1
|
Rothgangl T, Tálas A, Ioannidi EI, Weber Y, Böck D, Matsushita M, Villiger EA, Schmidheini L, Moon WJ, Lin PJC, Fan SHY, Marquart KF, Schwerdel C, Rimann N, Faccin E, Villiger L, Muramatsu H, Vadovics M, Cremonesi A, Kulcsár PI, Thöny B, Kopf M, Häberle J, Pardi N, Tam YK, Schwank G. Treatment of a metabolic liver disease in mice with a transient prime editing approach. Nat Biomed Eng 2025:10.1038/s41551-025-01399-4. [PMID: 40394220 DOI: 10.1038/s41551-025-01399-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/11/2025] [Indexed: 05/22/2025]
Abstract
Prime editing is a versatile genome editing technology that circumvents the need for DNA double-strand break formation and homology-directed repair, making it particularly suitable for in vivo correction of pathogenic mutations. Here we developed liver-specific prime editing approaches with temporally restricted prime editor (PE) expression. We first established a dual-delivery approach where the prime editor guide RNA is continuously expressed from adeno-associated viral vectors and only the PE is transiently delivered as nucleoside-modified mRNA encapsulated in lipid nanoparticles (LNP). This strategy achieved 26.2% editing with PEmax and 47.4% editing with PE7 at the Dnmt1 locus using a single 2 mg kg-1 dose of mRNA-LNP. When targeting the pathogenic Pahenu2 mutation in a phenylketonuria mouse model, gene correction rates reached 4.3% with PEmax and 20.7% with PE7 after three doses of 2 mg kg-1 mRNA-LNP, effectively reducing blood L-phenylalanine levels from over 1,500 µmol l-1 to below the therapeutic threshold of 360 µmol l-1. Encouraged by the high efficiency of PE7, we next explored a simplified approach where PE7 mRNA was co-delivered with synthetic prime editor guide RNAs encapsulated in LNP. This strategy yielded 35.9% editing after two doses of RNA-LNP at the Dnmt1 locus and 8.0% editing after three doses of RNA-LNP at the Pahenu2 locus, again reducing L-phenylalanine levels below 360 µmol l-1. These findings highlight the therapeutic potential of mRNA-LNP-based prime editing for treating phenylketonuria and other genetic liver diseases, offering a scalable and efficient platform for future clinical translation.
Collapse
Affiliation(s)
- Tanja Rothgangl
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - András Tálas
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Eleonora I Ioannidi
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Yanik Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Desirée Böck
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Mai Matsushita
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Lukas Schmidheini
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Woohyun J Moon
- Acuitas Therapeutics Inc., Vancouver, British Columbia, Canada
| | - Paulo J C Lin
- Acuitas Therapeutics Inc., Vancouver, British Columbia, Canada
| | - Steven H Y Fan
- Acuitas Therapeutics Inc., Vancouver, British Columbia, Canada
| | - Kim F Marquart
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Cornelia Schwerdel
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Nicole Rimann
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Erica Faccin
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Lukas Villiger
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Máté Vadovics
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alessio Cremonesi
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Péter István Kulcsár
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Beat Thöny
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying K Tam
- Acuitas Therapeutics Inc., Vancouver, British Columbia, Canada
| | - Gerald Schwank
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Matuszek Z, Brown BL, Yrigollen CM, Keiser MS, Davidson BL. Current trends in gene therapy to treat inherited disorders of the brain. Mol Ther 2025; 33:1988-2014. [PMID: 40181540 DOI: 10.1016/j.ymthe.2025.03.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025] Open
Abstract
Gene therapy development, re-engineering, and application to patients hold promise to revolutionize medicine, including therapies for disorders of the brain. Advances in delivery modalities, expression regulation, and improving safety profiles are of critical importance. Additionally, each inherited disorder has its own unique characteristics as to regions and cell types impacted and the temporal dynamics of that impact that are essential for the design of therapeutic design strategies. Here, we review the current state of the art in gene therapies for inherited brain disorders, summarizing key considerations for vector delivery, gene addition, gene silencing, gene editing, and epigenetic editing. We provide examples from animal models, human cell lines, and, where possible, clinical trials. This review also highlights the various tools available to researchers for basic research questions and discusses our views on the current limitations in the field.
Collapse
Affiliation(s)
- Zaneta Matuszek
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Brandon L Brown
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Center for Epilepsy and Neurodevelopmental Disorders (ENDD), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Carolyn M Yrigollen
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Megan S Keiser
- Department of Neurological Surgery, The Ohio State Wexner Medical Center, Columbus, OH 43210, USA
| | - Beverly L Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Center for Epilepsy and Neurodevelopmental Disorders (ENDD), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Hackett NR, Crystal RG. Four decades of adenovirus gene transfer vectors: History and current use. Mol Ther 2025; 33:2192-2204. [PMID: 40181546 DOI: 10.1016/j.ymthe.2025.03.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025] Open
Abstract
Replication-deficient adenovirus-based gene therapy vectors were the first vectors demonstrated to mediate effective, robust in vivo gene transfer. The ease of genome engineering, large carrying capacity, and methods for large-scale vector production made adenoviral vectors a primary focus in the early days of gene therapy. Many vector modifications such as capsid engineering and regulated and cell-specific transgene expression were first demonstrated in adenovirus (Ad) vectors. However, early human studies proved disappointing, with safety and efficacy issues arising from anti-vector innate and acquired immune responses. While many gene therapy researchers moved to other vectors, others recognized that the immune response and limited duration of transgene expression were useful in the correct context. The striking example of this was the use of several effective adenovirus vectors engineered as COVID-19 vaccines estimated to have been administered to 2 billion people. In addition to vaccines, current applications of Ad vectors relate to anti-cancer therapies, tissue remodeling, and gene editing.
Collapse
Affiliation(s)
- Neil R Hackett
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
4
|
Allegri G, Poms M, Zürcher N, Rüfenacht V, Rimann N, Mathis D, Thöny B, Gautschi M, Husain RA, Karall D, Orchel-Szastak K, Porta F, Roland D, Siri B, Dionisi-Vici C, Santer R, Häberle J. Characterization and treatment monitoring of ureagenesis disorders using stable isotopes. NPJ METABOLIC HEALTH AND DISEASE 2025; 3:19. [PMID: 40343092 PMCID: PMC12055570 DOI: 10.1038/s44324-025-00051-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/28/2025] [Indexed: 05/11/2025]
Abstract
Urea cycle disorders (UCDs) are a group of rare conditions, possibly life-threatening and without definitive cure besides liver transplantation. Traditional biochemical analyses/biomarkers cannot reliably determine changes in the UC-function from baseline to post-intervention. We describe a UHPLC-HRMS method to assess ureagenesis in plasma and dried blood spots for [15N]urea and [15N]amino acids, using [15N]ammonium chloride as tracer. [15N]enrichment of urea and amino acids was studied in controls (n = 22) and patients (n = 59), the latter showing characteristic ureagenesis variations according to their underlying metabolic defect. Follow-up of therapies was successful, as we observed restoration of [15N]urea production and lowering of [15N]glutamine. There were no adverse events, and only minimal amounts of tracer and samples required with a short sample preparation time and analysis. Thus, the method proved to be safe and efficient to monitor UCD patients of variable severity pre- and post-therapy, being suitable as physiological endpoint for development of therapies.
Collapse
Affiliation(s)
- Gabriella Allegri
- Division of Metabolism and Children’s Research Centre (CRC), University Children’s Hospital Zurich, Zurich, Switzerland
| | - Martin Poms
- Division Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Nadia Zürcher
- Division of Metabolism and Children’s Research Centre (CRC), University Children’s Hospital Zurich, Zurich, Switzerland
| | - Véronique Rüfenacht
- Division of Metabolism and Children’s Research Centre (CRC), University Children’s Hospital Zurich, Zurich, Switzerland
| | - Nicole Rimann
- Division of Metabolism and Children’s Research Centre (CRC), University Children’s Hospital Zurich, Zurich, Switzerland
| | - Déborah Mathis
- Division Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Zurich, Switzerland
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Beat Thöny
- Division of Metabolism and Children’s Research Centre (CRC), University Children’s Hospital Zurich, Zurich, Switzerland
- Division Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Matthias Gautschi
- Division of Paediatric Endocrinology, Diabetology and Metabolism, Department of Paediatrics, and Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ralf A. Husain
- Centre for Inborn Metabolic Disorders, Department of Neuropediatrics, Jena University Hospital, Jena, Germany
| | - Daniela Karall
- Medical University of Innsbruck, Clinic for Paediatrics, Division of Inherited Metabolic Disorders, Innsbruck, Austria
| | - Karolina Orchel-Szastak
- Department of Paediatrics, Rheumatology and Rare Diseases, University Children’s Hospital, Krakow, Poland
| | - Francesco Porta
- Department of Pediatrics, AOU Citta della Salute e della Scienza, University of Torino, Turin, Italy
| | - Dominique Roland
- Centre des Maladies Héréditaires du Métabolisme, Département de Génétique Humaine, Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - Barbara Siri
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - René Santer
- Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany
| | - Johannes Häberle
- Division of Metabolism and Children’s Research Centre (CRC), University Children’s Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Mathis N, Allam A, Tálas A, Kissling L, Benvenuto E, Schmidheini L, Schep R, Damodharan T, Balázs Z, Janjuha S, Ioannidi EI, Böck D, van Steensel B, Krauthammer M, Schwank G. Machine learning prediction of prime editing efficiency across diverse chromatin contexts. Nat Biotechnol 2025; 43:712-719. [PMID: 38907037 PMCID: PMC7617539 DOI: 10.1038/s41587-024-02268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 05/01/2024] [Indexed: 06/23/2024]
Abstract
The success of prime editing depends on the prime editing guide RNA (pegRNA) design and target locus. Here, we developed machine learning models that reliably predict prime editing efficiency. PRIDICT2.0 assesses the performance of pegRNAs for all edit types up to 15 bp in length in mismatch repair-deficient and mismatch repair-proficient cell lines and in vivo in primary cells. With ePRIDICT, we further developed a model that quantifies how local chromatin environments impact prime editing rates.
Collapse
Affiliation(s)
- Nicolas Mathis
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Ahmed Allam
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - András Tálas
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Lucas Kissling
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Elena Benvenuto
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Lukas Schmidheini
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Ruben Schep
- Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Tanav Damodharan
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Zsolt Balázs
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Sharan Janjuha
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Eleonora I Ioannidi
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Desirée Böck
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Bas van Steensel
- Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Michael Krauthammer
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Gerald Schwank
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Mu H, Liu Y, Chi Y, Wang F, Meng S, Zhang Y, Wang X, Zhao D. Systematic optimization of prime editing for enhanced efficiency and versatility in genome engineering across diverse cell types. Front Cell Dev Biol 2025; 13:1589034. [PMID: 40365017 PMCID: PMC12069386 DOI: 10.3389/fcell.2025.1589034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
Prime editing offers remarkable versatility in genome editing, but its efficiency remains a major bottleneck. While continuous optimization of the prime editing enzymes and guide RNAs (pegRNAs) has improved editing outcomes, the method of delivery also plays a crucial role in overall performance. To maximize prime editing efficiency, we implemented a series of systematic optimizations, achieving up to 80% editing efficiency across multiple loci and cell lines. Beyond integrating the latest advancements in prime editing, our approach combined stable genomic integration of prime editors via the piggyBac transposon system, selection of integrated single clones, the use of an enhanced promoter, and lentiviral delivery of pegRNAs, ensuring robust, ubiquitous, and sustained expression of both prime editors and pegRNAs. To further assess its efficacy in challenging cell types, we validated our optimized system in human pluripotent stem cells (hPSCs) in both primed and naïve states, achieving substantial editing efficiencies of up to 50%. Collectively, our optimized prime editing strategy provides a highly efficient and versatile framework for genome engineering in vitro, serving as a roadmap for refining prime editing technologies and expanding their applications in genetic research and therapeutic development.
Collapse
Affiliation(s)
- Huiling Mu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yeyi Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Yijia Chi
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Fei Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shuting Meng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, Henan University, Kaifeng, China
| | - Yi Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xunting Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dongxin Zhao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Cabré-Romans JJ, Cuella-Martin R. CRISPR-dependent base editing as a therapeutic strategy for rare monogenic disorders. Front Genome Ed 2025; 7:1553590. [PMID: 40242216 PMCID: PMC12000063 DOI: 10.3389/fgeed.2025.1553590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Rare monogenic disorders are caused by mutations in single genes and have an incidence rate of less than 0.5%. Due to their low prevalence, these diseases often attract limited research and commercial interest, leading to significant unmet medical needs. In a therapeutic landscape where treatments are targeted to manage symptoms, gene editing therapy emerges as a promising approach to craft curative and lasting treatments for these patients, often referred to as "one-and-done" therapeutics. CRISPR-dependent base editing enables the precise correction of genetic mutations by direct modification of DNA bases without creating potentially deleterious DNA double-strand breaks. Base editors combine a nickase version of Cas9 with cytosine or adenine deaminases to convert C·G to T·A and A·T to G·C, respectively. Together, cytosine (CBE) and adenine (ABE) base editors can theoretically correct ∼95% of pathogenic transition mutations cataloged in ClinVar. This mini-review explores the application of base editing as a therapeutic approach for rare monogenic disorders. It provides an overview of the state of gene therapies and a comprehensive compilation of preclinical studies using base editing to treat rare monogenic disorders. Key considerations for designing base editing-driven therapeutics are summarized in a user-friendly guide for researchers interested in applying this technology to a specific rare monogenic disorder. Finally, we discuss the prospects and challenges for bench-to-bedside translation of base editing therapies for rare monogenic disorders.
