1
|
Zhou J, Zhou H, Zhu J, Fang S. Kaempferol inhibits cardiomyocyte pyroptosis via promoting O-GlcNAcylation of GSDME and improved acute myocardial infarction. BMC Pharmacol Toxicol 2025; 26:76. [PMID: 40200275 PMCID: PMC11980313 DOI: 10.1186/s40360-025-00908-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/19/2025] [Indexed: 04/10/2025] Open
Abstract
Acute myocardial infarction (AMI) is a leading fatal cardiovascular disease and poses a major threat to human health. Pyroptosis, an inflammation-related programmed cell death, plays a critical role in the progression of AMI. Kaempferol is a natural flavonoid compound with a variety of pharmacological effects, which exerts a significant cardioprotective function. The role of O-GlcNAcylation, a post-translation modification, has received attention in diseases including AMI. In this research, we explored the therapeutic potential of Kaempferol to AMI due to its well-known cardioprotective effect, including its antioxidant and anti-inflammatory properties. Hypoxia/reoxygenation (H/R) model was adopted to provoke myocardial injury and AMI mice model was established. Our findings indicated that H/R lessened cell viability and contributed to the release of LDH, IL-1β and IL-18, cell pyroptosis rate, and the expression of NLRP3, active caspase 1 and GSDMD-N-terminal domain (GSDMD-N). Kaempferol mitigated myocardial damage caused by H/R through repressing cell pyroptosis. Besides, we discovered that Kaempferol restored the levels of O-GlcNAcylation by regulating the activity of OGT (O-GlcNAc transferase) and OGA (O-GlcNAcase) in H/R-treated H9c2 cells. Notably, molecular docking revealed the binding relationship between Kaempferol and OGT. Further, we proved that knockdown of OGT abrogated the function of Kaempferol in H/R-induced pyroptosis. In AMI mice, Kaempferol relieved the myocardial tissue injury and decreased the NLRP3 and GSDME-N protein levels. More importantly, our results illustrated that OGT was responsible for the O-GlcNAcylation of GSDME at T94 site and acted as an inducing factor for GSDME phosphorylation. Namely, this study validated that Kaempferol facilitated GSDME O-GlcNAcylation to inhibit H/R-induced pyroptosis in an OGT-dependent manner.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Critical Care Medicine, Huzhou Third Municipal Hospital, Huzhou, Zhejiang, 313000, China
| | - Huifei Zhou
- Department of Critical Care Medicine, Huzhou Third Municipal Hospital, Huzhou, Zhejiang, 313000, China
| | - Jianfeng Zhu
- Department of Critical Care Medicine, Huzhou Third Municipal Hospital, Huzhou, Zhejiang, 313000, China
| | - Shunjin Fang
- Department of Critical Care Medicine, Huzhou Third Municipal Hospital, Huzhou, Zhejiang, 313000, China.
| |
Collapse
|
2
|
Xiao Y, Yue Z, Zijing H, Yao Z, Sui M, Xuemin Z, Qiang Z, Xiao Y, Dapeng R. Mechanical compression induces chondrocyte hypertrophy by regulating Runx2 O-GlcNAcylation during temporomandibular joint condyle degeneration. Bone Joint Res 2025; 14:209-222. [PMID: 40058403 PMCID: PMC11890221 DOI: 10.1302/2046-3758.143.bjr-2024-0257.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Aims Excessive chondrocyte hypertrophy is a common feature in cartilage degeneration which is susceptible to joint overloading, but the relationship between mechanical overloading and chondrocyte hypertrophy still remains elusive. The aim of our study was to explore the mechanism of mechanical compression-induced chondrocyte hypertrophy. Methods In this study, the temporomandibular joint (TMJ) degeneration model was built through forced mandibular retrusion (FMR)-induced compression in TMJ. Chondrocytes were also mechanically compressed in vitro. The role of O-GlcNAcylation in mechanical compression-induced chondrocyte hypertrophy manifested through specific activator Thiamet G and inhibitor OSMI-1. Results Both in vivo and in vitro data revealed that chondrocyte hypertrophic differentiation is promoted by compression. Immunofluorescent and immunoblotting results showed that protein pan-O-GlcNAcylation levels were elevated in these hypertrophic chondrocytes. Pharmacologically inhibiting protein pan-O-GlcNAcylation by OSMI-1 partially mitigated the compression-induced hypertrophic differentiation of chondrocytes. Specifically, runt-related transcription factor 2 (Runx2) and SRY-Box 9 transcription factor (Sox9) were subjected to modification of O-GlcNAcylation under mechanical compression, and pharmacological activation or inhibition of O-GlcNAcylation affected the transcriptional activity of Runx2 but not Sox9. Furthermore, compression-induced protein pan-O-GlcNAcylation in chondrocytes was induced by enhanced expression of glucose transporter 1 (GLUT1), and depletion of GLUT1 by WZB117 dampened the effect of compression on chondrocyte hypertrophy. Conclusion Our study proposes a novel function of GLUT1-mediated protein O-GlcNAcylation in driving compression-induced hypertrophic differentiation of chondrocytes by O-GlcNAc modification of Runx2, which promoted its transcriptional activity and strengthened the expressions of downstream hypertrophic marker.
Collapse
Affiliation(s)
- Yan Xiao
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Department of Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhang Yue
- Department of Orthodontics, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - He Zijing
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zheng Yao
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Department of Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mao Sui
- College of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Zeng Xuemin
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Department of Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhang Qiang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Department of Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuan Xiao
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Department of Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ren Dapeng
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Department of Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Spinelli S, Marino A, Morabito R, Remigante A. Interplay Between Metabolic Pathways and Increased Oxidative Stress in Human Red Blood Cells. Cells 2024; 13:2026. [PMID: 39682773 PMCID: PMC11640724 DOI: 10.3390/cells13232026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Red blood cells (RBCs) are highly specialized cells with a limited metabolic repertoire. However, it has been demonstrated that metabolic processes are affected by the production of reactive oxygen species (ROS), and critical enzymes allied to metabolic pathways can be impaired by redox reactions. Thus, oxidative stress-induced alternations in the metabolic pathways can contribute to cell dysfunction of human RBCs. Herein, we aim to provide an overview on the metabolic pathways of human RBCs, focusing on their pathophysiological relevance and their regulation in oxidative stress-related conditions.
Collapse
|
4
|
Ghareghomi S, Arghavani P, Mahdavi M, Khatibi A, García-Jiménez C, Moosavi-Movahedi AA. Hyperglycemia-driven signaling bridges between diabetes and cancer. Biochem Pharmacol 2024; 229:116450. [PMID: 39059774 DOI: 10.1016/j.bcp.2024.116450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Growing epidemiological evidence indicates an association between obesity, type 2 diabetes, and certain cancers, suggesting the existence of common underlying mechanisms in these diseases. Frequent hyperglycemias in type 2 diabetes promote pro-inflammatory responses and stimulate intracellular metabolic flux which rewires signaling pathways and influences the onset and advancement of different types of cancers. Here, we review the provocative impact of hyperglycemia on a subset of interconnected signalling pathways that regulate (i) cell growth and survival, (ii) metabolism adjustments, (iii) protein function modulation in response to nutrient availability (iv) and cell fate and proliferation and which are driven respectively by PI3K (Phosphoinositide 3-kinase), AMPK (AMP-activated protein kinase), O-GlcNAc (O-linked N-acetylglucosamine) and Wnt/β-catenin. Specifically, we will elaborate on their involvement in glucose metabolism, inflammation, and cell proliferation, highlighting their interplay in the pathogenesis of diabetes and cancer. Furthermore, the influence of antineoplastic and antidiabetic drugs on the unbridled cellular pathways will be examined. This review aims to inspire the next molecular studies to understand how type 2 diabetes may lead to certain cancers. This will contribute to personalized medicine and direct better prevention strategies.
Collapse
Affiliation(s)
- Somayyeh Ghareghomi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Payam Arghavani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Majid Mahdavi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Khatibi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Custodia García-Jiménez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos. Alcorcón, Madrid, Spain.
| | - Ali A Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; UNESCO Chair on Interdisciplinary Research in Diabetes, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Chowdhury MAR, Haq MM, Lee JH, Jeong S. Multi-faceted regulation of CREB family transcription factors. Front Mol Neurosci 2024; 17:1408949. [PMID: 39165717 PMCID: PMC11333461 DOI: 10.3389/fnmol.2024.1408949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/12/2024] [Indexed: 08/22/2024] Open
Abstract
cAMP response element-binding protein (CREB) is a ubiquitously expressed nuclear transcription factor, which can be constitutively activated regardless of external stimuli or be inducibly activated by external factors such as stressors, hormones, neurotransmitters, and growth factors. However, CREB controls diverse biological processes including cell growth, differentiation, proliferation, survival, apoptosis in a cell-type-specific manner. The diverse functions of CREB appear to be due to CREB-mediated differential gene expression that depends on cAMP response elements and multi-faceted regulation of CREB activity. Indeed, the transcriptional activity of CREB is controlled at several levels including alternative splicing, post-translational modification, dimerization, specific transcriptional co-activators, non-coding small RNAs, and epigenetic regulation. In this review, we present versatile regulatory modes of CREB family transcription factors and discuss their functional consequences.
Collapse
Affiliation(s)
- Md Arifur Rahman Chowdhury
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| | - Md Mazedul Haq
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jeong Hwan Lee
- Division of Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sangyun Jeong
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
6
|
Lehrer S, Morello T, Karrasch C, Rheinstein PH, Danias J. Effect of Glucosamine on Intraocular Pressure and Risk of Developing Glaucoma. J Glaucoma 2024; 33:240-245. [PMID: 38031296 PMCID: PMC10954404 DOI: 10.1097/ijg.0000000000002340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
PRCIS Glucosamine supplementation is common but can be associated with increased intraocular pressure (IOP) and could contribute to the pathogenesis of glaucoma. It may be prudent for ophthalmologists to elicit any history of glucosamine use from their patients and advise them accordingly. Further studies on the role of glucosamine in glaucoma are warranted. BACKGROUND The most frequently recommended slow-acting medication for osteoarthritis symptoms is glucosamine, although its effectiveness is questionable. Widely used glucosamine sulfate supplements may increase IOP. METHODS In the current study, we analyzed online databases such as UK Biobank, MedWatch, and FinnGen to evaluate the relationship between glucosamine and IOP and glaucoma. We included budesonide and fluticasone in the analysis for comparison since these drugs are associated with increased IOP. RESULTS In UK Biobank subjects, glucosamine use was associated with increased corneal compensated IOP ( P =0.002, 2-tailed t test). This was also true in subjects without glaucoma ( P =0.002, 2-tailed t test). However, no significant association between glucosamine and IOP was detected in subjects with a diagnosis of glaucoma. In MedWatch, 0.21% of subjects taking glucosamine reported glaucoma, 0.29% of subjects using budesonide reported glaucoma, and 0.22% of subjects using fluticasone reported glaucoma. In contrast, 0.08% of subjects using any other drug reported glaucoma. This variability is significant ( P <0.001, 2-tailed Fisher exact test). Data from FinnGen on the risk of primary open angle glaucoma or glaucoma in subjects using glucosamine before the diagnosis of the disease revealed a significantly increased risk for both primary open angle glaucoma (hazard ratio: 2.35) and glaucoma (hazard ratio: 1.95). CONCLUSION Glucosamine supplementation is common but can be associated with increased IOP and could contribute to the pathogenesis of glaucoma. It may be prudent for ophthalmologists to elicit any history of glucosamine use from their patients and advise them accordingly. Further studies on the role of glucosamine in glaucoma are warranted.
