1
|
Pauss SN, Bates EA, Martinez GJ, Bates ZT, Kipp ZA, Gipson CD, Hinds TD. Steroid receptors and coregulators: Dissemination of sex differences and emerging technologies. J Biol Chem 2025; 301:108363. [PMID: 40023399 PMCID: PMC11986243 DOI: 10.1016/j.jbc.2025.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025] Open
Abstract
Steroid receptors are ligand-induced transcription factors that have broad functions among all living animal species, ranging from control of sex differences, body weight, stress responses, and many others. Their binding to coregulator proteins is regulated by corepressors and coactivators that interchange upon stimulation with a ligand. Coregulator proteins are an imperative and understudied aspect of steroid receptor signaling. Here, we discuss steroid receptor basics from protein domain structures that allow them to interact with coregulators and other proteins, their essential functions as transcription factors, and other elemental protein-protein interactions. We deliberate about the mechanisms that coregulators control in steroid receptor signaling, sex hormone signaling differences, sex hormone treatment in the opposite sex, and how these affect the coregulator and sex steroid receptor complexes. The steroid receptor-coregulator signaling mechanisms are essential built-in components of the mammalian DNA that mediate physiological and everyday functions. Targeting their crosstalk might be useful when imbalances lead to disease. We introduce novel technologies, such as the PamGene PamStation, which make investigating the heterogeneity of the steroid receptor-coregulator complexes and targeting their binding more feasible. This review provides an extensive understanding of steroid receptor-coregulator signaling and how these interactions are intrinsic to many physiological functions that may offer therapeutic advantages.
Collapse
Affiliation(s)
- Sally N Pauss
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Evelyn A Bates
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Genesee J Martinez
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Zane T Bates
- Department of Bioengineering, University of Toledo College of Engineering, Toledo, Ohio, USA
| | - Zachary A Kipp
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Cassandra D Gipson
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Terry D Hinds
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA; Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA; Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| |
Collapse
|
2
|
Guo S, Zeng M, Zhang C, Fan Y, Ran M, Song Z. Genome-wide characterization and comparative expression profiling of dual-specificity phosphatase genes in yellow catfish ( Pelteobagrus fulvidraco) after infection with exogenous Aeromonas hydrophila. Front Immunol 2024; 15:1481696. [PMID: 39606227 PMCID: PMC11598348 DOI: 10.3389/fimmu.2024.1481696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Dual-specificity phosphatases (DUSPs) are crucial regulators in many mammals, managing dephosphorylation and inactivation of mitogen-activated protein kinases (MAPKs) and playing essential roles in immune responses. However, their presence and functions in teleosts, like the yellow catfish (Pelteobagrus fulvidraco), remain unexplored. Methods In this study, eight pfDusp genes (pfDusp1-7 and pfDusp10) were identified in yellow catfish. We characterized their molecular features, conserved protein sequences, and chromosomal localization through genome-wide analyses, and we examined their expression patterns in immune responses. Results Our findings reveal two conserved motifs, Leu-Phe-Leu-Gly and Ala-Tyr-Leu-Met, within the DSPc domain of DUSP proteins. The genes were mapped across seven chromosomes without evidence of duplication. Comparative analysis showed high conservation of Dusp genes across vertebrates, with evolutionary analysis suggesting Dusp3 as a potential intermediate form. Dusp transcripts were significantly upregulated in the kidney post-A. hydrophila infection. Discussion These results suggest the involvement of Dusp genes in the immune response of yellow catfish to bacterial pathogens, providing insights into their evolutionary significance and potential applications in aquaculture and molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhaobin Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College
of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Liu H, Acharya S, Sudan SK, Hu L, Wu C, Cao Y, Li H, Zhang X. Comparative study of the molecular mechanisms underlying the G protein and β-arrestin-dependent pathways that lead to ERKs activation upon stimulation by dopamine D 2 receptor. FEBS J 2023; 290:5204-5233. [PMID: 37531324 DOI: 10.1111/febs.16921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/09/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023]
Abstract
Dopamine D2 receptor (D2 R) has been shown to activate extracellular signal-regulated kinases (ERKs) via distinct pathways dependent on either G-protein or β-arrestin. However, there has not been a systematic study of the regulatory process of D2 R-mediated ERKs activation by G protein- versus β-arrestin-dependent signaling since D2 R stimulation of ERKs reflects the simultaneous action of both pathways. Here, we investigated that differential regulation of D2 R-mediated ERKs activation via these two pathways. Our results showed that G protein-dependent ERKs activation was transient, rapid, reached maximum level at around 2 min, and importantly, the activated ERKs were entirely confined to the cytoplasm. In contrast, β-arrestin-dependent ERKs activation was more sustained, slower, reached maximum level at around 10 min, and phosphorylated ERKs translocated into the nucleus. Src was found to be commonly involved in both the G protein- and β-arrestin-dependent pathway-mediated ERKs activation. Pertussis toxin Gi/o inhibitor, GRK2-CT, AG1478 epidermal growth factor receptor inhibitor, and wortmannin phosphoinositide 3-kinase inhibitor all blocked G protein-dependent ERKs activation. In contrast, GRK2 and β-Arr2 played a main role in β-arrestin-dependent ERKs activation. Receptor endocytosis showed minimal effect on the activation of ERKs mediated by both pathways. Furthermore, we found that the formation of a complex composed of phospho-ERKs, β-Arr2, and importinβ1 promoted the nuclear translocation of activated ERKs. The differential regulation of various cellular components, as well as temporal and spatial patterns of ERKs activation via these two pathways, suggest the existence of distinct physiological outcomes.
Collapse
Affiliation(s)
- Haiping Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Srijan Acharya
- Mitchell Cancer Institute, School of Medicine, University of South Alabama, Mobile, AL, USA
| | - Sarabjeet Kour Sudan
- Mitchell Cancer Institute, School of Medicine, University of South Alabama, Mobile, AL, USA
| | - Li Hu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Chengyan Wu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Yongkai Cao
- Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, China
| | - Huijun Li
- Department of Pharmaceuticals, People's Hospital of Zunyi City Bo Zhou District, China
| | - Xiaohan Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Wheeler EC, Vora S, Mayer D, Kotini AG, Olszewska M, Park SS, Guccione E, Teruya-Feldstein J, Silverman L, Sunahara RK, Yeo GW, Papapetrou EP. Integrative RNA-omics discovers GNAS alternative splicing as a phenotypic driver of splicing factor-mutant neoplasms. Cancer Discov 2021; 12:836-855. [PMID: 34620690 DOI: 10.1158/2159-8290.cd-21-0508] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/10/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022]
Abstract
Mutations in splicing factors (SFs) are the predominant class of mutations in myelodysplastic syndrome (MDS), but convergent downstream disease drivers remain elusive. To identify common direct targets of mis-splicing by mutant U2AF1 and SRSF2, we performed RNA-Seq and eCLIP in human hematopoietic stem/progenitor cells (HSPCs) derived from isogenic induced pluripotent stem cell (iPSC) models. Integrative analyses of alternative splicing and differential binding converged on a long isoform of GNAS (GNAS-L), promoted by both mutant factors. MDS population genetics, functional and biochemical analyses support that GNAS-L is a driver of MDS and encodes a hyperactive long form of the stimulatory G protein alpha subunit, Gas-L, that activates ERK/MAPK signaling. SF-mutant MDS cells have activated ERK signaling and consequently are sensitive to MEK inhibitors. Our findings highlight an unexpected and unifying mechanism by which SRSF2 and U2AF1 mutations drive oncogenesis with potential therapeutic implications for MDS and other SF-mutant neoplasms.
Collapse
Affiliation(s)
| | - Shailee Vora
- Oncological Sciences, Icahn School of Medicine at Mount Sinai
| | | | | | | | - Samuel S Park
- Cellular and Molecular Medicine, University of California, San Diego
| | | | | | | | | | - Gene W Yeo
- Cellular and Molecular Medicine, University of California, San Diego
| | | |
Collapse
|
5
|
Giubilaro J, Schuetz DA, Stepniewski TM, Namkung Y, Khoury E, Lara-Márquez M, Campbell S, Beautrait A, Armando S, Radresa O, Duchaine J, Lamarche-Vane N, Claing A, Selent J, Bouvier M, Marinier A, Laporte SA. Discovery of a dual Ras and ARF6 inhibitor from a GPCR endocytosis screen. Nat Commun 2021; 12:4688. [PMID: 34344896 PMCID: PMC8333425 DOI: 10.1038/s41467-021-24968-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 07/17/2021] [Indexed: 12/15/2022] Open
Abstract
Internalization and intracellular trafficking of G protein-coupled receptors (GPCRs) play pivotal roles in cell responsiveness. Dysregulation in receptor trafficking can lead to aberrant signaling and cell behavior. Here, using an endosomal BRET-based assay in a high-throughput screen with the prototypical GPCR angiotensin II type 1 receptor (AT1R), we sought to identify receptor trafficking inhibitors from a library of ~115,000 small molecules. We identified a novel dual Ras and ARF6 inhibitor, which we named Rasarfin, that blocks agonist-mediated internalization of AT1R and other GPCRs. Rasarfin also potently inhibits agonist-induced ERK1/2 signaling by GPCRs, and MAPK and Akt signaling by EGFR, as well as prevents cancer cell proliferation. In silico modeling and in vitro studies reveal a unique binding modality of Rasarfin within the SOS-binding domain of Ras. Our findings unveil a class of dual small G protein inhibitors for receptor trafficking and signaling, useful for the inhibition of oncogenic cellular responses. While Ras is a promising target for cancer therapy, development of inhibitors targeting Ras signaling has proven challenging. Here, the authors report the discovery of Rasarfin, a small molecule from a phenotypic screen on G protein-coupled receptor (GPCR) endocytosis that acts as a dual Ras and ARF6 inhibitor.
