have discovered and optimized STBs to enable investigations of S1P biology and to determine whether S1P transport is a valid drug target. The STB SLF80821178 was administered to rodents to assess its efficacy in a multiple sclerosis model and to test for toxicities associated with SRMs or Spns2-deficient mice. Further, potential biomarkers of STBs, absolute lymphocyte counts (ALCs) in blood and S1P concentrations in plasma and lymph, were measured. KEY RESULTS SLF80821178 resembles SRMs in that it is efficacious in a standard multiple sclerosis model but does not evoke bradycardia or lung leakage, common to the SRM drug class. Also, chronic SLF80821178 administration does not affect auditory responses in adult mice despite the neurosensorial hearing defect observed in Spns2-null mice. While both SRM and STB administration decrease ALCs, the maximal effect is less with an STB (45% vs. 90%). STBs have minimal effects on S1P concentration in plasma or thoracic duct lymph. CONCLUSION AND IMPLICATIONS We found nothing to invalidate Spns2-dependent S1P transport as a drug target. Indeed, STBs could be superior to SRMs as a therapy to modulate immune system function.
Collapse
Affiliation(s)
- Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Tao Huang
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Kyle Dunnavant
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, USA
| | - Daniel Foster
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, USA
| | - George M P R Souza
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Katherine E Nimchuk
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Andrea R Merchak
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Caitlin M Pavelec
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Zuzanna J Juskiewicz
- Robert M. Berne Cardiovascular Research Center and Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, Virginia, USA
| | - Simon S Alexander
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Alban Gaultier
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Jung-Bum Shin
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center and Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, Virginia, USA
| | - Wehao Xu
- Department of Microbiology, Immunology and Cancer Biology and Genetically Engineered Murine Model Core, University of Virginia, Charlottesville, Virginia, USA
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, USA
| | - Kevin R Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Li N, Li G. Sphingolipid signaling in kidney diseases. Am J Physiol Renal Physiol 2025; 328:F431-F443. [PMID: 39933715 DOI: 10.1152/ajprenal.00193.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
Sphingolipids are a family of bioactive lipids. The key components include ceramides, ceramide-1-phosphate, sphingosine, and sphingosine-1-phosphate. Sphingolipids were originally considered to be primarily structural elements of cell membranes but were later recognized as bioactive signaling molecules that play diverse roles in cellular behaviors such as cell differentiation, migration, proliferation, and death. Studies have demonstrated changes in key components of sphingolipids in the kidneys under different conditions and their important roles in the renal function and the pathogenesis of various kidney diseases. This review summarizes the most recent advances in the role of sphingolipid signaling in kidney diseases.
Collapse
Affiliation(s)
- Ningjun Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| |
Collapse
|
3
|
Pei J, Peng J, Wu M, Zhan X, Wang D, Zhu G, Wang W, An N, Pan X. Exploring potential targets and mechanisms of renal tissue damage caused by N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ) through network toxicology and animal experiments: A case of chronic kidney disease. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178626. [PMID: 39862509 DOI: 10.1016/j.scitotenv.2025.178626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
6-PPDQ is a new type of environmental contaminant contained in tire rubber. No studies have been reported on the potential targets and mechanisms of action of 6-PPDQ on renal tissue damage. In the present study, we used CKD as an example to explore the potential targets and biological mechanisms of renal injury caused by 6-PPDQ using Network toxicology and animal experiments. A total of 1361 6-PPDQ-related target genes were obtained from the CTD database. 17,296 CKD-related target genes were obtained through the GeneCards database. After intersecting the two, a total of 908 intersecting genes were obtained. Next, we constructed a PPI protein interaction network. Using different algorithms in Cytoscape software and "Logistic regression analysis", five key target genes were finally identified as NOTCH1, TP53, TNF, IL1B and IL6. We constructed a diagnostic model using five key target genes, and the ROC curves, calibration curves and DCA curves proved that the model has good diagnostic value. Molecular docking demonstrated high affinity between 6-PPDQ and five key target gene proteins. In animal experiments, repeated intraperitoneal injections of 6-PPDQ using different concentration gradients for 28 days revealed that the expression levels of five key target genes in renal tissues increased progressively with the increase of the concentration, and the damage to renal tissues was also aggravated. ssGSEA and animal experiments revealed a key role for activation of the MAPK signaling pathway. Finally, we also identified a significant correlation between five key target genes and the level of infiltration of multiple immune cells. In conclusion, these findings suggest that 6-PPDQ can cause damage to renal tissue and that the level of damage progressively increases with increasing concentration. Among them, NOTCH1, TP53, TNF, IL1B and IL6 may be its potential targets of action. Activation of the MAPK signaling pathway is a potential mechanism of action.
Collapse
Affiliation(s)
- Jun Pei
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Jinpu Peng
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Moudong Wu
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Xiong Zhan
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Dan Wang
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Guohua Zhu
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Wei Wang
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Nini An
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China.
| | - Xingyu Pan
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China.
| |
Collapse
|
4
|
Razazian M, Bahiraii S, Jannat I, Tiffner A, Beilhack G, Levkau B, Voelkl J, Alesutan I. Sphingosine kinase 1 inhibition aggravates vascular smooth muscle cell calcification. Pflugers Arch 2025:10.1007/s00424-025-03068-6. [PMID: 39899071 DOI: 10.1007/s00424-025-03068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Medial vascular calcification is common in chronic kidney disease patients and linked to hyperphosphatemia. Upon phosphate exposure, intricate signaling events orchestrate pro-calcific effects in the vasculature mediated by vascular smooth muscle cells (VSMCs). Sphingosine kinase 1 (SPHK1) produces sphingosine-1-phosphate (S1P) and is associated with complex effects in the vascular system. The present study investigated a possible involvement of SPHK1 in VSMC calcification. Experiments were performed in primary human aortic VSMCs under pro-calcific conditions, with pharmacological inhibition or knockdown of SPHK1 or SPNS2 (a lysolipid transporter involved in cellular S1P export), as well as in Sphk1-deficient and wild-type mice treated with cholecalciferol. In VSMCs, SPHK1 expression was up-regulated by pro-calcific conditions. Calcification medium up-regulated osteogenic marker mRNA expression and activity as well as calcification of VSMCs, effects significantly augmented by co-treatment with the SPHK1 inhibitor SK1-IN-1. SK1-IN-1 alone was sufficient to up-regulate osteogenic signaling in VSMCs during control conditions. Similarly, the SPHK1 inhibitor PF-543 and SPHK1 knockdown up-regulated osteogenic signaling in VSMCs and aggravated VSMC calcification. In contrast, co-treatment with the SPNS2 inhibitor SLF1081851 suppressed osteogenic signaling and calcification of VSMCs, effects abolished by silencing of SPHK1. In addition, Sphk1 deficiency aggravated vascular calcification and aortic osteogenic marker expression in mice after cholecalciferol overload. In conclusion, SPHK1 inhibition, knockdown, or deficiency aggravates vascular pro-calcific signaling and calcification. The reduced calcification after inhibition of S1P export suggests a possible involvement of intracellular S1P, but further studies are required to elucidate the complex roles of SPHKs and S1P signaling in calcifying VSMCs.
Collapse
Affiliation(s)
- Mehdi Razazian
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020, Linz, Austria
| | - Sheyda Bahiraii
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020, Linz, Austria
| | - Isratul Jannat
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020, Linz, Austria
| | - Adéla Tiffner
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020, Linz, Austria
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Georg Beilhack
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Bodo Levkau
- Institute of Molecular Medicine III, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020, Linz, Austria.