Collapse
Affiliation(s)
- Steven Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai
| | | | | | | | - John Danias
- Department of Ophthalmology, SUNY Downstate HSU, New York, NY
| |
Collapse
|
7
|
Chen YH, Cheng WH. Hexosamine biosynthesis and related pathways, protein N-glycosylation and O-GlcNAcylation: their interconnection and role in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1349064. [PMID: 38510444 PMCID: PMC10951099 DOI: 10.3389/fpls.2024.1349064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/05/2024] [Indexed: 03/22/2024]
Abstract
N-Acetylglucosamine (GlcNAc), a fundamental amino sugar moiety, is essential for protein glycosylation, glycolipid, GPI-anchor protein, and cell wall components. Uridine diphosphate-GlcNAc (UDP-GlcNAc), an active form of GlcNAc, is synthesized through the hexosamine biosynthesis pathway (HBP). Although HBP is highly conserved across organisms, the enzymes involved perform subtly distinct functions among microbes, mammals, and plants. A complete block of HBP normally causes lethality in any life form, reflecting the pivotal role of HBP in the normal growth and development of organisms. Although HBP is mainly composed of four biochemical reactions, HBP is exquisitely regulated to maintain the homeostasis of UDP-GlcNAc content. As HBP utilizes substrates including fructose-6-P, glutamine, acetyl-CoA, and UTP, endogenous nutrient/energy metabolites may be integrated to better suit internal growth and development, and external environmental stimuli. Although the genes encoding HBP enzymes are well characterized in microbes and mammals, they were less understood in higher plants in the past. As the HBP-related genes/enzymes have largely been characterized in higher plants in recent years, in this review we update the latest advances in the functions of the HBP-related genes in higher plants. In addition, HBP's salvage pathway and GlcNAc-mediated two major co- or post-translational modifications, N-glycosylation and O-GlcNAcylation, are also included in this review. Further knowledge on the function of HBP and its product conjugates, and the mechanisms underlying their response to deleterious environments might provide an alternative strategy for agricultural biofortification in the future.
Collapse
Affiliation(s)
| | - Wan-Hsing Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
8
|
Du P, Zhang X, Lian X, Hölscher C, Xue G. O-GlcNAcylation and Its Roles in Neurodegenerative Diseases. J Alzheimers Dis 2024; 97:1051-1068. [PMID: 38250776 DOI: 10.3233/jad-230955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
As a non-classical post-translational modification, O-linked β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) is widely found in human organ systems, particularly in our brains, and is indispensable for healthy cell biology. With the increasing age of the global population, the incidence of neurodegenerative diseases is increasing, too. The common characteristic of these disorders is the aggregation of abnormal proteins in the brain. Current research has found that O-GlcNAcylation dysregulation is involved in misfolding or aggregation of these abnormal proteins to mediate disease progression, but the specific mechanism has not been defined. This paper reviews recent studies on O-GlcNAcylation's roles in several neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, Machado-Joseph's disease, and giant axonal neuropathy, and shows that O-GlcNAcylation, as glucose metabolism sensor, mediating synaptic function, participating in oxidative stress response and signaling pathway conduction, directly or indirectly regulates characteristic pathological protein toxicity and affects disease progression. The existing results suggest that targeting O-GlcNAcylation will provide new ideas for clinical diagnosis, prevention, and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Pengyang Du
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaomin Zhang
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xia Lian
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Christian Hölscher
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou, China
| | - Guofang Xue
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
9
|
Mukherjee MM, Bond MR, Abramowitz LK, Biesbrock D, Woodroofe CC, Kim EJ, Swenson RE, Hanover JA. Tools and tactics to define specificity of metabolic chemical reporters. Front Mol Biosci 2023; 10:1286690. [PMID: 38143802 PMCID: PMC10740162 DOI: 10.3389/fmolb.2023.1286690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Metabolic chemical reporters (MCRs) provide easily accessible means to study glycans in their native environments. However, because monosaccharide precursors are shared by many glycosylation pathways, selective incorporation has been difficult to attain. Here, a strategy for defining the selectivity and enzymatic incorporation of an MCR is presented. Performing β-elimination to interrogate O-linked sugars and using commercially available glycosidases and glycosyltransferase inhibitors, we probed the specificity of widely used azide (Ac4GalNAz) and alkyne (Ac4GalNAlk and Ac4GlcNAlk) sugar derivatives. Following the outlined strategy, we provide a semiquantitative assessment of the specific and non-specific incorporation of this bioorthogonal sugar (Ac4GalNAz) into numerous N- and O-linked glycosylation pathways. This approach should be generally applicable to other MCRs to define the extent of incorporation into the various glycan species.
Collapse
Affiliation(s)
- Mana Mohan Mukherjee
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michelle R. Bond
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lara K. Abramowitz
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Devin Biesbrock
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Carolyn C. Woodroofe
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Fredrick, MD, United States
| | - Eun Ju Kim
- Department of Chemistry Education, Daegu University, Gyeongsan-si, South Korea
| | - Rolf E. Swenson
- Department of Chemistry Education, Daegu University, Gyeongsan-si, South Korea
| | - John A. Hanover
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
10
|
Costa TJ, Wilson EW, Fontes MT, Pernomian L, Tostes RC, Wenceslau CF, McCarthy CG. The O-GlcNAc dichotomy: when does adaptation become pathological? Clin Sci (Lond) 2023; 137:1683-1697. [PMID: 37986614 PMCID: PMC12083504 DOI: 10.1042/cs20220309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
O-Linked attachment of β-N-acetylglucosamine (O-GlcNAc) on serine and threonine residues of nuclear, cytoplasmic, and mitochondrial proteins is a highly dynamic and ubiquitous post-translational modification that impacts the function, activity, subcellular localization, and stability of target proteins. Physiologically, acute O-GlcNAcylation serves primarily to modulate cellular signaling and transcription regulatory pathways in response to nutrients and stress. To date, thousands of proteins have been revealed to be O-GlcNAcylated and this number continues to grow as the technology for the detection of O-GlcNAc improves. The attachment of a single O-GlcNAc is catalyzed by the enzyme O-GlcNAc transferase (OGT), and their removal is catalyzed by O-GlcNAcase (OGA). O-GlcNAcylation is regulated by the metabolism of glucose via the hexosamine biosynthesis pathway, and the metabolic abnormalities associated with pathophysiological conditions are all associated with increased flux through this pathway and elevate O-GlcNAc levels. While chronic O-GlcNAcylation is well associated with cardiovascular dysfunction, only until recently, and with genetically modified animals, has O-GlcNAcylation as a contributing mechanism of cardiovascular disease emerged. This review will address and critically evaluate the current literature on the role of O-GlcNAcylation in vascular physiology, with a view that this pathway can offer novel targets for the treatment and prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Tiago J. Costa
- Cardiovascular Translational Research Center, University of
South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South
Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and
Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Emily W. Wilson
- Cardiovascular Translational Research Center, University of
South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South
Carolina School of Medicine-Columbia, SC, U.S.A
| | - Milene T. Fontes
- Cardiovascular Translational Research Center, University of
South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South
Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and
Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Laena Pernomian
- Cardiovascular Translational Research Center, University of
South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South
Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and
Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirao Preto Medical School,
University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Camilla F. Wenceslau
- Cardiovascular Translational Research Center, University of
South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South
Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and
Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Cameron G. McCarthy
- Cardiovascular Translational Research Center, University of
South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South
Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and
Computing, University of South Carolina, Columbia, SC, U.S.A
| |
Collapse
|
11
|
Jiang X, Yang Q. Recent advances in glycoside hydrolase family 20 and 84 inhibitors: Structures, inhibitory mechanisms and biological activities. Bioorg Chem 2023; 142:106870. [PMID: 39492366 DOI: 10.1016/j.bioorg.2023.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 11/05/2024]
Abstract
Glycoside hydrolase family 20 (GH20) β-N-acetyl-d-hexosaminidase (Hex) catalyzes the cleavage of glycosidic linkages in glycans, glycolipids and glycoproteins, and is involved in glycoprotein modification, metabolism of glycoconjugate and the degradation of chitin in fungal cell walls and arthropod exoskeletons. GH84 O-β-N-acetyl-d-glucosaminidase (OGA), which is mechanistically similar related to GH20, participates in the O-GlcNAcylation modification, hydrolyzing the O-GlcNAc moiety from protein acceptors. Hex and OGA are of interest due to their potential for the treatment of disorder diseases and plant protection. Hex inhibitors act as molecular chaperones to treat lysosomal storage disease and as growth regulators to arrest insect molting. Inhibition of OGA is a promising therapeutic approach to treat tau pathology in neurodegenerative diseases such as Alzheimer's disease. However, since Hex and OGA exhibit similar active sites, there are challenges in designing highly selective inhibitors. The elucidation of the structural basis of the catalytic mechanism and substrate binding mode of Hex and OGA has provided core information for virtual screening and rational design of inhibitors. A large number of high-potency and selective inhibitors have been developed in the last five years. In this review, we focus on the recent advances in the structural modification, inhibitory activity, binding mechanisms and biological evaluation of Hex and OGA inhibitors, which will facilitate the development of new drugs and agrochemicals.
Collapse
Affiliation(s)
- Xi Jiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qing Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
12
|
Kim DY, Park J, Han IO. Hexosamine biosynthetic pathway and O-GlcNAc cycling of glucose metabolism in brain function and disease. Am J Physiol Cell Physiol 2023; 325:C981-C998. [PMID: 37602414 DOI: 10.1152/ajpcell.00191.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
Impaired brain glucose metabolism is considered a hallmark of brain dysfunction and neurodegeneration. Disruption of the hexosamine biosynthetic pathway (HBP) and subsequent O-linked N-acetylglucosamine (O-GlcNAc) cycling has been identified as an emerging link between altered glucose metabolism and defects in the brain. Myriads of cytosolic and nuclear proteins in the nervous system are modified at serine or threonine residues with a single N-acetylglucosamine (O-GlcNAc) molecule by O-GlcNAc transferase (OGT), which can be removed by β-N-acetylglucosaminidase (O-GlcNAcase, OGA). Homeostatic regulation of O-GlcNAc cycling is important for the maintenance of normal brain activity. Although significant evidence linking dysregulated HBP metabolism and aberrant O-GlcNAc cycling to induction or progression of neuronal diseases has been obtained, the issue of whether altered O-GlcNAcylation is causal in brain pathogenesis remains uncertain. Elucidation of the specific functions and regulatory mechanisms of individual O-GlcNAcylated neuronal proteins in both normal and diseased states may facilitate the identification of novel therapeutic targets for various neuronal disorders. The information presented in this review highlights the importance of HBP/O-GlcNAcylation in the neuronal system and summarizes the roles and potential mechanisms of O-GlcNAcylated neuronal proteins in maintaining normal brain function and initiation and progression of neurological diseases.
Collapse
Affiliation(s)
- Dong Yeol Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Jiwon Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Inn-Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| |
Collapse
|
13
|
Sheikh MA, Alawathugoda TT, Vyas G, Emerald BS, Ansari SA. O-GlcNAc transferase promotes glioblastoma by modulating genes responsible for cell survival, invasion, and inflammation. J Biol Chem 2023; 299:105235. [PMID: 37689115 PMCID: PMC10570119 DOI: 10.1016/j.jbc.2023.105235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023] Open
Abstract
Metabolic reprogramming has emerged as one of the key hallmarks of cancer cells. Various metabolic pathways are dysregulated in cancers, including the hexosamine biosynthesis pathway. Protein O-GlcNAcylation is catalyzed by the enzyme O-GlcNAc transferase (OGT), an effector of hexosamine biosynthesis pathway that is found to be upregulated in most cancers. Posttranslational O-GlcNAcylation of various signaling and transcriptional regulators could promote cancer cell maintenance and progression by regulating gene expression, as gene-specific transcription factors and chromatin regulators are among the most highly O-GlcNAcylated proteins. Here, we investigated the role of OGT in glioblastoma. We demonstrate that OGT knockdown and chemical inhibition led to reduced glioblastoma cell proliferation and downregulation of many genes known to play key roles in glioblastoma cell proliferation, migration, and invasion. We show that genes downregulated due to OGT reduction are also known to be transcriptionally regulated by transcriptional initiation/elongation cofactor BRD4. We found BRD4 to be O-GlcNAcylated in glioblastoma cells; however, OGT knockdown/inhibition neither changed its expression nor its chromatin association on promoters. Intriguingly, we observed OGT knockdown led to reduced Pol II-Ser2P chromatin association on target genes without affecting other transcription initiation/elongation factors. Finally, we found that chemical inhibition of BRD4 potentiated the effects of OGT inhibition in reducing glioblastoma cell proliferation, invasion, and migration. We propose BRD4 and OGT act independently in the transcriptional regulation of a common set of genes and that combined inhibition of OGT and BRD4 could be utilized therapeutically for more efficient glioblastoma cell targeting than targeting of either protein alone.