Collapse
Affiliation(s)
- Jenna Giubilaro
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada.,Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada
| | - Doris A Schuetz
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Tomasz M Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu, Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,InterAx Biotech AG, Villigen, Switzerland
| | - Yoon Namkung
- Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada.,Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, QC, Canada
| | - Etienne Khoury
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, QC, Canada
| | - Mónica Lara-Márquez
- Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Shirley Campbell
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, Canada
| | - Alexandre Beautrait
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada.,Schrödinger, Inc., New York, NY, United States
| | - Sylvain Armando
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, QC, Canada
| | - Olivier Radresa
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, QC, Canada
| | - Jean Duchaine
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Nathalie Lamarche-Vane
- Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Audrey Claing
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, Canada
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu, Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | - Anne Marinier
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Stéphane A Laporte
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada. .,Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada. .,Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, QC, Canada.
| |
Collapse
|
6
|
Desale SE, Chidambaram H, Chinnathambi S. G-protein coupled receptor, PI3K and Rho signaling pathways regulate the cascades of Tau and amyloid-β in Alzheimer's disease. MOLECULAR BIOMEDICINE 2021; 2:17. [PMID: 35006431 PMCID: PMC8607389 DOI: 10.1186/s43556-021-00036-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disease characterized by the presence of amyloid-β plaques in the extracellular environment and aggregates of Tau protein that forms neurofibrillary tangles (NFTs) in neuronal cells. Along with these pathological proteins, the disease shows neuroinflammation, neuronal death, impairment in the immune function of microglia and synaptic loss, which are mediated by several important signaling pathways. The PI3K/Akt-mediated survival-signaling pathway is activated by many receptors such as G-protein coupled receptors (GPCRs), triggering receptor expressed on myeloid cells 2 (TREM2), and lysophosphatidic acid (LPA) receptor. The signaling pathway not only increases the survival of neurons but also regulates inflammation, phagocytosis, cellular protection, Tau phosphorylation and Aβ secretion as well. In this review, we focused on receptors, which activate PI3K/Akt pathway and its potential to treat Alzheimer's disease. Among several membrane receptors, GPCRs are the major drug targets for therapy, and GPCR signaling pathways are altered during Alzheimer's disease. Several GPCRs are involved in the pathogenic progression, phosphorylation of Tau protein by activation of various cellular kinases and are involved in the amyloidogenic pathway of amyloid-β synthesis. Apart from various GPCR signaling pathways, GPCR regulating/ interacting proteins are involved in the pathogenesis of Alzheimer's disease. These include several small GTPases, Ras homolog enriched in brain, GPCR associated sorting proteins, β-arrestins, etc., that play a critical role in disease progression and has been elaborated in this review.
Collapse
Affiliation(s)
- Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Hariharakrishnan Chidambaram
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
7
|
Atypical p38 Signaling, Activation, and Implications for Disease. Int J Mol Sci 2021; 22:ijms22084183. [PMID: 33920735 PMCID: PMC8073329 DOI: 10.3390/ijms22084183] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) p38 is an essential family of kinases, regulating responses to environmental stress and inflammation. There is an ever-increasing plethora of physiological and pathophysiological conditions attributed to p38 activity, ranging from cell division and embryonic development to the control of a multitude of diseases including retinal, cardiovascular, and neurodegenerative diseases, diabetes, and cancer. Despite the decades of intense investigation, a viable therapeutic approach to disrupt p38 signaling remains elusive. A growing body of evidence supports the pathological significance of an understudied atypical p38 signaling pathway. Atypical p38 signaling is driven by a direct interaction between the adaptor protein TAB1 and p38α, driving p38 autophosphorylation independent from the classical MKK3 and MKK6 pathways. Unlike the classical MKK3/6 signaling pathway, atypical signaling is selective for just p38α, and at present has only been characterized during pathophysiological stimulation. Recent studies have linked atypical signaling to dermal and vascular inflammation, myocardial ischemia, cancer metastasis, diabetes, complications during pregnancy, and bacterial and viral infections. Additional studies are required to fully understand how, when, where, and why atypical p38 signaling is induced. Furthermore, the development of selective TAB1-p38 inhibitors represents an exciting new opportunity to selectively inhibit pathological p38 signaling in a wide array of diseases.
Collapse
|
8
|
Küppers J, Benkel T, Annala S, Kimura K, Reinelt L, Fleischmann BK, Kostenis E, Gütschow M. Tetrahydroimidazo[1,2-a]pyrazine Derivatives: Synthesis and Evaluation as Gα q -Protein Ligands. Chemistry 2020; 26:12615-12623. [PMID: 32428383 PMCID: PMC7590114 DOI: 10.1002/chem.202001446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/06/2020] [Indexed: 12/14/2022]
Abstract
The 5,6,7,8-tetrahydroimidazo[1,2-a]pyrazine derivative BIM-46174 and its dimeric form BIM-46187 (1) are heterocyclized dipeptides that belong to the very few cell-permeable compounds known to preferentially silence Gαq proteins. To explore the chemical space of Gαq inhibitors of the BIM chemotype, a combinatorial approach was conducted towards a library of BIM molecules. This library was evaluated in a second messenger-based fluorescence assay to analyze the activity of Gαq proteins through the determination of intracellular myo-inositol 1-phosphate. Structure-activity relationships were deduced and structural requirements for biological activity obtained, which were (i) a redox reactive thiol/disulfane substructure, (ii) an N-terminal basic amino group, (iii) a cyclohexylalanine moiety, and (iv) a bicyclic skeleton. Active compounds exhibited cellular toxicity, which was investigated in detail for the prototypical inhibitor 1. This compound affects the structural cytoskeletal dynamics in a Gαq/11 -independent manner.
Collapse
Affiliation(s)
- Jim Küppers
- Pharmaceutical InstituteDepartment of Pharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany
| | - Tobias Benkel
- Molecular, Cellular and Pharmacobiology SectionInstitute for Pharmaceutical BiologyUniversity of BonnNussallee 653115BonnGermany
- Research Training Group 1873University of Bonn53115BonnGermany
| | - Suvi Annala
- Molecular, Cellular and Pharmacobiology SectionInstitute for Pharmaceutical BiologyUniversity of BonnNussallee 653115BonnGermany
| | - Kenichi Kimura
- Institute of Physiology I, Life and Brain Center, Medical FacultyUniversity of BonnSigmund-Freud-Str. 2553105BonnGermany
| | - Lisa Reinelt
- Pharmaceutical InstituteDepartment of Pharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany
| | - Bernd K. Fleischmann
- Institute of Physiology I, Life and Brain Center, Medical FacultyUniversity of BonnSigmund-Freud-Str. 2553105BonnGermany
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology SectionInstitute for Pharmaceutical BiologyUniversity of BonnNussallee 653115BonnGermany
| | - Michael Gütschow
- Pharmaceutical InstituteDepartment of Pharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany
| |
Collapse
|
9
|
Gröper J, König GM, Kostenis E, Gerke V, Raabe CA, Rescher U. Exploring Biased Agonism at FPR1 as a Means to Encode Danger Sensing. Cells 2020; 9:cells9041054. [PMID: 32340221 PMCID: PMC7226602 DOI: 10.3390/cells9041054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 12/28/2022] Open
Abstract
Ligand-based selectivity in signal transduction (biased signaling) is an emerging field of G protein-coupled receptor (GPCR) research and might allow the development of drugs with targeted activation profiles. Human formyl peptide receptor 1 (FPR1) is a GPCR that detects potentially hazardous states characterized by the appearance of N-formylated peptides that originate from either bacteria or mitochondria during tissue destruction; however, the receptor also responds to several non-formylated agonists from various sources. We hypothesized that an additional layer of FPR signaling is encoded by biased agonism, thus allowing the discrimination of the source of threat. We resorted to the comparative analysis of FPR1 agonist-evoked responses across three prototypical GPCR signaling pathways, i.e., the inhibition of cAMP formation, receptor internalization, and ERK activation, and analyzed cellular responses elicited by several bacteria- and mitochondria-derived ligands. We also included the anti-inflammatory annexinA1 peptide Ac2-26 and two synthetic ligands, the W-peptide and the small molecule FPRA14. Compared to the endogenous agonists, the bacterial agonists displayed significantly higher potencies and efficacies. Selective pathway activation was not observed, as both groups were similarly biased towards the inhibition of cAMP formation. The general agonist bias in FPR1 signaling suggests a source-independent pathway selectivity for transmission of pro-inflammatory danger signaling.
Collapse
Affiliation(s)
- Jieny Gröper
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (J.G.); (V.G.)
- Cells in Motion” Interfaculty Centre, University of Muenster, 48149 Muenster, Germany
| | - Gabriele M. König
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany; (G.M.K.); (E.K.)
| | - Evi Kostenis
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany; (G.M.K.); (E.K.)
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (J.G.); (V.G.)
- Cells in Motion” Interfaculty Centre, University of Muenster, 48149 Muenster, Germany
| | - Carsten A. Raabe
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (J.G.); (V.G.)
- Institute of Experimental Pathology, Center for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany
- Correspondence: (C.A.R.); (U.R.); Tel.: +49-(0)251-835-2132 (C.A.R.); +49-(0)251-835-2121(U.R.)
| | - Ursula Rescher
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (J.G.); (V.G.)
- Cells in Motion” Interfaculty Centre, University of Muenster, 48149 Muenster, Germany
- Correspondence: (C.A.R.); (U.R.); Tel.: +49-(0)251-835-2132 (C.A.R.); +49-(0)251-835-2121(U.R.)
| |
Collapse
|
10
|
Association between Angiotensin-Converting Enzyme Inhibitors and Lung Cancer-A Nationwide, Population-Based, Propensity Score-Matched Cohort Study. Cancers (Basel) 2020; 12:cancers12030747. [PMID: 32245239 PMCID: PMC7140054 DOI: 10.3390/cancers12030747] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/10/2020] [Accepted: 03/20/2020] [Indexed: 01/12/2023] Open
Abstract
Background: Direct evidence of lung cancer risk in Asian users of angiotensin-converting enzyme inhibitors (ACEIs) is lacking. Methods: The ACEI cohort comprised 22,384 patients aged ≥ 18 years with a first prescription of ACEI. The comparison angiotensin receptor blocker (ARB) cohort consisted of age-, sex- and comorbidity-matched patients at a ratio of 1:1. The primary outcome was the incidence of lung cancer, which was evaluated using a proportional hazard model. Results: The overall incidence rates of lung cancer in the ACEI and ARB cohorts were 16.6 and 12.2 per 10,000 person-years, respectively. The ACEI cohort had a significantly higher risk of lung cancer than the ARB cohort (adjusted hazard ratio [aHR]. = 1.36; 95% confidence interval [CI]. = 1.11–1.67). Duration–response and dose–response analyses revealed that compared with patients who did not receive ACEIs, patients who received ACEIs for more than 45 days per year (aHR = 1.87; 95% CI = 1.48–2.36) and patients who received more than 540 defined daily doses of ACEIs per year (aHR =1.80; 95% CI = 1.43–-2.27) had a significantly higher risk of lung cancer. The cumulative incidence of lung cancer was also significantly higher in the ACEI cohort than in the ARB cohort (log-rank test, p = 0.002). Conclusions: ACEI use is associated with an increased risk of lung cancer compared with ARB use. Patients using ARBs have a significantly lower risk of lung cancer than non-ARB users.
Collapse
|
11
|
Gelosa P, Castiglioni L, Camera M, Sironi L. Repurposing of drugs approved for cardiovascular diseases: Opportunity or mirage? Biochem Pharmacol 2020; 177:113895. [PMID: 32145263 DOI: 10.1016/j.bcp.2020.113895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 02/27/2020] [Indexed: 02/08/2023]
Abstract
Drug repurposing is a promising way in drug discovery to identify new therapeutic uses -different from the original medical indication- for existing drugs. It has many advantages over traditional approaches to de novo drug discovery, since it can significantly reduce healthcare costs and development timeline. In this review, we discuss the possible repurposing of drugs approved for cardiovascular diseases, such as β-blockers, angiotensin converting enzyme inhibitors (ACE-Is), angiotensin II receptor blockers (ARBs), statins, aspirin, cardiac glycosides and low-molecular-weight heparins (LMWHs). Indeed, numerous experimental and epidemiological studies have reported promising anti-cancer activities for these drugs. It is worth mentioning, however, that the results of these studies are often controversial and very few data were obtained by controlled prospective clinical trials. Therefore, no final conclusion has yet been reached in this area and no final recommendations can be made. Moreover, β-blockers, ARBs and statins showed promising results in randomised controlled trials (RCTs) where pathological conditions other than cancer were considered. The results obtained have led or may lead to new indications for these drugs. For each drug or class of drugs, the potential molecular mechanisms of action justifying repurposing, results obtained in vitro and in animal models and data from epidemiological and randomized studies are described.
