1
|
Ngwana-Joseph GC, Phelan JE, Manko E, Dombrowski JG, da Silva Santos S, Suarez-Mutis M, Vélez-Tobón G, Tobón Castaño A, Machado RLD, Marinho CRF, Nolder D, Nosten F, Sutherland CJ, Campino S, Clark TG. Genomic analysis of global Plasmodium vivax populations reveals insights into the evolution of drug resistance. Nat Commun 2024; 15:10771. [PMID: 39738010 PMCID: PMC11685768 DOI: 10.1038/s41467-024-54964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Increasing reports of chloroquine resistance (CQR) in Plasmodium vivax endemic regions have led to several countries, including Indonesia, to adopt dihydroarteminsin-piperaquine instead. However, the molecular drivers of CQR remain unclear. Using a genome-wide approach, we perform a genomic analysis of 1534 P. vivax isolates across 29 endemic countries, detailing population structure, patterns of relatedness, selection, and resistance profiling, providing insights into potential drivers of CQR. Selective sweeps in a locus proximal to pvmdr1, a putative marker for CQR, along with transcriptional regulation genes, distinguish isolates from Indonesia from those in regions where chloroquine remains highly effective. In 106 isolates from Indonesian Papua, the epicentre of CQR, we observe an increasing prevalence of novel SNPs in the candidate resistance gene pvmrp1 since the introduction of dihydroartemisinin-piperaquine. Overall, we provide novel markers for resistance surveillance, supported by evidence of regions under recent directional selection and temporal analysis in this continually evolving parasite.
Collapse
Affiliation(s)
- Gabrielle C Ngwana-Joseph
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Jody E Phelan
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Emilia Manko
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Jamille G Dombrowski
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Gabriel Vélez-Tobón
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Antioquia, Colombia
| | | | - Ricardo Luiz Dantas Machado
- Centro de Investigação de Microrganismos - CIM, Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Claudio R F Marinho
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Debbie Nolder
- UK Health Security Agency, Malaria Reference Laboratory, London School of Hygiene and Tropical Medicine, London, UK
| | - François Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Colin J Sutherland
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- UK Health Security Agency, Malaria Reference Laboratory, London School of Hygiene and Tropical Medicine, London, UK
| | - Susana Campino
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - Taane G Clark
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
2
|
Alghamdi JM, Al-Qahtani AA, Alhamlan FS, Al-Qahtani AA. Recent Advances in the Treatment of Malaria. Pharmaceutics 2024; 16:1416. [PMID: 39598540 PMCID: PMC11597227 DOI: 10.3390/pharmaceutics16111416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Malaria is still one of the major global health challenges affecting millions annually, particularly in non-Mediterranean Africa and Southeast Asia. Over the past two decades, substantial progress has been made in reducing malaria-related morbidity and mortality, primarily due to advancements in antimalarial therapeutics. This review provides a comprehensive overview of recent developments in malaria treatment, focusing on the evolution of drug therapies, mechanisms of action, and emerging resistance patterns. The cornerstone of current treatment strategies is artemisinin-based combination therapies (ACTs), which have proven highly effective against P. falciparum and P. vivax, the most prevalent malaria-causing parasites. However, the onset of artemisinin resistance, particularly in Southeast Asian countries, poses a significant threat to these gains. Additionally, other antimalarial classes, including quinine derivatives, 8-aminoquinolines, and antifolate drugs, are examined for their efficacy, resistance mechanisms, and future potential. This review also discusses the challenges associated with drug resistance, the genetic underpinnings of resistance in malaria parasites, and the implications for future treatment protocols. Furthermore, the review examines combinational therapies, such as triple artemisinin combination therapies (TACTs), and vaccines that are approved or in development to circumvent resistance issues. The need for continuous surveillance, innovative therapeutic strategies, and advances in novel antimalarial therapeutic agents is emphasized to sustain and further progress in the control of malaria and its eventual eradication.
Collapse
Affiliation(s)
- Jawaher M. Alghamdi
- Department of Zoology, College of Science, King Saud University, Riyadh 13242, Saudi Arabia;
| | - Arwa A. Al-Qahtani
- Department of Family Medicine, College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Fatimah S. Alhamlan
- Department of Infection and Immunity, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia;
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Ahmed A. Al-Qahtani
- Department of Infection and Immunity, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia;
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| |
Collapse
|
3
|
de Aguiar Barros J, Granja F, de Abreu-Fernandes R, de Queiroz LT, e Silva DDS, Citó AC, Mocelin NKADO, Daniel-Ribeiro CT, Ferreira-da-Cruz MDF. Investigation of Mutations in the crt-o and mdr1 Genes of Plasmodium vivax for the Molecular Surveillance of Chloroquine Resistance in Parasites from Gold Mining Areas in Roraima, Brazil. Microorganisms 2024; 12:1680. [PMID: 39203521 PMCID: PMC11356832 DOI: 10.3390/microorganisms12081680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Plasmodium vivax causes the largest malaria burden in Brazil, and chloroquine resistance poses a challenge to eliminating malaria by 2035. Illegal mining in the Roraima Yanomami Indigenous territory can lead to the introduction of resistant parasites. This study aimed to investigate mutations in the pvcrt-o and pvmdr-1 genes to determine their potential as predictors of P. vivax chloroquine-resistant phenotypes. Samples were collected in two health centers of Boa Vista. A questionnaire was completed, and blood was drawn from each patient. Then, DNA extraction, PCR, amplicon purification, and DNA sequencing were performed. After alignment with the Sal-1, the amplified fragment was analyzed. Patients infected with the mutant parasites were queried in the Surveillance Information System. Among the patients, 98% (157/164) of participants were from illegal mining areas. The pvcrt-o was sequenced in 151 samples, and the K10 insertion was identified in 13% of them. The pvmdr1 was sequenced in 80 samples, and the MYF haplotype (958M) was detected in 92% of them and the TYF was detected in 8%, while the MYL was absent. No cases of recrudescence, hospitalization, or death were found. Mutations in the pvcrt-o and pvmdr-1 genes have no potential to predict chloroquine resistance in P. vivax.
Collapse
Affiliation(s)
- Jacqueline de Aguiar Barros
- Malaria Control Center, Epidemiological Surveillance Department, General Health Surveillance Coordination, SESAU-RR, Boa Vista 69310-043, RR, Brazil;
- Center for Biodiversity Studies, Federal University of Roraima (UFRR), Boa Vista 69310-000, RR, Brazil (D.d.S.e.S.)