Collapse
Affiliation(s)
- Júlia-Jié Cabré-Romans
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Raquel Cuella-Martin
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Li M, Lin Y, Cheng Q, Wei T. Prime Editing: A Revolutionary Technology for Precise Treatment of Genetic Disorders. Cell Prolif 2025; 58:e13808. [PMID: 40014809 PMCID: PMC11969253 DOI: 10.1111/cpr.13808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/06/2024] [Accepted: 01/03/2025] [Indexed: 03/01/2025] Open
Abstract
Genetic diseases have long posed significant challenges, with limited breakthroughs in treatment. Recent advances in gene editing technologies offer new possibilities in gene therapy for the treatment of inherited disorders. However, traditional gene editing methods have limitations that hinder their potential for clinical use, such as limited editing capabilities and the production of unintended byproducts. To overcome these limitations, prime editing (PE) has been developed as a powerful tool for precise and efficient genome modification. In this review, we provide an overview of the latest advancements in PE and its potential applications in the treatment of inherited disorders. Furthermore, we examine the current delivery vehicles employed for delivering PE systems in vitro and in vivo, and analyze their respective benefits and limitations. Ultimately, we discuss the challenges that need to be addressed to fully unlock the potential of PE for the remission or cure of genetic diseases.
Collapse
Affiliation(s)
- Mengyao Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yi Lin
- Department of Biomedical Engineering, College of Future TechnologyPeking UniversityBeijingChina
| | - Qiang Cheng
- Department of Biomedical Engineering, College of Future TechnologyPeking UniversityBeijingChina
- Beijing Advanced Center of RNA BiologyPeking UniversityBeijingChina
| | - Tuo Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
9
|
Godbout K, Dugas M, Reiken SR, Ramezani S, Falle A, Rousseau J, Wronska AE, Lamothe G, Canet G, Lu Y, Planel E, Marks AR, Tremblay JP. Universal Prime Editing Therapeutic Strategy for RyR1-Related Myopathies: A Protective Mutation Rescues Leaky RyR1 Channel. Int J Mol Sci 2025; 26:2835. [PMID: 40243436 PMCID: PMC11988564 DOI: 10.3390/ijms26072835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
RyR1-related myopathies (RyR1-RMs) include a wide range of genetic disorders that result from mutations in the RYR1 gene. Pathogenic variants lead to defective intracellular calcium homeostasis and muscle dysfunction. Fixing intracellular calcium leaks by stabilizing the RyR1 calcium channel has been identified as a promising therapeutic target. Gene therapy via prime editing also holds great promise as it can cure diseases by correcting genetic mutations. However, as more than 700 variants have been identified in the RYR1 gene, a universal treatment would be a more suitable solution for patients. Our investigation into the RyR1-S2843A mutation has yielded promising results. Using a calcium leak assay, we determined that the S2843A mutation was protective when combined with pathogenic mutations and significantly reduced the Ca2+ leak of the RyR1 channel. Our study demonstrated that prime editing can efficiently introduce the protective S2843A mutation. In vitro experiments using the RNA electroporation of the prime editing components in human myoblasts achieved a 31% introduction of this mutation. This article lays the foundation for a new therapeutic approach for RyR1-RM, where a unique once-in-a-lifetime prime editing treatment could potentially be universally applied to all patients with a leaky RyR1 channel.
Collapse
Affiliation(s)
- Kelly Godbout
- Molecular Medicine Department, Laval University, Quebec, QC G1V 0A6, Canada; (M.D.); (S.R.); (A.F.); (G.L.); (G.C.); (Y.L.); (E.P.)
- CHU de Québec Research Center-Laval University, Quebec, QC G1V 4G2, Canada;
| | - Mathieu Dugas
- Molecular Medicine Department, Laval University, Quebec, QC G1V 0A6, Canada; (M.D.); (S.R.); (A.F.); (G.L.); (G.C.); (Y.L.); (E.P.)
- CHU de Québec Research Center-Laval University, Quebec, QC G1V 4G2, Canada;
| | - Steven R. Reiken
- Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; (S.R.R.); (A.E.W.); (A.R.M.)
| | - Sina Ramezani
- Molecular Medicine Department, Laval University, Quebec, QC G1V 0A6, Canada; (M.D.); (S.R.); (A.F.); (G.L.); (G.C.); (Y.L.); (E.P.)
- CHU de Québec Research Center-Laval University, Quebec, QC G1V 4G2, Canada;
| | - Alexia Falle
- Molecular Medicine Department, Laval University, Quebec, QC G1V 0A6, Canada; (M.D.); (S.R.); (A.F.); (G.L.); (G.C.); (Y.L.); (E.P.)
- CHU de Québec Research Center-Laval University, Quebec, QC G1V 4G2, Canada;
| | - Joël Rousseau
- CHU de Québec Research Center-Laval University, Quebec, QC G1V 4G2, Canada;
| | - Anetta E. Wronska
- Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; (S.R.R.); (A.E.W.); (A.R.M.)
| | - Gabriel Lamothe
- Molecular Medicine Department, Laval University, Quebec, QC G1V 0A6, Canada; (M.D.); (S.R.); (A.F.); (G.L.); (G.C.); (Y.L.); (E.P.)
- CHU de Québec Research Center-Laval University, Quebec, QC G1V 4G2, Canada;
| | - Geoffrey Canet
- Molecular Medicine Department, Laval University, Quebec, QC G1V 0A6, Canada; (M.D.); (S.R.); (A.F.); (G.L.); (G.C.); (Y.L.); (E.P.)
- CHU de Québec Research Center-Laval University, Quebec, QC G1V 4G2, Canada;
| | - Yaoyao Lu
- Molecular Medicine Department, Laval University, Quebec, QC G1V 0A6, Canada; (M.D.); (S.R.); (A.F.); (G.L.); (G.C.); (Y.L.); (E.P.)
- CHU de Québec Research Center-Laval University, Quebec, QC G1V 4G2, Canada;
| | - Emmanuel Planel
- Molecular Medicine Department, Laval University, Quebec, QC G1V 0A6, Canada; (M.D.); (S.R.); (A.F.); (G.L.); (G.C.); (Y.L.); (E.P.)
- CHU de Québec Research Center-Laval University, Quebec, QC G1V 4G2, Canada;
| | - Andrew R. Marks
- Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; (S.R.R.); (A.E.W.); (A.R.M.)
| | - Jacques P. Tremblay
- Molecular Medicine Department, Laval University, Quebec, QC G1V 0A6, Canada; (M.D.); (S.R.); (A.F.); (G.L.); (G.C.); (Y.L.); (E.P.)
- CHU de Québec Research Center-Laval University, Quebec, QC G1V 4G2, Canada;
| |
Collapse
|
10
|
Liu D, Cao D, Han R. Recent advances in therapeutic gene-editing technologies. Mol Ther 2025:S1525-0016(25)00200-X. [PMID: 40119516 DOI: 10.1016/j.ymthe.2025.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/26/2025] [Accepted: 03/17/2025] [Indexed: 03/24/2025] Open
Abstract
The advent of gene-editing technologies, particularly CRISPR-based systems, has revolutionized the landscape of biomedical research and gene therapy. Ongoing research in gene editing has led to the rapid iteration of CRISPR technologies, such as base and prime editors, enabling precise nucleotide changes without the need for generating harmful double-strand breaks (DSBs). Furthermore, innovations such as CRISPR fusion systems with DNA recombinases, DNA polymerases, and DNA ligases have expanded the size limitations for edited sequences, opening new avenues for therapeutic development. Beyond the CRISPR system, mobile genetic elements (MGEs) and epigenetic editors are emerging as efficient alternatives for precise large insertions or stable gene manipulation in mammalian cells. These advances collectively set the stage for next-generation gene therapy development. This review highlights recent developments of genetic and epigenetic editing tools and explores preclinical innovations poised to advance the field.
Collapse
Affiliation(s)
- Dongqi Liu
- Department of Pediatrics, Department of Molecular and Medical Genetics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Di Cao
- Department of Pediatrics, Department of Molecular and Medical Genetics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Renzhi Han
- Department of Pediatrics, Department of Molecular and Medical Genetics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
11
|
Cavazza A, Molina-Estévez FJ, Reyes ÁP, Ronco V, Naseem A, Malenšek Š, Pečan P, Santini A, Heredia P, Aguilar-González A, Boulaiz H, Ni Q, Cortijo-Gutierrez M, Pavlovic K, Herrera I, de la Cerda B, Garcia-Tenorio EM, Richard E, Granados-Principal S, López-Márquez A, Köber M, Stojanovic M, Vidaković M, Santos-Garcia I, Blázquez L, Haughton E, Yan D, Sánchez-Martín RM, Mazini L, Aseguinolaza GG, Miccio A, Rio P, Desviat LR, Gonçalves MA, Peng L, Jiménez-Mallebrera C, Molina FM, Gupta D, Lainšček D, Luo Y, Benabdellah K. Advanced delivery systems for gene editing: A comprehensive review from the GenE-HumDi COST Action Working Group. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102457. [PMID: 39991472 PMCID: PMC11847086 DOI: 10.1016/j.omtn.2025.102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
In the past decade, precise targeting through genome editing has emerged as a promising alternative to traditional therapeutic approaches. Genome editing can be performed using various platforms, where programmable DNA nucleases create permanent genetic changes at specific genomic locations due to their ability to recognize precise DNA sequences. Clinical application of this technology requires the delivery of the editing reagents to transplantable cells ex vivo or to tissues and organs for in vivo approaches, often representing a barrier to achieving the desired editing efficiency and safety. In this review, authored by members of the GenE-HumDi European Cooperation in Science and Technology (COST) Action, we described the plethora of delivery systems available for genome-editing components, including viral and non-viral systems, highlighting their advantages, limitations, and potential application in a clinical setting.