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| | - Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020, Linz, Austria
| |
Collapse
|
5
|
Askanase AD, D'Cruz D, Kalunian K, Merrill JT, Navarra SV, Cahuzac C, Cornelisse P, Murphy MJ, Strasser DS, Trokan L, Berkani O. Cenerimod, a sphingosine-1-phosphate receptor modulator, versus placebo in patients with moderate-to-severe systemic lupus erythematosus (CARE): an international, double-blind, randomised, placebo-controlled, phase 2 trial. THE LANCET. RHEUMATOLOGY 2025; 7:e21-e32. [PMID: 39586304 DOI: 10.1016/s2665-9913(24)00246-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Sphingosine-1-phosphate (S1P) is a signalling molecule that has an inhibitory role in atherosclerosis, inflammation, cell proliferation, and immunity. Cenerimod is a selective S1P1 receptor modulator under investigation for the treatment of systemic lupus erythematosus (SLE). We aimed to determine the efficacy, safety, and tolerability of four doses of cenerimod in adults with moderate-to-severe SLE receiving standard of care background therapy. METHODS CARE was a double-blind, randomised, placebo-controlled, phase 2 trial, in adults (aged 18-75 years) with moderate-to-severe SLE (a score of at least 6 out of 105 on the SLE disease activity index-2000, modified to exclude leukopenia [mSLEDAI-2K] score). Participants were recruited from 189 hospitals, specialist centres, and outpatient clinics in 22 countries in Asia Pacific, Latin America, Europe, and the USA. Participants were randomly assigned (1:1:1:1:1), using an interactive response technology via balanced block randomisation (block size of 5) and stratified by oral glucocorticoid dose at randomisation and disease activity at screening, to once-daily oral cenerimod at 0·5 mg, 1·0 mg, 2·0 mg, or 4·0 mg or placebo, in addition to stable background SLE therapy, and followed up for 12 months. After 6 months, participants assigned to cenerimod 4·0 mg were randomly assigned again (1:1) to either cenerimod 2.0 mg or placebo for a further 6 months. The primary endpoint was change from baseline to month 6 in mSLEDAI-2K score, assessed in all participants randomly assigned to treatment (full analysis set). To meet the primary endpoint, the doses had to show a significant improvement over placebo, when adjusting for multiplicity, considering the hierarchical testing strategy, per a prespecified plan. Safety analyses included all participants who received at least one dose of study treatment. This study is registered with ClinicalTrials.gov, NCT03742037, and is complete. FINDINGS Between Dec 21, 2018, and Aug 25, 2022, 810 patients were screened and 427 were randomly assigned to 0·5 mg (n=85), 1·0 mg (n=85), 2·0 mg (n=86), and 4·0 mg (n=85) cenerimod or placebo (n=86). Median age was 42 years (IQR 33-51), 406 (95%) of 427 participants were women, 21 (5%) were men, and 337 (79%) were White. At month 6, the least squares mean change from baseline in mSLEDAI-2K score was -2·85 (95% CI -3·60 to -2·10) for the placebo group and -3·24 (-3·98 to -2·49; difference vs placebo -0·39 [95% CI -1·45 to 0·68]; p=0·47) for the cenerimod 0·5 mg group, -3·41 (-4·16 to -2·67; difference vs placebo -0·57 [-1·62 to 0·49]; p=0·29) for the 1·0 mg group, -2·84 (-3·58 to -2·09; difference vs placebo 0·01 [-1·05 to 1·08]; p=0·98) for the 2·0 mg group, and -4·04 (-4·79 to -3·28; difference vs placebo -1·19 [-2·25 to -0·12]; p=0·029) for the 4·0 mg group; hence, the primary endpoint was not met. Treatment-emergent adverse events up to 12 months had no clear treatment-related or dose-related pattern across the groups. At month 6, treatment-emergent lymphopenia was reported in one (1%) of 85 patients who received cenerimod 0·5 mg, five (6%) of 85 patients who received 1·0 mg, nine (10%) of 86 patients who received 2·0 mg, 12 (14%) of 84 patients who received 4·0 mg, and no patients who received placebo. Two deaths due to adverse events occurred (both in the cenerimod 1·0 mg group; one due to acute coronary syndrome and the other due to upper gastrointestinal haemorrhage), and were determined to be unrelated to study treatment. INTERPRETATION The primary endpoint was not met. Cenerimod was well tolerated over 12 months. Cenerimod 4·0 mg is being investigated for the treatment of SLE in two ongoing phase 3 trials (NCT05648500, NCT05672576). FUNDING Idorsia Pharmaceuticals.
Collapse
Affiliation(s)
- Anca D Askanase
- Columbia University Lupus Center, Division of Rheumatology, Columbia University College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| | - David D'Cruz
- Department of Medicine, Guy's and St Thomas' Hospital, London, UK
| | - Kenneth Kalunian
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Joan T Merrill
- Division of Rheumatology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Sandra V Navarra
- Clinical Projects, Arthritis and Clinical Immunology Program, University of Santo Tomas, Manila, Philippines
| | - Clélia Cahuzac
- Data and Statistical Sciences Department, Hoffmann-La Roche Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
6
|
Miguel V, Shaw IW, Kramann R. Metabolism at the crossroads of inflammation and fibrosis in chronic kidney disease. Nat Rev Nephrol 2025; 21:39-56. [PMID: 39289568 DOI: 10.1038/s41581-024-00889-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
Chronic kidney disease (CKD), defined as persistent (>3 months) kidney functional loss, has a growing prevalence (>10% worldwide population) and limited treatment options. Fibrosis driven by the aberrant accumulation of extracellular matrix is the final common pathway of nearly all types of chronic repetitive injury in the kidney and is considered a hallmark of CKD. Myofibroblasts are key extracellular matrix-producing cells that are activated by crosstalk between damaged tubules and immune cells. Emerging evidence indicates that metabolic alterations are crucial contributors to the pathogenesis of kidney fibrosis by affecting cellular bioenergetics and metabolite signalling. Immune cell functions are intricately connected to their metabolic characteristics, and kidney cells seem to undergo cell-type-specific metabolic shifts in response to damage, all of which can determine injury and repair responses in CKD. A detailed understanding of the heterogeneity in metabolic reprogramming of different kidney cellular subsets is essential to elucidating communication processes between cell types and to enabling the development of metabolism-based innovative therapeutic strategies against CKD.
Collapse
Affiliation(s)
- Verónica Miguel
- Department of Medicine 2, Nephrology, Rheumatology and Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Isaac W Shaw
- Department of Medicine 2, Nephrology, Rheumatology and Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Rafael Kramann
- Department of Medicine 2, Nephrology, Rheumatology and Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany.
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Schwalm S, Manaila R, Oftring A, Schaefer L, von Gunten S, Pfeilschifter J. The contribution of the sphingosine 1-phosphate signaling pathway to chronic kidney diseases: recent findings and new perspectives. Pflugers Arch 2024; 476:1845-1861. [PMID: 39384640 PMCID: PMC11582123 DOI: 10.1007/s00424-024-03029-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Chronic kidney disease (CKD) is a multifactorial condition with diverse etiologies, such as diabetes mellitus, hypertension, and genetic disorders, often culminating in end-stage renal disease (ESRD). A hallmark of CKD progression is kidney fibrosis, characterized by the excessive accumulation of extracellular matrix components, for which there is currently no effective anti-fibrotic therapy. Recent literature highlights the critical role of sphingosine 1-phosphate (S1P) signaling in CKD pathogenesis and renal fibrosis. This review provides an in-depth analysis of the latest findings on S1P metabolism and signaling in renal fibrosis and in specific CKDs, including diabetic nephropathy (DN), lupus nephritis (LN), focal segmental glomerulosclerosis (FSGS), Fabry disease (FD), and IgA nephropathy (IgAN). Emerging studies underscore the therapeutic potential of modulating S1P signaling with receptor modulators and inhibitors, such as fingolimod (FTY720) and more selective agents like ozanimod and cenerimod. Additionally, the current knowledge about the effects of established kidney protective therapies such as glucocorticoids and SGLT2 and ACE inhibitors on S1P signaling will be summarized. Furthermore, the review highlights the potential role of S1P as a biomarker for disease progression in CKD models, particularly in Fabry disease and diabetic nephropathy. Advanced technologies, including spatial transcriptomics, are further refining our understanding of S1P's role within specific kidney compartments. Collectively, these insights emphasize the need for continued research into S1P signaling pathways as promising targets for CKD treatment strategies.