- Graduate Program in Biodiversity and Biotechnology (Bionorte-RR), Boa Vista 69301-290, RR, Brazil
| | - Fabiana Granja
- Center for Biodiversity Studies, Federal University of Roraima (UFRR), Boa Vista 69310-000, RR, Brazil (D.d.S.e.S.)
- Graduate Program in Biodiversity and Biotechnology (Bionorte-RR), Boa Vista 69301-290, RR, Brazil
| | - Rebecca de Abreu-Fernandes
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil; (R.d.A.-F.); (L.T.d.Q.); (N.K.A.-d.-O.M.)
- Center for Malaria Research, Diagnosis and Training (CPD-Mal)/Reference Center for Malaria in the Extra-Amazon Region of the Brazilian Ministry of Health, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Lucas Tavares de Queiroz
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil; (R.d.A.-F.); (L.T.d.Q.); (N.K.A.-d.-O.M.)
- Center for Malaria Research, Diagnosis and Training (CPD-Mal)/Reference Center for Malaria in the Extra-Amazon Region of the Brazilian Ministry of Health, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Daniel da Silva e Silva
- Center for Biodiversity Studies, Federal University of Roraima (UFRR), Boa Vista 69310-000, RR, Brazil (D.d.S.e.S.)
| | - Arthur Camurça Citó
- Research Support Center in Roraima (NAPRR), National Institute for Amazonian Research (INPA), Boa Vista 69301-150, RR, Brazil;
| | - Natália Ketrin Almeida-de-Oliveira Mocelin
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil; (R.d.A.-F.); (L.T.d.Q.); (N.K.A.-d.-O.M.)
- Center for Malaria Research, Diagnosis and Training (CPD-Mal)/Reference Center for Malaria in the Extra-Amazon Region of the Brazilian Ministry of Health, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil; (R.d.A.-F.); (L.T.d.Q.); (N.K.A.-d.-O.M.)
- Center for Malaria Research, Diagnosis and Training (CPD-Mal)/Reference Center for Malaria in the Extra-Amazon Region of the Brazilian Ministry of Health, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Maria de Fátima Ferreira-da-Cruz
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil; (R.d.A.-F.); (L.T.d.Q.); (N.K.A.-d.-O.M.)
- Center for Malaria Research, Diagnosis and Training (CPD-Mal)/Reference Center for Malaria in the Extra-Amazon Region of the Brazilian Ministry of Health, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
4
|
de Abreu-Fernandes R, Almeida-de-Oliveira NK, de Lavigne Mello AR, de Queiroz LT, Barros JDA, Baptista BDO, Oliveira-Ferreira J, de Souza RM, Pratt-Riccio LR, Brasil P, Daniel-Ribeiro CT, Ferreira-da-Cruz MDF. Are pvcrt-o and pvmdr1 Gene Mutations Associated with Plasmodium vivax Chloroquine-Resistant Parasites? Biomedicines 2024; 12:141. [PMID: 38255246 PMCID: PMC10812985 DOI: 10.3390/biomedicines12010141] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
(1) Background: Malaria remains a significant global public health issue. Since parasites quickly became resistant to most of the available antimalarial drugs, treatment effectiveness must be constantly monitored. In Brazil, up to 10% of cases of vivax malaria resistant to chloroquine (CQ) have been registered. Unlike P. falciparum, there are no definitive molecular markers for the chemoresistance of P. vivax to CQ. This work aimed to investigate whether polymorphisms in the pvcrt-o and pvmdr1 genes could be used as markers for assessing its resistance to CQ. (2) Methods: A total of 130 samples from P. vivax malaria cases with no clinical and/or parasitological evidence of CQ resistance were studied through polymerase chain reaction for gene amplification followed by target DNA sequencing. (3) Results: In the pvcrt-o exons, the K10 insert was present in 14% of the isolates. Regarding pvmdr1, T958M and F1076L haplotypes showed frequencies of 95% and 3%, respectively, while the SNP Y976F was not detected. (4) Conclusions: Since K10-pvcrt-o and F1076L/T958M-pvmdr1 polymorphisms were detected in samples from patients who responded well to CQ treatment, it can be concluded that mutations in these genes do not seem to have a potential for association with the phenotype of CQ resistance.
Collapse
Affiliation(s)
- Rebecca de Abreu-Fernandes
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil; (R.d.A.-F.); (N.K.A.-d.-O.); (A.R.d.L.M.); (L.T.d.Q.); (J.d.A.B.); (B.d.O.B.); (L.R.P.-R.)
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, Secretaria de Vigilância Sanitária & Fiocruz, Rio de Janeiro 21041-361, Brazil
| | - Natália Ketrin Almeida-de-Oliveira
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil; (R.d.A.-F.); (N.K.A.-d.-O.); (A.R.d.L.M.); (L.T.d.Q.); (J.d.A.B.); (B.d.O.B.); (L.R.P.-R.)
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, Secretaria de Vigilância Sanitária & Fiocruz, Rio de Janeiro 21041-361, Brazil
| | - Aline Rosa de Lavigne Mello
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil; (R.d.A.-F.); (N.K.A.-d.-O.); (A.R.d.L.M.); (L.T.d.Q.); (J.d.A.B.); (B.d.O.B.); (L.R.P.-R.)
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, Secretaria de Vigilância Sanitária & Fiocruz, Rio de Janeiro 21041-361, Brazil
| | - Lucas Tavares de Queiroz
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil; (R.d.A.-F.); (N.K.A.-d.-O.); (A.R.d.L.M.); (L.T.d.Q.); (J.d.A.B.); (B.d.O.B.); (L.R.P.-R.)
| | - Jacqueline de Aguiar Barros
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil; (R.d.A.-F.); (N.K.A.-d.-O.); (A.R.d.L.M.); (L.T.d.Q.); (J.d.A.B.); (B.d.O.B.); (L.R.P.-R.)