Collapse
Affiliation(s)
- Alessia Cavazza
- Molecular and Cellular Immunology Section, Department of Infection, Immunity & Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, 20 Guilford Street, London WC1N 1DZ, UK
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Via del Pozzo 71, 41125 Modena, Italy
| | - Francisco J. Molina-Estévez
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
- Fundación para la Investigación Biosanitaria de Andalucía Oriental, Alejandro Otero (FIBAO), Avda. de Madrid 15, 18012 Granada, Spain
- Biosanitary Research Institute of Granada (ibs. GRANADA), University of Granada, Av. de Madrid, 15, Beiro, 18012 Granada, Spain
| | - Álvaro Plaza Reyes
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Avda. Americo Vespucio, 24, 41092 Seville, Spain
| | - Victor Ronco
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
| | - Asma Naseem
- Molecular and Cellular Immunology Section, Department of Infection, Immunity & Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, 20 Guilford Street, London WC1N 1DZ, UK
| | - Špela Malenšek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Graduate School of Biomedicine, University of Ljubljana, Kongresni trg, 1000 Ljubljana, Slovenia
| | - Peter Pečan
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Graduate School of Biomedicine, University of Ljubljana, Kongresni trg, 1000 Ljubljana, Slovenia
| | - Annalisa Santini
- Imagine Institute, UMR 163 INSERM, 24 Bd du Montparnasse, 75015 Paris, France
- Paris City University, 45 Rue des Saints-Pères, 75006 Paris, France
| | - Paula Heredia
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
- Department of Anatomy and Human Embryology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016 Granada, Spain
| | - Araceli Aguilar-González
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
- Biosanitary Research Institute of Granada (ibs. GRANADA), University of Granada, Av. de Madrid, 15, Beiro, 18012 Granada, Spain
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of “Chemistry applied to Bio-medicine and the Environment, ” Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Houria Boulaiz
- Biosanitary Research Institute of Granada (ibs. GRANADA), University of Granada, Av. de Madrid, 15, Beiro, 18012 Granada, Spain
- Department of Anatomy and Human Embryology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016 Granada, Spain
| | - Qianqian Ni
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Marina Cortijo-Gutierrez
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
| | - Kristina Pavlovic
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
| | - Inmaculada Herrera
- Department of Hematology, Reina Sofía University Hospital, Av. Menéndez Pidal, Poniente Sur, 14004 Córdoba, Spain
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Cell Therapy, Av. Menéndez Pidal, Poniente Sur, 14004 Córdoba, Spain
| | - Berta de la Cerda
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Avda. Americo Vespucio, 24, 41092 Seville, Spain
| | - Emilio M. Garcia-Tenorio
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, IUBM, CIBERER, IDIPAZ, Universidad Autónoma de Madrid, C. de Pedro Rico, 6, Fuencarral-El Pardo, 28029 Madrid, Spain
| | - Eva Richard
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, IUBM, CIBERER, IDIPAZ, Universidad Autónoma de Madrid, C. de Pedro Rico, 6, Fuencarral-El Pardo, 28029 Madrid, Spain
| | - Sergio Granados-Principal
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
- Biosanitary Research Institute of Granada (ibs. GRANADA), University of Granada, Av. de Madrid, 15, Beiro, 18012 Granada, Spain
- Department of Biochemistry and Molecular Biology 2, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Arístides López-Márquez
- Neuromuscular Unit, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, C. de Sta. Rosa, 39, 08950 Barcelona, Spain
- Biomedical Research Network on Rare Diseases (CIBERER), C. de Melchor Fernández Almagro, 3, Fuencarral-El Pardo, 28029 Madrid, Spain
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Gran Via de les Corts Catalanes, 585, L'Eixample, 08007 Barcelona, Spain
| | - Mariana Köber
- Biomedical Research Network on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Marijana Stojanovic
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar despota Stefana 142, 10060 Belgrade, Serbia
| | - Melita Vidaković
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar despota Stefana 142, 10060 Belgrade, Serbia
| | - Irene Santos-Garcia
- Department of Neurosciences, Biogipuzkoa Health Research Institute, Paseo Dr. Begiristain, s/n, 20014 San Sebastián, Gipuzkoa, Spain
| | - Lorea Blázquez
- Department of Neurosciences, Biogipuzkoa Health Research Institute, Paseo Dr. Begiristain, s/n, 20014 San Sebastián, Gipuzkoa, Spain
- CIBERNED, ISCIII CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), Av. de Monforte de Lemos, 5, Fuencarral-El Pardo, 28029 Madrid, Spain
- Ikerbasque, Basque Foundation for Science, Euskadi Pl., 5, Abando, 48009 Bilbao, Biscay, Spain
| | - Emily Haughton
- Institute of Developmental & Regenerative Medicine, University of Oxford, Campus, Old Rd, Roosevelt Dr, Headington, Oxford OX3 7TY, UK
| | - Dongnan Yan
- Institute of Developmental & Regenerative Medicine, University of Oxford, Campus, Old Rd, Roosevelt Dr, Headington, Oxford OX3 7TY, UK
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Rosario María Sánchez-Martín
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
- Biosanitary Research Institute of Granada (ibs. GRANADA), University of Granada, Av. de Madrid, 15, Beiro, 18012 Granada, Spain
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of “Chemistry applied to Bio-medicine and the Environment, ” Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Loubna Mazini
- Technological, Medical and Academic Park (TMAP), N°109, Abdelkrim Elkhatabi, Bd Abdelkrim Al Khattabi, Marrakech 40000, Morocco
| | - Gloria Gonzalez Aseguinolaza
- DNA & RNA Medicine Division, Gene Therapy for Rare Diseases Department, Center for Applied Medical Research (CIMA), University of Navarra, IdisNA, Av. de Pío XII, 55, 31008 Pamplona, Navarra, Spain
- Vivet Therapeutics, Av. de Pío XII 31, 31008 Pamplona, Navarra, Spain
| | - Annarita Miccio
- Imagine Institute, UMR 163 INSERM, 24 Bd du Montparnasse, 75015 Paris, France
- Paris City University, 45 Rue des Saints-Pères, 75006 Paris, France
| | - Paula Rio
- Biomedical Research Network on Rare Diseases (CIBERER), C. de Melchor Fernández Almagro, 3, Fuencarral-El Pardo, 28029 Madrid, Spain
- Division of Hematopoietic Innovative Therapies, CIEMAT, Av. Complutense, 40, Moncloa - Aravaca, 28040 Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Av. de los Reyes Católicos, 2, Moncloa - Aravaca, 28040 Madrid, Spain
| | - Lourdes R. Desviat
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, IUBM, CIBERER, IDIPAZ, Universidad Autónoma de Madrid, C. de Pedro Rico, 6, Fuencarral-El Pardo, 28029 Madrid, Spain
| | - Manuel A.F.V. Gonçalves
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Ling Peng
- Aix-Marseille Universite, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, “Equipe Labellisee Ligue Ćontre le Cancer”, Campus de Luminy, case 913, 13009 Marseille, France
| | - Cecilia Jiménez-Mallebrera
- Neuromuscular Unit, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, C. de Sta. Rosa, 39, 08950 Barcelona, Spain
- Biomedical Research Network on Rare Diseases (CIBERER), C. de Melchor Fernández Almagro, 3, Fuencarral-El Pardo, 28029 Madrid, Spain
| | - Francisco Martin Molina
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
- Biosanitary Research Institute of Granada (ibs. GRANADA), University of Granada, Av. de Madrid, 15, Beiro, 18012 Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016 Granada, Spain
| | - Dhanu Gupta
- Institute of Developmental & Regenerative Medicine, University of Oxford, Campus, Old Rd, Roosevelt Dr, Headington, Oxford OX3 7TY, UK
- Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52 Huddinge, Sweden
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Centre for Technologies of Gene and Cell Therapy, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, 1000 Ljubljana, Slovenia
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Karim Benabdellah
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
| |
Collapse
|
12
|
Fu Y, He X, Ma L, Gao XD, Liu P, Shi H, Chai P, Ge S, Jia R, Liu DR, Fan X, Yang Z. In vivo prime editing rescues photoreceptor degeneration in nonsense mutant retinitis pigmentosa. Nat Commun 2025; 16:2394. [PMID: 40064881 PMCID: PMC11893901 DOI: 10.1038/s41467-025-57628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The next-generation gene editing tool, prime editing (PE), is adept at correcting point mutations precisely with high editing efficiency and rare off-target events and shows promising therapeutic value in treating hereditary diseases. Retinitis pigmentosa (RP) is the most common type of inherited retinal dystrophy and is characterized by progressive degeneration of retinal photoreceptors and, consequently, visual decline. To date, effective treatments for RP are lacking. Herein, a PE system is designed to target the PDE6B Y347X mutation in the rd1 mouse strain, a preclinical RP model. We screen and develop the PE system with epegRNA and RTΔRnH, which is delivered via dual-AAV in vivo with an editing efficiency of 26.47 ± 13.35%, with negligible off-target effects confirmed by AID-Seq and PE-tag. Treatment with the PE system in vivo greatly restores PDE6B protein expression and protects rod cells from degeneration. Mouse behavioural experiments also show that compared with no treatment, prime editing inhibits vision deterioration in littermate rd1 mice. This study provides a therapeutic opportunity for the use of PE to correct mutated RPs at the genomic level.
Collapse
Affiliation(s)
- Yidian Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Xiaoyu He
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Liang Ma
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Xin D Gao
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Pengpeng Liu
- Institute of Advanced Biotechnology, Institute of Homeostatic Medicine, and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hanhan Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| | - Zhi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| |
Collapse
|
13
|
Lu C, Li Y, Cummings JR, Banskota S. Delivery of genome editors with engineered virus-like particles. Methods Enzymol 2025; 712:475-516. [PMID: 40121085 DOI: 10.1016/bs.mie.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Genome editing technologies have revolutionized biomedical sciences and biotechnology. However, their delivery in vivo remains one of the major obstacles for clinical translation. Here, we introduce various emerging genome editing systems and review different delivery systems have been developed to realize the promise of in vivo gene editing therapies. In particular, we focus on virus-like particles (VLPs), an emerging delivery platform and provide in depth analysis on recent advancements to improve VLPs delivery potential and highlight opportunities for future improvements. To this end, we also provide detail workflows for engineered VLP (eVLP) selection, production, and purification, along with methods for characterization and validation.
Collapse
Affiliation(s)
- Christopher Lu
- Department of Biomedical Engineering, Boston University, Boston, MA, United States; Biological Design Center, Boston University, Boston, MA, United States
| | - Yuanhang Li
- Biological Design Center, Boston University, Boston, MA, United States; Department of Mechanical Engineering, Boston University, Boston, MA, United States
| | - Jacob Ryan Cummings
- Department of Biomedical Engineering, Boston University, Boston, MA, United States; Biological Design Center, Boston University, Boston, MA, United States
| | - Samagya Banskota
- Department of Biomedical Engineering, Boston University, Boston, MA, United States; Biological Design Center, Boston University, Boston, MA, United States.
| |
Collapse
|
14
|
Fan X, Lei Y, Wang L, Wu X, Li D. Advancing CRISPR base editing technology through innovative strategies and ideas. SCIENCE CHINA. LIFE SCIENCES 2025; 68:610-627. [PMID: 39231901 DOI: 10.1007/s11427-024-2699-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
The innovation of CRISPR/Cas gene editing technology has developed rapidly in recent years. It is widely used in the fields of disease animal model construction, biological breeding, disease diagnosis and screening, gene therapy, cell localization, cell lineage tracking, synthetic biology, information storage, etc. However, developing idealized editors in various fields is still a goal for future development. This article focuses on the development and innovation of non-DSB editors BE and PE in the platform-based CRISPR system. It first explains the application of ideas for improvement such as "substitution", "combination", "adaptation", and "adjustment" in BE and PE development and then catalogues the ingenious inversions and leaps of thought reflected in the innovations made to CRISPR technology. It will then elaborate on the efforts currently being made to develop small editors to solve the problem of AAV overload and summarize the current application status of editors for in vivo gene modification using AAV as a delivery system. Finally, it summarizes the inspiration brought by CRISPR/Cas innovation and assesses future prospects for development of an idealized editor.
Collapse
Affiliation(s)
- Xiongwei Fan
- The Center for Heart Development, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yang Lei
- Shanghai Frontiers Science Research Base of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Liren Wang
- Shanghai Frontiers Science Research Base of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Xiushan Wu
- The Center for Heart Development, College of Life Science, Hunan Normal University, Changsha, 410081, China.
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, 510100, China.
| | - Dali Li
- Shanghai Frontiers Science Research Base of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
15
|
Fontanellas A, Berraondo P, Urigo F, Jericó D, Martini PGV, Pastor F, Avila MA. RNA-based therapies in liver metabolic diseases. Gut 2025:gutjnl-2023-331742. [PMID: 39988358 DOI: 10.1136/gutjnl-2023-331742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/28/2025] [Indexed: 02/25/2025]
Abstract
RNA-based therapeutics have rapidly emerged over the past decade, offering a new class of medicines that differ significantly from conventional drugs. These therapies can be programmed to target or restore defective genes, allowing for more personalised treatments and reducing side effects. Notably, RNA therapies have made significant progress in the treatment of genetic liver diseases, exemplified by small interfering RNA treatments for hereditary transthyretin amyloidosis, which use liver-targeting strategies such as GalNAc conjugation to improve efficacy and safety. RNA-based gene-editing technologies, such as base editor and prime editor clustered regularly interspaced short palindromic repeats systems, also show promise with their ability to minimise genomic rearrangements and cancer risk. While RNA therapies offer high precision, challenges remain in optimising delivery methods and ensuring long-term safety and efficacy. Lipid nanoparticle-mRNA therapeutics, particularly for protein replacement in rare diseases, have gained support from preclinical successes. Compared with viral gene therapies, mRNA therapies present a safer profile with reduced risks of genomic integration and oncogene activation. However, clinical trials, especially for rare diseases, face limitations such as small sample sizes and short observation periods. Further preclinical studies, including non-human primates, will be essential for refining trial designs. Despite their potential, the high costs of RNA therapies pose a challenge that will require cost-utility models to guide pricing and accessibility. Here, we discuss the fundamental aspects of RNA-based therapeutics and showcase the most relevant preclinical and clinical developments in genetic liver metabolic diseases.
Collapse
Affiliation(s)
- Antonio Fontanellas
- Hepatology, Porphyrias and Carcinogenesis Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red, Area de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| | - Pedro Berraondo
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
- Immunology and Immunotherapy Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red, Area de Oncologia (CIBERonc), Madrid, Spain
| | - Francesco Urigo
- Hepatology, Porphyrias and Carcinogenesis Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Daniel Jericó
- Hepatology, Porphyrias and Carcinogenesis Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | | | - Fernando Pastor
- Molecular Therapeutics Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Matias A Avila
- Centro de Investigación Biomédica en Red, Area de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| |
Collapse
|
16
|
Mentani A, Maresca M, Shiriaeva A. Prime Editing: Mechanistic Insights and DNA Repair Modulation. Cells 2025; 14:277. [PMID: 39996750 PMCID: PMC11853414 DOI: 10.3390/cells14040277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Prime editing is a genome editing technique that allows precise modifications of cellular DNA without relying on donor DNA templates. Recently, several different prime editor proteins have been published in the literature, relying on single- or double-strand breaks. When prime editing occurs, the DNA undergoes one of several DNA repair pathways, and these processes can be modulated with the use of inhibitors. Firstly, this review provides an overview of several DNA repair mechanisms and their modulation by known inhibitors. In addition, we summarize different published prime editors and provide a comprehensive overview of associated DNA repair mechanisms. Finally, we discuss the delivery and safety aspects of prime editing.