Collapse
Affiliation(s)
- Paolo Gelosa
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Laura Castiglioni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Marina Camera
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy; Centro Cardiologico Monzino IRCCS, Milan, Italy.
| | - Luigi Sironi
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy; Centro Cardiologico Monzino IRCCS, Milan, Italy
| |
Collapse
|
12
|
Lai ZZ, Yang HL, Ha SY, Chang KK, Mei J, Zhou WJ, Qiu XM, Wang XQ, Zhu R, Li DJ, Li MQ. Cyclooxygenase-2 in Endometriosis. Int J Biol Sci 2019; 15:2783-2797. [PMID: 31853218 PMCID: PMC6909960 DOI: 10.7150/ijbs.35128] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/28/2019] [Indexed: 12/11/2022] Open
Abstract
Endometriosis (EMS) is the most common gynecological disease in women of reproductive age, and it is associated with chronic pelvic pain, dyspareunia and infertility. As a consequence of genetic, immune and environmental factors, endometriotic lesions have high cyclooxygenase (COX)-2 and COX-2-derived prostaglandin E2 (PGE2) biosynthesis compared with the normal endometrium. The transcription of the PTGS2 gene for COX-2 is associated with multiple intracellular signals, which converge to cause the activation of mitogen-activated protein kinases (MAPKs). COX-2 expression can be regulated by several factors, such as estrogen, hypoxia, proinflammatory cytokines, environmental pollutants, metabolites and metabolic enzymes, and platelets. High concentrations of COX-2 lead to high cell proliferation, a low level of apoptosis, high invasion, angiogenesis, EMS-related pain and infertility. COX-2-derived PGE2 performs a crucial function in EMS development by binding to EP2 and EP4 receptors. These basic findings have contributed to COX-2-targeted treatment in EMS, including COX-2 inhibitors, hormone drugs and glycyrrhizin. In this review, we summarize the most recent basic research in detail and provide a short summary of COX-2-targeted treatment.
Collapse
Affiliation(s)
- Zhen-Zhen Lai
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Hui-Li Yang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Si-Yao Ha
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Kai-Kai Chang
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, People's Republic of China
| | - Jie Mei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, People's Republic of China
| | - We-Jie Zhou
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, People's Republic of China
| | - Xue-Min Qiu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Xiao-Qiu Wang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Rui Zhu
- Center for Human Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou 215008, People's Republic of China
| | - Da-Jin Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Ming-Qing Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, People's Republic of China
| |
Collapse
|
13
|
Caragher SP, Hall RR, Ahsan R, Ahmed AU. Monoamines in glioblastoma: complex biology with therapeutic potential. Neuro Oncol 2019; 20:1014-1025. [PMID: 29126252 DOI: 10.1093/neuonc/nox210] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is characterized by extremely poor prognoses, despite the use of gross surgical resection, alkylating chemotherapeutic agents, and radiotherapy. Evidence increasingly highlights the role of the tumor microenvironment in enabling this aggressive phenotype. Despite this interest, the role of neurotransmitters, brain-specific messengers underlying synaptic transmission, remains murky. These signaling molecules influence a complex network of molecular pathways and cellular behaviors in many CNS-resident cells, including neural stem cells and progenitor cells, neurons, and glia cells. Critically, available data convincingly demonstrate that neurotransmitters can influence proliferation, quiescence, and differentiation status of these cells. This ability to affect progenitors and glia-GBM-initiating cells-and their availability in the CNS strongly support the notion that neurotransmitters participate in the onset and progression of GBM. This review will focus on dopamine and serotonin, as studies indicate they contribute to gliomagenesis. Particular attention will be paid to how these neurotransmitters and their receptors can be utilized as novel therapeutic targets. Overall, this review will analyze the complex biology governing the interaction of GBM with neurotransmitter signaling and highlight how this interplay shapes the aggressive nature of GBM.
Collapse
Affiliation(s)
- Seamus Patrick Caragher
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | - Riasat Ahsan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Atique U Ahmed
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
14
|
Annala S, Feng X, Shridhar N, Eryilmaz F, Patt J, Yang J, Pfeil EM, Cervantes-Villagrana RD, Inoue A, Häberlein F, Slodczyk T, Reher R, Kehraus S, Monteleone S, Schrage R, Heycke N, Rick U, Engel S, Pfeifer A, Kolb P, König G, Bünemann M, Tüting T, Vázquez-Prado J, Gutkind JS, Gaffal E, Kostenis E. Direct targeting of Gαq and Gα11 oncoproteins in cancer cells. Sci Signal 2019; 12:12/573/eaau5948. [DOI: 10.1126/scisignal.aau5948] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Somatic gain-of-function mutations of GNAQ and GNA11, which encode α subunits of heterotrimeric Gαq/11 proteins, occur in about 85% of cases of uveal melanoma (UM), the most common cancer of the adult eye. Molecular therapies to directly target these oncoproteins are lacking, and current treatment options rely on radiation, surgery, or inhibition of effector molecules downstream of these G proteins. A hallmark feature of oncogenic Gαq/11 proteins is their reduced intrinsic rate of hydrolysis of guanosine triphosphate (GTP), which results in their accumulation in the GTP-bound, active state. Here, we report that the cyclic depsipeptide FR900359 (FR) directly interacted with GTPase-deficient Gαq/11 proteins and preferentially inhibited mitogenic ERK signaling rather than canonical phospholipase Cβ (PLCβ) signaling driven by these oncogenes. Thereby, FR suppressed the proliferation of melanoma cells in culture and inhibited the growth of Gαq-driven UM mouse xenografts in vivo. In contrast, FR did not affect tumor growth when xenografts carried mutated B-RafV600E as the oncogenic driver. Because FR enabled suppression of malignant traits in cancer cells that are driven by activating mutations at codon 209 in Gαq/11 proteins, we envision that similar approaches could be taken to blunt the signaling of non-Gαq/11 G proteins.
Collapse
|
15
|
Abstract
The MAPK pathway is a prominent intracellular signaling pathway regulating various intracellular functions. Components of this pathway are mutated in a related collection of congenital syndromes collectively referred to as neuro-cardio-facio-cutaneous syndromes (NCFC) or Rasopathies. Recently, it has been appreciated that these disorders are associated with autism spectrum disorders (ASD). In addition, idiopathic ASD has also implicated the MAPK signaling cascade as a common pathway that is affected by many of the genetic variants that have been found to be linked to ASDs. This chapter describes the components of the MAPK pathway and how it is regulated. Furthermore, this chapter will highlight the various functions of the MAPK pathway during both embryonic development of the central nervous system (CNS) and its roles in neuronal physiology and ultimately, behavior. Finally, we will summarize the perturbations to MAPK signaling in various models of autism spectrum disorders and Rasopathies to highlight how dysregulation of this pivotal pathway may contribute to the pathogenesis of autism.
Collapse
|
16
|
Paez-Mayorga J, Chen AL, Kotla S, Tao Y, Abe RJ, He ED, Danysh BP, Hofmann MCC, Le NT. Ponatinib Activates an Inflammatory Response in Endothelial Cells via ERK5 SUMOylation. Front Cardiovasc Med 2018; 5:125. [PMID: 30238007 PMCID: PMC6135907 DOI: 10.3389/fcvm.2018.00125] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/20/2018] [Indexed: 12/18/2022] Open
Abstract
Ponatinib is a multi-targeted third generation tyrosine kinase inhibitor (TKI) used in the treatment of chronic myeloid leukemia (CML) patients harboring the Abelson (Abl)-breakpoint cluster region (Bcr) T315I mutation. In spite of having superb clinical efficacy, ponatinib triggers severe vascular adverse events (VAEs) that significantly limit its therapeutic potential. On vascular endothelial cells (ECs), ponatinib promotes EC dysfunction and apoptosis, and inhibits angiogenesis. Furthermore, ponatinib-mediated anti-angiogenic effect has been suggested to play a partial role in systemic and pulmonary hypertension via inhibition of vascular endothelial growth factor receptor 2 (VEGFR2). Even though ponatinib-associated VAEs are well documented, their etiology remains largely unknown, making it difficult to efficiently counteract treatment-related adversities. Therefore, a better understanding of the mechanisms by which ponatinib mediates VAEs is critical. In cultured human aortic ECs (HAECs) treated with ponatinib, we found an increase in nuclear factor NF-kB/p65 phosphorylation and NF-kB activity, inflammatory gene expression, cell permeability, and cell apoptosis. Mechanistically, ponatinib abolished extracellular signal-regulated kinase 5 (ERK5) transcriptional activity even under activation by its upstream kinase mitogen-activated protein kinase kinase 5α (CA-MEK5α). Ponatinib also diminished expression of ERK5 responsive genes such as Krüppel-like Factor 2/4 (klf2/4) and eNOS. Because ERK5 SUMOylation counteracts its transcriptional activity, we examined the effect of ponatinib on ERK5 SUMOylation, and found that ERK5 SUMOylation is increased by ponatinib. We also found that ponatibib-mediated increased inflammatory gene expression and decreased anti-inflammatory gene expression were reversed when ERK5 SUMOylation was inhibited endogenously or exogenously. Overall, we propose a novel mechanism by which ponatinib up-regulates endothelial ERK5 SUMOylation and shifts ECs to an inflammatory phenotype, disrupting vascular homeostasis.
Collapse
Affiliation(s)
- Jesus Paez-Mayorga
- Department of Cardiovascular Sciences, Center of Cardiovascular Regeneration Houston, Methodist Research Institute, Methodist Hospital, Houston, TX, United States
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Andrew L. Chen
- Department of Cardiovascular Sciences, Center of Cardiovascular Regeneration Houston, Methodist Research Institute, Methodist Hospital, Houston, TX, United States
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yunting Tao
- Department of Cardiovascular Sciences, Center of Cardiovascular Regeneration Houston, Methodist Research Institute, Methodist Hospital, Houston, TX, United States
| | - Rei J. Abe
- Department of Cardiovascular Sciences, Center of Cardiovascular Regeneration Houston, Methodist Research Institute, Methodist Hospital, Houston, TX, United States
| | - Emma D. He
- Department of Cardiovascular Sciences, Center of Cardiovascular Regeneration Houston, Methodist Research Institute, Methodist Hospital, Houston, TX, United States
| | - Brian P. Danysh
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Marie-Claude C. Hofmann
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nhat-Tu Le
- Department of Cardiovascular Sciences, Center of Cardiovascular Regeneration Houston, Methodist Research Institute, Methodist Hospital, Houston, TX, United States
| |
Collapse
|
17
|
Tonn Eisinger KR, Gross KS, Head BP, Mermelstein PG. Interactions between estrogen receptors and metabotropic glutamate receptors and their impact on drug addiction in females. Horm Behav 2018; 104:130-137. [PMID: 29505763 PMCID: PMC6131090 DOI: 10.1016/j.yhbeh.2018.03.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 02/07/2023]
Abstract
Contribution to Special Issue on Fast effects of steroids. Estrogen receptors α and β (ERα and ERβ) have a unique relationship with metabotropic glutamate receptors (mGluRs) in the female rodent brain such that estradiol is able to recruit intracellular G-protein signaling cascades to influence neuronal physiology, structure, and ultimately behavior. While this association between ERs and mGluRs exists in many cell types and brain regions, its effects are perhaps most striking in the nucleus accumbens (NAc). This review will discuss the original characterization of ER/mGluR signaling and how estradiol activity in the NAc confers increased sensitivity to drugs of abuse in females through this mechanism.