- Núcleo de Controle da Malária/Departamento de Vigilância Epidemiológica/Coordenação Geral de Vigilância em Saúde/SESAU-RR, Boa Vista 69305-080, Brazil
| | - Bárbara de Oliveira Baptista
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil; (R.d.A.-F.); (N.K.A.-d.-O.); (A.R.d.L.M.); (L.T.d.Q.); (J.d.A.B.); (B.d.O.B.); (L.R.P.-R.)
| | | | - Rodrigo Medeiros de Souza
- Laboratório de Doenças Infecciosas da Amazônia Ocidental, Universidade Federal do Acre, Campus Floresta, Cruzeiro do Sul 69980-000, Brazil;
| | - Lilian Rose Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil; (R.d.A.-F.); (N.K.A.-d.-O.); (A.R.d.L.M.); (L.T.d.Q.); (J.d.A.B.); (B.d.O.B.); (L.R.P.-R.)
| | - Patrícia Brasil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, Secretaria de Vigilância Sanitária & Fiocruz, Rio de Janeiro 21041-361, Brazil
- Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro 21040-361, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil; (R.d.A.-F.); (N.K.A.-d.-O.); (A.R.d.L.M.); (L.T.d.Q.); (J.d.A.B.); (B.d.O.B.); (L.R.P.-R.)
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, Secretaria de Vigilância Sanitária & Fiocruz, Rio de Janeiro 21041-361, Brazil
| | - Maria de Fátima Ferreira-da-Cruz
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil; (R.d.A.-F.); (N.K.A.-d.-O.); (A.R.d.L.M.); (L.T.d.Q.); (J.d.A.B.); (B.d.O.B.); (L.R.P.-R.)
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, Secretaria de Vigilância Sanitária & Fiocruz, Rio de Janeiro 21041-361, Brazil
| |
Collapse
|
5
|
Suphakhonchuwong N, Rungsihirunrat K, Kuesap J. Surveillance of drug resistance molecular markers in Plasmodium vivax before and after introduction of dihydroartemisinin and piperaquine in Thailand: 2009-2019. Parasitol Res 2023; 122:2871-2883. [PMID: 37725258 DOI: 10.1007/s00436-023-07977-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Resistance to antimalarial drugs is a serious issue around the world. Widespread Plasmodium vivax and P. falciparum coinfections are commonly found in Thailand. Dihydroartemisinin and piperaquine (DHA-PPQ) have been used as first-line treatments for P. falciparum since 2015, and chloroquine (CQ) and primaquine (PQ) have remained first-line drugs for P. vivax for more than 60 years. Coinfections may lead parasites to evolve with regard to genetics under selective drug pressure. This study is aimed at investigating genes linked to antimalarial resistance in P. vivax before and after introduction of DHA-PPQ as a new drug regimen in Thailand. A total of 400 P. vivax isolates were collected from samples along the Thai-Myanmar and Thai-Malaysian borders before (2009-2015) and after (2016-2019) introduction of DHA-PPQ. Genomic DNA of P. vivax was obtained and subjected to analysis of five drug resistance-associated genes (Pvdhfr, Pvdhps, Pvmdr1, Pvcrt-o, and PvK12) by nested polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP), and nucleotide sequencing. A high prevalence of Pvdhfr was found in both endemic areas over the period. The quadruple (57I/58R/61M/117T) Pvdhfr haplotype was predominant in both periods in both endemic areas. Although the wild-type haplotype of Pvdhps was predominant in Thai-Malaysian isolates in both periods, a single mutant haplotype (383G) was dominant in Thai-Myanmar isolates during both periods. A low prevalence of the Pvmdr1 976F mutation was found in both periods among Thai-Myanmar isolates. A significant decrease in Pvmdr1 976F was identified in Thai-Malaysian isolates from the second period (p < 0.01). Only one nonsynonymous mutation of Pvcrt-o (193E) and one synonymous mutation of PvK12 (R584) were detected in four isolates (4.7%) and one isolate (0.5%) in the first period among Thai-Myanmar isolates, respectively. Thus, with limited clinical efficacy data, the low prevalence of drug-resistance markers may suggest that there is a low prevalence of P. vivax-resistant strains and that the current drug regimen for P. vivax is still effective for treating this P. vivax parasite population. Continued surveillance of antimalarial drug resistance markers and monitoring of clinical drug efficacy should be conducted for epidemiological and policy implications.
Collapse
Affiliation(s)
| | | | - Jiraporn Kuesap
- Faculty of Allied Health Sciences, Thammasat University, Pathumthani, 12120, Thailand.
| |
Collapse
|
6
|
Ding H, Dong Y, Deng Y, Xu Y, Liu Y, Wu J, Chen M, Zhang C, Liu L, Lin Y. Molecular surveillance of chloroquine resistance in Plasmodium vivax isolates from malaria cases in Yunnan Province of China using pvcrt-o gene polymorphisms. Malar J 2023; 22:338. [PMID: 37940956 PMCID: PMC10631137 DOI: 10.1186/s12936-023-04776-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND The efficacy of chloroquine treatment for vivax malaria has been rarely evaluated due to a lack of an appropriate testing method. The objective of this study was to conduct molecular monitoring of chloroquine resistance in Plasmodium vivax strains from vivax malaria patients in Yunnan Province, focusing on the analysis of polymorphism in the P. vivax chloroquine resistance transporter protein orthologous gene (pvcrt-o). METHODS In accordance with the principles of a cohort study, blood samples were collected from malaria cases diagnosed with a P. vivax mono-infection in Yunnan Province from 2020 to 2022. Segmental PCR was used to amplify the whole pvcrt-o gene in the blood samples and their products were subsequently sequenced. The sequencing data were arranged to obtain the full coding DNA sequence (CDS) as well as the gene's promoter region sequences. The CDSs were aligned with the reference sequence (XM_001613407.1) of the P. vivax SalI isolate to identify the mutant loci. RESULTS From a total of 375 blood samples taken from vivax malaria cases, 272 both whole gene CDSs (1272-1275 bp) and promoter DNA sequences (707 bp) of pvcrt-o gene were obtained. Among the whole CDSs, there were 7 single nucleotide polymorphic sites in which c.7 A>G was the minor allele frequency (MAF) site with 4.4% (12/272) detection rate. The mutation detection rate showed a significant decrease from 9.8% (10/102) in 2020 to 1.1% (1/92) in 2021 and 1.3% (1/78) in 2022, indicating statistical significance (χ2 = 11.256, P < 0.05). Among the identified 12 haplotypes, the majority of which were wild type (75.7%; 206/272). These four mutant haplotypes (Hap_3, Hap_5, Hap_9, and Hap_10) were classified as "K10 insertion type" and accounted for 12.1% (33/272). The detection rate of Hap_3 increased from 1.0% (1/102) in 2020 to 13.0% (12/92) in 2021 and 14.1% (11/78) in 2022, indicating statistical significance. A total of 23.8% (65/272) of the samples exhibited 14 bp (bp) deletions in the promoter region, occurring most frequently in the wild type haplotype (Hap_1) samples at a rate of 28.6% (59/206). CONCLUSIONS In recent years in Yunnan Province, a notable proportion of vivax malaria patients are infected by P. vivax strains with a "K10 insertion" and partial sequence deletions in the promoter region of the pvcrt-o gene, necessitating vigilance.
