1
|
Zhou Y, Pu Q, Chen J, Hao G, Gao R, Ali A, Hsiao A, Stock AM, Goulian M, Zhu J. Thiol-based functional mimicry of phosphorylation of the two-component system response regulator ArcA promotes pathogenesis in enteric pathogens. Cell Rep 2021; 37:110147. [PMID: 34936880 PMCID: PMC8728512 DOI: 10.1016/j.celrep.2021.110147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/06/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
Pathogenic bacteria can rapidly respond to stresses such as reactive oxygen species (ROS) using reversible redox-sensitive oxidation of cysteine thiol (-SH) groups in regulators. Here, we use proteomics to profile reversible ROS-induced thiol oxidation in Vibrio cholerae, the etiologic agent of cholera, and identify two modified cysteines in ArcA, a regulator of global carbon oxidation that is phosphorylated and activated under low oxygen. ROS abolishes ArcA phosphorylation but induces the formation of an intramolecular disulfide bond that promotes ArcA-ArcA interactions and sustains activity. ArcA cysteines are oxidized in cholera patient stools, and ArcA thiol oxidation drives in vitro ROS resistance, colonization of ROS-rich guts, and environmental survival. In other pathogens, such as Salmonella enterica, oxidation of conserved cysteines of ArcA orthologs also promotes ROS resistance, suggesting a common role for ROS-induced ArcA thiol oxidation in modulating ArcA activity, allowing for a balance of expression of stress- and pathogenesis-related genetic programs.
Collapse
Affiliation(s)
- Yitian Zhou
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Qinqin Pu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiandong Chen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guijuan Hao
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rong Gao
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Afsar Ali
- Department of Environmental and Global Health, College of Public Health and Health Professions and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Ansel Hsiao
- Department of Microbiology & Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA
| | - Ann M Stock
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jun Zhu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Redox Sensing Modulates the Activity of the ComE Response Regulator of Streptococcus mutans. J Bacteriol 2021; 203:e0033021. [PMID: 34516285 DOI: 10.1128/jb.00330-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans, a dental pathogen, encodes the ComDE two-component system comprised of a histidine kinase (ComD) and a response regulator (ComE). This system is necessary for production of bacteriocins and development of genetic competence. ComE interacts with its cognate promoters to activate the transcription of bacteriocin and competence-related genes. Previous transcriptomic studies indicated that expressions of bacteriocin genes were upregulated in the presence of oxygen. To understand the relationship between the aerobic condition and bacteriocin expression, we analyzed the S. mutans ComE sequence and its close homologs. Surprisingly, we noticed the presence of cysteine (Cys) residues located at positions 200 and 229, which are highly conserved among the ComE homologs. Here, we investigated the role of Cys residues of S. mutans ComE in the activation of bacteriocin transcription using the PnlmA promoter that expresses bacteriocin NlmA. We constructed both single mutants and double mutants by replacing the Cys residues with serine and performed complementation assays. We observed that the presence of Cys residues is essential for PnlmA activation. With purified ComE mutant proteins, we found that ComE double mutants displayed a nearly 2-fold lower association rate than wild-type ComE. Furthermore, 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence studies indicated that the double mutants displayed wider conformation changes than wild-type ComE. Finally, we demonstrated that close streptococcal ComE homologs successfully activate the PnlmA expression in vivo. This is the first report suggesting that S. mutans ComE and its homologs can sense the oxidation status of the cell, a phenomenon similar to the AgrA system of Staphylococcus aureus but with different outcomes. IMPORTANCE Streptococci are an important species that prefer to grow under anaerobic or microaerophilic environments. Studies have shown that streptococci growth in an aerobic environment generates oxidative stress responses by activating various defense systems, including production of antimicrobial peptides called bacteriocins. This study highlights the importance of a two-component response regulator (ComE) that senses the aerobic environment and induces bacteriocin production in Streptococcus mutans, a dental pathogen. We believe increased bacteriocin secretion under aerobic conditions is necessary for survival and colonization of S. mutans in the oral cavity by inhibiting other competing organisms. Redox sensing by response regulator might be a widespread phenomenon since two other ComE homologs from pathogenic streptococci that inhabit diverse environmental niches also perform a similar function.