Collapse
Affiliation(s)
- Astrid Mentani
- Genome Engineering, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, 43183 Mölndal, Sweden
| | - Marcello Maresca
- Genome Engineering, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, 43183 Mölndal, Sweden
| | - Anna Shiriaeva
- Genome Engineering, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, 43183 Mölndal, Sweden
| |
Collapse
|
17
|
Liu Y, Bai X, Feng X, Liu S, Hu Y, Chu H, Zhang L, Cai B, Ma Y. Revolutionizing animal husbandry: Breakthroughs in gene editing delivery systems. Gene 2025; 935:149044. [PMID: 39490705 DOI: 10.1016/j.gene.2024.149044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Gene editing technology has become an essential tool for advancing breeding practices, enhancing disease resistance, and boosting productivity in animal husbandry. Despite its potential, the delivery of gene editing reagents into cells faces several challenges, including low targeting efficiency, immunogenicity, and cytotoxicity, which have hindered its wider application in the field. This review discusses the evolution of gene editing technologies and highlights recent advancements in various delivery methods used in animal husbandry. It critically evaluates the strengths and weaknesses of these different delivery approaches while identifying potential directions for future development. The goal is to equip researchers with effective strategies to optimize delivery methods, ultimately facilitating the implementation and progress of gene editing technologies in animal husbandry.
Collapse
Affiliation(s)
- Yuan Liu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Xue Bai
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China
| | - Xue Feng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Shuang Liu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Yamei Hu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Hongen Chu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Lingkai Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Bei Cai
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Yun Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
18
|
Wei R, Yu Z, Ding L, Lu Z, Yao K, Zhang H, Huang B, He M, Ma L. Improved split prime editors enable efficient in vivo genome editing. Cell Rep 2025; 44:115144. [PMID: 39745853 DOI: 10.1016/j.celrep.2024.115144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/14/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Efficient prime editor (PE) delivery in vivo is critical for realizing its full potential in disease modeling and therapeutic correction. Although PE has been divided into two halves and delivered using dual adeno-associated viruses (AAVs), the editing efficiency at different gene loci varies among split sites. Furthermore, efficient split sites within Cas9 nickase (Cas9n) are limited. Here, we verified that 1115 (Asn) is an efficient split site when delivering PEs by dual AAVs. Additionally, we utilized a feature in which reverse transcriptase could be detached from the Cas9n and designed split sites in the first half of Cas9n. We found that split-PE-367 enabled high editing efficiency with Rma intein. To test the editing efficiency in vivo, split-ePE3-367 was packaged in AAV9 and achieved 17.5% precise editing in mice. Our findings establish an alternative split-PE architecture that enables robust editing efficiency, facilitating potential utility in disease modeling and correction.
Collapse
Affiliation(s)
- Rongwei Wei
- Westlake Genetech, Ltd., No. 1 Yunmeng Road, Cloud Town, Hangzhou 310024, China
| | - Zhenxing Yu
- School of Life Sciences, Westlake University, 600 Dunyu Road, Hangzhou 310030, China
| | - Lihong Ding
- Westlake Genetech, Ltd., No. 1 Yunmeng Road, Cloud Town, Hangzhou 310024, China
| | - Zhike Lu
- Westlake Genetech, Ltd., No. 1 Yunmeng Road, Cloud Town, Hangzhou 310024, China; School of Life Sciences, Westlake University, 600 Dunyu Road, Hangzhou 310030, China
| | - Keyi Yao
- School of Life Sciences, Westlake University, 600 Dunyu Road, Hangzhou 310030, China
| | - Heng Zhang
- Westlake Genetech, Ltd., No. 1 Yunmeng Road, Cloud Town, Hangzhou 310024, China
| | - Binglin Huang
- School of Life Sciences, Westlake University, 600 Dunyu Road, Hangzhou 310030, China
| | - Miao He
- Westlake Genetech, Ltd., No. 1 Yunmeng Road, Cloud Town, Hangzhou 310024, China; Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Lijia Ma
- Westlake Genetech, Ltd., No. 1 Yunmeng Road, Cloud Town, Hangzhou 310024, China; School of Life Sciences, Westlake University, 600 Dunyu Road, Hangzhou 310030, China.
| |
Collapse
|
19
|
Yin S, Gao L, Sun X, Zhang M, Gao H, Chen X, Zhang D, Ming X, Yang L, Hu Y, Chen X, Liu M, Zhan X, Guan Y, Wang L, Han L, Zhu P, Li D. Amelioration of metabolic and behavioral defects through base editing in the Pah R408W phenylketonuria mouse model. Mol Ther 2025; 33:119-132. [PMID: 39600089 PMCID: PMC11764323 DOI: 10.1016/j.ymthe.2024.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/16/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024] Open
Abstract
Phenylketonuria (PKU) is a liver metabolic disorder mainly caused by a deficiency of the hepatic phenylalanine hydroxylase (PAH) enzyme activity, often leading to severe brain function impairment in patients if untreated or if treatment is delayed. In this study, we utilized dual-AAV8 vectors to deliver a near PAM-less adenine base editor variant, known as ABE8e-SpRY, to treat the PahR408W PKU mouse model carrying a frequent R408W mutation in the Pah gene. Our findings revealed that a single intravenous injection in adult mice and a single intraperitoneal injection in neonatal mice resulted in 19.1%-34.6% A-to-G editing efficiency at the pathogenic mutation site with minimal bystander edits. Furthermore, the dual-AAV8-treated mice exhibited reduced blood Phe levels to below the therapeutic threshold of 360 μmol L-1 and restored weight and fur color to normal levels. Importantly, the brain function of the mice was restored after the treatment, particularly when administered during the neonatal stage, as levels of monoamine neurotransmitters and metabolites in the brain returned to normal and near-normal levels. Our study demonstrated that ABE8e-SpRY-based base editing could effectively correct the point mutation in the PahR408W PKU mouse model, indicating potential clinical applications for PKU and other genetic diseases.
Collapse
Affiliation(s)
- Shuming Yin
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510100, China; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Liangcai Gao
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaoyue Sun
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mei Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hongyi Gao
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaoqing Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dan Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xinyu Ming
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lei Yang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yaqiang Hu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xi Chen
- BRL Medicine, Inc., Shanghai 200241, China
| | - Meizhen Liu
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xia Zhan
- Department of Pediatric Endocrinology and Genetics Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yuting Guan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Liren Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetics Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510100, China; Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong 510080, China.
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
20
|
Halegua T, Risson V, Carras J, Rouyer M, Coudert L, Jacquier A, Schaeffer L, Ohlmann T, Mangeot PE. Delivery of Prime editing in human stem cells using pseudoviral NanoScribes particles. Nat Commun 2025; 16:397. [PMID: 39755699 DOI: 10.1038/s41467-024-55604-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025] Open
Abstract
Prime Editing can rewrite genes in living cells by allowing point mutations, deletions, or insertion of small DNA sequences with high precision. However, its safe and efficient delivery into human stem cells remains a technical challenge. In this report, we engineer Nanoscribes, virus-like particles that encapsidate ribonucleoprotein complexes of the Prime Editing system and allow their delivery into recipient cells. We identify key features that unlock the potential of Nanoscribes, including the use of multiple fusogens, the improvement of pegRNAs structures, their encoding by a Pol II system and the optimization of Prime-Editors. Nanoscribes edit HEK293T with an efficiency of 68% at the HEK3 locus with increased fidelity over DNA-transfection and support pegRNA-multiplexing. Importantly, Nanoscribes permit editing of myoblasts, hiPSCs and hiPSCs-derived hematopoietic stem cells with an editing efficiency up to 25%. Nanoscribes is an asset for development of next generation genome editing approaches using VLPs.
Collapse
Affiliation(s)
- Thibaut Halegua
- CIRI, Centre International de Recherche en Infectiologie Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Valérie Risson
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon1, Faculté de Médecine Lyon Est, F-69008, Lyon, France
| | - Julien Carras
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon1, Faculté de Médecine Lyon Est, F-69008, Lyon, France
- Hospices Civils de Lyon, groupement Est, F-69, Bron, France
| | - Martin Rouyer
- CIRI, Centre International de Recherche en Infectiologie Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Laurent Coudert
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon1, Faculté de Médecine Lyon Est, F-69008, Lyon, France
| | - Arnaud Jacquier
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon1, Faculté de Médecine Lyon Est, F-69008, Lyon, France
- Hospices Civils de Lyon, groupement Est, F-69, Bron, France
| | - Laurent Schaeffer
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon1, Faculté de Médecine Lyon Est, F-69008, Lyon, France
- Hospices Civils de Lyon, groupement Est, F-69, Bron, France
| | - Théophile Ohlmann
- CIRI, Centre International de Recherche en Infectiologie Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.
| | - Philippe Emmanuel Mangeot
- CIRI, Centre International de Recherche en Infectiologie Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.
| |
Collapse
|
21
|
Escobar H, Di Francescantonio S, Smirnova J, Graf R, Müthel S, Marg A, Zhogov A, Krishna S, Metzler E, Petkova M, Daumke O, Kühn R, Spuler S. Gene-editing in patient and humanized-mice primary muscle stem cells rescues dysferlin expression in dysferlin-deficient muscular dystrophy. Nat Commun 2025; 16:120. [PMID: 39747848 PMCID: PMC11695731 DOI: 10.1038/s41467-024-55086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Dystrophy-associated fer-1-like protein (dysferlin) conducts plasma membrane repair. Mutations in the DYSF gene cause a panoply of genetic muscular dystrophies. We targeted a frequent loss-of-function, DYSF exon 44, founder frameshift mutation with mRNA-mediated delivery of SpCas9 in combination with a mutation-specific sgRNA to primary muscle stem cells from two homozygous patients. We observed a consistent >60% exon 44 re-framing, rescuing a full-length and functional dysferlin protein. A new mouse model harboring a humanized Dysf exon 44 with the founder mutation, hEx44mut, recapitulates the patients' phenotype and an identical re-framing outcome in primary muscle stem cells. Finally, gene-edited murine primary muscle stem-cells are able to regenerate muscle and rescue dysferlin when transplanted back into hEx44mut hosts. These findings are the first to show that a CRISPR-mediated therapy can ameliorate dysferlin deficiency. We suggest that gene-edited primary muscle stem cells could exhibit utility, not only in treating dysferlin deficiency syndromes, but also perhaps other forms of muscular dystrophy.
Collapse
Affiliation(s)
- Helena Escobar
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany.
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| | - Silvia Di Francescantonio
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Julia Smirnova
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Robin Graf
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Stefanie Müthel
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Andreas Marg
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Alexej Zhogov
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Supriya Krishna
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Eric Metzler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | | | - Oliver Daumke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Ralf Kühn
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Simone Spuler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany.
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
22
|
Fei J, Zhao D, Pang C, Li J, Li S, Qiao W, Tan J, Bi C, Zhang X. Mismatch prime editing gRNA increased efficiency and reduced indels. Nat Commun 2025; 16:139. [PMID: 39747083 PMCID: PMC11696010 DOI: 10.1038/s41467-024-55578-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Prime editing enables precise and efficient genome editing, but its efficacy is hindered by pegRNA's 3' extension, forming secondary structures due to high complementarity with the protospacer. The continuous presence of the prime editing system also leads to unintended indel formation, raising safety concerns for therapeutic applications. To address these challenges, we develop a mismatched pegRNA (mpegRNA) strategy that introduces mismatched bases into the pegRNA protospacer, reducing complementarity and secondary structure formation, and preventing sustained activity. Our findings show that mpegRNA enhances editing efficiency by up to 2.3 times and reduces indel levels by 76.5% without compromising performance. Combining mpegRNA with epegRNA further increases efficiency up to 14-fold, or 2.4-fold in PE4max/PE5max systems, underscoring its potential in research and therapy. AlphaFold 3 analysis suggests that the optimal mpegRNA structure contributes significantly to improved editing outcomes. Overall, mpegRNA advances prime editing technology, improving efficiency while reducing indels.
Collapse
Affiliation(s)
- Jidong Fei
- College of Life Science, Tianjin Normal University, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.
| | - Caiyi Pang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Ju Li
- College of Life Science, Tianjin Normal University, Tianjin, China
| | - Siwei Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Wentao Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Juan Tan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.
| |
Collapse
|
23
|
Ahmadian M, Okan ICT, Uyanik G, Tschopp M, Agca C. Precise Gene Editing Technologies in Retinal Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:119-123. [PMID: 39930183 DOI: 10.1007/978-3-031-76550-6_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Gene therapy is emerging as a promising treatment for inherited retinal diseases (IRDs). One of the first successful applications of gene therapy for IRDs was the gene replacement therapy for the RPE65 mutation. This therapy delivers a functional copy of the RPE65 gene to patients via AAV vectors, rather than targeting the mutation itself. Gene editing technologies have advanced significantly in recent years, allowing it to make precise in vivo modifications to the genetic code. After the discovery of CRISPR-Cas9, other gene editing technologies such as base editing and prime editing have been developed by modifying and combining the original CRISPR-Cas9 technology with other methods. Moreover, recently discovered CRISPR-Cas systems allow RNA editing to correct mutations at the posttranscriptional level. These technologies have potential applications in various fields, including inherited retinal diseases. This mini-review evaluates and summarizes the most current advancements in genome editing methods, including prime editing, base editing, and RNA editing, and their applications on retinal diseases.