Collapse
Affiliation(s)
- Hongyun Ding
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan International Joint Laboratory of Tropical Infectious Diseases, Yunnan Institute of Parasitic Diseases Control, Pu'er, 665000, China
| | - Ying Dong
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan International Joint Laboratory of Tropical Infectious Diseases, Yunnan Institute of Parasitic Diseases Control, Pu'er, 665000, China.
| | - Yan Deng
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan International Joint Laboratory of Tropical Infectious Diseases, Yunnan Institute of Parasitic Diseases Control, Pu'er, 665000, China
| | - Yanchun Xu
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan International Joint Laboratory of Tropical Infectious Diseases, Yunnan Institute of Parasitic Diseases Control, Pu'er, 665000, China
| | - Yan Liu
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan International Joint Laboratory of Tropical Infectious Diseases, Yunnan Institute of Parasitic Diseases Control, Pu'er, 665000, China
| | - Jing Wu
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan International Joint Laboratory of Tropical Infectious Diseases, Yunnan Institute of Parasitic Diseases Control, Pu'er, 665000, China
| | - Mengni Chen
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan International Joint Laboratory of Tropical Infectious Diseases, Yunnan Institute of Parasitic Diseases Control, Pu'er, 665000, China
| | - Canglin Zhang
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan International Joint Laboratory of Tropical Infectious Diseases, Yunnan Institute of Parasitic Diseases Control, Pu'er, 665000, China
| | - Li Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Yingkun Lin
- Center for Disease Control and Prevention, Dehong, 678499, China.
| |
Collapse
|
7
|
Rumaseb A, Moraes Barros RR, Sá JM, Juliano JJ, William T, Braima KA, Barber BE, Anstey NM, Price RN, Grigg MJ, Marfurt J, Auburn S. No Association between the Plasmodium vivax crt-o MS334 or In9 pvcrt Polymorphisms and Chloroquine Failure in a Pre-Elimination Clinical Cohort from Malaysia with a Large Clonal Expansion. Antimicrob Agents Chemother 2023; 67:e0161022. [PMID: 37314336 PMCID: PMC10353443 DOI: 10.1128/aac.01610-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/04/2023] [Indexed: 06/15/2023] Open
Abstract
Increasing reports of resistance to a frontline malaria blood-stage treatment, chloroquine (CQ), raises concerns for the elimination of Plasmodium vivax. The absence of an effective molecular marker of CQ resistance in P. vivax greatly constrains surveillance of this emerging threat. A recent genetic cross between CQ sensitive (CQS) and CQ resistant (CQR) NIH-1993 strains of P. vivax linked a moderate CQR phenotype with two candidate markers in P. vivax CQ resistance transporter gene (pvcrt-o): MS334 and In9pvcrt. Longer TGAAGH motif lengths at MS334 were associated with CQ resistance, as were shorter motifs at the In9pvcrt locus. In this study, high-grade CQR clinical isolates of P. vivax from a low endemic setting in Malaysia were used to investigate the association between the MS334 and In9pvcrt variants and treatment efficacy. Among a total of 49 independent monoclonal P. vivax isolates assessed, high-quality MS334 and In9pvcrt sequences could be derived from 30 (61%) and 23 (47%), respectively. Five MS334 and six In9pvcrt alleles were observed, with allele frequencies ranging from 2 to 76% and 3 to 71%, respectively. None of the clinical isolates had the same variant as the NIH-1993 CQR strain, and none of the variants were associated with CQ treatment failure (all P > 0.05). Multi-locus genotypes (MLGs) at 9 neutral microsatellites revealed a predominant P. vivax strain (MLG6) accounting for 52% of Day 0 infections. The MLG6 strain comprised equal proportions of CQS and CQR infections. Our study reveals complexity in the genetic basis of CQ resistance in the Malaysian P. vivax pre-elimination setting and suggests that the proposed pvcrt-o MS334 and In9pvcrt markers are not reliable markers of CQ treatment efficacy in this setting. Further studies are needed in other endemic settings, applying hypothesis-free genome-wide approaches, and functional approaches to understand the biological impact of the TGAAGH repeats linked to CQ response in a cross are warranted to comprehend and track CQR P. vivax.
Collapse
Affiliation(s)
- Angela Rumaseb
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Roberto R. Moraes Barros
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Juliana M. Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jonathan J. Juliano
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Timothy William
- Clinical Research Centre, Queen Elizabeth Hospital, Sabah, Malaysia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Kamil A. Braima
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Bridget E. Barber
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Nicholas M. Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Matthew J. Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- College of Medicine and Public Health, Flinders University, Darwin, Northern Territory, Australia
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
Ding H, Dong Y, Deng Y, Xu Y, Liu Y, Wu J, Chen M, Zhang C, Zheng W. Characteristics of molecular markers associated with chloroquine resistance in Plasmodium vivax strains from vivax malaria cases in Yunnan Province, China. Malar J 2023; 22:181. [PMID: 37303047 DOI: 10.1186/s12936-023-04616-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND Chloroquine (CQ) has been the preferred clinical treatment for vivax malaria in Yunnan Province since 1958, with over 300,000 patients. This study aimed to help make trend predictions regarding variations the in anti-malarial drug susceptibility of Plasmodium vivax distributed in Yunnan Province and effectively implement monitoring measures on the efficacy of anti-malarial drugs for vivax malaria. METHODS Blood samples collected from patients with mono-P. vivax infections were employed in this study based on the principle of cluster sampling. The whole gene of P. vivax multidrug resistance 1 protein gene (pvmdr1) was amplified by nested-PCR techniques and the PCR amplification produce were sequenced by Sanger bidirectional sequencing. The mutant loci and haplotypes of coding DNA sequence (CDS) were identified by comparison with the reference sequence (NC_009915.1) of the P. vivax Sal I isolate. Parameters such as Ka/Ks ratio were calculated using MEGA 5.04 software. RESULTS A total of 753 blood samples from patients infected with mono-P. vivax were collected, of which 624 blood samples yielded the full gene sequence (4392 bp) of the pvmdr1 gene, with 283, 140, 119, and 82 sequences from 2014, 2020, 2021 and 2022, respectively. A total of 52 single nucleotide polymorphic (SNP) loci were detected for the 624 CDSs, of which 92.3% (48/52), 34.6% (18/52), 42.3% (22/52), and 36.5% (19/52) SNPs were detected in 2014, 2020, 2021 and 2022, respectively. All of 624 CDSs were defined for a total of 105 mutant haplotypes, with CDSs of 2014, 2020, 2021, and 2022 containing 88, 15, 21, and 13 haplotypes, respectively. Of the 105 haplotypes, the threefold mutant haplotype (Hap_87) was the starting point for stepwise evolution, and the most drastic tenfold mutations were Hap_14 and Hap_78, and the fivefold, sixfold, sevenfold, and eightfold mutations. CONCLUSIONS In the majority of vivax malaria cases in Yunnan Province, most of them were infected with strains carrying demonstrating highly mutated in pvmdr1 genes. However, the dominant mutation strains types varied from year to year, which warrants further exploration in order to confirm the correlation between with phenotypic changes in P. vivax strains and their susceptibility to anti-malarial drugs such as chloroquine.