Collapse
|
3
|
Anand A, Chen K, Catoiu E, Sastry AV, Olson CA, Sandberg TE, Seif Y, Xu S, Szubin R, Yang L, Feist AM, Palsson BO. OxyR Is a Convergent Target for Mutations Acquired during Adaptation to Oxidative Stress-Prone Metabolic States. Mol Biol Evol 2020; 37:660-667. [PMID: 31651953 PMCID: PMC7038661 DOI: 10.1093/molbev/msz251] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Oxidative stress is concomitant with aerobic metabolism. Thus, bacterial genomes encode elaborate mechanisms to achieve redox homeostasis. Here we report that the peroxide-sensing transcription factor, oxyR, is a common mutational target using bacterial species belonging to two genera, Escherichia coli and Vibrio natriegens, in separate growth conditions implemented during laboratory evolution. The mutations clustered in the redox active site, dimer interface, and flexible redox loop of the protein. These mutations favor the oxidized conformation of OxyR that results in constitutive expression of the genes it regulates. Independent component analysis of the transcriptome revealed that the constitutive activity of OxyR reduces DNA damage from reactive oxygen species, as inferred from the activity of the SOS response regulator LexA. This adaptation to peroxide stress came at a cost of lower growth, as revealed by calculations of proteome allocation using genome-scale models of metabolism and macromolecular expression. Further, identification of similar sequence changes in natural isolates of E. coli indicates that adaptation to oxidative stress through genetic changes in oxyR can be a common occurrence.
Collapse
Affiliation(s)
- Amitesh Anand
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| | - Ke Chen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| | - Edward Catoiu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| | - Anand V Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| | - Connor A Olson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| | - Troy E Sandberg
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| | - Yara Seif
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| | - Sibei Xu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| | - Laurence Yang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
- Present address: Department of Chemical Engineering, Queen’s University, Kingston, ON, Canada
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Kongens, Lyngby, Denmark
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Kongens, Lyngby, Denmark
- Corresponding author: E-mail:
| |
Collapse
|
4
|
OxyR2 Modulates OxyR1 Activity and Vibrio cholerae Oxidative Stress Response. Infect Immun 2017; 85:IAI.00929-16. [PMID: 28138024 DOI: 10.1128/iai.00929-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/25/2017] [Indexed: 12/29/2022] Open
Abstract
Bacteria have developed capacities to deal with different stresses and adapt to different environmental niches. The human pathogen Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, utilizes the transcriptional regulator OxyR to activate genes related to oxidative stress resistance, including peroxiredoxin PrxA, in response to hydrogen peroxide. In this study, we identified another OxyR homolog in V. cholerae, which we named OxyR2, and we renamed the previous OxyR OxyR1. We found that OxyR2 is required to activate its divergently transcribed gene ahpC, encoding an alkylhydroperoxide reductase, independently of H2O2 A conserved cysteine residue in OxyR2 is critical for this function. Mutation of either oxyR2 or ahpC rendered V. cholerae more resistant to H2O2 RNA sequencing analyses indicated that OxyR1-activated oxidative stress-resistant genes were highly expressed in oxyR2 mutants even in the absence of H2O2 Further genetic analyses suggest that OxyR2-activated AhpC modulates OxyR1 activity by maintaining low intracellular concentrations of H2O2 Furthermore, we showed that ΔoxyR2 and ΔahpC mutants were less fit when anaerobically grown bacteria were exposed to low levels of H2O2 or incubated in seawater. These results suggest that OxyR2 and AhpC play important roles in the V. cholerae oxidative stress response.
Collapse
|
5
|
Liu H, Yang CL, Ge MY, Ibrahim M, Li B, Zhao WJ, Chen GY, Zhu B, Xie GL. Regulatory role of tetR gene in a novel gene cluster of Acidovorax avenae subsp. avenae RS-1 under oxidative stress. Front Microbiol 2014; 5:547. [PMID: 25374564 PMCID: PMC4204640 DOI: 10.3389/fmicb.2014.00547] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/01/2014] [Indexed: 01/14/2023] Open
Abstract
Acidovorax avenae subsp. avenae is the causal agent of bacterial brown stripe disease in rice. In this study, we characterized a novel horizontal transfer of a gene cluster, including tetR, on the chromosome of A. avenae subsp. avenae RS-1 by genome-wide analysis. TetR acted as a repressor in this gene cluster and the oxidative stress resistance was enhanced in tetR-deletion mutant strain. Electrophoretic mobility shift assay demonstrated that TetR regulator bound directly to the promoter of this gene cluster. Consistently, the results of quantitative real-time PCR also showed alterations in expression of associated genes. Moreover, the proteins affected by TetR under oxidative stress were revealed by comparing proteomic profiles of wild-type and mutant strains via 1D SDS-PAGE and LC-MS/MS analyses. Taken together, our results demonstrated that tetR gene in this novel gene cluster contributed to cell survival under oxidative stress, and TetR protein played an important regulatory role in growth kinetics, biofilm-forming capability, superoxide dismutase and catalase activity, and oxide detoxicating ability.