Collapse
Affiliation(s)
- Mehri Ahmadian
- Molecular Biology, Genetics And Bioengineering Program, Sabanci University, Istanbul, Turkey
| | | | - Gokce Uyanik
- Molecular Biology, Genetics And Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Markus Tschopp
- Department of Ophthalmology, Cantonal Hospital Aarau, Aarau, Switzerland
- Department of Ophthalmology, Inselspital Universitatsspital Bern, Bern, Switzerland
| | - Cavit Agca
- Molecular Biology, Genetics And Bioengineering Program, Sabanci University, Istanbul, Turkey.
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, Turkey.
- Virscio, Inc, New Haven, CT, USA.
| |
Collapse
|
24
|
Tsuji‐Hosokawa A, Tsuchiya I, Shimizu K, Terao M, Yasuhara M, Miyamoto N, Kikuchi S, Ogawa Y, Nakamura K, Matsubara Y, Takada S. Genetically humanized phenylketonuria mouse model as a testing tool for human genome editing in fertilized eggs. J Inherit Metab Dis 2025; 48:e12803. [PMID: 39380247 PMCID: PMC11729594 DOI: 10.1002/jimd.12803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Targeted genome editing has made significant advancements; however, safety and ethical issues have not been fully elucidated, resulting in strict control of the technique. We tested genome editing tools on gametes from a genetically humanized mouse model using a phenylketonuria (PKU) mouse model to gain insights into genome editing in human embryos. The human PKU mouse model PahhR111X mice was generated. The junctional region between exon 3 and intron 3 of Pah was replaced with a 120 bp corresponding human PAH sequence, including the pathogenic common variant c.331C > T in PahhR111X mice. PahhR111X mice successfully recapitulated the PKU phenotype and showed cognitive dysfunction and depressive-like behavior, which are observed in human patients with PKU. Genome editing was applied to fertilized eggs of PahhR111X mice utilizing sgRNA that targets the human sequence. Mice with the corrected allele exhibited normal serum phenylalanine levels. Through genome editing, we validated the utility of sgRNA. The genetically humanized mouse model suggested that germ-line genome editing of the pathogenic variant may be feasible for monogenic disorders by revealing the recovery of the phenotype; however, there are remaining issues with the tool, including its efficiency and accuracy. This genome editing protocol using a genetically humanized mouse model will provide insights for improving current issues and contribute to the establishment of heritable human genome editing protocols.
Collapse
Affiliation(s)
- Atsumi Tsuji‐Hosokawa
- Department of Systems BioMedicineNational Research Institute for Child Health and DevelopmentTokyoJapan
- Division of Diversity ResearchNational Research Institute for Child Health and DevelopmentTokyoJapan
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Iku Tsuchiya
- Department of Systems BioMedicineNational Research Institute for Child Health and DevelopmentTokyoJapan
- Department of NCCHD, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Kie Shimizu
- Department of PharmacologyNational Research Institute for Child Health and DevelopmentTokyoJapan
- Division of Life Science, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| | - Miho Terao
- Department of Systems BioMedicineNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Mito Yasuhara
- Department of Systems BioMedicineNational Research Institute for Child Health and DevelopmentTokyoJapan
- Department of NCCHD, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Natsuho Miyamoto
- Department of Systems BioMedicineNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Saki Kikuchi
- Department of Systems BioMedicineNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Yuya Ogawa
- Department of Systems BioMedicineNational Research Institute for Child Health and DevelopmentTokyoJapan
- Department of NCCHD, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Kazuaki Nakamura
- Department of PharmacologyNational Research Institute for Child Health and DevelopmentTokyoJapan
- Division of Life Science, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| | - Yoichi Matsubara
- National Center for Child Health and DevelopmentSetagayaTokyoJapan
| | - Shuji Takada
- Department of Systems BioMedicineNational Research Institute for Child Health and DevelopmentTokyoJapan
| |
Collapse
|
25
|
Sousa AA, Hemez C, Lei L, Traore S, Kulhankova K, Newby GA, Doman JL, Oye K, Pandey S, Karp PH, McCray PB, Liu DR. Systematic optimization of prime editing for the efficient functional correction of CFTR F508del in human airway epithelial cells. Nat Biomed Eng 2025; 9:7-21. [PMID: 38987629 PMCID: PMC11754097 DOI: 10.1038/s41551-024-01233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
Prime editing (PE) enables precise and versatile genome editing without requiring double-stranded DNA breaks. Here we describe the systematic optimization of PE systems to efficiently correct human cystic fibrosis (CF) transmembrane conductance regulator (CFTR) F508del, a three-nucleotide deletion that is the predominant cause of CF. By combining six efficiency optimizations for PE-engineered PE guide RNAs, the PEmax architecture, the transient expression of a dominant-negative mismatch repair protein, strategic silent edits, PE6 variants and proximal 'dead' single-guide RNAs-we increased correction efficiencies for CFTR F508del from less than 0.5% in HEK293T cells to 58% in immortalized bronchial epithelial cells (a 140-fold improvement) and to 25% in patient-derived airway epithelial cells. The optimizations also resulted in minimal off-target editing, in edit-to-indel ratios 3.5-fold greater than those achieved by nuclease-mediated homology-directed repair, and in the functional restoration of CFTR ion channels to over 50% of wild-type levels (similar to those achieved via combination treatment with elexacaftor, tezacaftor and ivacaftor) in primary airway cells. Our findings support the feasibility of a durable one-time treatment for CF.
Collapse
Affiliation(s)
- Alexander A Sousa
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Colin Hemez
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Lei Lei
- Stead Family Department of Pediatrics and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Soumba Traore
- Stead Family Department of Pediatrics and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Katarina Kulhankova
- Stead Family Department of Pediatrics and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jordan L Doman
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Keyede Oye
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Smriti Pandey
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Philip H Karp
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, IA, USA
| | - Paul B McCray
- Stead Family Department of Pediatrics and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
26
|
Wu Y, Zhong A, Sidharta M, Kim TW, Ramirez B, Persily B, Studer L, Zhou T. Robust and inducible genome editing via an all-in-one prime editor in human pluripotent stem cells. Nat Commun 2024; 15:10824. [PMID: 39737975 PMCID: PMC11685797 DOI: 10.1038/s41467-024-55104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Prime editing (PE) allows for precise genome editing in human pluripotent stem cells (hPSCs), such as introducing single nucleotide modifications, small insertions or deletions at a specific genomic locus. Here, we systematically compare a panel of prime editing conditions in hPSCs and generate a potent prime editor, "PE-Plus", through co-inhibition of mismatch repair and p53-mediated cellular stress responses. We further establish an inducible prime editing platform in hPSCs by incorporating the PE-Plus into a safe-harbor locus and demonstrated temporal control of precise editing in both hPSCs and differentiated cells. By evaluating disease-associated mutations, we show that this platform allows efficient creation of both monoallelic and biallelic disease-relevant mutations in hPSCs. In addition, this platform enables the efficient introduction of single or multiple edits in one step, demonstrating potential for multiplex editing. Our method presents an efficient and controllable multiplex prime editing tool in hPSCs and their differentiated progeny.
Collapse
Affiliation(s)
- Youjun Wu
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, USA
| | - Aaron Zhong
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, USA
| | - Mega Sidharta
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, USA
| | - Tae Wan Kim
- The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, USA
| | - Bernny Ramirez
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, USA
| | - Benjamin Persily
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, USA.
| | - Ting Zhou
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, USA.
| |
Collapse
|
27
|
Yuan Q, Zeng H, Daniel TC, Liu Q, Yang Y, Osikpa EC, Yang Q, Peddi A, Abramson LM, Zhang B, Xu Y, Gao X. Orthogonal and multiplexable genetic perturbations with an engineered prime editor and a diverse RNA array. Nat Commun 2024; 15:10868. [PMID: 39737993 PMCID: PMC11685949 DOI: 10.1038/s41467-024-55134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Programmable and modular systems capable of orthogonal genomic and transcriptomic perturbations are crucial for biological research and treating human genetic diseases. Here, we present the minimal versatile genetic perturbation technology (mvGPT), a flexible toolkit designed for simultaneous and orthogonal gene editing, activation, and repression in human cells. The mvGPT combines an engineered compact prime editor (PE), a fusion activator MS2-p65-HSF1 (MPH), and a drive-and-process multiplex array that produces RNAs tailored to different types of genetic perturbation. mvGPT can precisely edit human genome via PE coupled with a prime editing guide RNA and a nicking guide RNA, activate endogenous gene expression using PE with a truncated single guide RNA containing MPH-recruiting MS2 aptamers, and silence endogenous gene expression via RNA interference with a short-hairpin RNA. We showcase the versatility of mvGPT by simultaneously correcting a c.3207C>A mutation in the ATP7B gene linked to Wilson's disease, upregulating the PDX1 gene expression to potentially treat Type I diabetes, and suppressing the TTR gene to manage transthyretin amyloidosis. In addition to plasmid delivery, we successfully utilize various methods to deliver the mvGPT payload, demonstrating its potential for future in vivo applications.
Collapse
Affiliation(s)
- Qichen Yuan
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Hongzhi Zeng
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Tyler C Daniel
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, PA, USA
| | - Qingzhuo Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yongjie Yang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Emmanuel C Osikpa
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Qiaochu Yang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Advaith Peddi
- Department of Biosciences, Rice University, Houston, TX, USA
| | | | - Boyang Zhang
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Böck D, Wilhelm M, Mumenthaler J, Carpanese DF, Kulcsár PI, d'Aquin S, Cremonesi A, Rassi A, Häberle J, Patriarchi T, Schwank G. Base editing of Ptbp1 in neurons alleviates symptoms in a mouse model of Parkinson's disease. eLife 2024; 13:RP97180. [PMID: 39714464 DOI: 10.7554/elife.97180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Parkinson's disease (PD) is a multifactorial disease caused by irreversible progressive loss of dopaminergic neurons (DANs). Recent studies have reported the successful conversion of astrocytes into DANs by repressing polypyrimidine tract binding protein 1 (PTBP1), which led to the rescue of motor symptoms in a chemically-induced mouse model of PD. However, follow-up studies have questioned the validity of this astrocyte-to-DAN conversion model. Here, we devised an adenine base editing strategy to downregulate PTBP1 in astrocytes and neurons in a chemically-induced PD mouse model. While PTBP1 downregulation in astrocytes had no effect, PTBP1 downregulation in neurons of the striatum resulted in the expression of the DAN marker tyrosine hydroxylase (TH) in non-dividing neurons, which was associated with an increase in striatal dopamine concentrations and a rescue of forelimb akinesia and spontaneous rotations. Phenotypic analysis using multiplexed iterative immunofluorescence imaging further revealed that most of these TH-positive cells co-expressed the dopaminergic marker DAT and the pan-neuronal marker NEUN, with the majority of these triple-positive cells being classified as mature GABAergic neurons. Additional research is needed to fully elucidate the molecular mechanisms underlying the expression of the observed markers and understand how the formation of these cells contributes to the rescue of spontaneous motor behaviors. Nevertheless, our findings support a model where downregulation of neuronal, but not astrocytic, PTBP1 can mitigate symptoms in PD mice.
Collapse
Affiliation(s)
- Desiree Böck
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Maria Wilhelm
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Jonas Mumenthaler
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | | | - Peter I Kulcsár
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Simon d'Aquin
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Alessio Cremonesi
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anahita Rassi
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Gerald Schwank
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Xu W, Zhang S, Qin H, Yao K. From bench to bedside: cutting-edge applications of base editing and prime editing in precision medicine. J Transl Med 2024; 22:1133. [PMID: 39707395 DOI: 10.1186/s12967-024-05957-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024] Open
Abstract
CRISPR-based gene editing technology theoretically allows for precise manipulation of any genetic target within living cells, achieving the desired sequence modifications. This revolutionary advancement has fundamentally transformed the field of biomedicine, offering immense clinical potential for treating and correcting genetic disorders. In the treatment of most genetic diseases, precise genome editing that avoids the generation of mixed editing byproducts is considered the ideal approach. This article reviews the current progress of base editors and prime editors, elaborating on specific examples of their applications in the therapeutic field, and highlights opportunities for improvement. Furthermore, we discuss the specific performance of these technologies in terms of safety and efficacy in clinical applications, and analyze the latest advancements and potential directions that could influence the future development of genome editing technologies. Our goal is to outline the clinical relevance of this rapidly evolving scientific field and preview a roadmap for successful DNA base editing therapies for the treatment of hereditary or idiopathic diseases.