Collapse
Affiliation(s)
- Muhammad Abid Sheikh
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Thilina T Alawathugoda
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Garima Vyas
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates; Precision Medicine Research Institute Abu Dhabi (PMRIAD), United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Suraiya A Ansari
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates; Precision Medicine Research Institute Abu Dhabi (PMRIAD), United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
14
|
de Lima Castro M, Dos Passos RR, Justina VD, do Amaral WN, Giachini FR. Physiological and pathological evidence of O-GlcNAcylation regulation during pregnancy related process. Placenta 2023; 141:43-50. [PMID: 37210277 DOI: 10.1016/j.placenta.2023.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/22/2023] [Accepted: 04/25/2023] [Indexed: 05/22/2023]
Abstract
O-GlcNAcylation is a dynamic and reversible post-translational modification (PTM) controlled by the enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Changes in its expression lead to a breakdown in cellular homeostasis, which is linked to several pathological processes. Placentation and embryonic development are periods of high cell activity, and imbalances in cell signaling pathways can result in infertility, miscarriage, or pregnancy complications. O-GlcNAcylation is involved in cellular processes such as genome maintenance, epigenetic regulation, protein synthesis/degradation, metabolic pathways, signaling pathways, apoptosis, and stress response. Trophoblastic differentiation/invasion and placental vasculogenesis, as well as zygote viability and embryonic neuronal development, are all dependent on O-GlcNAcylation. This PTM is required for pluripotency, which is a required condition for embryonic development. Further, this pathway is a nutritional sensor and cell stress marker, which is primarily measured by the OGT enzyme and its product, protein O-GlcNAcylation. Yet, this post-translational modification is enrolled in metabolic and cardiovascular adaptations during pregnancy. Finally, evidence of how O-GlcNAc impacts pregnancy during pathological conditions such as hyperglycemia, gestational diabetes, hypertension, and stress disorders are reviewed. Considering this scenario, progress in understanding the role of O- GlcNAcylation in pregnancy is required.
Collapse
Affiliation(s)
- Marta de Lima Castro
- Graduation Program in Health Sciences, Faculty of Medicine, Federal University of Goias, Goiânia, Brazil
| | - Rinaldo Rodrigues Dos Passos
- Institute of Biological Sciences, Federal University of Goias, Goiânia, Brazil; Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Vanessa Dela Justina
- Institute of Biological Sciences, Federal University of Goias, Goiânia, Brazil; Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Waldemar Naves do Amaral
- Graduation Program in Health Sciences, Faculty of Medicine, Federal University of Goias, Goiânia, Brazil
| | - Fernanda Regina Giachini
- Institute of Biological Sciences, Federal University of Goias, Goiânia, Brazil; Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil.
| |
Collapse
|
15
|
Bell MB, Ouyang X, Shelton AK, Huynh NV, Mueller T, Chacko BK, Jegga AG, Chatham JC, Miller CR, Darley-Usmar V, Zhang J. Relationships between gene expression and behavior in mice in response to systemic modulation of the O-GlcNAcylation pathway. J Neurochem 2023; 165:682-700. [PMID: 37129420 DOI: 10.1111/jnc.15835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/30/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023]
Abstract
Enhancing protein O-GlcNAcylation by pharmacological inhibition of the enzyme O-GlcNAcase (OGA), which removes the O-GlcNAc modification from proteins, has been explored in mouse models of amyloid-beta and tau pathology. However, the O-GlcNAcylation-dependent link between gene expression and neurological behavior remains to be explored. Using chronic administration of Thiamet G (TG, an OGA inhibitor) in vivo, we used a protocol designed to relate behavior with the transcriptome and selected biochemical parameters from the cortex of individual animals. TG-treated mice showed improved working memory as measured using a Y-maze test. RNA sequencing analysis revealed 151 top differentially expressed genes with a Log2fold change >0.33 and adjusted p-value <0.05. Top TG-dependent upregulated genes were related to learning, cognition and behavior, while top downregulated genes were related to IL-17 signaling, inflammatory response and chemotaxis. Additional pathway analysis uncovered 3 pathways, involving gene expression including 14 cytochrome c oxidase subunits/regulatory components, chaperones or assembly factors, and 5 mTOR (mechanistic target of rapamycin) signaling factors. Multivariate Kendall correlation analyses of behavioral tests and the top TG-dependent differentially expressed genes revealed 91 statistically significant correlations in saline-treated mice and 70 statistically significant correlations in TG-treated mice. These analyses provide a network regulation landscape that is important in relating the transcriptome to behavior and the potential impact of the O-GlcNAC pathway.
Collapse
Affiliation(s)
- Margaret B Bell
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xiaosen Ouyang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Abigail K Shelton
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nha V Huynh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Toni Mueller
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Balu K Chacko
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Anil G Jegga
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - John C Chatham
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - C Ryan Miller
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham VA Medical Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
16
|
Lakhani A, Chen X, Chen LC, Khericha M, Chen YY, Park JO. Extracellular Domains of CAR Reprogram T-Cell Metabolism Without Antigen Stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.533021. [PMID: 37066394 PMCID: PMC10103977 DOI: 10.1101/2023.04.03.533021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Metabolism is an indispensable part of T-cell proliferation, activation, and exhaustion, yet the metabolism of chimeric antigen receptor (CAR)-T cells remains incompletely understood. CARs are comprised of extracellular domains that determine cancer specificity, often using single-chain variable fragments (scFvs), and intracellular domains that trigger signaling upon antigen binding. Here we show that CARs differing only in the scFv reprogram T-cell metabolism differently. Even in the absence of antigens, some CARs increase proliferation and nutrient uptake in T cells. Using stable isotope tracers and mass spectrometry, we observe basal metabolic fluxes through glycolysis doubling and amino acid uptake overtaking anaplerosis in CAR-T cells harboring rituximab scFv, unlike other similar anti-CD20 scFvs. Disparate rituximab and 14g2a-based anti-GD2 CAR-T cells are similarly hypermetabolic and channel excess nutrients to nitrogen overflow metabolism. Since CAR-dependent metabolic reprogramming alters cellular energetics, nutrient utilization, and proliferation, metabolic profiling should be an integral part of CAR-T cell development.
Collapse
|
17
|
Taira TM, Ramos-Junior ES, Melo PH, Costa-Silva CC, Alteen MG, Vocadlo DJ, Dias WB, Cunha FQ, Alves-Filho JC, Søe K, Fukada SY. HBP/O-GlcNAcylation Metabolic Axis Regulates Bone Resorption Outcome. J Dent Res 2023; 102:440-449. [PMID: 36749069 DOI: 10.1177/00220345221141043] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Osteoclasts play a key role in the regulation of bone mass and are highly active metabolically. Here we show that a metabolic reprogramming toward the hexosamine biosynthetic pathway (HBP) is required not only for osteoclast differentiation but also to determine the bone resorption mode during physiological and pathological bone remodeling. We found that pharmacological inhibition of O-GlcNAc transferase (OGT) significantly reduced protein O-GlcNAcylation and osteoclast differentiation. Accordingly, genetic deletion of OGT also inhibited osteoclast formation and downregulated critical markers related to osteoclasts differentiation and function (NFATc1, αvintegrin, cathepsin K). Indeed, cells treated with OSMI-1, an OGT inhibitor, also reduced nuclear translocation of NFATc1. Furthermore, the addition of exogenous N-acetylglucosamine (GlcNAc) strongly increased osteoclast formation and demineralization ability. Strikingly, our data show for the first time that O-GlcNAcylation facilitates an aggressive trench resorption mode in human cells. The incubation of osteoclasts with exogenous GlcNAc increases the percentage of erosion by trench while having no effect on pit resorption mode. Through time-lapse recording, we documented that osteoclasts making trenches moving across the bone surface are sensitive to GlcNAcylation. Finally, osteoclast-specific Ogt-deficient mice show increased bone density and reduced inflammation-induced bone loss during apical periodontitis model. We show that osteoclast-specific Ogt-deficient mice are less susceptible to develop bacterial-induced periapical lesion. Consistent with this, Ogt-deleted mice showed a decreased number of tartrate-resistant acid phosphatase-positive cells lining the apical periodontitis site. In summary, here we describe a hitherto undiscovered role of the HBP/O-GlcNAcylation axis tuning resorption mode and dictating bone resorption outcome.
Collapse
Affiliation(s)
- T M Taira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Café, sn, 14040-903, Ribeirão Preto, Brazil
- Department of Pediatric, School of Dentistry of Ribeirão Preto, Preventive and Social Dentistry, University of São Paulo, Ribeirão Preto, Brazil
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, casa 3, 14049-900, Ribeirão Preto, Brazil
| | - E S Ramos-Junior
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Café, sn, 14040-903, Ribeirão Preto, Brazil
- Department of Oral Biology & Diagnostic Sciences, The Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - P H Melo
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Avenida Bandeirantes, 3900, 14049-900, Ribeirão Preto, Brazil
| | - C C Costa-Silva
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Café, sn, 14040-903, Ribeirão Preto, Brazil
| | - M G Alteen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, B.C. V5A 1S6 Canada
| | - D J Vocadlo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, B.C. V5A 1S6 Canada
| | - W B Dias
- Laboratório de Glicobiologia Estrutural e Funcional, Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, Brazil
| | - F Q Cunha
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, casa 3, 14049-900, Ribeirão Preto, Brazil
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Avenida Bandeirantes, 3900, 14049-900, Ribeirão Preto, Brazil
| | - J C Alves-Filho
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, casa 3, 14049-900, Ribeirão Preto, Brazil
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Avenida Bandeirantes, 3900, 14049-900, Ribeirão Preto, Brazil
| | - K Søe
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark
- Clinical Cell Biology, Department of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark
| | - S Y Fukada
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Café, sn, 14040-903, Ribeirão Preto, Brazil
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, casa 3, 14049-900, Ribeirão Preto, Brazil
| |
Collapse
|
18
|
Xuefei Y, Dongyan L, Tianming L, Hejuan Z, Jianhua F. O-linked N-acetylglucosamine affects mitochondrial homeostasis by regulating Parkin-dependent mitophagy in hyperoxia-injured alveolar type II cells injury. Respir Res 2023; 24:16. [PMID: 36647045 PMCID: PMC9841680 DOI: 10.1186/s12931-022-02287-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/09/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The level of linked N-acetylglucosamine (O-GlcNAc) has been proved to be a sensor of cell state, but its relationship with hyperoxia-induced alveolar type 2 epithelial cells injure and bronchopulmonary dysplasia (BPD) has not been clarified. In this study, we evaluated if these effects ultimately led to functional damage in hyperoxia-induced alveolar cells. METHODS We treated RLE-6TN cells at 85% hyperoxia for 0, 24 and 48 h with Thiamet G (TG), an OGA inhibitor; OSMI-1 (OS), an OGT inhibitor; or with UDP-GlcNAc, which is involved in synthesis of O-GlcNAc as a donor. The metabolic rerouting, cell viability and apoptosis resulting from the changes in O-GlcNAc glycosyltransferase levels were evaluated in RLE-6TN cells after hyperoxia exposure. We constructed rat Park2 overexpression and knockdown plasmmids for in vitro verification and Co-immunoprecipitation corroborated the binding of Parkin and O-GlcNAc. Finally, we assessed morphological detection in neonatal BPD rats with TG and OS treatment. RESULTS We found a decrease in O-GlcNAc content and levels of its metabolic enzymes in RLE-6TN cells under hyperoxia. However, the inhibition of OGT function with OSMI-1 ameliorated hyperoxia-induced lung epithelial cell injury, enhanced cell metabolism and viability, reduced apoptosis, and accelerated the cell proliferation. Mitochondrial homeostasis was affected by O-GlcNAc and regulated Parkin. CONCLUSION The results revealed that the decreased O-GlcNAc levels and increased O-GlcNAcylation of Parkin might cause hyperoxia-induced alveolar type II cells injurys.