Collapse
Affiliation(s)
- Katherine R Tonn Eisinger
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kellie S Gross
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Brian P Head
- Department of Anesthesiology, University of California-San Diego, La Jolla, CA 92093, USA
| | - Paul G Mermelstein
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
18
|
Torres-Collado AX, Knott J, Jazirehi AR. Reversal of Resistance in Targeted Therapy of Metastatic Melanoma: Lessons Learned from Vemurafenib (BRAF V600E-Specific Inhibitor). Cancers (Basel) 2018; 10:cancers10060157. [PMID: 29795041 PMCID: PMC6025215 DOI: 10.3390/cancers10060157] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/14/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022] Open
Abstract
Malignant melanoma is the most aggressive form of skin cancer and has a very low survival rate. Over 50% of melanomas harbor various BRAF mutations with the most common being the V600E. BRAFV600E mutation that causes constitutive activation of the MAPK pathway leading to drug-, immune-resistance, apoptosis evasion, proliferation, survival, and metastasis of melanomas. The ATP competitive BRAFV600E selective inhibitor, vemurafenib, has shown dramatic success in clinical trials; promoting tumor regression and an increase in overall survival of patients with metastatic melanoma. Regrettably, vemurafenib-resistance develops over an average of six months, which renders melanomas resistant to other therapeutic strategies. Elucidation of the underlying mechanism(s) of acquisition of vemurafenib-resistance and design of novel approaches to override resistance is the subject of intense clinical and basic research. In this review, we summarize recent developments in therapeutic approaches and clinical investigations on melanomas with BRAFV600E mutation to establish a new platform for the treatment of melanoma.
Collapse
Affiliation(s)
- Antoni Xavier Torres-Collado
- Department of Surgery, Division of Surgical Oncology, and the Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Jeffrey Knott
- Department of Surgery, Division of Surgical Oncology, and the Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Ali R Jazirehi
- Department of Surgery, Division of Surgical Oncology, and the Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
19
|
Zhang L, Xu D, Cui M, Tang L, Hou T, Zhang Q. The guanine nucleotide-binding protein α subunit protein ChGnaq positively regulates Hsc70 transcription in Crassostrea hongkongensis. Biochem Biophys Res Commun 2018; 499:215-220. [DOI: 10.1016/j.bbrc.2018.03.130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
|
20
|
Nieto Gutierrez A, McDonald PH. GPCRs: Emerging anti-cancer drug targets. Cell Signal 2017; 41:65-74. [PMID: 28931490 DOI: 10.1016/j.cellsig.2017.09.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest and most diverse protein family in the human genome with over 800 members identified to date. They play critical roles in numerous cellular and physiological processes, including cell proliferation, differentiation, neurotransmission, development and apoptosis. Consequently, aberrant receptor activity has been demonstrated in numerous disorders/diseases, and as a result GPCRs have become the most successful drug target class in pharmaceuticals treating a wide variety of indications such as pain, inflammation, neurobiological and metabolic disorders. Many independent studies have also demonstrated a key role for GPCRs in tumourigenesis, establishing their involvement in cancer initiation, progression, and metastasis. Given the growing appreciation of the role(s) that GPCRs play in cancer pathogenesis, it is surprising to note that very few GPCRs have been effectively exploited in pursuit of anti-cancer therapies. The present review provides a broad overview of the roles that various GPCRs play in cancer growth and development, highlighting the potential of pharmacologically modulating these receptors for the development of novel anti-cancer therapeutics.
Collapse
Affiliation(s)
- Ainhoa Nieto Gutierrez
- The Scripps Research Institute, Department of Molecular Medicine, 130 Scripps Way, Jupiter, FL 33458, United States.
| | - Patricia H McDonald
- The Scripps Research Institute, Department of Molecular Medicine, 130 Scripps Way, Jupiter, FL 33458, United States.
| |
Collapse
|
21
|
Abstract
Luciferase-based assays are applied to evaluate various cellular processes due to their sensitivity and feasibility. The field of GPCR research has also benefited from this enzymatic reaction both in deorphanization campaigns and in delineation of the signaling pathways. Here, we describe the details of this assay in GPCR studies in 96-well format and will provide examples where the assay can show constitutive activity of an orphan GPCR and demonstrate the impact of cell type on the efficacy and potency of ligands.
Collapse
Affiliation(s)
- Pedram Azimzadeh
- University of Maryland School of Medicine, Baltimore, MD, United States
| | - John A Olson
- University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nariman Balenga
- University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
22
|
Emery AC, Xu W, Eiden MV, Eiden LE. Guanine nucleotide exchange factor Epac2-dependent activation of the GTP-binding protein Rap2A mediates cAMP-dependent growth arrest in neuroendocrine cells. J Biol Chem 2017; 292:12220-12231. [PMID: 28546426 DOI: 10.1074/jbc.m117.790329] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/23/2017] [Indexed: 11/06/2022] Open
Abstract
First messenger-dependent activation of MAP kinases in neuronal and endocrine cells is critical for cell differentiation and function and requires guanine nucleotide exchange factor (GEF)-mediated activation of downstream Ras family small GTPases, which ultimately lead to ERK, JNK, and p38 phosphorylation. Because there are numerous GEFs and also a host of Ras family small GTPases, it is important to know which specific GEF-small GTPase dyad functions in a given cellular process. Here we investigated the upstream activators and downstream effectors of signaling via the GEF Epac2 in the neuroendocrine NS-1 cell line. Three cAMP sensors, Epac2, PKA, and neuritogenic cAMP sensor-Rapgef2, mediate distinct cellular outputs: p38-dependent growth arrest, cAMP response element-binding protein-dependent cell survival, and ERK-dependent neuritogenesis, respectively, in these cells. Previously, we found that cAMP-induced growth arrest of PC12 and NS-1 cells requires Epac2-dependent activation of p38 MAP kinase, which posed the important question of how Epac2 engages p38 without simultaneously activating other MAP kinases in neuronal and endocrine cells. We now show that the small GTP-binding protein Rap2A is the obligate effector for, and GEF substrate of, Epac2 in mediating growth arrest through p38 activation in NS-1 cells. This new pathway is distinctly parcellated from the G protein-coupled receptor → Gs → adenylate cyclase → cAMP → PKA → cAMP response element-binding protein pathway mediating cell survival and the G protein-coupled receptor → Gs → adenylate cyclase → cAMP → neuritogenic cAMP sensor-Rapgef2 → B-Raf → MEK → ERK pathway mediating neuritogenesis in NS-1 cells.
Collapse
Affiliation(s)
- Andrew C Emery
- Section on Molecular Neuroscience, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland 20892
| | - Wenqin Xu
- Section on Molecular Neuroscience, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland 20892
| | - Maribeth V Eiden
- Office of the Scientific Director, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland 20892
| | - Lee E Eiden
- Section on Molecular Neuroscience, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland 20892.
| |
Collapse
|
23
|
I KY, Huang YS, Hu CH, Tseng WY, Cheng CH, Stacey M, Gordon S, Chang GW, Lin HH. Activation of Adhesion GPCR EMR2/ADGRE2 Induces Macrophage Differentiation and Inflammatory Responses via Gα 16/Akt/MAPK/NF-κB Signaling Pathways. Front Immunol 2017; 8:373. [PMID: 28421075 PMCID: PMC5376562 DOI: 10.3389/fimmu.2017.00373] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/15/2017] [Indexed: 11/13/2022] Open
Abstract
EMR2/ADGRE2 is a human myeloid-restricted adhesion G protein-coupled receptor critically implicated in vibratory urticaria, a rare type of allergy caused by vibration-induced mast cell activation. In addition, EMR2 is also highly expressed by monocyte/macrophages and has been linked to neutrophil migration and activation. Despite these findings, little is known of EMR2-mediated signaling and its role in myeloid biology. In this report, we show that activation of EMR2 via a receptor-specific monoclonal antibody promotes the differentiation of human THP-1 monocytic cell line and induces the expression of pro-inflammatory mediators, including IL-8, TNF-α, and MMP-9. Using specific signaling inhibitors and siRNA knockdowns, biochemical and functional analyses reveal that the EMR2-mediated signaling is initiated by Gα16, followed by the subsequent activation of Akt, extracellular signal-regulated kinase, c-Jun N-terminal kinase, and nuclear factor kappa-light-chain-enhancer of activated B cells. Our results demonstrate a functional role for EMR2 in the differentiation and inflammatory activation of human monocytic cells and provide potential targets for myeloid cell-mediated inflammatory disorders.
Collapse
Affiliation(s)
- Kuan-Yu I
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Shu Huang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Hsun Hu
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Yi Tseng
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital-Keelung, Keelung, Taiwan
| | - Chia-Hsin Cheng
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Martin Stacey
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Siamon Gordon
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Gin-Wen Chang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsi-Hsien Lin
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
24
|
Xie K, Colgan LA, Dao MT, Muntean BS, Sutton LP, Orlandi C, Boye SL, Boye SE, Shih CC, Li Y, Xu B, Smith RG, Yasuda R, Martemyanov KA. NF1 Is a Direct G Protein Effector Essential for Opioid Signaling to Ras in the Striatum. Curr Biol 2016; 26:2992-3003. [PMID: 27773571 DOI: 10.1016/j.cub.2016.09.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/24/2016] [Accepted: 09/07/2016] [Indexed: 01/19/2023]
Abstract
It is well recognized that G-protein-coupled receptors (GPCRs) can activate Ras-regulated kinase pathways to produce lasting changes in neuronal function. Mechanisms by which GPCRs transduce these signals and their relevance to brain disorders are not well understood. Here, we identify a major Ras regulator, neurofibromin 1 (NF1), as a direct effector of GPCR signaling via Gβγ subunits in the striatum. We find that binding of Gβγ to NF1 inhibits its ability to inactivate Ras. Deletion of NF1 in striatal neurons prevents the opioid-receptor-induced activation of Ras and eliminates its coupling to Akt-mTOR-signaling pathway. By acting in the striatal medium spiny neurons of the direct pathway, NF1 regulates opioid-induced changes in Ras activity, thereby sensitizing mice to psychomotor and rewarding effects of morphine. These results delineate a novel mechanism of GPCR signaling to Ras pathways and establish a critical role of NF1 in opioid addiction.