Collapse
Affiliation(s)
- Stephanie Schwalm
- Institut für Allgemeine Pharmakologie und Toxikologie, Goethe-Universität Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
| | - Roxana Manaila
- Institut für Pharmakologie, Universität Bern, Inselspital, INO-F, CH-3011, Bern, Switzerland
| | - Anke Oftring
- Institut für Allgemeine Pharmakologie und Toxikologie, Goethe-Universität Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Liliana Schaefer
- Institut für Allgemeine Pharmakologie und Toxikologie, Goethe-Universität Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Stephan von Gunten
- Institut für Pharmakologie, Universität Bern, Inselspital, INO-F, CH-3011, Bern, Switzerland
| | - Josef Pfeilschifter
- Institut für Allgemeine Pharmakologie und Toxikologie, Goethe-Universität Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| |
Collapse
|
8
|
Xu W, Hou L. Knockdown of nicotinamide N-methyltransferase ameliorates renal fibrosis caused by ischemia-reperfusion injury and remodels sphingosine metabolism. Clin Exp Nephrol 2024; 28:1241-1253. [PMID: 39168882 DOI: 10.1007/s10157-024-02545-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND CKD currently affects 8.2% to 9.1% of the global population and the CKD mortality rate has increased during recent decades, making it necessary to identify new therapeutic targets. This study investigated the role of nicotinamide N-methyltransferase (NNMT) in renal fibrosis following ischemia-reperfusion injury (IRI), a key factor in chronic kidney disease (CKD) progression. METHODS We established a mouse model with a knockdown of NNMT to investigate the impact of this enzyme on renal fibrosis after unilateral IRI. We then utilized histology, immunohistochemistry, and metabolomic analyses to investigate fibrosis markers and sphingolipid metabolism in NNMT-deficient mice. We also utilized an Nnmt lentivirus interference vector or an Nnmt overexpression plasmid to transfect mouse kidney proximal tubule cells, stimulated these cells with TGF-β1, and then measured the pro-fibrotic response and the expression of the methylated and unmethylated forms of Sphk1. RESULTS The results demonstrated that reducing NNMT expression mitigated fibrosis, inflammation, and lipid deposition, potentially through the modulation of sphingolipid metabolism. Histology, immunohistochemistry, and metabolomic analyses provided evidence of decreased fibrosis and enhanced sphingolipid metabolism in NNMT-deficient mice. NNMT mediated the TGF-β1-induced pro-fibrotic response, knockdown of Nnmt decreased the level of unmethylated Sphk1 and increased the level of methylated Sphk1 in renal tubular epithelial cells. CONCLUSIONS Our findings suggest that NNMT functions in sphingolipid metabolism and has potential as a therapeutic target for CKD. Further research is needed to elucidate the mechanisms linking NNMT to sphingolipid metabolism and renal fibrosis.
Collapse
Affiliation(s)
- Wanfeng Xu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ling Hou
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, China.
| |
Collapse
|
9
|
Jia W, Yuan J, Zhang J, Li S, Lin W, Cheng B. Bioactive sphingolipids as emerging targets for signal transduction in cancer development. Biochim Biophys Acta Rev Cancer 2024; 1879:189176. [PMID: 39233263 DOI: 10.1016/j.bbcan.2024.189176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Sphingolipids, crucial components of cellular membranes, play a vital role in maintaining cellular structure and signaling integrity. Disruptions in sphingolipid metabolism are increasingly implicated in cancer development. Key bioactive sphingolipids, such as ceramides, sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and glycosphingolipids, profoundly impact tumor biology. They influence the behavior of tumor cells, stromal cells, and immune cells, affecting tumor aggressiveness, angiogenesis, immune modulation, and extracellular matrix remodeling. Furthermore, abnormal expression of sphingolipids and their metabolizing enzymes modulates the secretion of tumor-derived extracellular vesicles (TDEs), which are key players in creating an immunosuppressive tumor microenvironment, remodeling the extracellular matrix, and facilitating oncogenic signaling within in situ tumors and distant pre-metastatic niches (PMNs). Understanding the role of sphingolipids in the biogenesis of tumor-derived extracellular vesicles (TDEs) and their bioactive contents can pave the way for new biomarkers in cancer diagnosis and prognosis, ultimately enhancing comprehensive tumor treatment strategies.
Collapse
Affiliation(s)
- Wentao Jia
- Department of General Practice, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jinbo Zhang
- Department of Pharmacy, Tianjin Rehabilitation and Recuperation Center, Joint Logistics Support Force, Tianjin 300000, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Wanfu Lin
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
10
|
Šakić Z, Atić A, Potočki S, Bašić-Jukić N. Sphingolipids and Chronic Kidney Disease. J Clin Med 2024; 13:5050. [PMID: 39274263 PMCID: PMC11396415 DOI: 10.3390/jcm13175050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Sphingolipids (SLs) are bioactive signaling molecules essential for various cellular processes, including cell survival, proliferation, migration, and apoptosis. Key SLs such as ceramides, sphingosine, and their phosphorylated forms play critical roles in cellular integrity. Dysregulation of SL levels is implicated in numerous diseases, notably chronic kidney disease (CKD). This review focuses on the role of SLs in CKD, highlighting their potential as biomarkers for early detection and prognosis. SLs maintain renal function by modulating the glomerular filtration barrier, primarily through the activity of podocytes. An imbalance in SLs can lead to podocyte damage, contributing to CKD progression. SL metabolism involves complex enzyme-catalyzed pathways, with ceramide serving as a central molecule in de novo and salvage pathways. Ceramides induce apoptosis and are implicated in oxidative stress and inflammation, while sphingosine-1-phosphate (S1P) promotes cell survival and vascular health. Studies have shown that SL metabolism disorders are linked to CKD progression, diabetic kidney disease, and glomerular diseases. Targeting SL pathways could offer novel therapeutic approaches for CKD. This review synthesizes recent research on SL signaling regulation in kidney diseases, emphasizing the importance of maintaining SL balance for renal health and the potential therapeutic benefits of modulating SL pathways.
Collapse
Affiliation(s)
- Zrinka Šakić
- Vuk Vrhovac University Clinic, Dugi dol 4a, 10000 Zagreb, Croatia
| | - Armin Atić
- Division of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Slavica Potočki
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nikolina Bašić-Jukić
- Division of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
11
|
Foster DJ, Dunnavant K, Shrader CW, LoPresti M, Seay S, Kharel Y, Brown AM, Huang T, Lynch KR, Santos WL. Discovery of Potent, Orally Bioavailable Sphingosine-1-Phosphate Transporter (Spns2) Inhibitors. J Med Chem 2024; 67:11273-11295. [PMID: 38952222 PMCID: PMC11247503 DOI: 10.1021/acs.jmedchem.4c00879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Targeting the S1P pathway has resulted in the development of S1P1 receptor modulators for the treatment of multiple sclerosis and ulcerative colitis. We hypothesize that targeting an upstream node of the S1P pathway may provide an improved adverse event profile. In this report, we performed a structure-activity relationship study focusing on the benzoxazole scaffold in SLB1122168, which lead to the discovery of 11i (SLF80821178) as a potent inhibitor of S1P release from HeLa cells (IC50: 51 ± 3 nM). Administration of SLF80821178 to mice induced ∼50% reduction in circulating lymphocyte counts, recapitulating the lymphopenia characteristic of Spns2 null animals. Molecular modeling studies suggest that SLF80821178 binds Spns2 in its occluded inward-facing state and forms hydrogen bonds with Asn112 and Ser211 and π stacking with Phe234. Taken together, SLF80821178 can serve as a scaffold for future inhibitor development and represents a chemical tool to study the therapeutic implication of inhibiting Spns2.
Collapse
Affiliation(s)
- Daniel J Foster
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kyle Dunnavant
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Christopher W Shrader
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Marion LoPresti
- Department of Biochemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Sarah Seay
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Anne M Brown
- Department of Biochemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Tao Huang
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Kevin R Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
12
|
Ji C, Zhang J, Shi H, Chen B, Xu W, Jin J, Qian H. Single-cell RNA transcriptomic reveal the mechanism of MSC derived small extracellular vesicles against DKD fibrosis. J Nanobiotechnology 2024; 22:339. [PMID: 38890734 PMCID: PMC11184851 DOI: 10.1186/s12951-024-02613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Diabetic kidney disease (DKD), a chronic kidney disease, is characterized by progressive fibrosis caused due to persistent hyperglycemia. The development of fibrosis in DKD determines the patient prognosis, but no particularly effective treatment. Here, small extracellular vesicles derived from mesenchymal stem cells (MSC-sEV) have been used to treat DKD fibrosis. Single-cell RNA sequencing was used to analyze 27,424 cells of the kidney, we have found that a novel fibrosis-associated TGF-β1+Arg1+ macrophage subpopulation, which expanded and polarized in DKD and was noted to be profibrogenic. Additionally, Actin+Col4a5+ mesangial cells in DKD differentiated into myofibroblasts. Multilineage ligand-receptor and cell-communication analysis showed that fibrosis-associated macrophages activated the TGF-β1/Smad2/3/YAP signal axis, which promotes mesangial fibrosis-like change and accelerates renal fibrosis niche. Subsequently, the transcriptome sequencing and LC-MS/MS analysis indicated that MSC-sEV intervention could restore the levels of the kinase ubiquitin system in DKD and attenuate renal interstitial fibrosis via delivering CK1δ/β-TRCP to mediate YAP ubiquitination degradation in mesangial cells. Our findings demonstrate the unique cellular and molecular mechanisms of MSC-sEV in treating the DKD fibrosis niche at a single-cell level and provide a novel therapeutic strategy for renal fibrosis.