Collapse
Affiliation(s)
- Weihui Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shiyao Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
30
|
Shembrey C, Yang R, Casan J, Hu W, Chen H, Singh GJ, Sadras T, Prasad K, Shortt J, Johnstone RW, Trapani JA, Ekert PG, Fareh M. Principles of CRISPR-Cas13 mismatch intolerance enable selective silencing of point-mutated oncogenic RNA with single-base precision. SCIENCE ADVANCES 2024; 10:eadl0731. [PMID: 39693429 DOI: 10.1126/sciadv.adl0731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/14/2024] [Indexed: 12/20/2024]
Abstract
Single-nucleotide variants (SNVs) are extremely prevalent in human cancers, although most of these remain clinically unactionable. The programmable RNA nuclease CRISPR-Cas13 has been deployed to specifically target oncogenic RNAs. However, silencing oncogenic SNVs with single-base precision remains extremely challenging due to the intrinsic mismatch tolerance of Cas13. Here, we show that introducing synthetic mismatches at precise positions of the spacer sequence enables de novo design of guide RNAs [CRISPR RNAs (crRNAs)] with strong preferential silencing of point-mutated transcripts. We applied these design principles to effectively silence the oncogenic KRAS G12 hotspot, NRAS G12D and BRAF V600E transcripts with minimal off-target silencing of the wild-type transcripts, underscoring the adaptability of this platform to silence various SNVs. Unexpectedly, the SNV-selective crRNAs harboring mismatched nucleotides reduce the promiscuous collateral activity of the RfxCas13d ortholog. These findings demonstrate that the CRISPR-Cas13 system can be reprogrammed to target mutant transcripts with single-base precision, showcasing the tremendous potential of this tool in personalized transcriptome editing.
Collapse
Affiliation(s)
- Carolyn Shembrey
- Rosie Lew Program in Immunotherapy and Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne 3052 Australia
| | - Ray Yang
- Rosie Lew Program in Immunotherapy and Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne 3052 Australia
| | - Joshua Casan
- Rosie Lew Program in Immunotherapy and Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne 3052 Australia
| | - Wenxin Hu
- Rosie Lew Program in Immunotherapy and Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne 3052 Australia
| | - Honglin Chen
- Rosie Lew Program in Immunotherapy and Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne 3052 Australia
| | - Gurjeet J Singh
- Rosie Lew Program in Immunotherapy and Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne 3052 Australia
| | - Teresa Sadras
- Rosie Lew Program in Immunotherapy and Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne 3052 Australia
| | - Krishneel Prasad
- Rosie Lew Program in Immunotherapy and Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne 3052 Australia
| | - Jake Shortt
- Rosie Lew Program in Immunotherapy and Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne 3052 Australia
- School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
| | - Ricky W Johnstone
- Rosie Lew Program in Immunotherapy and Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne 3052 Australia
| | - Joseph A Trapani
- Rosie Lew Program in Immunotherapy and Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne 3052 Australia
| | - Paul G Ekert
- Rosie Lew Program in Immunotherapy and Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne 3052 Australia
- Children's Cancer Institute, Lowy Cancer Centre, University of New South Wales, Sydney, Kensington, NSW, Australia
- UNSW Centre for Childhood Cancer Research, University of New South Wales, Sydney, Kensington, NSW, Australia
| | - Mohamed Fareh
- Rosie Lew Program in Immunotherapy and Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne 3052 Australia
| |
Collapse
|
31
|
Shao C, Liu Q, Xu J, Zhang J, Zhang C, Xin Y, Ye Y, Lin B, Zhang X, Cheng L, Xu X, Xu P. Efficient and in situ correction of hemoglobin Constant Spring mutation by prime editing in human hematopoietic cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102371. [PMID: 39640014 PMCID: PMC11617223 DOI: 10.1016/j.omtn.2024.102371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Abstract
Hemoglobin Constant Spring (Hb CS) is the most common non-deletional and clinically significant α-thalassemic mutation, and it is caused by an anti-termination mutation at the α2-globin gene stop codon. We developed a prime editing strategy for the creation and correction of Hb CS. We showed that prime editing could efficiently introduce Hb CS mutations in both human erythroblast cell lines (an average frequency of 32%) and primary hematopoietic stem and progenitor cells (HSPCs) from healthy donors (an average frequency of 27%). By targeting the established Hb CS homozygous erythroblasts, we achieved an average frequency of 32% in situ correction without selection. Notably, prime editing corrected the Hb CS mutation to wild type at an average frequency of 21% in HSPCs from three patients with hemoglobin H Constant Spring (HCS). Erythrocytes that differentiated from prime-edited erythroblasts or HSPCs exhibited a significant reduction in the amount of αCS-globin chains. Insertions and deletions on HBA2 locus and Cas9-dependent DNA off-target editing were detected with relatively low frequency after prime editing. Our findings showed that prime editing can successfully correct Hb CS in erythroblasts and patient HSPCs, which provides proof of principle for its therapeutic potential in HCS.
Collapse
Affiliation(s)
- Congwen Shao
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Medical Genetics, School of Basic Medical Sciences, Guangdong Engineering and Technology Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qing Liu
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Medical Genetics, School of Basic Medical Sciences, Guangdong Engineering and Technology Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jinchao Xu
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianxiang Zhang
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chengpeng Zhang
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ye Xin
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yuhua Ye
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Medical Genetics, School of Basic Medical Sciences, Guangdong Engineering and Technology Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Bin Lin
- Guangzhou Jiexu Gene Technology Co. Ltd., Guangzhou, Guangdong 510535, China
| | - Xinhua Zhang
- Department of Hematology, 923rd Hospital of the People’s Liberation Army, Nanning, Guangxi 530021, China
| | - Li Cheng
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiangmin Xu
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Medical Genetics, School of Basic Medical Sciences, Guangdong Engineering and Technology Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Peng Xu
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
32
|
Ma B, Wu H, Gou S, Lian M, Xia C, Yang K, Jin L, Liu J, Wu Y, Shu Y, Yan H, Li Z, Lai L, Fan Y. A-to-G/C/T and C-to-T/G/A dual-function base editor for creating multi-nucleotide variants. J Genet Genomics 2024; 51:1494-1504. [PMID: 39490920 DOI: 10.1016/j.jgg.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024]
Abstract
Multi-nucleotide variants (MNVs) are critical genetic variants associated with various genetic diseases. However, tools for precisely installing MNVs are limited. In this study, we present the development of a dual-base editor, BDBE, by integrating TadA-dual and engineered human N-methylpurine DNA glycosylase (eMPG) into nCas9 (D10A). Our results demonstrate that BDBE effectively converts A-to-G/C/T (referred to as A-to-B) and C-to-T/G/A (referred to as C-to-D) simultaneously, yielding nine types of dinucleotides from adjacent CA nucleotides while maintaining minimal off-target effects. Notably, BDBE4 exhibits exceptional performance across multiple human cell lines and successfully simulated all nine dinucleotide MNVs from the gnomAD database. These findings indicate that BDBE significantly expands the product range of base editors and offers a valuable resource for advancing MNV research.
Collapse
Affiliation(s)
- Bingxiu Ma
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Han Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, Hainan 572000, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, Guangdong 510530, China
| | - Shixue Gou
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Meng Lian
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100020, China
| | - Cong Xia
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Kaiming Yang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Long Jin
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Junyuan Liu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Yunlin Wu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Yahai Shu
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Haizhao Yan
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Zhanjun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Liangxue Lai
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, Hainan 572000, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, Guangdong 510530, China.
| | - Yong Fan
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China.
| |
Collapse
|
33
|
Liu S, Zhao Y, Mo Q, Sun Y, Ma H. Engineering CjCas9 for Efficient Base Editing and Prime Editing. CRISPR J 2024; 7:395-405. [PMID: 39556313 DOI: 10.1089/crispr.2024.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
The CRISPR-Cas9 system has been applied for clinical applications of gene therapy. Most CRISPR-based gene therapies are derived from Streptococcus pyogenes Cas9, which is challenging to package into a single adeno-associated virus vector and limits its clinical applications. Campylobacter jejuni Cas9 (CjCas9) is one of the smallest Cas9 proteins. CjCas9-mediated base editing (CjBE) efficiency varies across genomic sites, while CjCas9-mediated prime editing (CjPE) efficiency is less than 5% on average. Here we developed enhanced cytosine base editors (enCjCBEs) and adenine base editors (enCjABEs) by engineered CjCas9P47K. We demonstrated the robust C-to-T conversion (70% on average) by enCjCBE or A-to-G conversion (76% on average) by enCjABE. Meanwhile, we applied the CjCas9P47K variant to generate enhanced CjPE (enCjPE), which increases the editing efficiency 17-fold at the PRNP site over wild-type CjPE. Fusing nonspecific DNA binding protein Sso7d to enCjCas9 and MS2 stem-loop RNA aptamer to the 3-terminal of cognate pegRNA resulted in 12% editing efficiency on average with a 24-fold increase over wild-type CjPE, and we termed it SsenCjPE. The SsenCjPE can also be combined with hMLH1dn to further increase the editing efficiency and MMLV RTaseΔRnH to reduce size. Finally, we introduced an additional mutation D829R into SsenCjPE and generated SsenCjPE-M2 with a 61-fold increase of PE efficiency over wild-type at the PRNP site. In summary, enCjBEs, SsenCjPEs, or SsenCjPE-M2 are compact Cas9-derived BE or prime editors in biological research or biomedical applications.
Collapse
Affiliation(s)
- Siyuan Liu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yingdi Zhao
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qiqin Mo
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yadong Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hanhui Ma
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
34
|
Chen Y, van Til NP, Bosma PJ. Gene Therapy for Inherited Liver Disease: To Add or to Edit. Int J Mol Sci 2024; 25:12514. [PMID: 39684224 DOI: 10.3390/ijms252312514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
Patients suffering from an inherited severe liver disorder require lifelong treatment to prevent premature death. Until recently, the only curative treatment option was liver transplantation, which requires lifelong immune suppression. Now, liver-directed gene therapy, which is a much less invasive procedure, has become a market-approved treatment for hemophilia A and B. This may pave the way for it to become the treatment of choice for many other recessive inherited liver disorders with loss-of-function mutations. Inherited liver disease with toxic-gain-of-function or intrinsic hepatocyte damage may require alternative applications, such as integrating vectors or genome editing technologies, that can provide permanent or specific modification of the genome. We present an overview of currently available gene therapy strategies, i.e., gene supplementation, gene editing, and gene repair investigated in preclinical and clinical studies to treat inherited severe liver disorders. The advantages and limitations of these gene therapy applications are discussed in relation to the underlying disease mechanism.
Collapse
Affiliation(s)
- Yue Chen
- Amsterdam University Medical Center, Tytgat Institute for Liver and Intestinal Research, AG&M, University of Amsterdam, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands
| | - Niek P van Til
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Piter J Bosma
- Amsterdam University Medical Center, Tytgat Institute for Liver and Intestinal Research, AG&M, University of Amsterdam, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands
| |
Collapse
|
35
|
Liu Z, Guo D, Wang D, Zhou J, Chen Q, Lai J. Prime editing: A gene precision editing tool from inception to present. FASEB J 2024; 38:e70148. [PMID: 39530600 DOI: 10.1096/fj.202401692r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/24/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Genetic mutations significantly contribute to the onset of diseases, with over half of the cases caused by single-nucleotide mutations. Advances in gene editing technologies have enabled precise editing and correction of mutated genes, offering effective treatment methods for genetic disorders. CRISPR/Cas9, despite its power, poses risks of inducing gene mutations due to DNA double-strand breaks (DSB). The advent of base editing (BE) and prime editing (PE) has mitigated these risks by eliminating the hazards associated with DNA DSBs, allowing for more precise gene editing. This breakthrough lays a solid foundation for the clinical application of gene editing technologies. This review discusses the principles, development, and applications of PE gene editing technology in various genetic mutation-induced diseases.
Collapse
Affiliation(s)
- Zhihao Liu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, Fuzhou, PR China
| | - Dong Guo
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, Fuzhou, PR China
| | - Dawei Wang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, Fuzhou, PR China
| | - Jinglin Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, Fuzhou, PR China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, Fuzhou, PR China
| | - Junzhong Lai
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, PR China
| |
Collapse
|
36
|
Yao B, Lei Z, Gonçalves MAFV, Sluijter JPG. Integrating Prime Editing and Cellular Reprogramming as Novel Strategies for Genetic Cardiac Disease Modeling and Treatment. Curr Cardiol Rep 2024; 26:1197-1208. [PMID: 39259489 PMCID: PMC11538137 DOI: 10.1007/s11886-024-02118-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE OF REVIEW This review aims to evaluate the potential of CRISPR-based gene editing tools, particularly prime editors (PE), in treating genetic cardiac diseases. It seeks to answer how these tools can overcome current therapeutic limitations and explore the synergy between PE and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) for personalized medicine. RECENT FINDINGS Recent advancements in CRISPR technology, including CRISPR-Cas9, base editors, and PE, have demonstrated precise genome correction capabilities. Notably, PE has shown exceptional precision in correcting genetic mutations. Combining PE with iPSC-CMs has emerged as a robust platform for disease modeling and developing innovative treatments for genetic cardiac diseases. The review finds that PE, when combined with iPSC-CMs, holds significant promise for treating genetic cardiac diseases by addressing their root causes. This approach could revolutionize personalized medicine, offering more effective and precise treatments. Future research should focus on refining these technologies and their clinical applications.