Collapse
Affiliation(s)
- Yu Xuefei
- grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning 110004 People’s Republic of China
| | - Liu Dongyan
- grid.412467.20000 0004 1806 3501Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning China
| | - Li Tianming
- grid.412467.20000 0004 1806 3501Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning China
| | - Zheng Hejuan
- grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning 110004 People’s Republic of China
| | - Fu Jianhua
- grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning 110004 People’s Republic of China
| |
Collapse
|
19
|
Lu Q, Zhang X, Liang T, Bai X. O-GlcNAcylation: an important post-translational modification and a potential therapeutic target for cancer therapy. Mol Med 2022; 28:115. [PMID: 36104770 PMCID: PMC9476278 DOI: 10.1186/s10020-022-00544-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023] Open
Abstract
O-linked β-d-N-acetylglucosamine (O-GlcNAc) is an important post-translational modification of serine or threonine residues on thousands of proteins in the nucleus and cytoplasm of all animals and plants. In eukaryotes, only two conserved enzymes are involved in this process. O-GlcNAc transferase is responsible for adding O-GlcNAc to proteins, while O-GlcNAcase is responsible for removing it. Aberrant O-GlcNAcylation is associated with a variety of human diseases, such as diabetes, cancer, neurodegenerative diseases, and cardiovascular diseases. Numerous studies have confirmed that O-GlcNAcylation is involved in the occurrence and progression of cancers in multiple systems throughout the body. It is also involved in regulating multiple cancer hallmarks, such as metabolic reprogramming, proliferation, invasion, metastasis, and angiogenesis. In this review, we first describe the process of O-GlcNAcylation and the structure and function of O-GlcNAc cycling enzymes. In addition, we detail the occurrence of O-GlcNAc in various cancers and the role it plays. Finally, we discuss the potential of O-GlcNAc as a promising biomarker and novel therapeutic target for cancer diagnosis, treatment, and prognosis.
Collapse
|
20
|
Liu Y, Hu Y, Li S. Protein O-GlcNAcylation in Metabolic Modulation of Skeletal Muscle: A Bright but Long Way to Go. Metabolites 2022; 12:888. [PMID: 36295790 PMCID: PMC9610910 DOI: 10.3390/metabo12100888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 09/07/2024] Open
Abstract
O-GlcNAcylation is an atypical, dynamic and reversible O-glycosylation that is critical and abundant in metazoan. O-GlcNAcylation coordinates and receives various signaling inputs such as nutrients and stresses, thus spatiotemporally regulating the activity, stability, localization and interaction of target proteins to participate in cellular physiological functions. Our review discusses in depth the involvement of O-GlcNAcylation in the precise regulation of skeletal muscle metabolism, such as glucose homeostasis, insulin sensitivity, tricarboxylic acid cycle and mitochondrial biogenesis. The complex interaction and precise modulation of O-GlcNAcylation in these nutritional pathways of skeletal muscle also provide emerging mechanical information on how nutrients affect health, exercise and disease. Meanwhile, we explored the potential role of O-GlcNAcylation in skeletal muscle pathology and focused on its benefits in maintaining proteostasis under atrophy. In general, these understandings of O-GlcNAcylation are conducive to providing new insights into skeletal muscle (patho) physiology.
Collapse
Affiliation(s)
| | | | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
21
|
Very N, El Yazidi-Belkoura I. Targeting O-GlcNAcylation to overcome resistance to anti-cancer therapies. Front Oncol 2022; 12:960312. [PMID: 36059648 PMCID: PMC9428582 DOI: 10.3389/fonc.2022.960312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/19/2022] [Indexed: 12/14/2022] Open
Abstract
In cancer cells, metabolic reprogramming is associated with an alteration of the O-GlcNAcylation homeostasis. This post-translational modification (PTM) that attaches O-GlcNAc moiety to intracellular proteins is dynamically and finely regulated by the O-GlcNAc Transferase (OGT) and the O-GlcNAcase (OGA). It is now established that O-GlcNAcylation participates in many features of cancer cells including a high rate of cell growth, invasion, and metastasis but little is known about its impact on the response to therapies. The purpose of this review is to highlight the role of O-GlcNAc protein modification in cancer resistance to therapies. We summarize the current knowledge about the crosstalk between O-GlcNAcylation and molecular mechanisms underlying tumor sensitivity/resistance to targeted therapies, chemotherapies, immunotherapy, and radiotherapy. We also discuss potential benefits and strategies of targeting O-GlcNAcylation to overcome cancer resistance.
Collapse
Affiliation(s)
- Ninon Very
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Ikram El Yazidi-Belkoura
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- *Correspondence: Ikram El Yazidi-Belkoura,
| |
Collapse
|
22
|
Disruption of O-GlcNAcylation Homeostasis Induced Ovarian Granulosa Cell Injury in Bovine. Int J Mol Sci 2022; 23:ijms23147815. [PMID: 35887161 PMCID: PMC9324263 DOI: 10.3390/ijms23147815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) modification is a ubiquitous, reversible, and highly dynamic post-translational modification, which takes charge of almost all biological processes examined. However, little information is available regarding the molecular regulation of O-GlcNAcylation in granulosa cell function and glucose metabolism. This study focused on the impact of disrupted O-GlcNAc cycling on the proliferation and apoptosis of bovine granulosa cells, and further aimed to determine how this influenced glucose metabolism. Pharmacological inhibition of OGT with benzyl-2-acetamido-2-deoxy-α-D-galactopyranoside (BADGP) led to decreased cellular O-GlcNAc levels, as well as OGT and OGA protein expressions, whereas increasing O-GlcNAc levels with the OGA inhibitor, O-(2-acetamido-2-deoxy-D-gluco-pyranosylidene) (PUGNAc), resulted in elevated OGA protein expression and decreased OGT protein expression in granulosa cells. Dysregulated O-GlcNAc cycling reduced cell viability, downregulated the proliferation-related genes of CDC42 and PCNA transcripts, upregulated the pro-apoptotic genes of BAX and CASPASE-3 mRNA and the ratio of BAX/BCL-2, and increased the apoptotic rate. Glycolytic enzyme activities of hexokinase and pyruvate kinase, metabolite contents of pyruvate and lactate, mitochondrial membrane potential, ATP levels, and intermediate metabolic enzyme activities of succinate dehydrogenase and malate dehydrogenase involved in the tricarboxylic acid cycle, were significantly impaired in response to altered O-GlcNAc levels. Moreover, inhibition of OGT significantly increased the expression level of thioredoxin-interacting protein (TXNIP), but repression of OGA had no effect. Collectively, our results suggest that perturbation of O-GlcNAc cycling has a profound effect on granulosa cell function and glucose metabolism.
Collapse
|
23
|
Liu Y, Hu YJ, Fan WX, Quan X, Xu B, Li SZ. O-GlcNAcylation: The Underestimated Emerging Regulators of Skeletal Muscle Physiology. Cells 2022; 11:1789. [PMID: 35681484 PMCID: PMC9180116 DOI: 10.3390/cells11111789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
O-GlcNAcylation is a highly dynamic, reversible and atypical glycosylation that regulates the activity, biological function, stability, sublocation and interaction of target proteins. O-GlcNAcylation receives and coordinates different signal inputs as an intracellular integrator similar to the nutrient sensor and stress receptor, which target multiple substrates with spatio-temporal analysis specifically to maintain cellular homeostasis and normal physiological functions. Our review gives a brief description of O-GlcNAcylation and its only two processing enzymes and HBP flux, which will help to better understand its physiological characteristics of sensing nutrition and environmental cues. This nutritional and stress-sensitive properties of O-GlcNAcylation allow it to participate in the precise regulation of skeletal muscle metabolism. This review discusses the mechanism of O-GlcNAcylation to alleviate metabolic disorders and the controversy about the insulin resistance of skeletal muscle. The level of global O-GlcNAcylation is precisely controlled and maintained in the "optimal zone", and its abnormal changes is a potential factor in the pathogenesis of cancer, neurodegeneration, diabetes and diabetic complications. Although the essential role of O-GlcNAcylation in skeletal muscle physiology has been widely studied and recognized, it still is underestimated and overlooked. This review highlights the latest progress and potential mechanisms of O-GlcNAcylation in the regulation of skeletal muscle contraction and structural properties.
Collapse
Affiliation(s)
| | | | | | | | - Bin Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Y.L.); (Y.-J.H.); (W.-X.F.); (X.Q.)
| | - Shi-Ze Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Y.L.); (Y.-J.H.); (W.-X.F.); (X.Q.)
| |
Collapse
|
24
|
Xue Q, Yan R, Ji S, Yu S. Regulation of mitochondrial network homeostasis by O-GlcNAcylation. Mitochondrion 2022; 65:45-55. [DOI: 10.1016/j.mito.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 12/20/2022]
|
25
|
Parween S, Alawathugoda TT, Prabakaran AD, Dheen ST, Morse RH, Emerald BS, Ansari SA. Nutrient sensitive protein O-GlcNAcylation modulates the transcriptome through epigenetic mechanisms during embryonic neurogenesis. Life Sci Alliance 2022; 5:5/8/e202201385. [PMID: 35470239 PMCID: PMC9039347 DOI: 10.26508/lsa.202201385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 01/02/2023] Open
Abstract
Protein O-GlcNAcylation is a dynamic, nutrient-sensitive mono-glycosylation deposited on numerous nucleo-cytoplasmic and mitochondrial proteins, including transcription factors, epigenetic regulators, and histones. However, the role of protein O-GlcNAcylation on epigenome regulation in response to nutrient perturbations during development is not well understood. Herein we recapitulated early human embryonic neurogenesis in cell culture and found that pharmacological up-regulation of O-GlcNAc levels during human embryonic stem cells' neuronal differentiation leads to up-regulation of key neurogenic transcription factor genes. This transcriptional de-repression is associated with reduced H3K27me3 and increased H3K4me3 levels on the promoters of these genes, perturbing promoter bivalency possibly through increased EZH2-Thr311 phosphorylation. Elevated O-GlcNAc levels also lead to increased Pol II-Ser5 phosphorylation and affect H2BS112O-GlcNAc and H2BK120Ub1 on promoters. Using an in vivo rat model of maternal hyperglycemia, we show similarly elevated O-GlcNAc levels and epigenetic dysregulations in the developing embryo brains because of hyperglycemia, whereas pharmacological inhibition of O-GlcNAc transferase (OGT) restored these molecular changes. Together, our results demonstrate O-GlcNAc mediated sensitivity of chromatin to nutrient status, and indicate how metabolic perturbations could affect gene expression during neurodevelopment.
Collapse
Affiliation(s)
- Shama Parween
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Thilina T Alawathugoda
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ashok D Prabakaran
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - S Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Randall H Morse
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Suraiya A Ansari
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates .,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
26
|
O-GlcNAcylation and Regulation of Galectin-3 in Extraembryonic Endoderm Differentiation. Biomolecules 2022; 12:biom12050623. [PMID: 35625551 PMCID: PMC9138951 DOI: 10.3390/biom12050623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022] Open
Abstract
The regulation of proteins through the addition and removal of O-linked β-N-acetylglucosamine (O-GlcNAc) plays a role in many signaling events, specifically in stem cell pluripotency and the regulation of differentiation. However, these post-translational modifications have not been explored in extraembryonic endoderm (XEN) differentiation. Of the plethora of proteins regulated through O-GlcNAc, we explored galectin-3 as a candidate protein known to have various intracellular and extracellular functions. Based on other studies, we predicted a reduction in global O-GlcNAcylation levels and a distinct galectin expression profile in XEN cells relative to embryonic stem (ES) cells. By conducting dot blot analysis, XEN cells had decreased levels of global O-GlcNAc than ES cells, which reflected a disbalance in the expression of genes encoding O-GlcNAc cycle enzymes. Immunoassays (Western blot and ELISA) revealed that although XEN cells (low O-GlcNAc) had lower concentrations of both intracellular and extracellular galectin-3 than ES cells (high O-GlcNAc), the relative secretion of galectin-3 was significantly increased by XEN cells. Inducing ES cells toward XEN in the presence of an O-GlcNAcase inhibitor was not sufficient to inhibit XEN differentiation. However, global O-GlcNAcylation was found to decrease in differentiated cells and the extracellular localization of galectin-3 accompanies these changes. Inhibiting global O-GlcNAcylation status does not, however, impact pluripotency and the ability of ES cells to differentiate to the XEN lineage.