Collapse
Affiliation(s)
- Cheng Ji
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Chang Zhou, Jiangsu, 213004, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Binghai Chen
- Institute of Translational Medicine, Department of Urology, Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jianhua Jin
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Chang Zhou, Jiangsu, 213004, China.
| | - Hui Qian
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Chang Zhou, Jiangsu, 213004, China.
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, ShangHai, 200040, China.
| |
Collapse
|
13
|
Tanaka S. Targeting inflammation in perivascular cells and neuroimmune interactions for treating kidney disease. Clin Exp Nephrol 2024; 28:505-512. [PMID: 38630367 PMCID: PMC11116252 DOI: 10.1007/s10157-024-02494-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/20/2024] [Indexed: 05/24/2024]
Abstract
Inflammation plays a crucial role in the pathophysiology of various kidney diseases. Kidney perivascular cells (pericytes/fibroblasts) are responsible for producing proinflammatory molecules, promoting immune cell infiltration, and enhancing inflammation. Vascular adhesion protein-1, expressed in kidney perivascular cells, is an ectoenzyme that catalyzes the oxidative deamination of primary amines with the production of hydrogen peroxide in the extracellular space. Our study demonstrated that blocking this enzyme suppressed hydrogen peroxide production and neutrophil infiltration, thereby reducing renal ischemia-reperfusion injury. Sphingosine 1-phosphate (S1P) signaling was also observed to play an essential role in the regulation of perivascular inflammation. S1P, which is produced in kidney perivascular cells, is transported into the extracellular space via spinster homolog 2, and then binds to S1P receptor-1 expressed in perivascular cells. Upon injury, inflammatory signaling in perivascular cells is enhanced by this pathway, thereby promoting immune cell infiltration and subsequent fibrosis. Furthermore, inhibition of S1P transport by spinster homolog 2 reduces kidney fibrosis. Hypoxia-inducible factor-prolyl hydroxylase inhibitors can restore the capacity for erythropoietin production in kidney perivascular cells. Animal data suggested that these drugs could also alleviate kidney and lipid inflammation although the precise mechanism is still unknown. Neuroimmune interactions have been attracting significant attention due to their potential to benefit patients with inflammatory diseases. Vagus nerve stimulation is one of the most promising strategies for harnessing neuroimmune interactions and attenuating inflammation associated with various diseases, including kidney disease. Using cutting-edge tools, the vagal afferents-C1 neurons-sympathetic nervous system-splenic nerve-spleen-kidney axis responsible for kidney protection induced by vagus nerve stimulation was identified in our study. Further research is required to decipher other crucial systems that control kidney inflammation and to determine whether these novel strategies can be applied to patients with kidney disease.
Collapse
Affiliation(s)
- Shinji Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
14
|
Zhang Q, Zhang L, Lin G, Luo F. The protective role of vagus nerve stimulation in ischemia-reperfusion injury. Heliyon 2024; 10:e30952. [PMID: 38770302 PMCID: PMC11103530 DOI: 10.1016/j.heliyon.2024.e30952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) encompasses the damage resulting from the restoration of blood supply following tissue ischemia. This phenomenon commonly occurs in clinical scenarios such as hemorrhagic shock, severe trauma, organ transplantation, and thrombolytic therapy. Despite its prevalence, existing treatments exhibit limited efficacy against IRI. Vagus nerve stimulation (VNS) is a widely utilized technique for modulating the autonomic nervous system. Numerous studies have demonstrated that VNS significantly reduces IRI in various organs, including the heart, brain, and liver. This article reviews the pathological processes during IRI and summarizes the role and possible mechanisms of VNS in IRI of different organs. Furthermore, this review addresses the current challenges of VNS clinical applications, providing a novel perspective on IRI treatment.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Lei Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Guoqiang Lin
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Fanyan Luo
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| |
Collapse
|
15
|
Kharel Y, Huang T, Dunnavant K, Foster D, Souza G, Nimchuk KE, Merchak AR, Pavelec CM, Juskiewicz ZJ, Gaultier A, Abbott S, Shin JB, Isakson BE, Xu W, Leitinger N, Santos WL, Lynch KR. Assessing Spns2-dependent S1P Transport as a Prospective Therapeutic Target. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586765. [PMID: 38746194 PMCID: PMC11092524 DOI: 10.1101/2024.03.26.586765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
S1P (sphingosine 1-phosphate) receptor modulator (SRM) drugs interfere with lymphocyte trafficking by downregulating lymphocyte S1P receptors. While the immunosuppressive activity of SRM drugs has proved useful in treating autoimmune diseases such as multiple sclerosis, that drug class is beset by on-target liabilities such as initial dose bradycardia. The S1P that binds to cell surface lymphocyte S1P receptors is provided by S1P transporters. Mice born deficient in one of these, spinster homolog 2 (Spns2), are lymphocytopenic and have low lymph S1P concentrations. Such observations suggest that inhibition of Spns2-mediated S1P transport might provide another therapeutically beneficial method to modulate immune cell positioning. We report here results using a novel S1P transport blocker (STB), SLF80821178, to investigate the consequences of S1P transport inhibition in rodents. We found that SLF80821178 is efficacious in a multiple sclerosis model but - unlike the SRM fingolimod - neither decreases heart rate nor compromises lung endothelial barrier function. Notably, although Spns2 null mice have a sensorineural hearing defect, mice treated chronically with SLF80821178 have normal hearing acuity. STBs such as SLF80821178 evoke a dose-dependent decrease in peripheral blood lymphocyte counts, which affords a reliable pharmacodynamic marker of target engagement. However, the maximal reduction in circulating lymphocyte counts in response to SLF80821178 is substantially less than the response to SRMs such as fingolimod (50% vs. 90%) due to a lesser effect on T lymphocyte sub-populations by SLF80821178. Finally, in contrast to results obtained with Spns2 deficient mice, lymph S1P concentrations were not significantly changed in response to administration of STBs at doses that evoke maximal lymphopenia, which indicates that current understanding of the mechanism of action of S1P transport inhibitors is incomplete.
Collapse
|
16
|
Wang L, Zhang X, Ma C, Wu N. 1-Phosphate receptor agonists: A promising therapeutic avenue for ischemia-reperfusion injury management. Int Immunopharmacol 2024; 131:111835. [PMID: 38508097 DOI: 10.1016/j.intimp.2024.111835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Ischemia-reperfusion injury (IRI) - a complex pathological condition occurring when blood supply is abruptly restored to ischemic tissues, leading to further tissue damage - poses a significant clinical challenge. Sphingosine-1-phosphate receptors (S1PRs), a specialized set of G-protein-coupled receptors comprising five subtypes (S1PR1 to S1PR5), are prominently present in various cell membranes, including those of lymphocytes, cardiac myocytes, and endothelial cells. Increasing evidence highlights the potential of targeting S1PRs for IRI therapeutic intervention. Notably, preconditioning and postconditioning strategies involving S1PR agonists like FTY720 have demonstrated efficacy in mitigating IRI. As the synthesis of a diverse array of S1PR agonists continues, with FTY720 being a prime example, the body of experimental evidence advocating for their role in IRI treatment is expanding. Despite this progress, comprehensive reviews delineating the therapeutic landscape of S1PR agonists in IRI remain limited. This review aspires to meticulously elucidate the protective roles and mechanisms of S1PR agonists in preventing and managing IRI affecting various organs, including the heart, kidney, liver, lungs, intestines, and brain, to foster novel pharmacological approaches in clinical settings.