Collapse
Affiliation(s)
- Bing Yao
- Experimental Cardiology Laboratory, Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Circulatory Health Research Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Zhiyong Lei
- Experimental Cardiology Laboratory, Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Circulatory Health Research Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Manuel A F V Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands.
- Regenerative Medicine Center Utrecht, Circulatory Health Research Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
37
|
Willimann M, Grisch‐Chan HM, Rimann N, Rothgangl T, Hruzova M, Schwank G, Thöny B. Therapeutic liver cell transplantation to treat murine PKU. J Inherit Metab Dis 2024; 47:1322-1335. [PMID: 39449255 PMCID: PMC11586590 DOI: 10.1002/jimd.12802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/19/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024]
Abstract
For gene therapy of the liver, in vivo applications based on adeno-associated virus are the most advanced vectors despite limitations, including low efficacy and episomal loss, potential integration and safety issues, and high production costs. Alternative vectors and/or delivery routes are of high interest. The regenerative ability of the liver bears the potential for ex vivo therapy using liver cell transplantation for disease correction if provided with a selective advantage to expand and replace the existing cell mass. Here we present such treatment of a mouse model of human phenylketonuria (PKU). Primary hepatocytes from wild-type mice were gene modified in vitro (with a lentiviral vector) that carries a gene editing system (CRISPR) to inhibit Cypor. Cypor inactivation confers paracetamol (or acetaminophen) resistance to hepatocytes and thus a growth advantage to eliminate the pre-existing liver cells upon grafting (via the spleen) and exposure to repeated treatment with paracetamol. Grafting Cypor-inactivated wild-type hepatocytes into inbred young adult enu2 (PKU) mice, followed by selective expansion by paracetamol dosing, resulted in replacing up to 5% of cell mass, normalization of blood phenylalanine, and permanent correction of PKU. Hepatocyte transplantation offers thus an armamentarium of novel therapy options for genetic liver defects.
Collapse
Affiliation(s)
- Melanie Willimann
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital ZurichZurichSwitzerland
| | - Hiu Man Grisch‐Chan
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital ZurichZurichSwitzerland
| | - Nicole Rimann
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital ZurichZurichSwitzerland
| | - Tanja Rothgangl
- University of ZurichInstitute for Pharmacology and ToxicologyZurichSwitzerland
| | - Martina Hruzova
- University of ZurichInstitute for Pharmacology and ToxicologyZurichSwitzerland
| | - Gerald Schwank
- University of ZurichInstitute for Pharmacology and ToxicologyZurichSwitzerland
| | - Beat Thöny
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital ZurichZurichSwitzerland
| |
Collapse
|
38
|
de Morais CCPDL, Correia EM, Bonamino MH, de Vasconcelos ZFM. Cell-Penetrating Peptides and CRISPR-Cas9: A Combined Strategy for Human Genetic Disease Therapy. Hum Gene Ther 2024; 35:781-797. [PMID: 39276086 PMCID: PMC11511780 DOI: 10.1089/hum.2024.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
The advent of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated nuclease 9 (Cas9) technology has revolutionized the field of genetic engineering, offering unprecedented potential for the targeted manipulation of DNA sequences. Advances in the mechanism of action of the CRISPR-Cas9 system allowed potential applicability for the treatment of genetic diseases. CRISPR-Cas9's mechanism of action involves the use of an RNA guide molecule to target-specific DNA sequences and the Cas9 enzyme to induce precise DNA cleavage. In the context of the CRISPR-Cas9 system, this review covers nonviral delivery methods for gene editing based on peptide internalization. Here, we describe critical areas of discussion such as immunogenicity, emphasizing the importance of safety, efficiency, and cost-effectiveness, particularly in the context of treating single-mutation genetic diseases using advanced editing techniques genetics as prime editor and base editor. The text discusses the versatility of cell-penetrating peptides (CPPs) in forming complexes for delivering biomolecules, particularly ribonucleoprotein for genome editing with CRISPR-Cas9 in human cells. In addition, it emphasizes the promise of combining CPPs with DNA base editing and prime editing systems. These systems, known for their simplicity and precision, hold great potential for correcting point mutations in human genetic diseases. In summary, the text provides a clear overview of the advantages of using CPPs for genome editing with CRISPR-Cas9, particularly in conjunction with advanced editing systems, highlighting their potential impact on clinical applications in the treatment of single-mutation genetic diseases. [Figure: see text].
Collapse
Affiliation(s)
- Carla Cristina Pedrosa de Lira de Morais
- Cell Processing Center/Umbilical and Placental Cord Blood Bank (CPC/BSCUP), Bone Marrow Transplant Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, Brazil
- Oswaldo Cruz Foundation (FIOCRUZ), National Institute of Women, Children and Adolescents’ Health Fernandes Figueira (IFF), Rio de Janeiro, Brazil
| | - Eduardo Mannarino Correia
- Cell and Gene Therapy Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Martín Hernán Bonamino
- Cell and Gene Therapy Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Zilton Farias Meira de Vasconcelos
- Oswaldo Cruz Foundation (FIOCRUZ), National Institute of Women, Children and Adolescents’ Health Fernandes Figueira (IFF), Rio de Janeiro, Brazil
| |
Collapse
|
39
|
An M, Raguram A, Du SW, Banskota S, Davis JR, Newby GA, Chen PZ, Palczewski K, Liu DR. Engineered virus-like particles for transient delivery of prime editor ribonucleoprotein complexes in vivo. Nat Biotechnol 2024; 42:1526-1537. [PMID: 38191664 PMCID: PMC11228131 DOI: 10.1038/s41587-023-02078-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
Prime editing enables precise installation of genomic substitutions, insertions and deletions in living systems. Efficient in vitro and in vivo delivery of prime editing components, however, remains a challenge. Here we report prime editor engineered virus-like particles (PE-eVLPs) that deliver prime editor proteins, prime editing guide RNAs and nicking single guide RNAs as transient ribonucleoprotein complexes. We systematically engineered v3 and v3b PE-eVLPs with 65- to 170-fold higher editing efficiency in human cells compared to a PE-eVLP construct based on our previously reported base editor eVLP architecture. In two mouse models of genetic blindness, single injections of v3 PE-eVLPs resulted in therapeutically relevant levels of prime editing in the retina, protein expression restoration and partial visual function rescue. Optimized PE-eVLPs support transient in vivo delivery of prime editor ribonucleoproteins, enhancing the potential safety of prime editing by reducing off-target editing and obviating the possibility of oncogenic transgene integration.
Collapse
Affiliation(s)
- Meirui An
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Aditya Raguram
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Samuel W Du
- Gavin Herbert Eye Institute, Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Samagya Banskota
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Jessie R Davis
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Paul Z Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
- Department of Chemistry, University of California, Irvine, CA, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
40
|
Torella L, Santana-Gonzalez N, Zabaleta N, Gonzalez Aseguinolaza G. Gene editing in liver diseases. FEBS Lett 2024; 598:2348-2371. [PMID: 39079936 DOI: 10.1002/1873-3468.14989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/19/2024] [Indexed: 10/16/2024]
Abstract
The deliberate and precise modification of the host genome using engineered nucleases represents a groundbreaking advancement in modern medicine. Several clinical trials employing these approaches to address metabolic liver disorders have been initiated, with recent remarkable outcomes observed in patients with transthyretin amyloidosis, highlighting the potential of these therapies. Recent technological improvements, particularly CRISPR Cas9-based technology, have revolutionized gene editing, enabling in vivo modification of the cellular genome for therapeutic purposes. These modifications include gene supplementation, correction, or silencing, offering a wide range of therapeutic possibilities. Moving forward, we anticipate witnessing the unfolding therapeutic potential of these strategies in the coming years. The aim of our review is to summarize preclinical data on gene editing in animal models of inherited liver diseases and the clinical data obtained thus far, emphasizing both therapeutic efficacy and potential limitations of these medical interventions.
Collapse
Affiliation(s)
- Laura Torella
- DNA & RNA Medicine Division, Gene Therapy for Rare Diseases Department, Center for Applied Medical Research (CIMA), University of Navarra, IdisNA, Pamplona, Spain
| | - Nerea Santana-Gonzalez
- DNA & RNA Medicine Division, Gene Therapy for Rare Diseases Department, Center for Applied Medical Research (CIMA), University of Navarra, IdisNA, Pamplona, Spain
| | - Nerea Zabaleta
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA
| | - Gloria Gonzalez Aseguinolaza
- DNA & RNA Medicine Division, Gene Therapy for Rare Diseases Department, Center for Applied Medical Research (CIMA), University of Navarra, IdisNA, Pamplona, Spain
- Vivet Therapeutics, Pamplona, Spain
| |
Collapse
|
41
|
Bouchard C, Godbout K, Tremblay JP. [Correcting pathogenic mutations using prime editing: an overview]. Med Sci (Paris) 2024; 40:748-756. [PMID: 39450960 DOI: 10.1051/medsci/2024109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Gene editing is an ever-evolving field and Prime editing technology is among the latest ones. It makes it possible to modify a gene using a Cas9 nickase that cuts a single strand of DNA. This Cas9 nickase is fused with a reverse transcriptase that copies a single guide RNA synthetized by the researcher. This technique is used on one hand to create pathogenic mutations to obtain cell or animal models with a specific mutation. On the other hand, Prime editing is also used in research to treat hereditary diseases by correcting mutations associated with a pathogenic effect. The mode of delivery of the treatment to the affected cells in living organisms constitutes a main challenge. Different methods are studied to reach the organs specific to each disease. This review article presents the latest results in the field as well as the challenges to solve to optimize the possible uses of Prime editing.
Collapse
Affiliation(s)
- Camille Bouchard
- Département de médecine moléculaire, Université Laval, Québec, Canada - Centre de recherche du CHU de Québec, Université Laval, Québec, Canada
| | - Kelly Godbout
- Département de médecine moléculaire, Université Laval, Québec, Canada - Centre de recherche du CHU de Québec, Université Laval, Québec, Canada
| | - Jacques P Tremblay
- Département de médecine moléculaire, Université Laval, Québec, Canada - Centre de recherche du CHU de Québec, Université Laval, Québec, Canada
| |
Collapse
|
42
|
Wang Q, Jia S, Wang Z, Chen H, Jiang X, Li Y, Ji P. Nanogene editing drug delivery systems in the treatment of liver fibrosis. Front Med (Lausanne) 2024; 11:1418786. [PMID: 39386741 PMCID: PMC11461213 DOI: 10.3389/fmed.2024.1418786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Liver fibrosis is a group of diseases that seriously affect the health of the world's population. Despite significant progress in understanding the mechanisms of liver fibrogenesis, the technologies and drugs used to treat liver fibrosis have limited efficacy. As a revolutionary genetic tool, gene editing technology brings new hope for treating liver fibrosis. Combining nano-delivery systems with gene editing tools to achieve precise delivery and efficient expression of gene editing tools that can be used to treat liver fibrosis has become a rapidly developing field. This review provides a comprehensive overview of the principles and methods of gene editing technology and commonly used gene editing targets for liver fibrosis. We also discuss recent advances in common gene editing delivery vehicles and nano-delivery formulations in liver fibrosis research. Although gene editing technology has potential advantages in liver fibrosis, it still faces some challenges regarding delivery efficiency, specificity, and safety. Future studies need to address these issues further to explore the potential and application of liver fibrosis technologies in treating liver fibrosis.
Collapse
Affiliation(s)
- Qun Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Siyu Jia
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Zihan Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Hui Chen
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Xinyi Jiang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Yan Li
- Department of International Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Peng Ji
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
43
|
Hosseini SY, Mallick R, Mäkinen P, Ylä-Herttuala S. Insights into Prime Editing Technology: A Deep Dive into Fundamentals, Potentials, and Challenges. Hum Gene Ther 2024; 35:649-668. [PMID: 38832869 DOI: 10.1089/hum.2024.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
As the most versatile and precise gene editing technology, prime editing (PE) can establish a durable cure for most human genetic disorders. Several generations of PE have been developed based on an editor machine or prime editing guide RNA (pegRNA) to achieve any kind of genetic correction. However, due to the early stage of development, PE complex elements need to be optimized for more efficient editing. Smart optimization of editor proteins as well as pegRNA has been contemplated by many researchers, but the universal PE machine's current shortcomings remain to be solved. The modification of PE elements, fine-tuning of the host genes, manipulation of epigenetics, and blockage of immune responses could be used to reach more efficient PE. Moreover, the host factors involved in the PE process, such as repair and innate immune system genes, have not been determined, and PE cell context dependency is still poorly understood. Regarding the large size of the PE elements, delivery is a significant challenge and the development of a universal viral or nonviral platform is still far from complete. PE versions with shortened variants of reverse transcriptase are still too large to fit in common viral vectors. Overall, PE faces challenges in optimization for efficiency, high context dependency during the cell cycling, and delivery due to the large size of elements. In addition, immune responses, unpredictability of outcomes, and off-target effects further limit its application, making it essential to address these issues for broader use in nonpersonalized gene editing. Besides, due to the limited number of suitable animal models and computational modeling, the prediction of the PE process remains challenging. In this review, the fundamentals of PE, including generations, potential, optimization, delivery, in vivo barriers, and the future landscape of the technology are discussed.