Collapse
Affiliation(s)
- Keqiang Xie
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Lesley A Colgan
- Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL 33458, USA
| | - Maria T Dao
- Department of Metabolism and Aging, The Scripps Research Institute, 120 Scripps Way, Jupiter, FL 33458, USA
| | - Brian S Muntean
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Laurie P Sutton
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Cesare Orlandi
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Sanford L Boye
- Department of Ophthalmology, University of Florida, 1395 Center Drive, Gainesville, FL 32610, USA
| | - Shannon E Boye
- Department of Ophthalmology, University of Florida, 1395 Center Drive, Gainesville, FL 32610, USA
| | - Chien-Cheng Shih
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Yuqing Li
- Department of Neurology, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Baoji Xu
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Roy G Smith
- Department of Metabolism and Aging, The Scripps Research Institute, 120 Scripps Way, Jupiter, FL 33458, USA
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL 33458, USA
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
25
|
Abstract
Communication between cells in a multicellular organism occurs by the production of ligands (proteins, peptides, fatty acids, steroids, gases, and other low-molecular-weight compounds) that are either secreted by cells or presented on their surface, and act on receptors on, or in, other target cells. Such signals control cell growth, migration, survival, and differentiation. Signaling receptors can be single-span plasma membrane receptors associated with tyrosine or serine/threonine kinase activities, proteins with seven transmembrane domains, or intracellular receptors. Ligand-activated receptors convey signals into the cell by activating signaling pathways that ultimately affect cytosolic machineries or nuclear transcriptional programs or by directly translocating to the nucleus to regulate transcription.
Collapse
Affiliation(s)
- Carl-Henrik Heldin
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| | - Benson Lu
- The Salk Institute for Biological Studies, Gene Expression Laboratory, La Jolla, California 92037
| | - Ron Evans
- The Salk Institute for Biological Studies, Gene Expression Laboratory, La Jolla, California 92037
| | - J Silvio Gutkind
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892-4340
| |
Collapse
|
26
|
Structural permeability of complex networks to control signals. Nat Commun 2015; 6:8349. [PMID: 26391186 PMCID: PMC4595749 DOI: 10.1038/ncomms9349] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/13/2015] [Indexed: 11/23/2022] Open
Abstract
Many biological, social and technological systems can be described as complex networks. The goal of affecting their behaviour has motivated recent work focusing on the relationship between the network structure and its propensity to be controlled. While this work has provided insight into several relevant problems, a comprehensive approach to address partial and complete controllability of networks is still lacking. Here, we bridge this gap by developing a framework to maximize the diffusion of the control signals through a network, while taking into account physical and economic constraints that inevitably arise in applications. This approach allows us to introduce the network permeability, a unified metric of the propensity of a network to be controllable. The analysis of the permeability of several synthetic and real networks enables us to extract some structural features that deepen our quantitative understanding of the ease with which specific controllability requirements can be met. Understanding how to control complex networks can be useful to steer interconnected systems towards a desired state. Here, the authors introduce the concept of network permeability, a unified metric of the propensity of a network to be controllable taking into account physical and economic constrains.
Collapse
|
27
|
Naznin F, Toshinai K, Waise TMZ, NamKoong C, Md Moin AS, Sakoda H, Nakazato M. Diet-induced obesity causes peripheral and central ghrelin resistance by promoting inflammation. J Endocrinol 2015; 226:81-92. [PMID: 26016745 PMCID: PMC4485401 DOI: 10.1530/joe-15-0139] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 12/30/2022]
Abstract
Ghrelin, a stomach-derived orexigenic peptide, transmits starvation signals to the hypothalamus via the vagus afferent nerve. Peripheral administration of ghrelin does not induce food intake in high fat diet (HFD)-induced obese mice. We investigated whether this ghrelin resistance was caused by dysfunction of the vagus afferent pathway. Administration (s.c.) of ghrelin did not induce food intake, suppression of oxygen consumption, electrical activity of the vagal afferent nerve, phosphorylation of ERK2 and AMP-activated protein kinase alpha in the nodose ganglion, or Fos expression in hypothalamic arcuate nucleus of mice fed a HFD for 12 weeks. Administration of anti-ghrelin IgG did not induce suppression of food intake in HFD-fed mice. Expression levels of ghrelin receptor mRNA in the nodose ganglion and hypothalamus of HFD-fed mice were reduced. Inflammatory responses, including upregulation of macrophage/microglia markers and inflammatory cytokines, occurred in the nodose ganglion and hypothalamus of HFD-fed mice. A HFD blunted ghrelin signaling in the nodose ganglion via a mechanism involving in situ activation of inflammation. These results indicate that ghrelin resistance in the obese state may be caused by dysregulation of ghrelin signaling via the vagal afferent.
Collapse
Affiliation(s)
- Farhana Naznin
- Division of NeurologyRespirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, JapanDepartment of Sports and FitnessFaculty of Wellness, Shigakkan University, 55 Nakoyama, Yokone, Obu 474-8651, JapanAMED-CRESTAgency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Koji Toshinai
- Division of NeurologyRespirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, JapanDepartment of Sports and FitnessFaculty of Wellness, Shigakkan University, 55 Nakoyama, Yokone, Obu 474-8651, JapanAMED-CRESTAgency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan Division of NeurologyRespirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, JapanDepartment of Sports and FitnessFaculty of Wellness, Shigakkan University, 55 Nakoyama, Yokone, Obu 474-8651, JapanAMED-CRESTAgency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - T M Zaved Waise
- Division of NeurologyRespirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, JapanDepartment of Sports and FitnessFaculty of Wellness, Shigakkan University, 55 Nakoyama, Yokone, Obu 474-8651, JapanAMED-CRESTAgency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Cherl NamKoong
- Division of NeurologyRespirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, JapanDepartment of Sports and FitnessFaculty of Wellness, Shigakkan University, 55 Nakoyama, Yokone, Obu 474-8651, JapanAMED-CRESTAgency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Abu Saleh Md Moin
- Division of NeurologyRespirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, JapanDepartment of Sports and FitnessFaculty of Wellness, Shigakkan University, 55 Nakoyama, Yokone, Obu 474-8651, JapanAMED-CRESTAgency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Hideyuki Sakoda
- Division of NeurologyRespirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, JapanDepartment of Sports and FitnessFaculty of Wellness, Shigakkan University, 55 Nakoyama, Yokone, Obu 474-8651, JapanAMED-CRESTAgency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Masamitsu Nakazato
- Division of NeurologyRespirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, JapanDepartment of Sports and FitnessFaculty of Wellness, Shigakkan University, 55 Nakoyama, Yokone, Obu 474-8651, JapanAMED-CRESTAgency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan Division of NeurologyRespirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, JapanDepartment of Sports and FitnessFaculty of Wellness, Shigakkan University, 55 Nakoyama, Yokone, Obu 474-8651, JapanAMED-CRESTAgency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
28
|
Rodrigues AR, Almeida H, Gouveia AM. Intracellular signaling mechanisms of the melanocortin receptors: current state of the art. Cell Mol Life Sci 2015; 72:1331-45. [PMID: 25504085 PMCID: PMC11113477 DOI: 10.1007/s00018-014-1800-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/07/2014] [Accepted: 12/01/2014] [Indexed: 12/28/2022]
Abstract
The melanocortin system is composed by the agonists adrenocorticotropic hormone and α, β and γ-melanocyte-stimulating hormone, and two naturally occurring antagonists, agouti and agouti-related protein. These ligands act by interaction with a family of five melanocortin receptors (MCRs), assisted by MCRs accessory proteins (MRAPs). MCRs stimulation activates different signaling pathways that mediate a diverse array of physiological processes, including pigmentation, energy metabolism, inflammation and exocrine secretion. This review focuses on the regulatory mechanisms of MCRs signaling, highlighting the differences among the five receptors. MCRs signal through G-dependent and independent mechanisms and their functional coupling to agonists at the cell surface is regulated by interacting proteins, namely MRAPs and β-arrestins. The knowledge of the distinct modulation pattern of MCRs signaling and function may be helpful for the future design of novel drugs able to combine specificity, safety and effectiveness in the course of their therapeutic use.
Collapse
Affiliation(s)
- Adriana R Rodrigues
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal,
| | | | | |
Collapse
|
29
|
Increased coupling of caveolin-1 and estrogen receptor α contributes to the fragile X syndrome. Ann Neurol 2015; 77:618-36. [DOI: 10.1002/ana.24358] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 01/04/2015] [Accepted: 01/14/2015] [Indexed: 11/07/2022]
|
30
|
Li J, Zhu S, Kozono D, Ng K, Futalan D, Shen Y, Akers JC, Steed T, Kushwaha D, Schlabach M, Carter BS, Kwon CH, Furnari F, Cavenee W, Elledge S, Chen CC. Genome-wide shRNA screen revealed integrated mitogenic signaling between dopamine receptor D2 (DRD2) and epidermal growth factor receptor (EGFR) in glioblastoma. Oncotarget 2015; 5:882-93. [PMID: 24658464 PMCID: PMC4011590 DOI: 10.18632/oncotarget.1801] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma remains one of the deadliest of human cancers, with most patients succumbing to the disease within two years of diagnosis. The available data suggest that simultaneous inactivation of critical nodes within the glioblastoma molecular circuitry will be required for meaningful clinical efficacy. We conducted parallel genome-wide shRNA screens to identify such nodes and uncovered a number of G-Protein Coupled Receptor (GPCR) neurotransmitter pathways, including the Dopamine Receptor D2 (DRD2) signaling pathway. Supporting the importance of DRD2 in glioblastoma, DRD2 mRNA and protein expression were elevated in clinical glioblastoma specimens relative to matched non-neoplastic cerebrum. Treatment with independent si-/shRNAs against DRD2 or with DRD2 antagonists suppressed the growth of patient-derived glioblastoma lines both in vitro and in vivo. Importantly, glioblastoma lines derived from independent genetically engineered mouse models (GEMMs) were more sensitive to haloperidol, an FDA approved DRD2 antagonist, than the premalignant astrocyte lines by approximately an order of magnitude. The pro-proliferative effect of DRD2 was, in part, mediated through a GNAI2/Rap1/Ras/ERK signaling axis. Combined inhibition of DRD2 and Epidermal Growth Factor Receptor (EGFR) led to synergistic tumoricidal activity as well as ERK suppression in independent in vivo and in vitro glioblastoma models. Our results suggest combined EGFR and DRD2 inhibition as a promising strategy for glioblastoma treatment.