Collapse
Affiliation(s)
- Linyuan Wang
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China; The Central Laboratory of The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xiaowen Zhang
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Nan Wu
- The Central Laboratory of The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
17
|
Sarkar J, Oshi M, Satyananda V, Chida K, Yan L, Maiti A, Hait N, Endo I, Takabe K. Spinster Homologue 2 Expression Correlates With Improved Patient Survival in Hepatocellular Carcinoma Despite Association With Lymph-Angiogenesis. World J Oncol 2024; 15:181-191. [PMID: 38545475 PMCID: PMC10965268 DOI: 10.14740/wjon1732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/30/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Spinster homologue 2 (SPNS2) is a transporter of sphingosine-1-phosphate (S1P), a bioactive lipid linked to cancer progression. We studied the link between SPNS2 gene expression, tumor aggressiveness, and outcomes in patients with hepatocellular carcinoma (HCC). METHODS Gene expression in patients with HCC was analyzed from the Cancer Genome Atlas (TCGA) (n = 350) and GSE76427 (n = 115) as a validation cohort, as well as liver tissue cohort GSE6764 (n = 75). RESULTS High-SPNS2 HCC was significantly associated with high level of lymph-angiogenesis-related factors. SPNS2 expression was significantly higher in normal liver and early HCC versus advanced HCC (P < 0.02). High SPNS2 levels enriched immune response-related gene sets; inflammatory, interferon (IFN)-α, IFN-γ responses, and tumor necrosis factor (TNF)-α, interleukin (IL)-6/Janus kinase/signal transducer and activator of transcription (JAK/STAT3) signaling, complement and allograft rejection, but did not significantly infiltrate specific immune cells nor cytolytic activity score. High-SPNS2 HCC enriched tumor aggravating pathway gene sets such as KRAS (Kirsten rat sarcoma virus) signaling, but inversely correlated with Nottingham histological grade, MKI67 (marker of proliferation Ki-67) expression, and cell proliferation-related gene sets. Further, high-SPNS2 HCC had significantly high infiltration of stromal cells, showing that low-SPNS2 HCC is highly proliferative. Finally, high-SPNS2 HCC was associated with better disease-free, disease-specific, and overall survival (P = 0.031, 0.046, and 0.040, respectively). CONCLUSIONS Although SPNS2 expression correlated with lymph-angiogenesis and other cancer-promoting pathways, it also enriched immune response. SPNS2 levels were higher in normal liver compared to HCC, and inversely correlated with cancer cell proliferation and better survival. SPNS2 expression may be beneficial in HCC patients despite detrimental in-vitro effects.
Collapse
Affiliation(s)
- Joy Sarkar
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- These authors contributed equally to this work
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Gastroenterological Surgery, Yokohama, Kanagawa 236-004, Japan
- These authors contributed equally to this work
| | - Vikas Satyananda
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kohei Chida
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Aparna Maiti
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Nitai Hait
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama, Kanagawa 236-004, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Gastroenterological Surgery, Yokohama, Kanagawa 236-004, Japan
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, the State University of New York, Buffalo, NY, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
- Department of Breast Surgery, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
18
|
Sun G, Wang B, Wu X, Cheng J, Ye J, Wang C, Zhu H, Liu X. How do sphingosine-1-phosphate affect immune cells to resolve inflammation? Front Immunol 2024; 15:1362459. [PMID: 38482014 PMCID: PMC10932966 DOI: 10.3389/fimmu.2024.1362459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/06/2024] [Indexed: 04/17/2024] Open
Abstract
Inflammation is an important immune response of the body. It is a physiological process of self-repair and defense against pathogens taken up by biological tissues when stimulated by damage factors such as trauma and infection. Inflammation is the main cause of high morbidity and mortality in most diseases and is the physiological basis of the disease. Targeted therapeutic strategies can achieve efficient toxicity clearance at the inflammatory site, reduce complications, and reduce mortality. Sphingosine-1-phosphate (S1P), a lipid signaling molecule, is involved in immune cell transport by binding to S1P receptors (S1PRs). It plays a key role in innate and adaptive immune responses and is closely related to inflammation. In homeostasis, lymphocytes follow an S1P concentration gradient from the tissues into circulation. One widely accepted mechanism is that during the inflammatory immune response, the S1P gradient is altered, and lymphocytes are blocked from entering the circulation and are, therefore, unable to reach the inflammatory site. However, the full mechanism of its involvement in inflammation is not fully understood. This review focuses on bacterial and viral infections, autoimmune diseases, and immunological aspects of the Sphks/S1P/S1PRs signaling pathway, highlighting their role in promoting intradial-adaptive immune interactions. How S1P signaling is regulated in inflammation and how S1P shapes immune responses through immune cells are explained in detail. We teased apart the immune cell composition of S1P signaling and the critical role of S1P pathway modulators in the host inflammatory immune system. By understanding the role of S1P in the pathogenesis of inflammatory diseases, we linked the genomic studies of S1P-targeted drugs in inflammatory diseases to provide a basis for targeted drug development.
Collapse
Affiliation(s)
- Gehui Sun
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bin Wang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaoyu Wu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiangfeng Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junming Ye
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Clinical College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Chunli Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hongquan Zhu
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaofeng Liu
- Clinical College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
19
|
Zhao T, Ding T, Sun Z, Shao X, Li S, Lu H, Yuan JH, Guo Z. SPHK1/S1P/S1PR pathway promotes the progression of peritoneal fibrosis by mesothelial-mesenchymal transition. FASEB J 2024; 38:e23417. [PMID: 38226856 DOI: 10.1096/fj.202301323r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/23/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024]
Abstract
Long-term exposure to non-physiologically compatible dialysate inevitably leads to peritoneal fibrosis (PF) in patients undergoing peritoneal dialysis (PD), and there is no effective prevention or treatment for PF. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid produced after catalysis by sphingosine kinase (SPHK) 1/2 and activates signals through the S1P receptor (S1PR) via autocrine or paracrine. However, the role of SPHK1/S1P/S1PR signaling has never been elucidated in PF. In our research, we investigated S1P levels in peritoneal effluents and demonstrated the role of SPHK1/S1P/S1PR pathway in peritoneal fibrosis. It was found that S1P levels in peritoneal effluents were positively correlated with D/P Cr (r = 0.724, p < .001) and negatively correlated with 4 h ultrafiltration volume (r = -0.457, p < .001). S1PR1 and S1PR3 on peritoneal cells were increased after high glucose exposure in vivo and in vitro. Fingolimod was applied to suppress S1P/S1PR pathway. Fingolimod restored mouse peritoneal function by reducing interstitial hyperplasia, maintaining ultrafiltration volume, reducing peritoneal transport solute rate, and mitigating the protein expression changes of fibronectin, vimentin, α-SMA, and E-cadherin induced by PD and S1P. Fingolimod preserved the morphology of the human peritoneal mesothelial cells, MeT-5A, and moderated the mesothelial-mesenchymal transition (MMT) process. We further delineated that SPHK1 was elevated in peritoneal cells after high glucose exposure and suppression of SPHK1 in MeT-5A cells reduced S1P release. Overexpression of SPHK1 in MeT-5A cells increased S1P levels in the supernatant and fostered the MMT process. PF-543 treatment, targeting SPHK1, alleviated deterioration of mouse peritoneal function. In conclusion, S1P levels in peritoneal effluent were correlated with the deterioration of peritoneal function. SPHK1/S1P/S1PR pathway played an important role in PF.
Collapse
Affiliation(s)
- Tingting Zhao
- Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Tao Ding
- Department of Endocrinology, Xizang Military General Hospital, Lhasa City, China
| | - Zhengyu Sun
- Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China
| | - Xin Shao
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuangxi Li
- Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China
| | - Hongtao Lu
- Department of Nutrition, Naval Medical University, Shanghai, China
| | - Ji-Hang Yuan
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Zhiyong Guo
- Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China
| |
Collapse
|
20
|
Hou Y, Tan E, Shi H, Ren X, Wan X, Wu W, Chen Y, Niu H, Zhu G, Li J, Li Y, Wang L. Mitochondrial oxidative damage reprograms lipid metabolism of renal tubular epithelial cells in the diabetic kidney. Cell Mol Life Sci 2024; 81:23. [PMID: 38200266 PMCID: PMC10781825 DOI: 10.1007/s00018-023-05078-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024]
Abstract
The functional and structural changes in the proximal tubule play an important role in the occurrence and development of diabetic kidney disease (DKD). Diabetes-induced metabolic changes, including lipid metabolism reprogramming, are reported to lead to changes in the state of tubular epithelial cells (TECs), and among all the disturbances in metabolism, mitochondria serve as central regulators. Mitochondrial dysfunction, accompanied by increased production of mitochondrial reactive oxygen species (mtROS), is considered one of the primary factors causing diabetic tubular injury. Most studies have discussed how altered metabolic flux drives mitochondrial oxidative stress during DKD. In the present study, we focused on targeting mitochondrial damage as an upstream factor in metabolic abnormalities under diabetic conditions in TECs. Using SS31, a tetrapeptide that protects the mitochondrial cristae structure, we demonstrated that mitochondrial oxidative damage contributes to TEC injury and lipid peroxidation caused by lipid accumulation. Mitochondria protected using SS31 significantly reversed the decreased expression of key enzymes and regulators of fatty acid oxidation (FAO), but had no obvious effect on major glucose metabolic rate-limiting enzymes. Mitochondrial oxidative stress facilitated renal Sphingosine-1-phosphate (S1P) deposition and SS31 limited the elevated Acer1, S1pr1 and SPHK1 activity, and the decreased Spns2 expression. These data suggest a role of mitochondrial oxidative damage in unbalanced lipid metabolism, including lipid droplet (LD) formulation, lipid peroxidation, and impaired FAO and sphingolipid homeostasis in DKD. An in vitro study demonstrated that high glucose drove elevated expression of cytosolic phospholipase A2 (cPLA2), which, in turn, was responsible for the altered lipid metabolism, including LD generation and S1P accumulation, in HK-2 cells. A mitochondria-targeted antioxidant inhibited the activation of cPLA2f isoforms. Taken together, these findings identify mechanistic links between mitochondrial oxidative metabolism and reprogrammed lipid metabolism in diabetic TECs, and provide further evidence for the nephroprotective effects of SS31 via influencing metabolic pathways.