Collapse
Affiliation(s)
- He Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China ; Department of Plant Pathology, University of California Davis Davis, CA, USA
| | - Chun-Lan Yang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Meng-Yu Ge
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Muhammad Ibrahim
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China ; Department of Biosciences, COMSATS Institute of Information Technology Sahiwal, Pakistan
| | - Bin Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Wen-Jun Zhao
- Chinese Academy of Inspection and Quarantine Beijing, China
| | - Gong-You Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University Shanghai, China
| | - Bo Zhu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Guan-Lin Xie
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| |
Collapse
|
6
|
Belousov VV, Enikolopov GN, Mishina NM. [Compartmentalization of ROS-mediated signal transduction]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2014; 39:383-99. [PMID: 24707719 DOI: 10.1134/s1068162013040043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The localization of signaling molecules close to their targets is the central principle of cell signaling. The colocalization of multicomponent signaling complexes is realized through protein scaffolds that provide better specificity than undirected diffusion ofthe same components. ROS-generating complexes have been suggested to follow this principle by specific intracellular localization of ROS production and the limitation of ROS diffusion distances. However, the lack of adequate methods did not allow direct detection of local ROS production to confirm the model ofredox signaling compartmentalization. Nevertheless, evidences of local ROS production and restriction of diffusion were provided by kinetic modeling and data on the subcellular localization of NADPH-oxidase isoforms, their adapter proteins and local restriction of ROS diffusion. Here we shall discuss the properties of antioxidant system which prevents uncontrolled ROS diffusion from the sites of generation to the adjacent subcellular compartments; the current data of the specific localization NADPH-oxidases activity and its influence on intracellular processes; the recent evidences of the ROS diffusion restriction.
Collapse
|
7
|
Wang H, Chen S, Zhang J, Rothenbacher FP, Jiang T, Kan B, Zhong Z, Zhu J. Catalases promote resistance of oxidative stress in Vibrio cholerae. PLoS One 2012; 7:e53383. [PMID: 23300923 PMCID: PMC3534063 DOI: 10.1371/journal.pone.0053383] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/27/2012] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress is a major challenge faced by bacteria. Many bacteria control oxidative stress resistance pathways through the transcriptional regulator OxyR. The human pathogen Vibrio cholerae is a Gram-negative bacterium that is the causative agent of cholera. V. cholerae lives in both aquatic environments and human small intestines, two environments in which it encounters reactive oxygen species (ROS). To study how V. cholerae responds to oxidative stress, we constructed an in-frame oxyR deletion mutant. We found that this mutant was not only sensitive to H2O2, but also displayed a growth defect when diluted in rich medium. Further study showed that two catalases, KatG and KatB, either when expressed in living cells, present in culture supernatants, or added as purified recombinant proteins, could rescue the oxyR growth defect. Furthermore, although it could colonize infant mouse intestines similar to that of wildtype, the oxyR mutant was defective in zebrafish intestinal colonization. Alternatively, co-infection with wildtype, but not katG-katB deletion mutants, greatly enhanced oxyR mutant colonization. Our study suggests that OxyR in V. cholerae is critical for antioxidant defense and that the organism is capable of scavenging environmental ROS to facilitate population growth.
Collapse
Affiliation(s)
- Hui Wang
- Department of Microbiology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shusu Chen
- Department of Microbiology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Juan Zhang
- Department of Microbiology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Francesca P. Rothenbacher
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Tiantian Jiang
- Department of Microbiology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Zengtao Zhong
- Department of Microbiology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- * E-mail: (ZZ); (JZ)
| | - Jun Zhu
- Department of Microbiology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (ZZ); (JZ)
| |
Collapse
|
8
|
Fahey RC. Glutathione analogs in prokaryotes. Biochim Biophys Acta Gen Subj 2012; 1830:3182-98. [PMID: 23075826 DOI: 10.1016/j.bbagen.2012.10.006] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/25/2012] [Accepted: 10/08/2012] [Indexed: 01/17/2023]
Abstract
BACKGROUND Oxygen is both essential and toxic to all forms of aerobic life and the chemical versatility and reactivity of thiols play a key role in both aspects. Cysteine thiol groups have key catalytic functions in enzymes but are readily damaged by reactive oxygen species (ROS). Low-molecular-weight thiols provide protective buffers against the hazards of ROS toxicity. Glutathione is the small protective thiol in nearly all eukaryotes but in prokaryotes the situation is far more complex. SCOPE OF REVIEW This review provides an introduction to the diversity of low-molecular-weight thiol protective systems in bacteria. The topics covered include the limitations of cysteine as a protector, the multiple origins and distribution of glutathione biosynthesis, mycothiol biosynthesis and function in Actinobacteria, recent discoveries involving bacillithiol found in Firmicutes, new insights on the biosynthesis and distribution of ergothioneine, and the potential protective roles played by coenzyme A and other thiols. MAJOR CONCLUSIONS Bacteria have evolved a diverse collection of low-molecular-weight protective thiols to deal with oxygen toxicity and environmental challenges. Our understanding of how many of these thiols are produced and utilized is still at an early stage. GENERAL SIGNIFICANCE Extensive diversity existed among prokaryotes prior to evolution of the cyanobacteria and the development of an oxidizing atmosphere. Bacteria that managed to adapt to life under oxygen evolved, or acquired, the ability to produce a variety of small thiols for protection against the hazards of aerobic metabolism. Many pathogenic prokaryotes depend upon novel thiol protection systems that may provide targets for new antibacterial agents. This article is part of a Special Issue entitled Cellular functions of glutathione.