Collapse
Affiliation(s)
- Seyed Younes Hosseini
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Bacteriology and Virology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Petri Mäkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
44
|
Simoni C, Barbon E, Muro AF, Cantore A. In vivo liver targeted genome editing as therapeutic approach: progresses and challenges. Front Genome Ed 2024; 6:1458037. [PMID: 39246827 PMCID: PMC11378722 DOI: 10.3389/fgeed.2024.1458037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
The liver is an essential organ of the body that performs several vital functions, including the metabolism of biomolecules, foreign substances, and toxins, and the production of plasma proteins, such as coagulation factors. There are hundreds of genetic disorders affecting liver functions and, for many of them, the only curative option is orthotopic liver transplantation, which nevertheless entails many risks and long-term complications. Some peculiar features of the liver, such as its large blood flow supply and the tolerogenic immune environment, make it an attractive target for in vivo gene therapy approaches. In recent years, several genome-editing tools mainly based on the clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR-Cas9) system have been successfully exploited in the context of liver-directed preclinical or clinical therapeutic applications. These include gene knock-out, knock-in, activation, interference, or base and prime editing approaches. Despite many achievements, important challenges still need to be addressed to broaden clinical applications, such as the optimization of the delivery methods, the improvement of the editing efficiency, and the risk of on-target or off-target unwanted effects and chromosomal rearrangements. In this review, we highlight the latest progress in the development of in vivo liver-targeted genome editing approaches for the treatment of genetic disorders. We describe the technological advancements that are currently under investigation, the challenges to overcome for clinical applicability, and the future perspectives of this technology.
Collapse
Affiliation(s)
- Chiara Simoni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Barbon
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrés F Muro
- International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
45
|
Masarwy R, Stotsky-Oterin L, Elisha A, Hazan-Halevy I, Peer D. Delivery of nucleic acid based genome editing platforms via lipid nanoparticles: Clinical applications. Adv Drug Deliv Rev 2024; 211:115359. [PMID: 38857763 DOI: 10.1016/j.addr.2024.115359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/17/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
CRISPR/Cas technology presents a promising approach for treating a wide range of diseases, including cancer and genetic disorders. Despite its potential, the translation of CRISPR/Cas into effective in-vivo gene therapy encounters challenges, primarily due to the need for safe and efficient delivery mechanisms. Lipid nanoparticles (LNPs), FDA-approved for RNA delivery, show potential for delivering also CRISPR/Cas, offering the capability to efficiently encapsulate large mRNA molecules with single guide RNAs. However, achieving precise targeting in-vivo remains a significant obstacle, necessitating further research into optimizing LNP formulations. Strategies to enhance specificity, such as modifying LNP structures and incorporating targeting ligands, are explored to improve organ and cell type targeting. Furthermore, the development of base and prime editing technology presents a potential breakthrough, offering precise modifications without generating double-strand breaks (DSBs). Prime editing, particularly when delivered via targeted LNPs, holds promise for treating diverse diseases safely and precisely. This review assesses both the progress made and the persistent challenges faced in using LNP-encapsulated CRISPR-based technologies for therapeutic purposes, with a particular focus on clinical translation.
Collapse
Affiliation(s)
- Razan Masarwy
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lior Stotsky-Oterin
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Aviad Elisha
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Inbal Hazan-Halevy
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.
| | - Dan Peer
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
46
|
Wu X, Yang J, Zhang J, Song Y. Gene editing therapy for cardiovascular diseases. MedComm (Beijing) 2024; 5:e639. [PMID: 38974714 PMCID: PMC11224995 DOI: 10.1002/mco2.639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
The development of gene editing tools has been a significant area of research in the life sciences for nearly 30 years. These tools have been widely utilized in disease detection and mechanism research. In the new century, they have shown potential in addressing various scientific challenges and saving lives through gene editing therapies, particularly in combating cardiovascular disease (CVD). The rapid advancement of gene editing therapies has provided optimism for CVD patients. The progress of gene editing therapy for CVDs is a comprehensive reflection of the practical implementation of gene editing technology in both clinical and basic research settings, as well as the steady advancement of research and treatment of CVDs. This article provides an overview of the commonly utilized DNA-targeted gene editing tools developed thus far, with a specific focus on the application of these tools, particularly the clustered regularly interspaced short palindromic repeat/CRISPR-associated genes (Cas) (CRISPR/Cas) system, in CVD gene editing therapy. It also delves into the challenges and limitations of current gene editing therapies, while summarizing ongoing research and clinical trials related to CVD. The aim is to facilitate further exploration by relevant researchers by summarizing the successful applications of gene editing tools in the field of CVD.
Collapse
Affiliation(s)
- Xinyu Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| | - Jie Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| | - Jiayao Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| | - Yuning Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| |
Collapse
|
47
|
Tai MDS, Gamiz-Arco G, Martinez A. Dopamine synthesis and transport: current and novel therapeutics for parkinsonisms. Biochem Soc Trans 2024; 52:1275-1291. [PMID: 38813865 PMCID: PMC11346439 DOI: 10.1042/bst20231061] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
Parkinsonism is the primary type of movement disorder in adults, encompassing a set of clinical symptoms, including rigidity, tremors, dystonia, bradykinesia, and postural instability. These symptoms are primarily caused by a deficiency in dopamine (DA), an essential neurotransmitter in the brain. Currently, the DA precursor levodopa (synthetic L-DOPA) is the standard medication to treat DA deficiency, but it only addresses symptoms rather than provides a cure. In this review, we provide an overview of disorders associated with DA dysregulation and deficiency, particularly Parkinson's disease and rare inherited disorders leading predominantly to dystonia and/or parkinsonism, even in childhood. Although levodopa is relatively effective for the management of motor dysfunctions, it is less effective for severe forms of parkinsonism and is also associated with side effects and a loss of efficacy over time. We present ongoing efforts to reinforce the effect of levodopa and to develop innovative therapies that target the underlying pathogenic mechanisms affecting DA synthesis and transport, increasing neurotransmission through disease-modifying approaches, such as cell-based therapies, nucleic acid- and protein-based biologics, and small molecules.
Collapse
Affiliation(s)
| | - Gloria Gamiz-Arco
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, 5020 Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
48
|
Martínez-Pizarro A, Picó S, López-Márquez A, Rodriguez-López C, Montalvo E, Alvarez M, Castro M, Ramón-Maiques S, Pérez B, Lucas JJ, Richard E, Desviat LR. PAH deficient pathology in humanized c.1066-11G>A phenylketonuria mice. Hum Mol Genet 2024; 33:1074-1089. [PMID: 38520741 PMCID: PMC11153335 DOI: 10.1093/hmg/ddae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/12/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
We have generated using CRISPR/Cas9 technology a partially humanized mouse model of the neurometabolic disease phenylketonuria (PKU), carrying the highly prevalent PAH variant c.1066-11G>A. This variant creates an alternative 3' splice site, leading to the inclusion of 9 nucleotides coding for 3 extra amino acids between Q355 and Y356 of the protein. Homozygous Pah c.1066-11A mice, with a partially humanized intron 10 sequence with the variant, accurately recapitulate the splicing defect and present almost undetectable hepatic PAH activity. They exhibit fur hypopigmentation, lower brain and body weight and reduced survival. Blood and brain phenylalanine levels are elevated, along with decreased tyrosine, tryptophan and monoamine neurotransmitter levels. They present behavioral deficits, mainly hypoactivity and diminished social interaction, locomotor deficiencies and an abnormal hind-limb clasping reflex. Changes in the morphology of glial cells, increased GFAP and Iba1 staining signals and decreased myelinization are observed. Hepatic tissue exhibits nearly absent PAH protein, reduced levels of chaperones DNAJC12 and HSP70 and increased autophagy markers LAMP1 and LC3BII, suggesting possible coaggregation of mutant PAH with chaperones and subsequent autophagy processing. This PKU mouse model with a prevalent human variant represents a useful tool for pathophysiology research and for novel therapies development.
Collapse
Affiliation(s)
- Ainhoa Martínez-Pizarro
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, UAM, Nicolás Cabrera 1, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Av. Monforte de Lemos, 3-5. 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), Pedro Rico, 6, 28029 Madrid, Spain
| | - Sara Picó
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Arístides López-Márquez
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, UAM, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Claudia Rodriguez-López
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Elena Montalvo
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, UAM, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Mar Alvarez
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Margarita Castro
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Av. Monforte de Lemos, 3-5. 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), Pedro Rico, 6, 28029 Madrid, Spain
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Francisco Tomás y Valiente 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Santiago Ramón-Maiques
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Av. Monforte de Lemos, 3-5. 28029 Madrid, Spain
- Instituto de Biomedicina de Valencia (IBV-CSIC), Jaume Roig, 11, 46010 València, Valencia, Spain
| | - Belén Pérez
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, UAM, Nicolás Cabrera 1, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Av. Monforte de Lemos, 3-5. 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), Pedro Rico, 6, 28029 Madrid, Spain
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Francisco Tomás y Valiente 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José J Lucas
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Eva Richard
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, UAM, Nicolás Cabrera 1, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Av. Monforte de Lemos, 3-5. 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), Pedro Rico, 6, 28029 Madrid, Spain
| | - Lourdes R Desviat
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, UAM, Nicolás Cabrera 1, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Av. Monforte de Lemos, 3-5. 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), Pedro Rico, 6, 28029 Madrid, Spain
| |
Collapse
|
49
|
Villiger L, Joung J, Koblan L, Weissman J, Abudayyeh OO, Gootenberg JS. CRISPR technologies for genome, epigenome and transcriptome editing. Nat Rev Mol Cell Biol 2024; 25:464-487. [PMID: 38308006 DOI: 10.1038/s41580-023-00697-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 02/04/2024]
Abstract
Our ability to edit genomes lags behind our capacity to sequence them, but the growing understanding of CRISPR biology and its application to genome, epigenome and transcriptome engineering is narrowing this gap. In this Review, we discuss recent developments of various CRISPR-based systems that can transiently or permanently modify the genome and the transcriptome. The discovery of further CRISPR enzymes and systems through functional metagenomics has meaningfully broadened the applicability of CRISPR-based editing. Engineered Cas variants offer diverse capabilities such as base editing, prime editing, gene insertion and gene regulation, thereby providing a panoply of tools for the scientific community. We highlight the strengths and weaknesses of current CRISPR tools, considering their efficiency, precision, specificity, reliance on cellular DNA repair mechanisms and their applications in both fundamental biology and therapeutics. Finally, we discuss ongoing clinical trials that illustrate the potential impact of CRISPR systems on human health.
Collapse
Affiliation(s)
- Lukas Villiger
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA
| | - Julia Joung
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luke Koblan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jonathan Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Omar O Abudayyeh
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA.
| | - Jonathan S Gootenberg
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA.
| |
Collapse
|
50
|
Lee KE, Xu Y, Geng B, Kim J, Kellon N, He M, Zhang Z, Li D, Gouchoe DA, Zhu H. Prime editing-mediated correction of the leptin receptor in muscle cells of db/db mice. Biotechnol J 2024; 19:e2300676. [PMID: 38730523 PMCID: PMC11090457 DOI: 10.1002/biot.202300676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 05/13/2024]
Abstract
Genetic diseases can be caused by monogenic diseases, which result from a single gene mutation in the DNA sequence. Many innovative approaches have been developed to cure monogenic genetic diseases, namely by genome editing. A specific type of genomic editing, prime editing, has the potential advantage to edit the human genome without requiring double-strand breaks or donor DNA templates for editing. Additionally, prime editing does not require a precisely positioned protospacer adjacent motif (PAM) sequence, which offers flexible target and more precise genomic editing. Here we detail a novel construction of a prime editing extended guide RNA (pegRNA) to target mutated leptin receptors in B6.BKS(D)-Leprdb/J mice (db/db mice). The pegRNA was then injected into the flexor digitorum brevis (FDB) muscle of db/db mice to demonstrate in vivo efficacy, which resulted in pegRNA mediated base transversion at endogenous base transversion. Genomic DNA sequencing confirmed that prime editing could correct the mutation of leptin receptor gene in db/db mice. Furthermore, prime editing treated skeletal muscle exhibited enhanced leptin receptor signals. Thus, the current study showed in vivo efficacy of prime editing to correct mutant protein and rescue the physiology associated with functional protein.
Collapse
Affiliation(s)
- Kyung Eun Lee
- Department of Surgery, Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yanping Xu
- Department of Surgery, Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Bingchuan Geng
- Department of Surgery, Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jongsoo Kim
- Department of Surgery, Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Natalie Kellon
- Department of Surgery, Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Michele He
- Department of Surgery, Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Zhentao Zhang
- Department of Surgery, Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Deqiang Li
- The Center for Cardiovascular Research at Nationwide Children’s Hospital, Columbus, OH 43205
| | - Doug A. Gouchoe
- COPPER Laboratory, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus OH 43210, USA
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|