Collapse
|
27
|
Metabolism in atherosclerotic plaques: immunoregulatory mechanisms in the arterial wall. Clin Sci (Lond) 2022; 136:435-454. [PMID: 35348183 PMCID: PMC8965849 DOI: 10.1042/cs20201293] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023]
Abstract
Over the last decade, there has been a growing interest to understand the link between metabolism and the immune response in the context of metabolic diseases but also beyond, giving then birth to a new field of research. Termed 'immunometabolism', this interdisciplinary field explores paradigms of both immunology and metabolism to provided unique insights into different disease pathogenic processes, and the identification of new potential therapeutic targets. Similar to other inflammatory conditions, the atherosclerotic inflammatory process in the artery has been associated with a local dysregulated metabolic response. Thus, recent studies show that metabolites are more than just fuels in their metabolic pathways, and they can act as modulators of vascular inflammation and atherosclerosis. In this review article, we describe the most common immunometabolic pathways characterised in innate and adaptive immune cells, and discuss how macrophages' and T cells' metabolism may influence phenotypic changes in the plaque. Moreover, we discuss the potential of targeting immunometabolism to prevent and treat cardiovascular diseases (CVDs).
Collapse
|
28
|
Song M, Suh P. O‐GlcNAcylation regulates lysophosphatidic acid‐induced cell migration by regulating ERM family proteins. FEBS Open Bio 2022; 12:1220-1229. [PMID: 35347892 PMCID: PMC9157403 DOI: 10.1002/2211-5463.13404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/04/2021] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
O‐GlcNAcylation of intracellular proteins (O‐GlcNAc) is a post‐translational modification that often competes with phosphorylation in diverse cellular signaling pathways. Recent studies on human malignant tumors have demonstrated that O‐GlcNAc is implicated in cellular features relevant to metastasis. Here, we report that lysophosphatidic acid (LPA)‐induced ovarian cancer cell (OVCAR‐3) migration is regulated by O‐GlcNAc. We found that O‐GlcNAc modification of ERM family proteins, a membrane‐cytoskeletal crosslinker, was inversely correlated with its phosphorylation status. Moreover, the LPA‐induced formation of membrane protrusion structures, as well as the migration of OVCAR‐3 cells, was reduced by the accumulation of O‐GlcNAc. Collectively, these findings suggest that O‐GlcNAc is an essential signaling element controlling ERM family proteins involved in OVCAR‐3 cell migration.
Collapse
Affiliation(s)
- Minseok Song
- Department of Life Sciences Yeungnam University Gyeongsan Gyeongbuk 38541 South Korea
| | - Pann‐Ghill Suh
- Korea Basic Science Research Institute (KBRI) Daegu Republic of Korea
| |
Collapse
|
29
|
Abstract
Post-translational modification with O-linked β-N-acetylglucosamine (O-GlcNAc), a process referred to as O-GlcNAcylation, occurs on a vast variety of proteins. Mounting evidence in the past several decades has clearly demonstrated that O-GlcNAcylation is a unique and ubiquitous modification. Reminiscent of a code, protein O-GlcNAcylation functions as a crucial regulator of nearly all cellular processes studied. The primary aim of this review is to summarize the developments in our understanding of myriad protein substrates modified by O-GlcNAcylation from a systems perspective. Specifically, we provide a comprehensive survey of O-GlcNAcylation in multiple species studied, including eukaryotes (e.g., protists, fungi, plants, Caenorhabditis elegans, Drosophila melanogaster, murine, and human), prokaryotes, and some viruses. We evaluate features (e.g., structural properties and sequence motifs) of O-GlcNAc modification on proteins across species. Given that O-GlcNAcylation functions in a species-, tissue-/cell-, protein-, and site-specific manner, we discuss the functional roles of O-GlcNAcylation on human proteins. We focus particularly on several classes of relatively well-characterized human proteins (including transcription factors, protein kinases, protein phosphatases, and E3 ubiquitin-ligases), with representative O-GlcNAc site-specific functions presented. We hope the systems view of the great endeavor in the past 35 years will help demystify the O-GlcNAc code and lead to more fascinating studies in the years to come.
Collapse
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| |
Collapse
|
30
|
Xiang J, Wang K, Tang N. PCK1 dysregulation in cancer: Metabolic reprogramming, oncogenic activation, and therapeutic opportunities. Genes Dis 2022; 10:101-112. [PMID: 37013052 PMCID: PMC10066343 DOI: 10.1016/j.gendis.2022.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023] Open
Abstract
The last few decades have witnessed an advancement in our understanding of multiple cancer cell pathways related to metabolic reprogramming. One of the most important cancer hallmarks, including aerobic glycolysis (the Warburg effect), the central carbon pathway, and multiple-branch metabolic pathway remodeling, enables tumor growth, progression, and metastasis. Phosphoenolpyruvate carboxykinase 1 (PCK1), a key rate-limiting enzyme in gluconeogenesis, catalyzes the conversion of oxaloacetate to phosphoenolpyruvate. PCK1 expression in gluconeogenic tissues is tightly regulated during fasting. In tumor cells, PCK1 is regulated in a cell-autonomous manner rather than by hormones or nutrients in the extracellular environment. Interestingly, PCK1 has an anti-oncogenic role in gluconeogenic organs (the liver and kidneys), but a tumor-promoting role in cancers arising from non-gluconeogenic organs. Recent studies have revealed that PCK1 has metabolic and non-metabolic roles in multiple signaling networks linking metabolic and oncogenic pathways. Aberrant PCK1 expression results in the activation of oncogenic pathways, accompanied by metabolic reprogramming, to maintain tumorigenesis. In this review, we summarize the mechanisms underlying PCK1 expression and regulation, and clarify the crosstalk between aberrant PCK1 expression, metabolic rewiring, and signaling pathway activation. In addition, we highlight the clinical relevance of PCK1 and its value as a putative cancer therapeutic target.
Collapse
|
31
|
Hulett NA, Scalzo RL, Reusch JEB. Glucose Uptake by Skeletal Muscle within the Contexts of Type 2 Diabetes and Exercise: An Integrated Approach. Nutrients 2022; 14:647. [PMID: 35277006 PMCID: PMC8839578 DOI: 10.3390/nu14030647] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
Type 2 diabetes continues to negatively impact the health of millions. The inability to respond to insulin to clear blood glucose (insulin resistance) is a key pathogenic driver of the disease. Skeletal muscle is the primary tissue for maintaining glucose homeostasis through glucose uptake via insulin-dependent and -independent mechanisms. Skeletal muscle is also responsive to exercise-meditated glucose transport, and as such, exercise is a cornerstone for glucose management in people with type 2 diabetes. Skeletal muscle glucose uptake requires a concert of events. First, the glucose-rich blood must be transported to the skeletal muscle. Next, the glucose must traverse the endothelium, extracellular matrix, and skeletal muscle membrane. Lastly, intracellular metabolic processes must be activated to maintain the diffusion gradient to facilitate glucose transport into the cell. This review aims to examine the physiology at each of these steps in healthy individuals, analyze the dysregulation affecting these pathways associated with type 2 diabetes, and describe the mechanisms by which exercise acts to increase glucose uptake.
Collapse
Affiliation(s)
- Nicholas A. Hulett
- Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.A.H.); (R.L.S.)
| | - Rebecca L. Scalzo
- Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.A.H.); (R.L.S.)
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
- Center for Women’s Health Research, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Jane E. B. Reusch
- Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.A.H.); (R.L.S.)
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
- Center for Women’s Health Research, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| |
Collapse
|
32
|
Zhao Y, Yue S, Zhou X, Guo J, Ma S, Chen Q. O-GlcNAc transferase promotes the nuclear localization of the focal adhesion-associated protein Zyxin to regulate UV-induced cell death. J Biol Chem 2022; 298:101776. [PMID: 35227760 PMCID: PMC8988012 DOI: 10.1016/j.jbc.2022.101776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/18/2022] Open
Abstract
Zyxin is a zinc-binding phosphoprotein known to regulate cell migration, adhesion, and cell survival. Zyxin also plays a role in signal transduction between focal adhesions and the nuclear compartment. However, the mechanism of Zyxin shuttling to nucleus is still unclear. Here, we identify that the GlcNAc transferase (O-linked GlcNAc [O-GlcNAc] transferase) can O-GlcNAcylate Zyxin and regulate its nuclear localization. We show that O-GlcNAc transferase O-GlcNAcylates Zyxin at two residues, serine 169 (Ser-169) and Ser-246. In addition, O-GlcNAcylation of Ser-169, but not Ser-246, enhances its interaction with 14-3-3γ, which is a phosphoserine/threonine-binding protein and is reported to bind with phosphorylated Zyxin. Furthermore, we found that 14-3-3γ could promote the nuclear localization of Zyxin after Ser-169 O-GlcNAcylation by affecting the function of the N-terminal nuclear export signal sequence; functionally, UV treatment increases the O-GlcNAcylation of Zyxin, which may enhance the nuclear location of Zyxin. Finally, Zyxin in the nucleus maintains homeodomain-interacting protein kinase 2 stability and promotes UV-induced cell death. In conclusion, we uncover that the nuclear localization of Zyxin can be regulated by its O-GlcNAcylation, and that this protein may regulate UV-induced cell death.
Collapse
|
33
|
Rani L, Mallajosyula SS. Site-Specific Stabilization and Destabilization of α Helical Peptides upon Phosphorylation and O-GlcNAcylation. J Phys Chem B 2021; 125:13444-13459. [PMID: 34870441 DOI: 10.1021/acs.jpcb.1c09419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Helices (α-helix) are the most common type of secondary structure motif present in proteins. In this study, we have investigated the structural influence of phosphorylation and O-GlcNAcylation, common intracellular post-translational modifications (PTMs), on the α-helical conformation. The simulation studies were performed on the Baldwin model α-helical peptide sequence (Ac-AKAAAAKAAAAKAA-NH2). The Baldwin sequences were chosen due to the availability of site-specific experimental post-translational data for cross-validation with the simulations. The influence of PTMs was examined across the span of the α-helix, namely, at the N-terminus, position 10 (interior region), and the C-terminus for both serine and threonine residues placed at these positions. Molecular dynamics (MD) simulations revealed that phosphorylation and O-GlcNAcylation at the N-terminus lead to the stabilization of the helical conformation. PTMs in the interior or the C-terminus were found to disrupt helicity, with the disruption being more pronounced for PTMs in the interior region, in accordance with experimental studies. It was found that phosphorylation-derived destabilization was mainly due to the formation of an intraresidue HN-PO32- electrostatic interaction and interactions between the phosphate group and the side chain of adjacent lysine residues (NH3···PO32-). Hydrophobic and steric clashes were the main causes of destabilization in the case of O-GlcNAcylation. The structural disruptions were found to be more pronounced for PTM at the threonine site when compared to the serine site. The salt-bridge-dependent stability of the α-helix was found to be highly position specific, an i → i + 4 interaction stabilizing the helix, with other placements leading to the destabilization of the helix.