Collapse
Affiliation(s)
- Robert C Fahey
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Abstract
The ability to maintain intracellular concentrations of toxic reactive oxygen species (ROS) within safe limits is essential for all aerobic life forms. In bacteria, as well as other organisms, ROS are produced during the normal course of aerobic metabolism, necessitating the constitutive expression of ROS scavenging systems. However, bacteria can also experience transient high-level exposure to ROS derived either from external sources, such as the host defense response, or as a secondary effect of other seemingly unrelated environmental stresses. Consequently, transcriptional regulators have evolved to sense the levels of ROS and coordinate the appropriate oxidative stress response. Three well-studied examples of these are the peroxide responsive regulators OxyR, PerR, and OhrR. OxyR and PerR are sensors of primarily H(2)O(2), while OhrR senses organic peroxide (ROOH) and sodium hypochlorite (NaOCl). OxyR and OhrR sense oxidants by means of the reversible oxidation of specific cysteine residues. In contrast, PerR senses H(2)O(2) via the Fe-catalyzed oxidation of histidine residues. These transcription regulators also influence complex biological phenomena, such as biofilm formation, the evasion of host immune responses, and antibiotic resistance via the direct regulation of specific proteins.
Collapse
|
10
|
Quorum-sensing agr mediates bacterial oxidation response via an intramolecular disulfide redox switch in the response regulator AgrA. Proc Natl Acad Sci U S A 2012; 109:9095-100. [PMID: 22586129 DOI: 10.1073/pnas.1200603109] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Oxidation sensing and quorum sensing significantly affect bacterial physiology and host-pathogen interactions. However, little attention has been paid to the cross-talk between these two seemingly orthogonal signaling pathways. Here we show that the quorum-sensing agr system has a built-in oxidation-sensing mechanism through an intramolecular disulfide switch possessed by the DNA-binding domain of the response regulator AgrA. Biochemical and mass spectrometric analysis revealed that oxidation induces the intracellular disulfide bond formation between Cys-199 and Cys-228, thus leading to dissociation of AgrA from DNA. Molecular dynamics (MD) simulations suggest that the disulfide bond formation generates a steric clash responsible for the abolished DNA binding of the oxidized AgrA. Mutagenesis studies further established that Cys-199 is crucial for oxidation sensing. The oxidation-sensing role of Cys-199 is further supported by the observation that the mutant Staphylococcus aureus strain expressing AgrAC199S is more susceptible to H(2)O(2) owing to repression of the antioxidant bsaA gene under oxidative stress. Together, our results show that oxidation sensing is a component of the quorum-sensing agr signaling system, which serves as an intrinsic checkpoint to ameliorate the oxidation burden caused by intense metabolic activity and potential host immune response.
Collapse
|
11
|
Yanamandra SS, Sarrafee SS, Anaya-Bergman C, Jones K, Lewis JP. Role of the Porphyromonas gingivalis extracytoplasmic function sigma factor, SigH. Mol Oral Microbiol 2012; 27:202-19. [PMID: 22520389 DOI: 10.1111/j.2041-1014.2012.00643.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Little is known about the regulatory mechanisms that allow Porphyromonas gingivalis to survive in the oral cavity. Here we characterize the sigma (σ) factor SigH, one of six extracytoplasmic function (ECF) σ factors encoded in the P. gingivalis genome. Our results indicate that sigH expression is upregulated by exposure to molecular oxygen, suggesting that sigH plays a role in adaptation of P. gingivalis to oxygen. Furthermore, several genes involved in oxidative stress protection, such as sod, trx, tpx, ftn, feoB2 and the hemin uptake hmu locus, are downregulated in a mutant deficient in SigH designated as V2948. ECF σ consensus sequences were identified upstream of the transcriptional start sites of these genes, consistent with the SigH-dependent regulation of these genes. Growth of V2948 was inhibited in the presence of 6% oxygen when compared with the wild-type W83 strain, whereas in anaerobic conditions both strains were able to grow. In addition, reduced growth of V2948 was observed in the presence of peroxide and the thiol-oxidizing reagent diamide when compared with the W83 strain. The SigH-deficient strain V2948 also exhibited reduced hemin uptake, consistent with the observed reduced expression of genes involved in hemin uptake. Finally, survival of V2948 was reduced in the presence of host cells compared with the wild-type W83 strain. Collectively, our studies demonstrate that SigH is a positive regulator of gene expression required for survival of the bacterium in the presence of oxygen and oxidative stress, hemin uptake and virulence.