Collapse
|
31
|
Chilmonczyk Z, Bojarski AJ, Sylte I. Ligand-directed trafficking of receptor stimulus. Pharmacol Rep 2014; 66:1011-21. [DOI: 10.1016/j.pharep.2014.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 04/28/2014] [Accepted: 06/05/2014] [Indexed: 01/14/2023]
|
32
|
Flores-Clemente C, Osorio-Espinoza A, Escamilla-Sánchez J, Leurs R, Arias JM, Arias-Montaño JA. A single-point mutation (Ala280Val) in the third intracellular loop alters the signalling properties of the human histamine H₃ receptor stably expressed in CHO-K1 cells. Br J Pharmacol 2014; 170:127-35. [PMID: 23713487 DOI: 10.1111/bph.12257] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 04/02/2013] [Accepted: 05/10/2013] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE An alanine to valine exchange at amino acid position 280 (A280V) in the third intracellular loop of the human histamine H₃ receptor was first identified in a patient suffering from Shy-Drager syndrome and later reported as a risk factor for migraine. Here, we have compared the pharmacological and signalling properties of wild-type (hH₃ R(WT)) and A280V mutant (hH₃ R(A280V)) receptors stably expressed in CHO-K1 cells. EXPERIMENTAL APPROACH The hH₃ R(A280V) cDNA was created by overlapping extension PCR amplification. Receptor expression and affinity were assessed by radioligand (N-α-[methyl-³H]-histamine) binding to cell membranes, and receptor function by the inhibition of forskolin-induced cAMP accumulation and stimulation of ERK1/2 phosphorylation in intact cells, as well as stimulation of [³⁵S]-GTPγS binding to cell membranes. KEY RESULTS Both receptors were expressed at similar levels with no significant differences in their affinities for H₃ receptor ligands. Upon activation the hH₃ RWT was significantly more efficacious to inhibit forskolin-induced cAMP accumulation and to stimulate [³⁵S]-GTPγS binding, with no difference in pEC50 estimates. The hH₃ RWT was also more efficacious to stimulate ERK1/2 phosphorylation, but this difference was not significant. The inverse agonist ciproxifan was more efficacious at hH3 RWT to reduce [³⁵S]-GTPγS binding but, for both receptors, failed to enhance forskolin-induced cAMP accumulation. CONCLUSIONS AND IMPLICATIONS The A280V mutation reduces the signalling efficacy of the human H₃ receptor. This effect may be relevant to the pathophysiology of disorders associated with the mutation.
Collapse
Affiliation(s)
- Cecilia Flores-Clemente
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, México
| | | | | | | | | | | |
Collapse
|
33
|
Cao X, Yan J, Shu S, Brzostowski JA, Jin T. Arrestins function in cAR1 GPCR-mediated signaling and cAR1 internalization in the development of Dictyostelium discoideum. Mol Biol Cell 2014; 25:3210-21. [PMID: 25143405 PMCID: PMC4196870 DOI: 10.1091/mbc.e14-03-0834] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Evolutionarily conserved arrestin-like proteins are key components of the cAR1-mediated ERK2 activation that controls cAMP cell–cell signaling during Dictyostelium aggregation. They are also involved in ligand-induced cAR1 internalization, which is required for the switch of cAMP receptors during multicellular development. Oscillation of chemical signals is a common biological phenomenon, but its regulation is poorly understood. At the aggregation stage of Dictyostelium discoideum development, the chemoattractant cAMP is synthesized and released at 6-min intervals, directing cell migration. Although the G protein–coupled cAMP receptor cAR1 and ERK2 are both implicated in regulating the oscillation, the signaling circuit remains unknown. Here we report that D. discoideum arrestins regulate the frequency of cAMP oscillation and may link cAR1 signaling to oscillatory ERK2 activity. Cells lacking arrestins (adcB−C−) display cAMP oscillations during the aggregation stage that are twice as frequent as for wild- type cells. The adcB−C− cells also have a shorter period of transient ERK2 activity and precociously reactivate ERK2 in response to cAMP stimulation. We show that arrestin domain–containing protein C (AdcC) associates with ERK2 and that activation of cAR1 promotes the transient membrane recruitment of AdcC and interaction with cAR1, indicating that arrestins function in cAR1-controlled periodic ERK2 activation and oscillatory cAMP signaling in the aggregation stage of D. discoideum development. In addition, ligand-induced cAR1 internalization is compromised in adcB−C− cells, suggesting that arrestins are involved in elimination of high-affinity cAR1 receptors from cell surface after the aggregation stage of multicellular development.
Collapse
Affiliation(s)
- Xiumei Cao
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jianshe Yan
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institutes of Health, Rockville, MD 20852
| | - Shi Shu
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Joseph A Brzostowski
- Laboratory of Immunogenetics Imaging Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institutes of Health, Rockville, MD 20852
| |
Collapse
|
34
|
The Gβ5 protein regulates sensitivity to TRAIL-induced cell death in colon carcinoma. Oncogene 2014; 34:2753-63. [PMID: 25043307 DOI: 10.1038/onc.2014.213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 05/22/2014] [Accepted: 06/06/2014] [Indexed: 12/14/2022]
Abstract
Aberrant signaling via G protein-coupled receptors (GPCRs) is implicated in numerous diseases including colon cancer. The heterotrimeric G proteins transduce signals from GPCRs to various effectors. So far, the G protein subunit Gβ5 has not been studied in the context of cancer. Here we demonstrate that Gβ5 protects colon carcinoma cells from apoptosis induced by the death ligand TRAIL via different routes. The Gβ5 protein (i) causes a decrease in the cell surface expression of the TRAIL-R2 death receptor, (ii) induces the expression of the anti-apoptotic protein XIAP and (iii) activates the NF-κB signaling pathway. The intrinsic resistance to TRAIL-triggered apoptosis of colon cancer cells is overcome by antagonization of Gβ5. Based on these results, targeting of G proteins emerges as a novel therapeutic approach in the experimental treatment of colon cancer.
Collapse
|
35
|
Zhang X, Cheng X, Liu H, Zheng C, Rao K, Fang Y, Zhou H, Xiong S. Identification of key genes and crucial modules associated with coronary artery disease by bioinformatics analysis. Int J Mol Med 2014; 34:863-9. [PMID: 24969630 DOI: 10.3892/ijmm.2014.1817] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/28/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to identify key genes associated with coronary artery disease (CAD) and to explore the related signaling pathways. Gene expression profiles of 110 CAD and 112 non-CAD, healthy patients [CAD index (CADi) >23 and =0, respectively] were downloaded from the Gene Expression Omnibus (GEO) database (accession: GSE12288). The differentially expressed genes (DEGs) in CAD were identified using t-tests, and protein-protein interaction (PPI) networks for these DEGs were constructed using the Search Tool for the Retrieval of InteractiNg Genes (STRING) database. The Database for Annotation, Visualization and Integrated Discovery (DAVID) tool was used to identify potentially enriched biological processes (BP) among the DEGs using Gene Ontology (GO) terms, and to identify the related pathways using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. In addition, expression-activated subnetworks (crucial modules) of the constructed PPI networks were identified using the jActiveModule plug-in, and their topological properties were analyzed using NetworkAnalyzer, both available from Cytoscape. The patient specimens were classified as grade I, II and III based on CADi values. There were 151 DEGs in grade I, 362 in grade II and 425 in grade III. In the PPI network, the gene GRB2, encoding the growth factor receptor-bound protein 2, was the only common DEG among the three grades. In addition, 10 crucial modules were identified in the PPIs, 4 of which showed significant enrichment for GO BP terms. In the 12 nodes with the highest betweenness centrality, we found two genes, encoding GRB2 and the heat shock 70 kDa protein 8 (HSPA8). Moreover, the chemokine and focal adhesion signaling pathways were selected based on their relative abundance in CAD. The GRB2 and HSPA8 proteins, as well as the chemokine and focal adhension signaling pathways, might therefore be critical for the development of CAD.
Collapse
Affiliation(s)
- Xuemei Zhang
- Department of Cardiology, Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Xiaoshu Cheng
- Department of Cardiology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Huifeng Liu
- Department of Cardiology, Xiaolan People's Hospital, Zhongshan, Guangdong 528415, P.R. China
| | - Chunhua Zheng
- Department of Cardiology, Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Kunrui Rao
- Department of Cardiology, Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Yi Fang
- Department of Cardiology, Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Hairong Zhou
- Department of Cardiology, Second People's Hospital, Mudanjiang, Heilongjiang 157000, P.R. China
| | - Shenghe Xiong
- Department of Cardiology, Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| |
Collapse
|
36
|
Heo KS, Cushman HJ, Akaike M, Woo CH, Wang X, Qiu X, Fujiwara K, Abe JI. ERK5 activation in macrophages promotes efferocytosis and inhibits atherosclerosis. Circulation 2014; 130:180-91. [PMID: 25001623 DOI: 10.1161/circulationaha.113.005991] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Efferocytosis is a process by which dead and dying cells are removed by phagocytic cells. Efferocytosis by macrophages is thought to curb the progression of atherosclerosis, but the mechanistic insight of this process is lacking. METHODS AND RESULTS When macrophages were fed apoptotic cells or treated with pitavastatin in vitro, efferocytosis-related signaling and phagocytic capacity were upregulated in an ERK5 activity-dependent manner. Macrophages isolated from macrophage-specific ERK5-null mice exhibited reduced efferocytosis and levels of gene and protein expression of efferocytosis-related molecules. When these mice were crossed with low-density lipoprotein receptor(-/-) mice and fed a high-cholesterol diet, atherosclerotic plaque formation was accelerated, and the plaques had more advanced and vulnerable morphology. CONCLUSIONS Our results demonstrate that ERK5, which is robustly activated by statins, is a hub molecule that upregulates macrophage efferocytosis, thereby suppressing atherosclerotic plaque formation. Molecules that upregulate ERK5 and its signaling in macrophages may be good drug targets for suppressing cardiovascular diseases.
Collapse
Affiliation(s)
- Kyung-Sun Heo
- From the Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY (K.H., H.J.C., C.W., K.F., J.A.); Department of Medical Education, Institute of Health Biosciences, University of Tokushima Graduate School, Kuramoto-cho, Tokushima, Japan (M.A.); Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom (X.W.); and Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY (X.Q.).
| | - Hannah J Cushman
- From the Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY (K.H., H.J.C., C.W., K.F., J.A.); Department of Medical Education, Institute of Health Biosciences, University of Tokushima Graduate School, Kuramoto-cho, Tokushima, Japan (M.A.); Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom (X.W.); and Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY (X.Q.)
| | - Masashi Akaike
- From the Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY (K.H., H.J.C., C.W., K.F., J.A.); Department of Medical Education, Institute of Health Biosciences, University of Tokushima Graduate School, Kuramoto-cho, Tokushima, Japan (M.A.); Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom (X.W.); and Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY (X.Q.)
| | - Chang-Hoon Woo
- From the Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY (K.H., H.J.C., C.W., K.F., J.A.); Department of Medical Education, Institute of Health Biosciences, University of Tokushima Graduate School, Kuramoto-cho, Tokushima, Japan (M.A.); Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom (X.W.); and Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY (X.Q.)
| | - Xin Wang
- From the Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY (K.H., H.J.C., C.W., K.F., J.A.); Department of Medical Education, Institute of Health Biosciences, University of Tokushima Graduate School, Kuramoto-cho, Tokushima, Japan (M.A.); Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom (X.W.); and Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY (X.Q.)
| | - Xing Qiu
- From the Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY (K.H., H.J.C., C.W., K.F., J.A.); Department of Medical Education, Institute of Health Biosciences, University of Tokushima Graduate School, Kuramoto-cho, Tokushima, Japan (M.A.); Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom (X.W.); and Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY (X.Q.)
| | - Keigi Fujiwara
- From the Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY (K.H., H.J.C., C.W., K.F., J.A.); Department of Medical Education, Institute of Health Biosciences, University of Tokushima Graduate School, Kuramoto-cho, Tokushima, Japan (M.A.); Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom (X.W.); and Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY (X.Q.)
| | - Jun-ichi Abe
- From the Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY (K.H., H.J.C., C.W., K.F., J.A.); Department of Medical Education, Institute of Health Biosciences, University of Tokushima Graduate School, Kuramoto-cho, Tokushima, Japan (M.A.); Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom (X.W.); and Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY (X.Q.).
| |
Collapse
|
37
|
Abstract
Studying the control properties of complex networks provides insight into how designers and engineers can influence these systems to achieve a desired behavior. Topology of a network has been shown to strongly correlate with certain control properties; here we uncover the fundamental structures that explain the basis of this correlation. We develop the control profile, a statistic that quantifies the different proportions of control-inducing structures present in a network. We find that standard random network models do not reproduce the kinds of control profiles that are observed in real-world networks. The profiles of real networks form three well-defined clusters that provide insight into the high-level organization and function of complex systems.