Collapse
Affiliation(s)
- Hongyun Ding
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory, Yunnan Centre of Malaria Research, Pu'er, 665000, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ying Dong
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory, Yunnan Centre of Malaria Research, Pu'er, 665000, China.
| | - Yan Deng
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Yanchun Xu
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Yan Liu
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Jing Wu
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Mengni Chen
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Canglin Zhang
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Weibin Zheng
- Center for Disease Control and Prevention, Baoshan, 678000, China.
| |
Collapse
|
9
|
Kaur D, Sinha S, Sehgal R. Global scenario of Plasmodium vivax occurrence and resistance pattern. J Basic Microbiol 2022; 62:1417-1428. [PMID: 36125207 DOI: 10.1002/jobm.202200316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/20/2022] [Accepted: 09/04/2022] [Indexed: 11/06/2022]
Abstract
Malaria caused by Plasmodium vivax is comparatively less virulent than Plasmodium falciparum, which can also lead to severe disease and death. It shows a wide geographical distribution. Chloroquine serves as a drug of choice, with primaquine as a radical cure. However, with the appearance of resistance to chloroquine and treatment has been shifted to artemisinin combination therapy followed by primaquine as a radical cure. Sulphadoxine-pyrimethamine, mefloquine, and atovaquone-proguanil are other drugs of choice in chloroquine-resistant areas, and later resistance was soon reported for these drugs also. The emergence of drug resistance serves as a major hurdle to controlling and eliminating malaria. The discovery of robust molecular markers and regular surveillance for the presence of mutations in malaria-endemic areas would serve as a helpful tool to combat drug resistance. Here, in this review, we will discuss the endemicity of P. vivax, a historical overview of antimalarial drugs, the appearance of drug resistance and molecular markers with their global distribution along with different measures taken to reduce malaria burden due to P. vivax infection and their resistance.
Collapse
Affiliation(s)
- Davinder Kaur
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shweta Sinha
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
10
|
Tang T, Xu Y, Cao L, Tian P, Shao J, Deng Y, Zhou H, Xiao B. Ten-Year Molecular Surveillance of Drug-Resistant Plasmodium spp. Isolated From the China-Myanmar Border. Front Cell Infect Microbiol 2021; 11:733788. [PMID: 34540721 PMCID: PMC8441003 DOI: 10.3389/fcimb.2021.733788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Antimalarial drug resistance has emerged as a major threat to global malaria control efforts, particularly in the Greater Mekong Subregion (GMS). In this study, we analyzed the polymorphism and prevalence of molecular markers associated with resistance to first-line antimalarial drugs, such as artemisinin, chloroquine, and pyrimethamine, using blood samples collected from malaria patients in the China-Myanmar border region of the GMS from 2008 to 2017, including 225 cases of Plasmodium falciparum and 194 cases of Plasmodium vivax. In artemisinin resistance, only the C580Y mutation with low frequency was detected in pfk13, and no highly frequent stable mutation was found in pvk12. In chloroquine resistance, the frequency of K76T mutation in pfcrt was always high, and the frequency of double mutations in pvmdr1 of P. vivax has been steadily increasing every year. In pyrimidine resistance, pfdhfr and pvdhfr had relatively more complex mutant types associated with drug resistance sites, and the overall mutation rate was still high. Therefore, artemisinin-based combination therapies are still suitable for use as the first choice of antimalarial strategy in the China-Myanmar border region in the future.
Collapse
Affiliation(s)
- Tongke Tang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yanchun Xu
- Yunnan Institute of Parasitic Diseases Control, Pu'er, China
| | - Long Cao
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Penghai Tian
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jiang Shao
- Institutional Center for Shared Technologies and Facilities of Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yan Deng
- Yunnan Institute of Parasitic Diseases Control, Pu'er, China
| | - Hongning Zhou
- Yunnan Institute of Parasitic Diseases Control, Pu'er, China
| | - Bo Xiao
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
11
|
Buyon LE, Elsworth B, Duraisingh MT. The molecular basis of antimalarial drug resistance in Plasmodium vivax. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 16:23-37. [PMID: 33957488 PMCID: PMC8113647 DOI: 10.1016/j.ijpddr.2021.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 01/07/2023]
Abstract
Plasmodium vivax is the most geographically widespread cause of human malaria and is responsible for the majority of cases outside of the African continent. While great progress has been made towards eliminating human malaria, drug resistant parasite strains pose a threat towards continued progress. Resistance has arisen to multiple antimalarials in P. vivax, including to chloroquine, which is currently the first line therapy for P. vivax in most regions. Despite its importance, an understanding of the molecular mechanisms of drug resistance in this species remains elusive, in large part due to the complex biology of P. vivax and the lack of in vitro culture. In this review, we will cover the extent and challenges of measuring clinical and in vitro drug resistance in P. vivax. We will consider the roles of candidate drug resistance genes. We will highlight the development of molecular approaches for studying P. vivax biology that provide the opportunity to validate the role of putative drug resistance mutations as well as identify novel mechanisms of drug resistance in this understudied parasite. Validated molecular determinants and markers of drug resistance are essential for the rapid and cost-effective monitoring of drug resistance in P. vivax, and will be useful for optimizing drug regimens and for informing drug policy in control and elimination settings. Drug resistance is emerging in Plasmodium vivax, an important cause of malaria. The complex biology of P. vivax and the limited range of research tools make it difficult to identify drug resistance. The molecular mechanisms of drug resistance in P. vivax remain elusive. This review highlights the extent of drug resistance, the putative mechanisms of resistance and new technologies for the study of P. vivax drug resistance.