Collapse
Affiliation(s)
- S S Yanamandra
- The Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0566, USA
| | | | | | | | | |
Collapse
|
12
|
Shen S, Fang FC. Integrated stress responses in Salmonella. Int J Food Microbiol 2012; 152:75-81. [PMID: 21570144 PMCID: PMC3164900 DOI: 10.1016/j.ijfoodmicro.2011.04.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 03/15/2011] [Accepted: 04/14/2011] [Indexed: 12/23/2022]
Abstract
The foodborne gram-negative pathogen Salmonella must adapt to varied environmental conditions encountered within foods, the host gastrointestinal tract and the phagosomes of host macrophages. Adaptation is achieved through the coordinate regulation of gene expression in response to environmental signals such as temperature, pH, osmolarity, redox state, antimicrobial peptides, and nutrient deprivation. This review will examine mechanisms by which the integration of regulatory responses to a broad array of environmental signals can be achieved. First, in the most straightforward case, tandem promoters allow gene expression to respond to multiple signals. Second, versatile sensor proteins may respond to more than one environmental signal. Third, transcriptional silencing and counter-silencing as demonstrated by the H-NS paradigm provides a general mechanism for the convergence of multiple regulatory inputs. Fourth, signaling cascades allow gene activation by independent sensory elements. These mechanisms allow Salmonella to utilize common adaptive stress pathways in response to a diverse range of environmental conditions.
Collapse
Affiliation(s)
- Shu Shen
- Departments of Laboratory Medicine and Microbiology, University of Washington School of Medicine, Seattle, WA, 98195-7242 USA
| | | |
Collapse
|
13
|
Lee CYS, Yeh TL, Hughes BT, Espenshade PJ. Regulation of the Sre1 hypoxic transcription factor by oxygen-dependent control of DNA binding. Mol Cell 2011; 44:225-34. [PMID: 22017871 DOI: 10.1016/j.molcel.2011.08.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 06/20/2011] [Accepted: 08/12/2011] [Indexed: 11/18/2022]
Abstract
Regulation of gene expression plays an integral role in adaptation of cells to hypoxic stress. In mammals, prolyl hydroxylases control levels of the central transcription factor hypoxia inducible factor (HIF) through regulation of HIFα subunit stability. Here, we report that the hydroxylase Ofd1 regulates the Sre1 hypoxic transcription factor in fission yeast by controlling DNA binding. Prolyl hydroxylases require oxygen as a substrate, and the activity of Ofd1 regulates Sre1-dependent transcription. In the presence of oxygen, Ofd1 binds the Sre1 N-terminal transcription factor domain (Sre1N) and inhibits Sre1-dependent transcription by blocking DNA binding. In the absence of oxygen, the inhibitor Nro1 binds Ofd1, thereby releasing Sre1N and leading to activation of genes required for hypoxic growth. In contrast to the HIF system, where proline hydroxylation is essential for regulation, Ofd1 inhibition of Sre1N does not require hydroxylation and, thus, defines a new mechanism for hypoxic gene regulation.