Collapse
Affiliation(s)
- Yanjuan Hou
- Department of Nephrology, Second Hospital, Shanxi Medical University, No.382, Wuyi Road, Taiyuan, Shanxi, 030000, China
| | - Enxue Tan
- Department of Nephrology, Second Hospital, Shanxi Medical University, No.382, Wuyi Road, Taiyuan, Shanxi, 030000, China
| | - Honghong Shi
- Department of Nephrology, Second Hospital, Shanxi Medical University, No.382, Wuyi Road, Taiyuan, Shanxi, 030000, China
| | - Xiayu Ren
- Department of Nephrology, Second Hospital, Shanxi Medical University, No.382, Wuyi Road, Taiyuan, Shanxi, 030000, China
| | - Xing Wan
- Department of Nephrology, Second Hospital, Shanxi Medical University, No.382, Wuyi Road, Taiyuan, Shanxi, 030000, China
| | - Wenjie Wu
- Department of Orthopaedics, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Yiliang Chen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Hiumin Niu
- Department of Nephrology, Second Hospital, Shanxi Medical University, No.382, Wuyi Road, Taiyuan, Shanxi, 030000, China
- Department of Nephrology, Heping Hospital, Changzhi Medical College, Changzhi, China
| | - Guozhen Zhu
- Department of Nephrology, Second Hospital, Shanxi Medical University, No.382, Wuyi Road, Taiyuan, Shanxi, 030000, China
| | - Jing Li
- Department of Nephrology, Second Hospital, Shanxi Medical University, No.382, Wuyi Road, Taiyuan, Shanxi, 030000, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Province People's Hospital, Taiyuan, China
- Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China
| | - Lihua Wang
- Department of Nephrology, Second Hospital, Shanxi Medical University, No.382, Wuyi Road, Taiyuan, Shanxi, 030000, China.
| |
Collapse
|
21
|
Zheng S, Wang H, Han J, Dai X, Lv Y, Sun T, Liu H. Microbiota-derived imidazole propionate inhibits type 2 diabetic skin wound healing by targeting SPNS2-mediated S1P transport. iScience 2023; 26:108092. [PMID: 37876799 PMCID: PMC10590984 DOI: 10.1016/j.isci.2023.108092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/20/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
Imidazole propionate (ImP) is a recently discovered metabolite of T2DM-related gut microbiota. The effect of ImP on T2DM wound healing has not been studied yet. In this research, the changes of ImP-producing bacteria on the skin are firstly evaluated. 16sRNA sequencing results showed that the abundance of ImP-producing bacteria-Streptococcus in the intestine and skin of T2DM mice is significantly increased. Animal experiments show that ImP can inhibit the process of wound healing and inhibit the formation of blood vessels in the process of wound healing. Molecular mechanism research results show that ImP can inhibit S1P secretion mediated by SPNS2, and inhibit the activation of Rho signaling pathway, thereby affecting the angiogenesis process of HUVEC cells. This work also provides a potential drug HMPA that promotes T2DM wound healing.
Collapse
Affiliation(s)
- Shaoting Zheng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Hongqi Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Jingxia Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Xintong Dai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Ying Lv
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
22
|
Shrader CW, Foster D, Kharel Y, Huang T, Lynch KR, Santos WL. Imidazole-based sphingosine-1-phosphate transporter Spns2 inhibitors. Bioorg Med Chem Lett 2023; 96:129516. [PMID: 37832799 PMCID: PMC10842094 DOI: 10.1016/j.bmcl.2023.129516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/19/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a chemotactic lipid that influences immune cell positioning. S1P concentration gradients are necessary for proper egress of lymphocytes from the thymus and secondary lymphoid tissues. This trafficking is interdicted by S1P receptor modulators, and it is expected that S1P transporter (Spns2) inhibitors, by reshaping S1P concentration gradients, will do the same. We previously reported SLF1081851 as a prototype Spns2 inhibitor, which provided a scaffold to investigate the importance of the oxadiazole core and the terminal amine. In this report, we disclose a structure-activity relationship study by incorporating imidazole as both a linker and surrogate for a positive charge in SLF1081851. In vitro inhibition of Spns2-dependent S1P transport in HeLa cells identified 7b as an inhibitor with an IC50 of 1.4 ± 0.3 µM. The SAR studies reported herein indicate that imidazolium can be a substitute for the terminal amine in SLF1081851 and that Spns2 inhibition is highly dependent on the lipid alkyl tail length.
Collapse
Affiliation(s)
- Christopher W Shrader
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24060, United States
| | - Daniel Foster
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24060, United States
| | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22904, United States
| | - Tao Huang
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22904, United States
| | - Kevin R Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22904, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24060, United States.
| |
Collapse
|
23
|
Kim SY, Park S, Cui R, Lee H, Choi H, Farh MEA, Jo HI, Lee JH, Song HJ, Lee YJ, Lee YS, Lee BY, Cho J. NXC736 Attenuates Radiation-Induced Lung Fibrosis via Regulating NLRP3/IL-1β Signaling Pathway. Int J Mol Sci 2023; 24:16265. [PMID: 38003456 PMCID: PMC10671169 DOI: 10.3390/ijms242216265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Radiation-induced lung fibrosis (RILF) is a common complication of radiotherapy in lung cancer. However, to date no effective treatment has been developed for this condition. NXC736 is a novel small-molecule compound that inhibits NLRP3, but its effect on RILF is unknown. NLRP3 activation is an important trigger for the development of RILF. Thus, we aimed to evaluate the therapeutic effect of NXC736 on lung fibrosis inhibition using a RILF animal model and to elucidate its molecular signaling pathway. The left lungs of mice were irradiated with a single dose of 75 Gy. We observed that NXC736 treatment inhibited collagen deposition and inflammatory cell infiltration in irradiated mouse lung tissues. The damaged lung volume, evaluated by magnetic resonance imaging, was lower in NXC736-treated mice than in irradiated mice. NXC736-treated mice exhibited significant changes in lung function parameters. NXC736 inhibited inflammasome activation by interfering with the NLRP3-ASC-cleaved caspase-1 interaction, thereby reducing the expression of IL-1β and blocking the fibrotic pathway. In addition, NXC736 treatment reduced the expression of epithelial-mesenchymal transition markers such as α-SMA, vimentin, and twist by blocking the Smad 2,3,4 signaling pathway. These data suggested that NXC736 is a potent therapeutic agent against RILF.
Collapse
Affiliation(s)
- Sang Yeon Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sunjoo Park
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ronglan Cui
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hajeong Lee
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hojung Choi
- Nextgen Bioscience, Bundang-gu, Seongnam-si 13487, Gyeonggi-do, Republic of Korea
| | - Mohamed El-Agamy Farh
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hai In Jo
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jae Hee Lee
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyo Jeong Song
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yoon-Jin Lee
- Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Bong Yong Lee
- Nextgen Bioscience, Bundang-gu, Seongnam-si 13487, Gyeonggi-do, Republic of Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
24
|
Zhang F, Peng M, Zheng X, Wang X, Liu X, Chen C, Lu Y. Blocking sphingosine 1-phosphate receptor 1 with modulators reduces immune cells infiltration and alleviates endometriosis in mice. Reprod Biomed Online 2023; 47:103304. [PMID: 37757611 DOI: 10.1016/j.rbmo.2023.103304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 09/29/2023]
Abstract
RESEARCH QUESTION Do sphingosine 1-phosphate (S1P) modulators have therapeutic effects on endometriosis in mice and, if they do, which receptor is responsible for these effects? DESIGN A surgically induced endometriosis mouse model was established. In the pilot experiment, lesions were harvested to assess fibrosis and inflammation and determine the optimal concentration of a broad-spectrum S1P modulator, FTY720. Subsequently, FTY720 was compared with a selective S1P receptor 1 modulator, SEW2871 to evaluate their effects on endometriotic lesion growth, fibrosis, inflammation and immune cell infiltration. RESULTS The results demonstrated that both FTY720 and SEW2871, two S1P receptor modulators, effectively inhibited the growth and fibrosis of endometriotic lesions. SEW2871 inhibited inflammation-related cytokine expression, including PTGS-2, IL-1β, TNF-α and TGF-β1, more effectively compared with FTY720. Lymphopaenia was mainly caused by FTY720, whereas SEW2871 had a lesser effect. Both FTY720 and SEW2871 significantly reduced CD45+ cells (P = 0.002 and P = 0.032, respectively) and F4/80+ cells (P < 0.001 and P = 0.004, respectively) infiltration into the lesions, with FTY720 exerting a strong regulatory effect on CD4+ T cells. CONCLUSIONS This study suggests that S1P receptor 1 could be investigated as a potential novel therapeutic target for endometriosis in the future.