Collapse
Affiliation(s)
- Justin Ruths
- Engineering Systems and Design, Singapore University of Technology and Design, Singapore
| | | |
Collapse
|
38
|
Nag S, Mokha SS. Activation of a Gq-coupled membrane estrogen receptor rapidly attenuates α2-adrenoceptor-induced antinociception via an ERK I/II-dependent, non-genomic mechanism in the female rat. Neuroscience 2014; 267:122-34. [PMID: 24613724 DOI: 10.1016/j.neuroscience.2014.02.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/24/2014] [Accepted: 02/24/2014] [Indexed: 01/04/2023]
Abstract
Though sex differences in pain and analgesia are known, underlying mechanisms remain elusive. This study addresses the selective contribution of membrane estrogen receptors (mERs) and mER-initiated non-genomic signaling mechanisms in our previously reported estrogen-induced attenuation of α2-adrenoceptor-mediated antinociception. By selectively targeting spinal mERs in ovariectomized female rats using β-estradiol 6-(O-carboxy-methyl)oxime bovine serum albumin (E2BSA) (membrane impermeant estradiol analog), and ERα selective agonist 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT), ERβ selective agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN), G-protein-coupled estrogen receptor 30 (GPR30) agonist G1 and Gq-coupled mER (Gq-mER) agonist STX, we provide strong evidence that Gq-mER activation may solely contribute to suppressing clonidine (an α2-adrenoceptor agonist)-induced antinociception, using the nociceptive tail-flick test. Increased tail-flick latencies (TFLs) by intrathecal (i.t.) clonidine were not significantly altered by i.t. PPT, DPN, or G1. In contrast, E2BSA or STX rapidly and dose-dependently attenuated clonidine-induced increase in TFL. ICI 182,780, the ER antagonist, blocked this effect. Consistent with findings with the lack of effect of ERα and ERβ agonists that modulate receptor-regulated transcription, inhibition of de novo protein synthesis using anisomycin also failed to alter the effect of E2BSA or STX, arguing against a contribution of genomic mechanisms. Immunoblotting of spinal tissue revealed that mER activation increased levels of phosphorylated extracellular signal-regulated kinase (ERK) but not of protein kinase A (PKA) or C (PKC). In vivo inhibition of ERK with U0126 blocked the effect of STX and restored clonidine antinociception. Although estrogen-induced delayed genomic mechanisms may still exist, data presented here indicate that Gq-mER may solely mediate estradiol-induced attenuation of clonidine antinociception via a rapid, reversible, and ERK-dependent, non-genomic mechanism, suggesting that Gq-mER blockade might provide improved analgesia in females.
Collapse
Affiliation(s)
- S Nag
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, United States.
| | - S S Mokha
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, United States
| |
Collapse
|
39
|
Agarwal R, Agarwal P. Newer targets for modulation of intraocular pressure: focus on adenosine receptor signaling pathways. Expert Opin Ther Targets 2014; 18:527-39. [DOI: 10.1517/14728222.2014.888416] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
40
|
Lopez-Bergami P. The role of mitogen- and stress-activated protein kinase pathways in melanoma. Pigment Cell Melanoma Res 2014; 24:902-21. [PMID: 21914141 DOI: 10.1111/j.1755-148x.2011.00908.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent discoveries have increased our comprehension of the molecular signaling events critical for melanoma development and progression. Many oncogenes driving melanoma have been identified, and most of them exert their oncogenic effects through the activation of the RAF/MEK/ERK mitogen-activated protein kinase (MAPK) pathway. The c-Jun N-terminal kinase (JNK) and p38 MAPK pathways are also important in melanoma, but their precise role is not clear yet. This review summarizes our current knowledge on the role of the three main MAPK pathways, extracellular regulated kinase (ERK), JNK, and p38, and their impact on melanoma biology. Although the results obtained with BRAF inhibitors in melanoma patients are impressive, several mechanisms of acquired resistance have emerged. To overcome this obstacle constitutes the new challenge in melanoma therapy. Given the major role that MAPKs play in melanoma, understanding their functions and the interconnection among them and with other signaling pathways represents a step forward toward this goal.
Collapse
Affiliation(s)
- Pablo Lopez-Bergami
- Instituto de Medicina y Biología Experimental, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
41
|
Zhan X, Wang J, Liu Y, Peng Y, Tan W. GPCR-like signaling mediated by smoothened contributes to acquired chemoresistance through activating Gli. Mol Cancer 2014; 13:4. [PMID: 24393163 PMCID: PMC3895738 DOI: 10.1186/1476-4598-13-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/03/2014] [Indexed: 11/30/2022] Open
Abstract
Background Smoothened (Smo), which possesses a structural similarity with classic G-protein coupled receptors (GPCR), is the most important molecular target in Hedgehog (Hh) signaling system for developing anticancer drugs; however, whether Smo may transmit GPCR-like signaling to activate the canonical transcriptional factor Gli of Hh signaling system and consequently to be involved in the Gli-dependent biological events remains controversial. Results In this study, using the acquired chemoresistant cancer cell lines and their respective parental cells, we found that Smo may activate Gli through Gαi, Gβγ-JNK signaling axis, thereby promoting the Gli-dependent acquired chemoresistance. These observations were further complementarily strengthened by data obtained from chemosensitive cancer cells with artificially elevated Hh pathway activity. Conclusions Hence, our data demonstrate that GPCR-like signaling mediated by Smo contributes to the acquired chemoresistance through activating the canonical Hh transcriptional factor Gli; therefore improving our knowledge of the nature of the signal transduction of Smo and the molecular mechanisms responsible for the acquired chemoresistance maintained by Hh pathway. Moreover, our data that JNK after activated by Smo-Gβγ signaling axis may stimulate the Gli activity and consequently promotes acquired chemoresistance expose a promising and potential target for developing anti-cancer drugs aimed at Hh pathway and for combating the acquired resistance raised by using of anti-cancer drugs targeting Smo.
Collapse
Affiliation(s)
| | | | | | | | - Wenfu Tan
- Department of Pharmacology, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, P,R, China.
| |
Collapse
|
42
|
Zgavc T, Hu TT, Van de Plas B, Vinken M, Ceulemans AG, Hachimi-Idrissi S, Sarre S, Michotte Y, Arckens L. Proteomic analysis of global protein expression changes in the endothelin-1 rat model for cerebral ischemia: Rescue effect of mild hypothermia. Neurochem Int 2013; 63:379-88. [DOI: 10.1016/j.neuint.2013.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/22/2013] [Accepted: 07/25/2013] [Indexed: 11/27/2022]
|
43
|
Hennen S, Wang H, Peters L, Merten N, Simon K, Spinrath A, Blättermann S, Akkari R, Schrage R, Schröder R, Schulz D, Vermeiren C, Zimmermann K, Kehraus S, Drewke C, Pfeifer A, König GM, Mohr K, Gillard M, Müller CE, Lu QR, Gomeza J, Kostenis E. Decoding signaling and function of the orphan G protein-coupled receptor GPR17 with a small-molecule agonist. Sci Signal 2013; 6:ra93. [PMID: 24150254 DOI: 10.1126/scisignal.2004350] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Replacement of the lost myelin sheath is a therapeutic goal for treating demyelinating diseases of the central nervous system (CNS), such as multiple sclerosis (MS). The G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor (GPCR) GPR17, which is phylogenetically closely related to receptors of the "purinergic cluster," has emerged as a modulator of CNS myelination. However, whether GPR17-mediated signaling positively or negatively regulates this critical process is unresolved. We identified a small-molecule agonist, MDL29,951, that selectively activated GPR17 even in a complex environment of endogenous purinergic receptors in primary oligodendrocytes. MDL29,951-stimulated GPR17 engaged the entire set of intracellular adaptor proteins for GPCRs: G proteins of the Gα(i), Gα(s), and Gα(q) subfamily, as well as β-arrestins. This was visualized as alterations in the concentrations of cyclic adenosine monophosphate and inositol phosphate, increased Ca²⁺ flux, phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), as well as multifeatured cell activation recorded with label-free dynamic mass redistribution and impedance biosensors. MDL29,951 inhibited the maturation of primary oligodendrocytes from heterozygous but not GPR17 knockout mice in culture, as well as in cerebellar slices from 4-day-old wild-type mice. Because GPCRs are attractive targets for therapeutic intervention, inhibiting GPR17 emerges as therapeutic strategy to relieve the oligodendrocyte maturation block and promote myelin repair in MS.
Collapse
Affiliation(s)
- Stephanie Hennen
- 1Molecular, Cellular, and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Clement ST, Dixit G, Dohlman HG. Regulation of yeast G protein signaling by the kinases that activate the AMPK homolog Snf1. Sci Signal 2013; 6:ra78. [PMID: 24003255 DOI: 10.1126/scisignal.2004143] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular signals, such as nutrients and hormones, cue intracellular pathways to produce adaptive responses. Often, cells must coordinate their responses to multiple signals to produce an appropriate outcome. We showed that components of a glucose-sensing pathway acted on components of a heterotrimeric guanine nucleotide-binding protein (G protein)-mediated pheromone signaling pathway in the yeast Saccharomyces cerevisiae. We demonstrated that the G protein α subunit Gpa1 was phosphorylated in response to conditions of reduced glucose availability and that this phosphorylation event contributed to reduced pheromone-dependent stimulation of mitogen-activated protein kinases, gene transcription, cell morphogenesis, and mating efficiency. We found that Elm1, Sak1, and Tos3, the kinases that phosphorylate Snf1, the yeast homolog of adenosine monophosphate-activated protein kinase (AMPK), in response to limited glucose availability, also phosphorylated Gpa1 and contributed to the diminished mating response. Reg1, the regulatory subunit of the phosphatase PP1 that acts on Snf1, was likewise required to reverse the phosphorylation of Gpa1 and to maintain the mating response. Thus, the same kinases and phosphatase that regulate Snf1 also regulate Gpa1. More broadly, these results indicate that the pheromone signaling and glucose-sensing pathways communicate directly to coordinate cell behavior.