Collapse
Affiliation(s)
- Chih-Yung S Lee
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
14
|
Liu Z, Yang M, Peterfreund GL, Tsou AM, Selamoglu N, Daldal F, Zhong Z, Kan B, Zhu J. Vibrio cholerae anaerobic induction of virulence gene expression is controlled by thiol-based switches of virulence regulator AphB. Proc Natl Acad Sci U S A 2011; 108:810-5. [PMID: 21187377 PMCID: PMC3021084 DOI: 10.1073/pnas.1014640108] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Bacterial pathogens have evolved sophisticated signal transduction systems to coordinately control the expression of virulence determinants. For example, the human pathogen Vibrio cholerae is able to respond to host environmental signals by activating transcriptional regulatory cascades. The host signals that stimulate V. cholerae virulence gene expression, however, are still poorly understood. Previous proteomic studies indicated that the ambient oxygen concentration plays a role in V. cholerae virulence gene expression. In this study, we found that under oxygen-limiting conditions, an environment similar to the intestines, V. cholerae virulence genes are highly expressed. We show that anaerobiosis enhances dimerization and activity of AphB, a transcriptional activator that is required for the expression of the key virulence regulator TcpP, which leads to the activation of virulence factor production. We further show that one of the three cysteine residues in AphB, C(235), is critical for oxygen responsiveness, as the AphB(C235S) mutant can activate virulence genes under aerobic conditions in vivo and can bind to tcpP promoters in the absence of reducing agents in vitro. Mass spectrometry analysis suggests that under aerobic conditions, AphB is modified at the C(235) residue. This modification is reversible between oxygen-rich aquatic environments and oxygen-limited human hosts, suggesting that V. cholerae may use a thiol-based switch mechanism to sense intestinal signals and activate virulence.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Microbiology, School of Medicine, and
| | - Menghua Yang
- Department of Microbiology, School of Medicine, and
| | | | - Amy M. Tsou
- Department of Microbiology, School of Medicine, and
| | - Nur Selamoglu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Zengtao Zhong
- Department of Microbiology, Nanjing, Agricultural University, Nanjing 210095, China; and
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Beijing 102206, China
| | - Jun Zhu
- Department of Microbiology, School of Medicine, and
| |
Collapse
|
15
|
Rehder DS, Borges CR. Cysteine sulfenic acid as an intermediate in disulfide bond formation and nonenzymatic protein folding. Biochemistry 2010; 49:7748-55. [PMID: 20712299 PMCID: PMC2945302 DOI: 10.1021/bi1008694] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As a posttranslational protein modification, cysteine sulfenic acid (Cys-SOH) is well established as an oxidative stress-induced mediator of enzyme function and redox signaling. Data presented herein show that protein Cys-SOH forms spontaneously in air-exposed aqueous solutions of unfolded (disulfide-reduced) protein in the absence of added oxidizing reagents, mediating the oxidative disulfide bond formation process key to in vitro, nonenzymatic protein folding. Molecular oxygen (O(2)) and trace metals [e.g., copper(II)] are shown to be important reagents in the oxidative refolding process. Cys-SOH is also shown to play a role in spontaneous disulfide-based dimerization of peptide molecules containing free cysteine residues. In total, the data presented expose a chemically ubiquitous role for Cys-SOH in solutions of free cysteine-containing protein exposed to air.
Collapse
Affiliation(s)
- Douglas S. Rehder
- Molecular Biomarkers, The Biodesign Institute at Arizona State University, Tempe, AZ 85287
| | - Chad R. Borges
- Molecular Biomarkers, The Biodesign Institute at Arizona State University, Tempe, AZ 85287
| |
Collapse
|
16
|
Rehder DS, Borges CR. Possibilities and pitfalls in quantifying the extent of cysteine sulfenic acid modification of specific proteins within complex biofluids. BMC BIOCHEMISTRY 2010; 11:25. [PMID: 20594348 PMCID: PMC2916888 DOI: 10.1186/1471-2091-11-25] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 07/01/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Cysteine sulfenic acid (Cys-SOH) plays important roles in the redox regulation of numerous proteins. As a relatively unstable posttranslational protein modification it is difficult to quantify the degree to which any particular protein is modified by Cys-SOH within a complex biological environment. The goal of these studies was to move a step beyond detection and into the relative quantification of Cys-SOH within specific proteins found in a complex biological setting--namely, human plasma. RESULTS This report describes the possibilities and limitations of performing such analyses based on the use of thionitrobenzoic acid and dimedone-based probes which are commonly employed to trap Cys-SOH. Results obtained by electrospray ionization-based mass spectrometric immunoassay reveal the optimal type of probe for such analyses as well as the reproducible relative quantification of Cys-SOH within albumin and transthyretin extracted from human plasma--the latter as a protein previously unknown to be modified by Cys-SOH. CONCLUSIONS The relative quantification of Cys-SOH within specific proteins in a complex biological setting can be accomplished, but several analytical precautions related to trapping, detecting, and quantifying Cys-SOH must be taken into account prior to pursuing its study in such matrices.