Collapse
Affiliation(s)
- Lata Rani
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Sairam S Mallajosyula
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
34
|
Loaeza-Reyes KJ, Zenteno E, Moreno-Rodríguez A, Torres-Rosas R, Argueta-Figueroa L, Salinas-Marín R, Castillo-Real LM, Pina-Canseco S, Cervera YP. An Overview of Glycosylation and its Impact on Cardiovascular Health and Disease. Front Mol Biosci 2021; 8:751637. [PMID: 34869586 PMCID: PMC8635159 DOI: 10.3389/fmolb.2021.751637] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022] Open
Abstract
The cardiovascular system is a complex and well-organized system in which glycosylation plays a vital role. The heart and vascular wall cells are constituted by an array of specific receptors; most of them are N- glycosylated and mucin-type O-glycosylated. There are also intracellular signaling pathways regulated by different post-translational modifications, including O-GlcNAcylation, which promote adequate responses to extracellular stimuli and signaling transduction. Herein, we provide an overview of N-glycosylation and O-glycosylation, including O-GlcNAcylation, and their role at different levels such as reception of signal, signal transduction, and exogenous molecules or agonists, which stimulate the heart and vascular wall cells with effects in different conditions, like the physiological status, ischemia/reperfusion, exercise, or during low-grade inflammation in diabetes and aging. Furthermore, mutations of glycosyltransferases and receptors are associated with development of cardiovascular diseases. The knowledge on glycosylation and its effects could be considered biochemical markers and might be useful as a therapeutic tool to control cardiovascular diseases.
Collapse
Affiliation(s)
- Karen Julissa Loaeza-Reyes
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico.,Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Edgar Zenteno
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Rafael Torres-Rosas
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Liliana Argueta-Figueroa
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico.,Conacyt - Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Roberta Salinas-Marín
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Lizet Monserrat Castillo-Real
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Socorro Pina-Canseco
- Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Yobana Pérez Cervera
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico.,Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| |
Collapse
|
35
|
Jaillard C, Ouechtati F, Clérin E, Millet-Puel G, Corsi M, Aït-Ali N, Blond F, Chevy Q, Gales L, Farinelli M, Dalkara D, Sahel JA, Portais JC, Poncer JC, Léveillard T. The metabolic signaling of the nucleoredoxin-like 2 gene supports brain function. Redox Biol 2021; 48:102198. [PMID: 34856436 PMCID: PMC8640531 DOI: 10.1016/j.redox.2021.102198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 01/04/2023] Open
Abstract
The nucleoredoxin gene NXNL2 encodes for two products through alternative splicing, rod-derived cone viability factor-2 (RdCVF2) that mediates neuronal survival and the thioredoxin-related protein (RdCVF2L), an enzyme that regulates the phosphorylation of TAU. To investigate the link between NXNL2 and tauopathies, we studied the Nxnl2 knockout mouse (Nxnl2-/-). We established the expression pattern of the Nxnl2 gene in the brain using a Nxnl2 reporter mouse line, and characterized the behavior of the Nxnl2-/- mouse at 2 months of age. Additionally, long term potentiation and metabolomic from hippocampal specimens were collected at 2 months of age. We studied TAU oligomerization, phosphorylation and aggregation in Nxnl2-/- brain at 18 months of age. Finally, newborn Nxnl2-/- mice were treated with adeno-associated viral vectors encoding for RdCVF2, RdCVF2L or both and measured the effect of this therapy on long-term potential, glucose metabolism and late-onset tauopathy. Nxnl2-/- mice at 2 months of age showed severe behavioral deficiency in fear, pain sensitivity, coordination, learning and memory. The Nxnl2-/- also showed deficits in long-term potentiation, demonstrating that the Nxnl2 gene is involved in regulating brain functions. Dual delivery of RdCVF2 and RdCVF2L in newborn Nxnl2-/- mice fully correct long-term potentiation through their synergistic action. The expression pattern of the Nxnl2 gene in the brain shows a predominant expression in circumventricular organs, such as the area postrema. Glucose metabolism of the hippocampus of Nxnl2-/- mice at 2 months of age was reduced, and was not corrected by gene therapy. At 18-month-old Nxnl2-/- mice showed brain stigmas of tauopathy, such as oligomerization, phosphorylation and aggregation of TAU. This late-onset tauopathy can be prevented, albeit with modest efficacy, by recombinant AAVs administrated to newborn mice. The Nxnl2-/- mice have memory dysfunction at 2-months that resembles mild-cognitive impairment and at 18-months exhibit tauopathy, resembling to the progression of Alzheimer's disease. We propose the Nxnl2-/- mouse is a model to study multistage aged related neurodegenerative diseases. The NXNL2 metabolic and redox signaling is a new area of therapeutic research in neurodegenerative diseases.
Collapse
Affiliation(s)
- Céline Jaillard
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-7501b, Paris, France
| | - Farah Ouechtati
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-7501b, Paris, France
| | - Emmanuelle Clérin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-7501b, Paris, France
| | | | - Mariangela Corsi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-7501b, Paris, France
| | - Najate Aït-Ali
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-7501b, Paris, France
| | - Frédéric Blond
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-7501b, Paris, France
| | - Quentin Chevy
- Sorbonne Université, INSERM, CNRS, Institut du Fer à Moulin, F-75005, Paris, France
| | - Lara Gales
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics & Fluxomics, 31077, Toulouse, France
| | - Mélissa Farinelli
- E-Phy-Science, Bioparc de Sophia Antipolis, 2400 route des Colles, 06410, Biot, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-7501b, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-7501b, Paris, France
| | - Jean-Charles Portais
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics & Fluxomics, 31077, Toulouse, France
| | | | - Thierry Léveillard
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-7501b, Paris, France.
| |
Collapse
|
36
|
Lee YA, Kim KA, Shin MH. Naegleria fowleri Induces Jurkat T Cell Death via O-deGlcNAcylation. THE KOREAN JOURNAL OF PARASITOLOGY 2021; 59:501-505. [PMID: 34724770 PMCID: PMC8561043 DOI: 10.3347/kjp.2021.59.5.501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022]
Abstract
The pathogenic free-living amoeba Naegleria fowleri causes primary amoebic meningoencephalitis, a fatal infection, by penetrating the nasal mucosa and migrating to the brain via the olfactory nerves. N. fowleri can induce host cell death via lytic necrosis. Similar to phosphorylation, O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation (O-GlcNAcylation) is involved in various cell-signaling processes, including apoptosis and proliferation, with O-GlcNAc addition and removal regulated by O-GlcNAc transferase and O-GlcNAcase (OGA), respectively. However, the detailed mechanism of host cell death induced by N. fowleri is unknown. In this study, we investigated whether N. fowleri can induce the modulation of O-GlcNAcylated proteins during cell death in Jurkat T cells. Co-incubation with live N. fowleri trophozoites increased DNA fragmentation. In addition, incubation with N. fowleri induced a dramatic reduction in O-GlcNAcylated protein levels in 30 min. Moreover, pretreatment of Jurkat T cells with the OGA inhibitor PUGNAc prevented N. fowleri-induced O-deGlcNAcylation and DNA fragmentation. These results suggest that O-deGlcNAcylation is an important signaling process that occurs during Jurkat T cell death induced by N. fowleri.
Collapse
Affiliation(s)
- Young Ah Lee
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Kyeong Ah Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Myeong Heon Shin
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
37
|
Lu V, Roy IJ, Teitell MA. Nutrients in the fate of pluripotent stem cells. Cell Metab 2021; 33:2108-2121. [PMID: 34644538 PMCID: PMC8568661 DOI: 10.1016/j.cmet.2021.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Pluripotent stem cells model certain features of early mammalian development ex vivo. Medium-supplied nutrients can influence self-renewal, lineage specification, and earliest differentiation of pluripotent stem cells. However, which specific nutrients support these distinct outcomes, and their mechanisms of action, remain under active investigation. Here, we evaluate the available data on nutrients and their metabolic conversion that influence pluripotent stem cell fates. We also discuss key questions open for investigation in this rapidly expanding area of increasing fundamental and practical importance.
Collapse
Affiliation(s)
- Vivian Lu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Irena J Roy
- Developmental and Stem Cell Biology, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael A Teitell
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
38
|
Recent Advances in Diabetic Kidney Diseases: From Kidney Injury to Kidney Fibrosis. Int J Mol Sci 2021; 22:ijms222111857. [PMID: 34769288 PMCID: PMC8584225 DOI: 10.3390/ijms222111857] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/08/2021] [Accepted: 10/30/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease and end-stage renal disease. The natural history of DKD includes glomerular hyperfiltration, progressive albuminuria, declining estimated glomerular filtration rate, and, ultimately, kidney failure. It is known that DKD is associated with metabolic changes caused by hyperglycemia, resulting in glomerular hypertrophy, glomerulosclerosis, and tubulointerstitial inflammation and fibrosis. Hyperglycemia is also known to cause programmed epigenetic modification. However, the detailed mechanisms involved in the onset and progression of DKD remain elusive. In this review, we discuss recent advances regarding the pathogenic mechanisms involved in DKD.
Collapse
|
39
|
Huynh VN, Wang S, Ouyang X, Wani WY, Johnson MS, Chacko BK, Jegga AG, Qian WJ, Chatham JC, Darley-Usmar VM, Zhang J. Defining the Dynamic Regulation of O-GlcNAc Proteome in the Mouse Cortex---the O-GlcNAcylation of Synaptic and Trafficking Proteins Related to Neurodegenerative Diseases. FRONTIERS IN AGING 2021; 2:757801. [PMID: 35822049 PMCID: PMC9261315 DOI: 10.3389/fragi.2021.757801] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/14/2021] [Indexed: 01/13/2023]
Abstract
O-linked conjugation of ß-N-acetyl-glucosamine (O-GlcNAc) to serine and threonine residues is a post-translational modification process that senses nutrient availability and cellular stress and regulates diverse biological processes that are involved in neurodegenerative diseases and provide potential targets for therapeutics development. However, very little is known of the networks involved in the brain that are responsive to changes in the O-GlcNAc proteome. Pharmacological increase of protein O-GlcNAcylation by Thiamet G (TG) has been shown to decrease tau phosphorylation and neurotoxicity, and proposed as a therapy in Alzheimer's disease (AD). However, acute TG exposure impairs learning and memory, and protein O-GlcNAcylation is increased in the aging rat brain and in Parkinson's disease (PD) brains. To define the cortical O-GlcNAc proteome that responds to TG, we injected young adult mice with either saline or TG and performed mass spectrometry analysis for detection of O-GlcNAcylated peptides. This approach identified 506 unique peptides corresponding to 278 proteins that are O-GlcNAcylated. Of the 506 unique peptides, 85 peptides are elevated by > 1.5 fold in O-GlcNAcylation levels in response to TG. Using pathway analyses, we found TG-dependent enrichment of O-GlcNAcylated synaptic proteins, trafficking, Notch/Wnt signaling, HDAC signaling, and circadian clock proteins. Significant changes in the O-GlcNAcylation of DNAJC6/AUXI, and PICALM, proteins that are risk factors for PD and/or AD respectively, were detected. We compared our study with two key prior O-GlcNAc proteome studies using mouse cerebral tissue and human AD brains. Among those identified to be increased by TG, 15 are also identified to be increased in human AD brains compared to control, including those involved in cytoskeleton, autophagy, chromatin organization and mitochondrial dysfunction. These studies provide insights regarding neurodegenerative diseases therapeutic targets.
Collapse
Affiliation(s)
- Van N Huynh
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sheng Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Xiaosen Ouyang
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Willayat Y Wani
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michelle S Johnson
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Balu K Chacko
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anil G Jegga
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - John C Chatham
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor M Darley-Usmar
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianhua Zhang
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department Veterans Affairs, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
40
|
Mechanistic roles for altered O-GlcNAcylation in neurodegenerative disorders. Biochem J 2021; 478:2733-2758. [PMID: 34297044 DOI: 10.1042/bcj20200609] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 01/02/2023]
Abstract
Neurodegenerative diseases such as Alzheimer's and Parkinson's remain highly prevalent and incurable disorders. A major challenge in fully understanding and combating the progression of these diseases is the complexity of the network of processes that lead to progressive neuronal dysfunction and death. An ideal therapeutic avenue is conceivably one that could address many if not all of these multiple misregulated mechanisms. Over the years, chemical intervention for the up-regulation of the endogenous posttranslational modification (PTM) O-GlcNAc has been proposed as a potential strategy to slow down the progression of neurodegeneration. Through the development and application of tools that allow dissection of the mechanistic roles of this PTM, there is now a growing body of evidence that O-GlcNAc influences a variety of important neurodegeneration-pertinent mechanisms, with an overall protective effect. As a PTM that is appended onto numerous proteins that participate in protein quality control and homeostasis, metabolism, bioenergetics, neuronal communication, inflammation, and programmed death, O-GlcNAc has demonstrated beneficence in animal models of neurodegenerative diseases, and its up-regulation is now being pursued in multiple clinical studies.