Collapse
Affiliation(s)
- Lucas E Buyon
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA.
| |
Collapse
|
12
|
Ferreira MU, Nobrega de Sousa T, Rangel GW, Johansen IC, Corder RM, Ladeia-Andrade S, Gil JP. Monitoring Plasmodium vivax resistance to antimalarials: Persisting challenges and future directions. Int J Parasitol Drugs Drug Resist 2021; 15:9-24. [PMID: 33360105 PMCID: PMC7770540 DOI: 10.1016/j.ijpddr.2020.12.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 11/23/2022]
Abstract
Emerging antimalarial drug resistance may undermine current efforts to control and eliminate Plasmodium vivax, the most geographically widespread yet neglected human malaria parasite. Endemic countries are expected to assess regularly the therapeutic efficacy of antimalarial drugs in use in order to adjust their malaria treatment policies, but proper funding and trained human resources are often lacking to execute relatively complex and expensive clinical studies, ideally complemented by ex vivo assays of drug resistance. Here we review the challenges for assessing in vivo P. vivax responses to commonly used antimalarials, especially chloroquine and primaquine, in the presence of confounding factors such as variable drug absorption, metabolism and interaction, and the risk of new infections following successful radical cure. We introduce a simple modeling approach to quantify the relative contribution of relapses and new infections to recurring parasitemias in clinical studies of hypnozoitocides. Finally, we examine recent methodological advances that may render ex vivo assays more practical and widely used to confirm P. vivax drug resistance phenotypes in endemic settings and review current approaches to the development of robust genetic markers for monitoring chloroquine resistance in P. vivax populations.
Collapse
Affiliation(s)
- Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Nova University of Lisbon, Lisbon, Portugal.
| | - Tais Nobrega de Sousa
- Molecular Biology and Malaria Immunology Research Group, René Rachou Institute, Fiocruz, Belo Horizonte, Brazil
| | - Gabriel W Rangel
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Igor C Johansen
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodrigo M Corder
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Simone Ladeia-Andrade
- Laboratory of Parasitic Diseases, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - José Pedro Gil
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden
| |
Collapse
|
13
|
Zhao Y, Wang L, Soe MT, Aung PL, Wei H, Liu Z, Ma T, Huang Y, Menezes LJ, Wang Q, Kyaw MP, Nyunt MH, Cui L, Cao Y. Molecular surveillance for drug resistance markers in Plasmodium vivax isolates from symptomatic and asymptomatic infections at the China-Myanmar border. Malar J 2020; 19:281. [PMID: 32758218 PMCID: PMC7409419 DOI: 10.1186/s12936-020-03354-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In the Greater Mekong sub-region, Plasmodium vivax has become the predominant species and imposes a major challenge for regional malaria elimination. This study aimed to investigate the variations in genes potentially related to drug resistance in P. vivax populations from the China-Myanmar border area. In addition, this study also wanted to determine whether divergence existed between parasite populations associated with asymptomatic and acute infections. METHODS A total of 66 P. vivax isolates were obtained from patients with acute malaria who attended clinics at the Laiza area, Kachin State, Myanmar in 2015. In addition, 102 P. vivax isolates associated with asymptomatic infections were identified by screening of volunteers without signs or symptoms from surrounding villages. Slide-positive samples were verified with nested PCR detecting the 18S rRNA gene. Multiclonal infections were further excluded by genotyping at msp-3α and msp-3β genes. Parasite DNA from 60 symptomatic cases and 81 asymptomatic infections was used to amplify and sequence genes potentially associated with drug resistance, including pvmdr1, pvcrt-o, pvdhfr, pvdhps, and pvk12. RESULTS The pvmdr1 Y976F and F1076L mutations were present in 3/113 (2.7%) and 97/113 (85.5%) P. vivax isolates, respectively. The K10 insertion in pvcrt-o gene was found in 28.2% of the parasites. Four mutations in the two antifolate resistance genes reached relatively high levels of prevalence: pvdhfr S58R (53.4%), S117N/T (50.8%), pvdhps A383G (75.0%), and A553G (36.3%). Haplotypes with wild-type pvmdr1 (976Y/997K/1076F) and quadruple mutations in pvdhfr (13I/57L/58R/61M/99H/117T/173I) were significantly more prevalent in symptomatic than asymptomatic infections, whereas the pvmdr1 mutant haplotype 976Y/997K/1076L was significantly more prevalent in asymptomatic than symptomatic infections. In addition, quadruple mutations at codons 57, 58, 61 and 117 of pvdhfr and double mutations at codons 383 and 553 of pvdhps were found both in asymptomatic and symptomatic infections with similar frequencies. No mutations were found in the pvk12 gene. CONCLUSIONS Mutations in pvdhfr and pvdhps were prevalent in both symptomatic and asymptomatic P. vivax infections, suggestive of resistance to antifolate drugs. Asymptomatic carriers may act as a silent reservoir sustaining drug-resistant parasite transmission necessitating a rational strategy for malaria elimination in this region.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Lin Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Myat Thu Soe
- Myanmar Health Network Organization, Yangon, Myanmar
| | | | - Haichao Wei
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Ziling Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Tongyu Ma
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Yuanyuan Huang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Lynette J Menezes
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL, 33612, USA
| | - Qinghui Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | | | | | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL, 33612, USA.