Collapse
Affiliation(s)
- Douglas S Rehder
- Molecular Biomarkers, The Biodesign Institute at Arizona State University, Tempe, AZ 85287, USA
| | - Chad R Borges
- Molecular Biomarkers, The Biodesign Institute at Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
17
|
Kemp M, Go YM, Jones DP. Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radic Biol Med 2008; 44:921-37. [PMID: 18155672 PMCID: PMC2587159 DOI: 10.1016/j.freeradbiomed.2007.11.008] [Citation(s) in RCA: 423] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 09/28/2007] [Accepted: 11/14/2007] [Indexed: 01/18/2023]
Abstract
Understanding the dynamics of redox elements in biologic systems remains a major challenge for redox signaling and oxidative stress research. Central redox elements include evolutionarily conserved subsets of cysteines and methionines of proteins which function as sulfur switches and labile reactive oxygen species (ROS) and reactive nitrogen species (RNS) which function in redox signaling. The sulfur switches depend on redox environments in which rates of oxidation are balanced with rates of reduction through the thioredoxins, glutathione/glutathione disulfide, and cysteine/cystine redox couples. These central couples, which we term redox control nodes, are maintained at stable but nonequilibrium steady states, are largely independently regulated in different subcellular compartments, and are quasi-independent from each other within compartments. Disruption of the redox control nodes can differentially affect sulfur switches, thereby creating a diversity of oxidative stress responses. Systems biology provides approaches to address the complexity of these responses. In the present review, we summarize thiol/disulfide pathway, redox potential, and rate information as a basis for kinetic modeling of sulfur switches. The summary identifies gaps in knowledge especially related to redox communication between compartments, definition of redox pathways, and discrimination between types of sulfur switches. A formulation for kinetic modeling of GSH/GSSG redox control indicates that systems biology could encourage novel therapeutic approaches to protect against oxidative stress by identifying specific redox-sensitive sites which could be targeted for intervention.
Collapse
Affiliation(s)
- Melissa Kemp
- The Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta GA 30332
| | - Young-Mi Go
- Emory Clinical Biomarkers Laboratory and Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta GA 30322
| | - Dean P. Jones
- Emory Clinical Biomarkers Laboratory and Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta GA 30322
| |
Collapse
|
18
|
A novel OxyR sensor and regulator of hydrogen peroxide stress with one cysteine residue in Deinococcus radiodurans. PLoS One 2008; 3:e1602. [PMID: 18270589 PMCID: PMC2225504 DOI: 10.1371/journal.pone.0001602] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2007] [Accepted: 01/18/2008] [Indexed: 01/14/2023] Open
Abstract
In bacteria, OxyR is a peroxide sensor and transcription regulator, which can sense the presence of reactive oxygen species and induce antioxidant system. When the cells are exposed to H2O2, OxyR protein is activated via the formation of a disulfide bond between the two conserved cysteine residues (C199 and C208). In Deinococcus radiodurans, a previously unreported special characteristic of DrOxyR (DR0615) is found with only one conserved cysteine. dr0615 gene mutant is hypersensitive to H2O2, but only a little to ionizing radiation. Site-directed mutagenesis and subsequent in vivo functional analyses revealed that the conserved cysteine (C210) is necessary for sensing H2O2, but its mutation did not alter the binding characteristics of OxyR on DNA. Under oxidant stress, DrOxyR is oxidized to sulfenic acid form, which can be reduced by reducing reagents. In addition, quantitative real-time PCR and global transcription profile results showed that OxyR is not only a transcriptional activator (e.g., katE, drb0125), but also a transcriptional repressor (e.g., dps, mntH). Because OxyR regulates Mn and Fe ion transporter genes, Mn/Fe ion ratio is changed in dr0615 mutant, suggesting that the genes involved in Mn/Fe ion homeostasis, and the genes involved in antioxidant mechanism are highly cooperative under extremely oxidant stress. In conclusion, these findings expand the OxyR family, which could be divided into two classes: typical 2-Cys OxyR and 1-Cys OxyR.
Collapse
|
19
|
Abstract
Nitric oxide (NO) is an intermediate of the respiratory pathway known as denitrification, and is a by-product of anaerobic nitrite respiration in the enteric Bacteria. Pathogens are also exposed to NO inside host phagocytes, and possibly in other host niches as well. In recent years it has become apparent that there are multiple regulatory systems in prokaryotes that mediate responses to NO exposure. Owing to its reactivity, NO also has the potential to perturb the activities of other regulatory proteins, which are not necessarily directly involved in the response to NO. This review describes the current state of understanding of regulatory systems that respond to NO. An emerging trend is the predominance of iron proteins among the known physiological NO sensors.