Collapse
Affiliation(s)
- Fengrui Zhang
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Rd, Shanghai 200011, People's Republic of China
| | - Mingyi Peng
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Rd, Shanghai 200011, People's Republic of China
| | - Xufen Zheng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, SINH - Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine (CAS-SMMU), Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaofang Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, SINH - Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine (CAS-SMMU), Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoxiao Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, SINH - Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine (CAS-SMMU), Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chun Chen
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Rd, Shanghai 200011, People's Republic of China.
| | - Yuan Lu
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Rd, Shanghai 200011, People's Republic of China.
| |
Collapse
|
25
|
Tanaka S, Portilla D, Okusa MD. Role of perivascular cells in kidney homeostasis, inflammation, repair and fibrosis. Nat Rev Nephrol 2023; 19:721-732. [PMID: 37608184 DOI: 10.1038/s41581-023-00752-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 08/24/2023]
Abstract
Perivascular niches in the kidney comprise heterogeneous cell populations, including pericytes and fibroblasts, with distinct functions. These perivascular cells have crucial roles in preserving kidney homeostasis as they maintain microvascular networks by stabilizing the vasculature and regulating capillary constriction. A subset of kidney perivascular cells can also produce and secrete erythropoietin; this ability can be enhanced with hypoxia-inducible factor-prolyl hydroxylase inhibitors, which are used to treat anaemia in chronic kidney disease. In the pathophysiological state, kidney perivascular cells contribute to the progression of kidney fibrosis, partly via transdifferentiation into myofibroblasts. Moreover, perivascular cells are now recognized as major innate immune sentinels in the kidney that produce pro-inflammatory cytokines and chemokines following injury. These mediators promote immune cell infiltration, leading to persistent inflammation and progression of kidney fibrosis. The crosstalk between perivascular cells and tubular epithelial, immune and endothelial cells is therefore a key process in physiological and pathophysiological states. Here, we examine the multiple roles of kidney perivascular cells in health and disease, focusing on the latest advances in this field of research.
Collapse
Affiliation(s)
- Shinji Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - Didier Portilla
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
26
|
Khan RJ, Single SL, Simmons CS, Athar M, Liu Y, Bodduluri S, Benson PV, Goliwas KF, Deshane JS. Altered sphingolipid pathway in SARS-CoV-2 infected human lung tissue. Front Immunol 2023; 14:1216278. [PMID: 37868972 PMCID: PMC10585362 DOI: 10.3389/fimmu.2023.1216278] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction The SARS-CoV-2 mediated COVID-19 pandemic has impacted millions worldwide. Hyper-inflammatory processes, including cytokine storm, contribute to long-standing tissue injury and damage in COVID-19. The metabolism of sphingolipids as regulators of cell survival, differentiation, and proliferation has been implicated in inflammatory signaling and cytokine responses. Sphingosine-kinase-1 (SK1) and ceramide-synthase-2 (CERS2) generate metabolites that regulate the anti- and pro-apoptotic processes, respectively. Alterations in SK1 and CERS2 expression may contribute to the inflammation and tissue damage during COVID-19. The central objective of this study is to evaluate structural changes in the lung post-SARS-CoV-2 infection and to investigate whether the sphingolipid rheostat is altered in response to SARS-CoV-2 infection. Methods Central and peripheral lung tissues from COVID-19+ or control autopsies and resected lung tissue from COVID-19 convalescents were subjected to histologic evaluation of airspace and collagen deposisiton, and immunohistochemical evaluation of SK1 and CERS2. Results Here, we report significant reduction in air space and increase in collagen deposition in lung autopsy tissues from patients who died from COVID-19 (COVID-19+) and COVID-19 convalescent individuals. SK1 expression increased in the lungs of COVID-19+ autopsies and COVID-19 convalescent lung tissue compared to controls and was mostly associated with Type II pneumocytes and alveolar macrophages. No significant difference in CERS2 expression was noted. SARS-CoV-2 infection upregulates SK1 and increases the ratio of SK1 to CERS2 expression in lung tissues of COVID-19 autopsies and COVID-19 convalescents. Discussion These data suggest an alteration in the sphingolipid rheostat in lung tissue during COVID-19, suggesting a potential contribution to the inflammation and tissue damage associated with viral infection.
Collapse
Affiliation(s)
- Rabisa J. Khan
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, United States
| | - Sierra L. Single
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christopher S. Simmons
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, United States
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yuelong Liu
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sandeep Bodduluri
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Paul V. Benson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kayla F. Goliwas
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jessy S. Deshane
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
27
|
Kharel Y, Huang T, Santos WL, Lynch KR. Assay of Sphingosine 1-phosphate Transporter Spinster Homolog 2 (Spns2) Inhibitors. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:284-287. [PMID: 37454972 PMCID: PMC11974556 DOI: 10.1016/j.slasd.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
The sphingosine-1-phosphate (S1P) pathway remains an active area of research for drug discovery because S1P modulators are effective medicine for autoimmune diseases such as multiple sclerosis and ulcerative colitis. As such, other nodes in the pathway can be probed for alternative therapeutic candidates. As S1P elicits its function in an 'outside-in' fashion, targeting the transporter, Spns2, which is upstream of the receptors, is of great interest. To support our medicinal chemistry campaign to inhibit S1P transport, we developed a mammalian cell-based assay. In this protocol, Spns2 inhibition is assessed by treating HeLa, U-937, and THP-1 cells with inhibitors and S1P exported in the extracellular milieu is quantified by LC-MS/MS. Our studies demonstrated that the amount of S1P in the media in inversely proportional to inhibitor concentration. The details of our investigations are described herein.
Collapse
Affiliation(s)
- Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Tao Huang
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Webster L Santos
- Department of Chemistry and VT Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA
| | - Kevin R Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
28
|
Khalili L, Tang W, Askanase AD. Lupus clinical trials and the promise of future therapies. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2023; 4:109-114. [PMID: 37781678 PMCID: PMC10538598 DOI: 10.2478/rir-2023-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/18/2023] [Indexed: 10/03/2023]
Affiliation(s)
- Leila Khalili
- Columbia University Irving Medical Center, New York , NY, USA
| | - Wei Tang
- Columbia University Irving Medical Center, New York , NY, USA
| | | |
Collapse
|
29
|
Hallisey VM, Schwab SR. Get me out of here: Sphingosine 1-phosphate signaling and T cell exit from tissues during an immune response. Immunol Rev 2023; 317:8-19. [PMID: 37212181 DOI: 10.1111/imr.13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023]
Abstract
During an immune response, the duration of T cell residence in lymphoid and non-lymphoid tissues likely affects T cell activation, differentiation, and memory development. The factors that govern T cell transit through inflamed tissues remain incompletely understood, but one important determinant of T cell exit from tissues is sphingosine 1-phosphate (S1P) signaling. In homeostasis, S1P levels are high in blood and lymph compared to lymphoid organs, and lymphocytes follow S1P gradients out of tissues into circulation using varying combinations of five G-protein coupled S1P receptors. During an immune response, both the shape of S1P gradients and the expression of S1P receptors are dynamically regulated. Here we review what is known, and key questions that remain unanswered, about how S1P signaling is regulated in inflammation and in turn how S1P shapes immune responses.