Collapse
Affiliation(s)
- Sarah T Clement
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
45
|
Kim YH, Lee SJ, Seo KW, Bae JU, Park SY, Kim EK, Bae SS, Kim JH, Kim CD. PAF enhances MMP-2 production in rat aortic VSMCs via a β-arrestin2-dependent ERK signaling pathway. J Lipid Res 2013; 54:2678-86. [PMID: 23911909 PMCID: PMC3770081 DOI: 10.1194/jlr.m037176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Platelet-activating factor (PAF), 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, is a potent phospholipid mediator and has been reported to be localized in atherosclerotic plaque. However, its role in the progression of atherosclerosis remains unclear. In the present study, we investigated the role of PAF in the production of matrix metalloproteinase (MMP) in primary vascular smooth muscle cells (VSMCs). When rat aortic primary VSMCs were stimulated with PAF (1 nmol/l), the expressions of MMP-2 mRNA and protein, but not of MMP-9, were significantly increased, and these upregulations were markedly attenuated by inhibiting extracellular signal-regulated kinases (ERKs) using molecular and pharmacological inhibitors, but not by using inhibitors of p38 mitogen-activated protein kinase or c-Jun N-terminal kinase. Likewise, ERK phosphorylation was markedly enhanced in PAF-stimulated VSMCs, and this was attenuated by WEB2086, but not by EGF receptor inhibitor, demonstrating the specificity of PAF receptor (PAFR) in PAF-induced ERK phosphorylation. In immunofluorescence studies, β-arrestin2 in PAF-stimulated VSMCs colocalized with PAFR and phosphorylated ERK (P-ERK). Coimmunoprecipitation results suggest that β-arrestin2-bound PAFRs existed as a complex with P-ERK. In addition, PAF-induced ERK phosphorylation and MMP-2 production were significantly attenuated by β-arrestin2 depletion. Taken together, the study shows that PAF enhances MMP-2 production in VSMCs via a β-arrestin2-dependent ERK signaling pathway.
Collapse
Affiliation(s)
- Yun H Kim
- Departments of Pharmacology and Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ding Y, Wu CC, Garcia V, Dimitrova I, Weidenhammer A, Joseph G, Zhang F, Manthati VL, Falck JR, Capdevila JH, Schwartzman ML. 20-HETE induces remodeling of renal resistance arteries independent of blood pressure elevation in hypertension. Am J Physiol Renal Physiol 2013; 305:F753-63. [PMID: 23825080 DOI: 10.1152/ajprenal.00292.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE) is a cytochrome P-450 (Cyp)-derived arachidonic acid metabolite that has been shown to increase smooth muscle contractions and proliferation, stimulate endothelial dysfunction and activation, and promote hypertension. We examined if 20-HETE contributes to microvascular remodeling in hypertension. In Sprague-Dawley rats, administration of the 20-HETE biosynthesis inhibitor HET0016 or the 20-HETE antagonist N-20-hydroxyeicosa-6(Z),15(Z)-dienoic acid (20-HEDE) prevented 5α-dihydrotestosterone (DHT)-induced increases in blood pressure as well as abrogated DHT-induced increases in the media-to-lumen ratio (M/L), media thickness, and collagen IV deposition in renal interlobar arteries. Reserpine prevented blood pressure elevation in DHT-treated rats but did not affect microvascular remodeling (M/L, media thickness, and collagen deposition); under these conditions, treatment with the 20-HETE antagonist attenuated microvascular remodeling, suggesting that 20-HETE contributes to DHT-induced vascular remodeling independent of blood pressure elevation. In Cyp4a14(-/-) mice, which display androgen-driven and 20-HETE-dependent hypertension, treatment with the 20-HETE antagonist abolished remodeling of renal resistance arteries measured as media thickness (24 ± 1 vs. 15 ± 1 μm) and M/L (0.29 ± 0.03 vs. 0.17 ± 0.01). Moreover, in Cyp4a12 transgenic mice in which the expression of Cyp4a12-20-HETE synthase is driven by a tetracycline-sensitive promoter, treatment with doxycycline resulted in blood pressure elevation (140 ± 4 vs. 92 ± 5 mmHg) and a significant increase in remodeling of renal resistance arteries (media thickness: 23 ± 1 vs. 16 ± 1 μm; M/L: 0.39 ± 0.04 vs. 0.23 ± 0.02); these increases were abrogated by cotreatment with 20-HEDE. This study demonstrated that 20-HETE is a key regulator of microvascular remodeling in hypertension; its effect is independent of blood pressure elevation and androgen levels.
Collapse
Affiliation(s)
- Yan Ding
- 1Department of Pharmacology, New York Medical College, 15 Dana Road, BSB Rm. 530, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Emery AC, Eiden MV, Mustafa T, Eiden LE. Rapgef2 connects GPCR-mediated cAMP signals to ERK activation in neuronal and endocrine cells. Sci Signal 2013; 6:ra51. [PMID: 23800469 PMCID: PMC3932028 DOI: 10.1126/scisignal.2003993] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor (GPCR)-mediated increases in the second messenger cyclic adenosine monophosphate (cAMP) activate the mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase (ERK), and in neuroendocrine cells, this pathway leads to cAMP-dependent neuritogenesis mediated through Rap1 and B-Raf. We found that the Rap guanine nucleotide exchange factor Rapgef2 was enriched from primary bovine neuroendocrine cells by cAMP-agarose affinity chromatography and that it was specifically eluted by cAMP. With loss-of-function experiments in the rat neuronal cell line Neuroscreen-1 (NS-1) and gain-of-function experiments in human embryonic kidney 293T cells, we demonstrated that Rapgef2 connected GPCR-dependent activation of adenylate cyclase and increased cAMP concentration with the activation of ERK in neurons and endocrine cells. Furthermore, knockdown of Rapgef2 blocked cAMP- and ERK-dependent neuritogenesis. Our data are consistent with a pathway involving the cAMP-mediated activation of Rapgef2, which then stimulates Rap1, leading to increases in B-Raf, MEK, and ERK activity.
Collapse
Affiliation(s)
- Andrew C. Emery
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health (NIMH) Intramural Research Program, Bethesda, MD 20892, USA
| | - Maribeth V. Eiden
- Section on Directed Gene Transfer, Laboratory of Cellular and Molecular Regulation, NIMH Intramural Research Program, Bethesda, MD 20892, USA
| | - Tomris Mustafa
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health (NIMH) Intramural Research Program, Bethesda, MD 20892, USA
| | - Lee E. Eiden
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health (NIMH) Intramural Research Program, Bethesda, MD 20892, USA
| |
Collapse
|
48
|
Romitti M, Ceolin L, Siqueira DR, Ferreira CV, Wajner SM, Maia AL. Signaling pathways in follicular cell-derived thyroid carcinomas (review). Int J Oncol 2012; 42:19-28. [PMID: 23128507 DOI: 10.3892/ijo.2012.1681] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 08/24/2012] [Indexed: 11/06/2022] Open
Abstract
Thyroid carcinoma is the most common malignant endocrine neoplasia. Differentiated thyroid carcinomas (DTCs) represent more than 90% of all thyroid carcinomas and comprise the papillary and follicular thyroid carcinoma subtypes. Anaplastic thyroid carcinomas correspond to less than 1% of all thyroid tumors and can arise de novo or by dedifferentiation of a differentiated tumor. The etiology of DTCs is not fully understood. Several genetic events have been implicated in thyroid tumorigenesis. Point mutations in the BRAF or RAS genes or rearranged in transformation (RET)/papillary thyroid carcinoma (PTC) gene rearrangements are observed in approximately 70% of papillary cancer cases. Follicular carcinomas commonly harbor RAS mutations and paired box gene 8 (PAX8)-peroxisome proliferator-activated receptor γ (PPARγ) rearrangements. Anaplastic carcinomas may have a wide set of genetic alterations, that include gene effectors in the mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K) and/or β-catenin signaling pathways. These distinct genetic alterations constitutively activate the MAPK, PI3K and β-catenin signaling pathways, which have been implicated in thyroid cancer development and progression. In this context, the evaluation of specific genes, as well as the knowledge of their effects on thyroid carcinogenesis may provide important information on disease presentation, prognosis and therapy, through the development of specific tyrosine kinase targets. In this review, we aimed to present an updated and comprehensive review of the recent advances in the understanding of the genetic basis of follicular cell-derived thyroid carcinomas, as well as the molecular mechanisms involved in tumor development and progression.
Collapse
Affiliation(s)
- Mírian Romitti
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | | | |
Collapse
|
49
|
Reactive Oxygen Species, SUMOylation, and Endothelial Inflammation. Int J Inflam 2012; 2012:678190. [PMID: 22991685 PMCID: PMC3443607 DOI: 10.1155/2012/678190] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/26/2012] [Indexed: 12/14/2022] Open
Abstract
Although the exact mechanism through which NADPH oxidases (Nox's) generate reactive oxygen species (ROS) is still not completely understood, it is widely considered that ROS accumulation is the cause of oxidative stress in endothelial cells. Increasing pieces of evidence strongly indicate the role for ROS in endothelial inflammation and dysfunction and subsequent development of atherosclerotic plaques, which are causes of various pathological cardiac events. An overview for a causative relationship between ROS and endothelial inflammation will be provided in this review. Particularly, a crucial role for specific protein SUMOylation in endothelial inflammation will be presented. Given that SUMOylation of specific proteins leads to increased endothelial inflammation, targeting specific SUMOylated proteins may be an elegant, effective strategy to control inflammation. In addition, the involvement of ROS production in increasing the risk of recurrent coronary events in a sub-group of non-diabetic, post-infarction patients with elevated levels of HDL-cholesterol will be presented with the emphasis that elevated HDL-cholesterol under certain inflammatory conditions can lead to increased incidence of cardiovascular events.
Collapse
|
50
|
Yang L, Xu L. GPR56 in cancer progression: current status and future perspective. Future Oncol 2012; 8:431-40. [PMID: 22515446 DOI: 10.2217/fon.12.27] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cell adhesion is a critical process during cancer progression and is mediated by transmembrane receptors. Recently, GPR56, a member of the adhesion family of G protein-coupled receptors, was established as a new type of adhesion receptor that binds to extracellular matrix proteins and shown to play inhibitory roles in melanoma progression. Further studies revealed that the extracellular portion and the seven transmembrane domains of GPR56 function antagonistically to regulate VEGF production and angiogenesis via a signaling pathway mediated by PKCα. Tissue transglutaminase was identified as the first extracellular matrix protein that binds to GPR56. It is a crosslinking enzyme in the extracellular matrix but is also expressed in the cytosol. Tissue transglutaminase plays pleiotropic roles in cancer progression. Whether and how it might mediate GPR56-regulated cancer progression awaits further investigation.
Collapse
Affiliation(s)
- Liquan Yang
- Department of Biomedical Genetics, Department of Dermatology, James P Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|