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
14
|
Mosawi SH, Dalimi A, Safi N, Fotouhi-Ardakani R, Ghaffarifar F, Sadraei J. An unlabelled probe-based real time PCR and modified semi-nested PCR as molecular tools for analysis of chloroquine resistant Plasmodium vivax isolates from Afghanistan. Malar J 2020; 19:253. [PMID: 32664942 PMCID: PMC7362495 DOI: 10.1186/s12936-020-03323-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/07/2020] [Indexed: 11/27/2022] Open
Abstract
Background Plasmodium vivax resistance to chloroquine (CQ) has been reported from many endemic regions in the world. Plasmodium vivax is responsible for 95% of malaria cases in Afghanistan and CQ is the first-line treatment given for vivax malaria. The pvmdr-1 and pvcrt-o (K10 insertion) genes are possible markers for CQ-resistance in P. vivax isolates. There have been no studies done on the presence or absence of molecular markers for CQ-resistance P. vivax in Afghanistan. The present work aimed to evaluate the frequency of mutations in the pvmdr-1 and K10 insertion in the pvcrt-o genes of P. vivax. Methods Plasmodium vivax isolates were collected from Laghman, Baghlan and Khost provinces. For investigation of polymorphisms of desired regions in pvmdr-1 and pvcrt-o genes, sequencing was applied on the PCR products. A new asymmetric qPCR and melting analysis assay based on unlabelled probe developed for scanning of K10 insertion in pvcrt-o gene. Results The analysis of sequencing data of the pvmdr-1 gene showed wild type Y976 and K997 and mutant M958 and L1076 in 33 isolates from three provinces. Of the 36 samples evaluated for K10 insertion in pvcrt-o, 2/18(11%), 0/10(0%) and 0/8(0%) isolates from Laghman, Baghlan and Khost province, respectively, possessed K10 insertion, confirmed by either sequencing and unlabelled probes. Conclusion Two samples with K10 insertion and 33 samples with pvmdr1 polymorphism, indicating on the possibility of CQ resistance in P. vivax populations in Afghanistan. Furthermore, unlabelled probes are simple and inexpensive alternative tools for screening of P. vivax mutations.
Collapse
Affiliation(s)
- Sayed Hussain Mosawi
- Department of Medical Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Medical Sciences Research Center, Ghalib University, Kabul, Afghanistan
| | - Abdolhossein Dalimi
- Department of Medical Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Najibullah Safi
- World Health Organization Country Office, Kabul, Afghanistan
| | - Reza Fotouhi-Ardakani
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Fatemeh Ghaffarifar
- Department of Medical Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javid Sadraei
- Department of Medical Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
15
|
van Dorp L, Gelabert P, Rieux A, de Manuel M, de-Dios T, Gopalakrishnan S, Carøe C, Sandoval-Velasco M, Fregel R, Olalde I, Escosa R, Aranda C, Huijben S, Mueller I, Marquès-Bonet T, Balloux F, Gilbert MTP, Lalueza-Fox C. Plasmodium vivax Malaria Viewed through the Lens of an Eradicated European Strain. Mol Biol Evol 2020; 37:773-785. [PMID: 31697387 PMCID: PMC7038659 DOI: 10.1093/molbev/msz264] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The protozoan Plasmodium vivax is responsible for 42% of all cases of malaria outside Africa. The parasite is currently largely restricted to tropical and subtropical latitudes in Asia, Oceania, and the Americas. Though, it was historically present in most of Europe before being finally eradicated during the second half of the 20th century. The lack of genomic information on the extinct European lineage has prevented a clear understanding of historical population structuring and past migrations of P. vivax. We used medical microscope slides prepared in 1944 from malaria-affected patients from the Ebro Delta in Spain, one of the last footholds of malaria in Europe, to generate a genome of a European P. vivax strain. Population genetics and phylogenetic analyses placed this strain basal to a cluster including samples from the Americas. This genome allowed us to calibrate a genomic mutation rate for P. vivax, and to estimate the mean age of the last common ancestor between European and American strains to the 15th century. This date points to an introduction of the parasite during the European colonization of the Americas. In addition, we found that some known variants for resistance to antimalarial drugs, including Chloroquine and Sulfadoxine, were already present in this European strain, predating their use. Our results shed light on the evolution of an important human pathogen and illustrate the value of antique medical collections as a resource for retrieving genomic information on pathogens from the past.
Collapse
Affiliation(s)
- Lucy van Dorp
- UCL Genetics Institute, University College London, London, United Kingdom
| | - Pere Gelabert
- Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Adrien Rieux
- CIRAD, UMR PVBMT, St. Pierre de la Réunion, France
| | - Marc de Manuel
- Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
| | - Toni de-Dios
- Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
| | - Shyam Gopalakrishnan
- Section for Evolutionary Genomics, Faculty of Health and Medical Sciences, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Christian Carøe
- Section for Evolutionary Genomics, Faculty of Health and Medical Sciences, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Marcela Sandoval-Velasco
- Section for Evolutionary Genomics, Faculty of Health and Medical Sciences, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rosa Fregel
- Department of Genetics, Stanford University, Stanford, CA
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, La Laguna, Spain
| | - Iñigo Olalde
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Raül Escosa
- Consorci de Polítiques Ambientals de les Terres de l'Ebre (COPATE), Deltebre, Spain
| | - Carles Aranda
- Servei de Control de Mosquits, Consell Comarcal del Baix Llobregat, Sant Feliu de Llobregat, Spain
| | - Silvie Huijben
- School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Ivo Mueller
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Population Health and Immunity Division, Walter & Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Tomàs Marquès-Bonet
- Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- CNAG-CRG, Barcelona Institute of Science and Technology, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - François Balloux
- UCL Genetics Institute, University College London, London, United Kingdom
| | - M Thomas P Gilbert
- Section for Evolutionary Genomics, Faculty of Health and Medical Sciences, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | |
Collapse
|
16
|
Molecular detection of antimalarial drug resistance in Plasmodium vivax from returned travellers to NSW, Australia during 2008-2018. Pathogens 2020; 9:pathogens9020101. [PMID: 32033493 PMCID: PMC7168284 DOI: 10.3390/pathogens9020101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/02/2022] Open
Abstract
To monitor drug resistance in Plasmodium vivax, a multidrug resistance 1 (Pvmdr1) gene and a putative transporter protein (Pvcrt-o) gene were used as molecular markers for chloroquine resistance. The biomarkers, the dihydrofolate reductase (Pvdhfr) gene and the dihydropteroate synthetase (Pvdhps) gene, were also used for the detection of resistance to sulphadoxine-pyrimethamine (SP); this drug is often accidentally used to treat P. vivax infections. Clinical blood samples (n = 120) were collected from patients who had been to one of eight malaria-endemic countries and diagnosed with P. vivax infection. The chloroquine resistance marker, the Pvmdr1 gene, showed F976:L1076 mutations and L1076 mutation. A K10 insertion in the Pvcrt-o gene was also found among the samples successfully sequenced. A combination of L/I57:R58:M61:T117 mutations in the Pvdhfr gene and G383:G553 mutations in the Pvdhps gene were also observed. Mutations found in these genes indicate that drug resistance is present in these eight countries. Whether or not countries are using chloroquine to treat P. vivax, there appears to be an increase in mutation numbers in resistance gene markers. The detected changes in mutation rates of these genes do suggest that there is still a trend towards increasing P. vivax resistance to chloroquine. The presence of the mutations associated with SP resistance indicates that P. vivax has had exposure to SP and this may be a consequence of either misdiagnosis or coinfections with P. falciparum in the past.