Collapse
Affiliation(s)
- Victoria M Hallisey
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| | - Susan R Schwab
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
30
|
Cuevas-Delgado P, Miguel V, Rupérez FJ, Lamas S, Barbas C. Impact of renal tubular Cpt1a overexpression on the kidney metabolome in the folic acid-induced fibrosis mouse model. Front Mol Biosci 2023; 10:1161036. [PMID: 37377862 PMCID: PMC10291237 DOI: 10.3389/fmolb.2023.1161036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/24/2023] [Indexed: 06/29/2023] Open
Abstract
Background: Chronic kidney disease (CKD) is characterized by the progressive and irreversible deterioration of kidney function and structure with the appearance of renal fibrosis. A significant decrease in mitochondrial metabolism, specifically a reduction in fatty acid oxidation (FAO) in tubular cells, is observed in tubulointerstitial fibrosis, whereas FAO enhancement provides protection. Untargeted metabolomics offers the potential to provide a comprehensive analysis of the renal metabolome in the context of kidney injury. Methodology: Renal tissue from a carnitine palmitoyl transferase 1a (Cpt1a) overexpressing mouse model, which displays enhanced FAO in the renal tubule, subjected to folic acid nephropathy (FAN) was studied through a multiplatform untargeted metabolomics approach based on LC-MS, CE-MS and GC-MS analysis to achieve the highest coverage of the metabolome and lipidome affected by fibrosis. The expression of genes related to the biochemical routes showing significant changes was also evaluated. Results: By combining different tools for signal processing, statistical analysis and feature annotation, we were able to identify variations in 194 metabolites and lipids involved in many metabolic routes: TCA cycle, polyamines, one-carbon metabolism, amino acid metabolism, purine metabolism, FAO, glycerolipids and glycerophospholipids synthesis and degradation, glycosphingolipids interconversion, and sterol metabolism. We found several metabolites strongly altered by FAN, with no reversion induced by Cpt1a overexpression (v.g. citric acid), whereas other metabolites were influenced by CPT1A-induced FAO (v.g. glycine-betaine). Conclusion: It was implemented a successful multiplatform metabolomics approach for renal tissue analysis. Profound metabolic changes accompany CKD-associated fibrosis, some associated with tubular FAO failure. These results highlight the importance of addressing the crosstalk between metabolism and fibrosis when undertaking studies attempting to elucidate the mechanism of CKD progression.
Collapse
Affiliation(s)
- Paula Cuevas-Delgado
- Centre for Metabolomics and Bioanalysis (CEMBIO), School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Verónica Miguel
- Program of Physiological and Pathological Processes, Centro de Biología Molecular “Severo Ochoa” (CBMSO, CSIC-UAM), Madrid, Spain
| | - Francisco J. Rupérez
- Centre for Metabolomics and Bioanalysis (CEMBIO), School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Santiago Lamas
- Program of Physiological and Pathological Processes, Centro de Biología Molecular “Severo Ochoa” (CBMSO, CSIC-UAM), Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| |
Collapse
|
31
|
Chen H, Ahmed S, Zhao H, Elghobashi-Meinhardt N, Dai Y, Kim JH, McDonald JG, Li X, Lee CH. Structural and functional insights into Spns2-mediated transport of sphingosine-1-phosphate. Cell 2023; 186:2644-2655.e16. [PMID: 37224812 PMCID: PMC10330195 DOI: 10.1016/j.cell.2023.04.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/23/2023] [Accepted: 04/19/2023] [Indexed: 05/26/2023]
Abstract
Sphingosine-1-phosphate (S1P) is an important signaling sphingolipid that regulates the immune system, angiogenesis, auditory function, and epithelial and endothelial barrier integrity. Spinster homolog 2 (Spns2) is an S1P transporter that exports S1P to initiate lipid signaling cascades. Modulating Spns2 activity can be beneficial in treatments of cancer, inflammation, and immune diseases. However, the transport mechanism of Spns2 and its inhibition remain unclear. Here, we present six cryo-EM structures of human Spns2 in lipid nanodiscs, including two functionally relevant intermediate conformations that link the inward- and outward-facing states, to reveal the structural basis of the S1P transport cycle. Functional analyses suggest that Spns2 exports S1P via facilitated diffusion, a mechanism distinct from other MFS lipid transporters. Finally, we show that the Spns2 inhibitor 16d attenuates the transport activity by locking Spns2 in the inward-facing state. Our work sheds light on Spns2-mediated S1P transport and aids the development of advanced Spns2 inhibitors.
Collapse
Affiliation(s)
- Hongwen Chen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shahbaz Ahmed
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hongtu Zhao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Yaxin Dai
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jae Hun Kim
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey G McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Chia-Hsueh Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
32
|
Burgio AL, Shrader CW, Kharel Y, Huang T, Salamoun JM, Lynch KR, Santos WL. 2-Aminobenzoxazole Derivatives as Potent Inhibitors of the Sphingosine-1-Phosphate Transporter Spinster Homolog 2 (Spns2). J Med Chem 2023; 66:5873-5891. [PMID: 37010497 PMCID: PMC10167756 DOI: 10.1021/acs.jmedchem.3c00149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
The S1P1 receptor is the target of four marketed drugs for the treatment of multiple sclerosis and ulcerative colitis. Targeting an S1P exporter, specifically Spns2, that is "upstream" of S1P receptor engagement is an alternate strategy that might recapitulate the efficacy of S1P receptor modulators without cardiac toxicity. We recently reported the first Spns2 inhibitor SLF1081851 (16d) that has modest potency with in vivo activity. To develop more potent compounds, we initiated a structure-activity relationship study that identified 2-aminobenzoxazole as a viable scaffold. Our studies revealed SLB1122168 (33p), which is a potent inhibitor (IC50 = 94 ± 6 nM) of Spns2-mediated S1P release. Administration of 33p to mice and rats resulted in a dose-dependent decrease in circulating lymphocytes, a pharmacodynamic indication of Spns2 inhibition. 33p provides a valuable tool compound to explore both the therapeutic potential of targeting Spns2 and the physiologic consequences of selective S1P export inhibition.
Collapse
Affiliation(s)
- Ariel L. Burgio
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061
| | - Christopher W. Shrader
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061
| | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Tao Huang
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Joseph M. Salamoun
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061
| | - Kevin R. Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Webster L. Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
33
|
Wei SY, Chou YH, Chang FC, Huang SY, Lai CF, Lin SL. Young Plasma Attenuated Chronic Kidney Disease Progression after Acute Kidney Injury by Inhibiting Inflammation in Mice. Aging Dis 2023; 15:2786-2798. [PMID: 38421825 PMCID: PMC11567270 DOI: 10.14336/ad.2023.1230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/30/2023] [Indexed: 03/02/2024] Open
Abstract
In the aged patients suffering from acute kidney injury, the risk for progression to chronic kidney disease and mortality is high. Aging accompanied by glomerulosclerosis, interstitial inflammation, and fibrosis might be one of the underlying mechanisms for vulnerability. In addition to sustained activation of the renin-angiotensin system, persistent chronic inflammation with tertiary lymphoid tissue formation is more common and is associated with disease progression in the aged kidney after acute injury. Based on recent laboratory evidence that young blood can rejuvenate the brain, muscle, and heart, we were intrigued by the possible protective effect of young plasma on acute kidney injury in aged mice. Here, we demonstrated that young plasma from 2-month-old mice could attenuate chronic kidney disease progression in 15-month-old mice subjected to acute kidney injury induced by ischemia-reperfusion. In the aged mice after acute kidney injury, young plasma administration decreased tubulointerstitial injury, fibrosis, and tertiary lymphoid tissue formation in kidneys assessed on day 28 after acute injury despite no significant beneficial effect on injury severity and survival. Mechanistically, young plasma inhibited angiotensin II-activated chemokines in pericytes that were responsible for tertiary lymphoid tissue formation. In summary, our data provide evidence that young plasma attenuates the transition from acute kidney injury to chronic kidney disease in aged mice. The therapeutic potential of young plasma infusion or exchange in the aged patients suffering acute kidney injury needs to be addressed in clinical trials.
Collapse
Affiliation(s)
- Shi-Yao Wei
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China.
| | - Yu-Hsiang Chou
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Fan-Chi Chang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.
| | - Chun-Fu Lai
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Shuei-Liong Lin
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
34
|
Wang M. Targeting perivascular S1P attenuates inflammation. Nat Rev Nephrol 2022; 18:679. [PMID: 36131004 DOI: 10.1038/s41581-022-00637-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Idowu TO, Parikh SM. A new chapter in lipid signaling and kidney fibrosis. Sci Transl Med 2022; 14:eadd2826. [PMID: 35976995 DOI: 10.1126/scitranslmed.add2826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The perivascular sphingosine 1-phosphate signaling axis may be an emerging therapeutic target for treating chronic kidney disease (Tanaka et al.).
Collapse
Affiliation(s)
- Temitayo O Idowu
- Division of Nephrology, Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical School, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Samir M Parikh
- Division of Nephrology, Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical School, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| |
Collapse
|