Collapse
Affiliation(s)
- Stephen Spiro
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75083-0688, USA.
| |
Collapse
|
20
|
Rubenstein LA, Zauhar RJ, Lanzara RG. Molecular dynamics of a biophysical model for β2-adrenergic and G protein-coupled receptor activation. J Mol Graph Model 2006; 25:396-409. [PMID: 16574446 DOI: 10.1016/j.jmgm.2006.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 02/17/2006] [Accepted: 02/21/2006] [Indexed: 11/22/2022]
Abstract
This study analyzes 16 molecular dynamic simulations of a biophysical model for beta(2)-adrenergic (B2AR) and G protein-coupled receptor (GPCR) activation. In this model, a highly conserved cysteine residue, C106 (C3.25 or CysIII:01), provides a free sulfhydryl or thiol group in an acid-base equilibrium between uncharged (RSH) and charged (RS(-)) states that functions as an electrostatic molecular switch for receptor activation. The transition of C106 in the B2AR between acid and base states significantly changes the helical/transmembrane (TM) domain interactions and the electrostatic interaction energy differences (DeltaDeltaE(EL)). The DeltaDeltaE(EL) changes correlate well with the experimentally observed ligand efficacies. The TM interaction energies display patterns compatible with those previously recognized as responsible for GPCR activation. Key differences between the agonist, epinephrine, and the antagonist, pindolol, are seen for the TM3 x 6, TM3 x 4, TM6 x 7 and TM1 x 7 interaction energies. Pindolol also produces a weaker DeltaDeltaE(EL) interaction and less TM interaction energy changes, which are important differences between the agonist and antagonist ligands. The D115E mutant with pindolol displays a greater DeltaDeltaE(EL) and TM interactions than for the wild-type B2AR with pindolol. This explains the higher activity of pindolol in the D115E mutant. The constitutively active D130A mutant displays TM interaction patterns similar to those for the activating ligands implying a common pattern for receptor activation. These findings support the broad concept of protean agonism and demonstrate the potential for allosteric modulation. They also demonstrate that this two-state model agrees with many previous experimental and theoretical observations of GPCRs.
Collapse
Affiliation(s)
- Lester A Rubenstein
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, One Gustav Levy Place, New York, NY 10029, USA
| | | | | |
Collapse
|
21
|
Toledano MB, Delaunay A, Monceau L, Tacnet F. Microbial H2O2 sensors as archetypical redox signaling modules. Trends Biochem Sci 2004; 29:351-7. [PMID: 15236742 DOI: 10.1016/j.tibs.2004.05.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Michel B Toledano
- Laboratoire Stress Oxydants et Cancer, Service de Biologie Moléculaire Systémique, DBJC, DSV, CEA-Saclay, Bâtiment 142, 91191 Gif-sur-Yvette, France.
| | | | | | | |
Collapse
|
22
|
Abstract
Reactive (low pKa) cysteine residues in proteins are critical components in redox signaling. A particularly reactive and versatile reversibly oxidized form of cysteine, the sulfenic acid (Cys-SOH), has important roles as a catalytic center in enzymes and as a sensor of oxidative and nitrosative stress in enzymes and transcriptional regulators. Depending on environment, sometimes the sulfenic acid provides a metastable oxidized form, and other times it is a fleeting intermediate giving rise to more stable disulfide, sulfinic acid, or sulfenyl-amide forms.
Collapse
Affiliation(s)
- Leslie B Poole
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | |
Collapse
|
23
|
Wallecha A, Correnti J, Munster V, van der Woude M. Phase variation of Ag43 is independent of the oxidation state of OxyR. J Bacteriol 2003; 185:2203-9. [PMID: 12644490 PMCID: PMC151510 DOI: 10.1128/jb.185.7.2203-2209.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2002] [Accepted: 01/14/2003] [Indexed: 11/20/2022] Open
Abstract
OxyR is a DNA binding protein that differentially regulates a cell's response to hydrogen peroxide-mediated oxidative stress. We previously reported that the reduced form of OxyR is sufficient for repression of transcription of agn43 from unmethylated template DNA, which is essential for deoxyadenosine methylase (Dam)- and OxyR-dependent phase variation of agn43. Here we provide evidence that the oxidized form of OxyR [OxyR(ox)] also represses agn43 transcription. In vivo, we found that exogenous addition of hydrogen peroxide, sufficient to oxidize OxyR, did not affect the expression of agn43. OxyR(ox) repressed in vitro transcription but only from an unmethylated agn43 template. The -10 sequence of the promoter and three Dam target sequences were protected in an in vitro DNase I footprint assay by OxyR(ox). Furthermore, OxyR(ox) bound to the agn43 regulatory region DNA with an affinity similar to that for the regulatory regions of katG and oxyS, which are activated by OxyR(ox), indicating that binding at agn43 can occur at biologically relevant concentrations. OxyR-dependent regulation of Ag43 expression is therefore unusual in firstly that OxyR binding at agn43 is dependent on the methylation state of Dam target sequences in its binding site and secondly that OxyR-dependent repression appears to be independent of hydrogen-peroxide mediated oxidative stress and the oxidation state of OxyR.
Collapse
Affiliation(s)
- Anu Wallecha
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|