Collapse
|
41
|
Lim JJ, Li X, Lehmler HJ, Wang D, Gu H, Cui JY. Gut Microbiome Critically Impacts PCB-induced Changes in Metabolic Fingerprints and the Hepatic Transcriptome in Mice. Toxicol Sci 2021; 177:168-187. [PMID: 32544245 DOI: 10.1093/toxsci/kfaa090] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitously detected and have been linked to metabolic diseases. Gut microbiome is recognized as a critical regulator of disease susceptibility; however, little is known how PCBs and gut microbiome interact to modulate hepatic xenobiotic and intermediary metabolism. We hypothesized the gut microbiome regulates PCB-mediated changes in the metabolic fingerprints and hepatic transcriptome. Ninety-day-old female conventional and germ-free mice were orally exposed to the Fox River Mixture (synthetic PCB mixture, 6 or 30 mg/kg) or corn oil (vehicle control, 10 ml/kg), once daily for 3 consecutive days. RNA-seq was conducted in liver, and endogenous metabolites were measured in liver and serum by LC-MS. Prototypical target genes of aryl hydrocarbon receptor, pregnane X receptor, and constitutive androstane receptor were more readily upregulated by PCBs in conventional conditions, indicating PCBs, to the hepatic transcriptome, act partly through the gut microbiome. In a gut microbiome-dependent manner, xenobiotic, and steroid metabolism pathways were upregulated, whereas response to misfolded proteins-related pathways was downregulated by PCBs. At the high PCB dose, NADP, and arginine appear to interact with drug-metabolizing enzymes (ie, Cyp1-3 family), which are highly correlated with Ruminiclostridium and Roseburia, providing a novel explanation of gut-liver interaction from PCB-exposure. Utilizing the Library of Integrated Network-based Cellular Signatures L1000 database, therapeutics targeting anti-inflammatory and endoplasmic reticulum stress pathways are predicted to be remedies that can mitigate PCB toxicity. Our findings demonstrate that habitation of the gut microbiota drives PCB-mediated hepatic responses. Our study adds knowledge of physiological response differences from PCB exposure and considerations for further investigations for gut microbiome-dependent therapeutics.
Collapse
Affiliation(s)
- Joe Jongpyo Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195
| | - Xueshu Li
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242; and
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242; and
| | - Dongfang Wang
- Arizona Metabolomics Laboratory, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Scottsdale, Arizona 85259
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Scottsdale, Arizona 85259
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195
| |
Collapse
|
42
|
Zumbaugh MD, Yen CN, Bodmer JS, Shi H, Gerrard DE. Skeletal Muscle O-GlcNAc Transferase Action on Global Metabolism Is Partially Mediated Through Interleukin-15. Front Physiol 2021; 12:682052. [PMID: 34326778 PMCID: PMC8313823 DOI: 10.3389/fphys.2021.682052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/24/2021] [Indexed: 01/11/2023] Open
Abstract
Besides its roles in locomotion and thermogenesis, skeletal muscle plays a significant role in global glucose metabolism and insulin sensitivity through complex nutrient sensing networks. Our previous work showed that the muscle-specific ablation of O-GlcNAc transferase (OGT) led to a lean phenotype through enhanced interleukin-15 (IL-15) expression. We also showed OGT epigenetically modified and repressed the Il15 promoter. However, whether there is a causal relationship between OGT ablation-induced IL-15 secretion and the lean phenotype remains unknown. To address this question, we generated muscle specific OGT and interleukin-15 receptor alpha subunit (IL-15rα) double knockout mice (mDKO). Deletion of IL-15rα in skeletal muscle impaired IL-15 secretion. When fed with a high-fat diet, mDKO mice were no longer protected against HFD-induced obesity compared to wild-type mice. After 22 weeks of HFD feeding, mDKO mice had an intermediate body weight and glucose sensitivity compared to wild-type and OGT knockout mice. Taken together, these data suggest that OGT action is partially mediated by muscle IL-15 production and provides some clarity into how disrupting the O-GlcNAc nutrient signaling pathway leads to a lean phenotype. Further, our work suggests that interfering with the OGT-IL15 nutrient sensing axis may provide a new avenue for combating obesity and metabolic disorders.
Collapse
Affiliation(s)
- Morgan D Zumbaugh
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Con-Ning Yen
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jocelyn S Bodmer
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Hao Shi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - David E Gerrard
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
43
|
Zhang Q, Wang J, Yadav DK, Bai X, Liang T. Glucose Metabolism: The Metabolic Signature of Tumor Associated Macrophage. Front Immunol 2021; 12:702580. [PMID: 34267763 PMCID: PMC8276123 DOI: 10.3389/fimmu.2021.702580] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/10/2021] [Indexed: 12/24/2022] Open
Abstract
Macrophages exist in most tissues of the body, where they perform various functions at the same time equilibrating with other cells to maintain immune responses in numerous diseases including cancer. Recently, emerging investigations revealed that metabolism profiles control macrophage phenotypes and functions, and in turn, polarization can trigger metabolic shifts in macrophages. Those findings implicate a special role of metabolism in tumor-associated macrophages (TAMs) because of the sophisticated microenvironment in cancer. Glucose is the major energy source of cells, especially for TAMs. However, the complicated association between TAMs and their glucose metabolism is still unclearly illustrated. Here, we review the recent advances in macrophage and glucose metabolism within the tumor microenvironment, and the significant transformations that occur in TAMs during the tumor progression. Additionally, we have also outlined the potential implications for macrophage-based therapies in cancer targeting TAMs.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
| | - Junli Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dipesh Kumar Yadav
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
| |
Collapse
|
44
|
Zhang H, Li Z, Wang Y, Kong Y. O-GlcNAcylation is a key regulator of multiple cellular metabolic pathways. PeerJ 2021. [DOI: 10.7717/peerj.11443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
O-GlcNAcylation modifies proteins in serine or threonine residues in the nucleus, cytoplasm, and mitochondria. It regulates a variety of cellular biological processes and abnormal O-GlcNAcylation is associated with diabetes, cancer, cardiovascular disease, and neurodegenerative diseases. Recent evidence has suggested that O-GlcNAcylation acts as a nutrient sensor and signal integrator to regulate metabolic signaling, and that dysregulation of its metabolism may be an important indicator of pathogenesis in disease. Here, we review the literature focusing on O-GlcNAcylation regulation in major metabolic processes, such as glucose metabolism, mitochondrial oxidation, lipid metabolism, and amino acid metabolism. We discuss its role in physiological processes, such as cellular nutrient sensing and homeostasis maintenance. O-GlcNAcylation acts as a key regulator in multiple metabolic processes and pathways. Our review will provide a better understanding of how O-GlcNAcylation coordinates metabolism and integrates molecular networks.
Collapse
|
45
|
Oliveira-Nunes MC, Julião G, Menezes A, Mariath F, Hanover JA, Evaristo JAM, Nogueira FCS, Dias WB, de Abreu Pereira D, Carneiro K. O-GlcNAcylation protein disruption by Thiamet G promotes changes on the GBM U87-MG cells secretome molecular signature. Clin Proteomics 2021; 18:14. [PMID: 33902430 PMCID: PMC8074421 DOI: 10.1186/s12014-021-09317-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/03/2021] [Indexed: 01/03/2023] Open
Abstract
Glioblastoma (GBM) is a grade IV glioma highly aggressive and refractory to the therapeutic approaches currently in use. O-GlcNAcylation plays a key role for tumor aggressiveness and progression in different types of cancer; however, experimental evidence of its involvement in GBM are still lacking. Here, we show that O-GlcNAcylation plays a critical role in maintaining the composition of the GBM secretome, whereas inhibition of OGA activity disrupts the intercellular signaling via microvesicles. Using a label-free quantitative proteomics methodology, we identified 51 proteins in the GBM secretome whose abundance was significantly altered by activity inhibition of O-GlcNAcase (iOGA). Among these proteins, we observed that proteins related to proteasome activity and to regulation of immune response in the tumor microenvironment were consistently downregulated in GBM cells upon iOGA. While the proteins IGFBP3, IL-6 and HSPA5 were downregulated in GBM iOGA cells, the protein SQSTM1/p62 was exclusively found in GBM cells under iOGA. These findings were in line with literature evidence on the role of p62/IL-6 signaling axis in suppressing tumor aggressiveness and our experimental evidence showing a decrease in radioresistance potential of these cells. Taken together, our findings provide evidence that OGA activity may regulate the p62 and IL-6 abundance in the GBM secretome. We propose that the assessment of tumor status from the main proteins present in its secretome may contribute to the advancement of diagnostic, prognostic and even therapeutic tools to approach this relevant malignancy.
Collapse
Affiliation(s)
- Maria Cecilia Oliveira-Nunes
- Laboratory of Cell Proliferation and Differentiation, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Glaucia Julião
- Laboratory of Cell Proliferation and Differentiation, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Postgraduate Program in Medicine (Pathological Anatomy), Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Aline Menezes
- Laboratory of Cell Proliferation and Differentiation, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Postgraduate Program in Medicine (Pathological Anatomy), Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fernanda Mariath
- Laboratory of Cell Proliferation and Differentiation, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - John A Hanover
- Laboratory of Cell Biochemistry and Molecular Biology, NIDDK, NIH, Bethesda, MD, USA
| | | | | | - Wagner Barbosa Dias
- Laboratory of Structural and Functional Glycobiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Denise de Abreu Pereira
- Program of Cellular and Molecular Oncobiology, Membrane Receptors and Cancer Group, Research Coordination, National Institute of Cancer, Rio de Janeiro, RJ, Brazil
| | - Katia Carneiro
- Laboratory of Cell Proliferation and Differentiation, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,Postgraduate Program in Medicine (Pathological Anatomy), Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
46
|
Xiang J, Chen C, Liu R, Gou D, Chang L, Deng H, Gao Q, Zhang W, Tuo L, Pan X, Liang L, Xia J, Huang L, Yao K, Wang B, Hu Z, Huang A, Wang K, Tang N. Gluconeogenic enzyme PCK1 deficiency promotes CHK2 O-GlcNAcylation and hepatocellular carcinoma growth upon glucose deprivation. J Clin Invest 2021; 131:144703. [PMID: 33690219 DOI: 10.1172/jci144703] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Although cancer cells are frequently faced with a nutrient- and oxygen-poor microenvironment, elevated hexosamine-biosynthesis pathway (HBP) activity and protein O-GlcNAcylation (a nutrient sensor) contribute to rapid growth of tumor and are emerging hallmarks of cancer. Inhibiting O-GlcNAcylation could be a promising anticancer strategy. The gluconeogenic enzyme phosphoenolpyruvate carboxykinase 1 (PCK1) is downregulated in hepatocellular carcinoma (HCC). However, little is known about the potential role of PCK1 in enhanced HBP activity and HCC carcinogenesis under glucose-limited conditions. In this study, PCK1 knockout markedly enhanced the global O-GlcNAcylation levels under low-glucose conditions. Mechanistically, metabolic reprogramming in PCK1-loss hepatoma cells led to oxaloacetate accumulation and increased de novo uridine triphosphate synthesis contributing to uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) biosynthesis. Meanwhile, deletion of PCK1 also resulted in AMPK-GFAT1 axis inactivation, promoting UDP-GlcNAc synthesis for elevated O-GlcNAcylation. Notably, lower expression of PCK1 promoted CHK2 threonine 378 O-GlcNAcylation, counteracting its stability and dimer formation, increasing CHK2-dependent Rb phosphorylation and HCC cell proliferation. Moreover, aminooxyacetic acid hemihydrochloride and 6-diazo-5-oxo-L-norleucine blocked HBP-mediated O-GlcNAcylation and suppressed tumor progression in liver-specific Pck1-knockout mice. We reveal a link between PCK1 depletion and hyper-O-GlcNAcylation that underlies HCC oncogenesis and suggest therapeutic targets for HCC that act by inhibiting O-GlcNAcylation.
Collapse
Affiliation(s)
- Jin Xiang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Chang Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Rui Liu
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Dongmei Gou
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Haijun Deng
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Qingzhu Gao
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Wanjun Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Lin Tuo
- Sichuan Provincial People's Hospital, Sichuan, China
| | - Xuanming Pan
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Li Liang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Jie Xia
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Luyi Huang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Ke Yao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Bohong Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| |
Collapse
|
47
|
Jorquera G, Russell J, Monsalves-Álvarez M, Cruz G, Valladares-Ide D, Basualto-Alarcón C, Barrientos G, Estrada M, Llanos P. NLRP3 Inflammasome: Potential Role in Obesity Related Low-Grade Inflammation and Insulin Resistance in Skeletal Muscle. Int J Mol Sci 2021; 22:ijms22063254. [PMID: 33806797 PMCID: PMC8005007 DOI: 10.3390/ijms22063254] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Among multiple mechanisms, low-grade inflammation is critical for the development of insulin resistance as a feature of type 2 diabetes. The nucleotide-binding oligomerization domain-like receptor family (NOD-like) pyrin domain containing 3 (NLRP3) inflammasome has been linked to the development of insulin resistance in various tissues; however, its role in the development of insulin resistance in the skeletal muscle has not been explored in depth. Currently, there is limited evidence that supports the pathological role of NLRP3 inflammasome activation in glucose handling in the skeletal muscle of obese individuals. Here, we have centered our focus on insulin signaling in skeletal muscle, which is the main site of postprandial glucose disposal in humans. We discuss the current evidence showing that the NLRP3 inflammasome disturbs glucose homeostasis. We also review how NLRP3-associated interleukin and its gasdermin D-mediated efflux could affect insulin-dependent intracellular pathways. Finally, we address pharmacological NLRP3 inhibitors that may have a therapeutical use in obesity-related metabolic alterations.
Collapse
Affiliation(s)
- Gonzalo Jorquera
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (G.J.); (G.C.)
| | - Javier Russell
- Escuela de Pedagogía en Educación Física, Facultad de Educación, Universidad Autónoma de Chile, Santiago 8900000, Chile;
| | - Matías Monsalves-Álvarez
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2820000, Chile; (M.M.-Á.); (D.V.-I.)
| | - Gonzalo Cruz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (G.J.); (G.C.)
| | - Denisse Valladares-Ide
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2820000, Chile; (M.M.-Á.); (D.V.-I.)
| | - Carla Basualto-Alarcón
- Departamento de Ciencias de la Salud, Universidad de Aysén, Coyhaique 5951537, Chile;
- Departamento de Anatomía y Medicina Legal, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Genaro Barrientos
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (G.B.); (M.E.)
- Centro de Estudios en Ejercicio, Metabolismo y Cáncer, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Manuel Estrada
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (G.B.); (M.E.)
| | - Paola Llanos
- Centro de Estudios en Ejercicio, Metabolismo y Cáncer, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Facultad de Odontología, Instituto de Investigación en Ciencias Odontológicas, Universidad de Chile, Santiago 8380544, Chile
- Correspondence: ; Tel.: +56-229-781-727
| |
Collapse
|
48
|
Zumbaugh MD, Geiger AE, Luo J, Shen Z, Shi H, Gerrard DE. O-GlcNAc transferase is required to maintain satellite cell function. STEM CELLS (DAYTON, OHIO) 2021; 39:945-958. [PMID: 33634918 DOI: 10.1002/stem.3361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/06/2021] [Indexed: 11/05/2022]
Abstract
O-GlcNAcylation is a posttranslational modification considered to be a nutrient sensor that reports nutrient scarcity or surplus. Although O-GlcNAcylation exists in a wide range of cells and/or tissues, its functional role in muscle satellite cells (SCs) remains largely unknown. Using a genetic approach, we ablated O-GlcNAc transferase (OGT), and thus O-GlcNAcylation, in SCs. We first evaluated SC function in vivo using a muscle injury model and found that OGT deficient SCs had compromised capacity to repair muscle after an acute injury compared with the wild-type SCs. By tracing SC cycling rates in vivo using the doxycycline-inducible H2B-GFP mouse model, we found that SCs lacking OGT cycled at lower rates and reduced in abundance with time. Additionally, the self-renewal ability of OGT-deficient SCs after injury was decreased compared to that of the wild-type SCs. Moreover, in vivo, in vitro, and ex vivo proliferation assays revealed that SCs lacking OGT were incapable of expanding compared with their wild-type counterparts, a phenotype that may be explained, at least in part, by an HCF1-mediated arrest in the cell cycle. Taken together, our findings suggest that O-GlcNAcylation plays a critical role in the maintenance of SC health and function in normal and injured skeletal muscle.
Collapse
Affiliation(s)
- Morgan D Zumbaugh
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Ashley E Geiger
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Jing Luo
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Zhengxing Shen
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Hao Shi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - David E Gerrard
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
49
|
Dupas T, Denis M, Dontaine J, Persello A, Bultot L, Erraud A, Vertommen D, Bouchard B, Tessier A, Rivière M, Lebreton J, Bigot‐Corbel E, Montnach J, De Waard M, Gauthier C, Burelle Y, Olson AK, Rozec B, Des Rosiers C, Bertrand L, Issad T, Lauzier B. Protein O-GlcNAcylation levels are regulated independently of dietary intake in a tissue and time-specific manner during rat postnatal development. Acta Physiol (Oxf) 2021; 231:e13566. [PMID: 33022862 PMCID: PMC7988603 DOI: 10.1111/apha.13566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
Aim Metabolic sources switch from carbohydrates in utero, to fatty acids after birth and then a mix once adults. O‐GlcNAcylation (O‐GlcNAc) is a post‐translational modification considered as a nutrient sensor. The purpose of this work was to assess changes in protein O‐GlcNAc levels, regulatory enzymes and metabolites during the first periods of life and decipher the impact of O‐GlcNAcylation on cardiac proteins. Methods Heart, brain and liver were harvested from rats before and after birth (D‐1 and D0), in suckling animals (D12), after weaning with a standard (D28) or a low‐carbohydrate diet (D28F), and adults (D84). O‐GlcNAc levels and regulatory enzymes were evaluated by western blots. Mass spectrometry (MS) approaches were performed to quantify levels of metabolites regulating O‐GlcNAc and identify putative cardiac O‐GlcNAcylated proteins. Results Protein O‐GlcNAc levels decrease drastically and progressively from D‐1 to D84 (13‐fold, P < .05) in the heart, whereas the changes were opposite in liver and brain. O‐GlcNAc levels were unaffected by weaning diet in any tissues. Changes in expression of enzymes and levels of metabolites regulating O‐GlcNAc were tissue‐dependent. MS analyses identified changes in putative cardiac O‐GlcNAcylated proteins, namely those involved in the stress response and energy metabolism, such as ACAT1, which is only O‐GlcNAcylated at D0. Conclusion Our results demonstrate that protein O‐GlcNAc levels are not linked to dietary intake and regulated in a time and tissue‐specific manner during postnatal development. We have identified by untargeted MS putative proteins with a particular O‐GlcNAc signature across the development process suggesting specific role of these proteins.
Collapse
Affiliation(s)
- Thomas Dupas
- Université de NantesCHU NantesCNRSINSERM, l’institut du thorax Nantes France
| | - Manon Denis
- Université de NantesCHU NantesCNRSINSERM, l’institut du thorax Nantes France
| | - Justine Dontaine
- Université catholique de LouvainInstitut de Recherche Expérimentale et CliniquePole of Cardiovascular Research Brussels Belgium
| | - Antoine Persello
- Université de NantesCHU NantesCNRSINSERM, l’institut du thorax Nantes France
- InFlectis BioScience Nantes France
| | - Laurent Bultot
- Université catholique de LouvainInstitut de Recherche Expérimentale et CliniquePole of Cardiovascular Research Brussels Belgium
| | - Angélique Erraud
- Université de NantesCHU NantesCNRSINSERM, l’institut du thorax Nantes France
| | - Didier Vertommen
- Université catholique de Louvainde Duve InstituteMass Spectrometry Platform Brussels Belgium
| | - Bertrand Bouchard
- Montreal Heart Institute Research Center and Department of Nutrition Université de Montréal Montreal Québec Canada
| | - Arnaud Tessier
- Faculté des Sciences et des Techniques Université de NantesCNRSChimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM)UMR CNRS 6230 Nantes France
| | - Matthieu Rivière
- Faculté des Sciences et des Techniques Université de NantesCNRSChimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM)UMR CNRS 6230 Nantes France
| | - Jacques Lebreton
- Faculté des Sciences et des Techniques Université de NantesCNRSChimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM)UMR CNRS 6230 Nantes France
| | | | - Jérôme Montnach
- Université de NantesCHU NantesCNRSINSERM, l’institut du thorax Nantes France
| | - Michel De Waard
- Université de NantesCHU NantesCNRSINSERM, l’institut du thorax Nantes France
| | - Chantal Gauthier
- Université de NantesCHU NantesCNRSINSERM, l’institut du thorax Nantes France
| | - Yan Burelle
- Interdisciplinary School of Health Sciences Faculty of Health Sciences and Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa Ottawa ON Canada
| | - Aaron K. Olson
- Division of Cardiology Department of Pediatrics University of Washington Seattle WA98105USA
- Seattle Children’s Research Institute Seattle WA98101USA
| | - Bertrand Rozec
- Université de NantesCHU NantesCNRSINSERM, l’institut du thorax Nantes France
| | - Christine Des Rosiers
- Montreal Heart Institute Research Center and Department of Nutrition Université de Montréal Montreal Québec Canada
| | - Luc Bertrand
- Université catholique de LouvainInstitut de Recherche Expérimentale et CliniquePole of Cardiovascular Research Brussels Belgium
- WELBIO Brussels Belgium
| | - Tarik Issad
- Université de ParisINSERM U1016CNRS UMR 8104 Paris France
| | - Benjamin Lauzier
- Université de NantesCHU NantesCNRSINSERM, l’institut du thorax Nantes France
| |
Collapse
|
50
|
Torrence D, Zhang L, Sung YS, Dickson BC, Antonescu CR. Hyalinizing epithelioid tumors with OGT-FOXO fusions. A case report of a non-acral soft tissue mass harboring a novel FOXO4 gene rearrangement. Genes Chromosomes Cancer 2021; 60:498-503. [PMID: 33455033 DOI: 10.1002/gcc.22937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/07/2023] Open
Abstract
Recurrent fusions between OGT and members of the Forkhead box (FOXO) family of genes have been recently described in three cases of hyalinizing epithelioid acral soft tissue tumors in young adults showing co-expression for EMA and CD34. Despite the lack of an established myoepithelial lineage by immunohistochemistry, these lesions have been labeled as myoepithelioma-like due to their epithelioid phenotype and sclerotic background. In this study, we report a novel FOXO4-OGT fusion identified by targeted RNA sequencing in an unclassified shoulder soft tissue mass in a 40-year-old male. The tumor showed nodular foci of increased cellularity in a uniformly hyalinized background. The neoplastic cells were mainly epithelioid and focally spindled, with eosinophilic cytoplasm and indented nuclei with mild atypia. The tumor lacked significant mitotic activity and necrosis. Immunohistochemically, the tumor showed variable positivity for EMA, pan-CK, CD34, ERG and FLI1, while it was negative for CD31, S100, SOX10, desmin, and MUC4. INI1 expression was retained. Due to its unusual histology and conflicting immunoprofile, TruSight RNA fusion panel sequencing was performed which revealed a fusion between FOXO4 exon 2 to OGT exon 2. This is the first example of a soft tissue lesion harboring OGT-related fusions occurring in a non-acral location and associated with FOXO4 gene. Its line of differentiation and biologic potential remain uncertain.
Collapse
Affiliation(s)
- Dianne Torrence
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lei Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yun-Shao Sung
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Brendan C Dickson
- Department of Pathology and Laboratory Science, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|