Collapse
|
17
|
Verzier LH, Coyle R, Singh S, Sanderson T, Rayner JC. Plasmodium knowlesi as a model system for characterising Plasmodium vivax drug resistance candidate genes. PLoS Negl Trop Dis 2019; 13:e0007470. [PMID: 31158222 PMCID: PMC6564043 DOI: 10.1371/journal.pntd.0007470] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 06/13/2019] [Accepted: 05/15/2019] [Indexed: 12/29/2022] Open
Abstract
Plasmodium vivax causes the majority of malaria outside Africa, but is poorly understood at a cellular level partly due to technical difficulties in maintaining it in in vitro culture conditions. In the past decades, drug resistant P. vivax parasites have emerged, mainly in Southeast Asia, but while some molecular markers of resistance have been identified, none have so far been confirmed experimentally, which limits interpretation of the markers, and hence our ability to monitor and control the spread of resistance. Some of these potential markers have been identified through P. vivax genome-wide population genetic analyses, which highlighted genes under recent evolutionary selection in Southeast Asia, where chloroquine resistance is most prevalent. These genes could be involved in drug resistance, but no experimental proof currently exists to support this hypothesis. In this study, we used Plasmodium knowlesi, the most closely related species to P. vivax that can be cultured in human erythrocytes, as a model system to express P. vivax genes and test for their role in drug resistance. We adopted a strategy of episomal expression, and were able to express fourteen P. vivax genes, including two allelic variants of several hypothetical resistance genes. Their expression level and localisation were assessed, confirming cellular locations conjectured from orthologous species, and suggesting locations for several previously unlocalised proteins, including an apical location for PVX_101445. These findings establish P. knowlesi as a suitable model for P. vivax protein expression. We performed chloroquine and mefloquine drug assays, finding no significant differences in drug sensitivity: these results could be due to technical issues, or could indicate that these genes are not actually involved in drug resistance, despite being under positive selection pressure in Southeast Asia. These data confirm that in vitro P. knowlesi is a useful tool for studying P. vivax biology. Its close evolutionary relationship to P. vivax, high transfection efficiency, and the availability of markers for colocalisation, all make it a powerful model system. Our study is the first of its kind using P. knowlesi to study unknown P. vivax proteins and investigate drug resistance mechanisms.
Collapse
Affiliation(s)
- Lisa H. Verzier
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Rachael Coyle
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Shivani Singh
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Theo Sanderson
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Julian C. Rayner
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| |
Collapse
|
18
|
Assessment of drug resistance associated genetic diversity in Mauritanian isolates of Plasmodium vivax reveals limited polymorphism. Malar J 2018; 17:416. [PMID: 30409138 PMCID: PMC6225721 DOI: 10.1186/s12936-018-2548-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 10/24/2018] [Indexed: 01/09/2023] Open
Abstract
Background Plasmodium vivax is the predominant malaria species in northern Mauritania. Molecular data on P. vivax isolates circulating in West Africa are scarce. The present study analysed molecular markers associated with resistance to antifolates (Pvdhfr and Pvdhps), chloroquine (Pvmdr1), and artemisinin (Pvk12) in P. vivax isolates collected in two cities located in the Saharan zone of Mauritania. Methods Blood samples were obtained from P. vivax-infected patients recruited for chloroquine therapeutic efficacy study in 2013 and febrile patients spontaneously consulting health facilities in Nouakchott and Atar in 2015–2016. Fragments of Pvdhfr (codons 13, 33, 57, 58, 61, 117, and 174), Pvdhps (codons 382, 383, 512, 553, and 585), Pvmdr1 (codons 976 and 1076) and Pvk12 (codon 552) genes were amplified by PCR and sequenced. Results Most of the isolates in Nouakchott (126/154, 81.8%) and Atar (44/45, 97.8%) carried the wild-type Pvdhfr allelic variant (IPFSTSI). In Nouakchott, all mutants (28/154; 18.2%) had double Pvdhfr mutations in positions 58 and 61 (allelic variant IPFRMSI), whereas in Atar only 1 isolate was mutant (S117N, allelic variant IPFSTNI). The wild-type Pvdhps allelic variant (SAKAV) was found in all tested isolates (Nouakchott, n = 93; Atar, n = 37). Few isolates in Nouakchott (5/115, 4.3%) and Atar (3/79, 3.8%) had the mutant Pvmdr1 allele 976F or 1076L, but not both, including in pre-treatment isolates obtained from patients treated successfully with chloroquine. All isolates (59 in Nouakchott and 48 in Atar) carried the wild-type V552 allele in Pvk12. Conclusions Polymorphisms in Pvdhfr, Pvdhps, Pvmdr1, and Pvk12 were limited in P. vivax isolates collected recently in Nouakchott and Atar. Compared to the isolates collected in Nouakchott in 2007–2009, there was no evidence for selection of mutants. The presence of one, but not both, of the two potential markers of chloroquine resistance in Pvmdr1 in pre-treatment isolates did not influence the clinical outcome, putting into question the role of Pvmdr1 mutant alleles 976F and 1076L in treatment failure. Molecular surveillance is an important component of P. vivax malaria control programme in the Saharan zone of Mauritania to predict possible emergence of drug-resistant parasites.
Collapse
|
19
|
Dayananda KK, Achur RN, Gowda DC. Epidemiology, drug resistance, and pathophysiology of Plasmodium vivax malaria. J Vector Borne Dis 2018; 55:1-8. [PMID: 29916441 DOI: 10.4103/0972-9062.234620] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Malaria, caused by the protozoan parasites of the genus Plasmodium, is a major health problem in many countries of the world. Five parasite species namely, Plasmodium falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi, cause malaria in humans. Of these, P. falciparum and P. vivax are the most prevalent and account for the majority of the global malaria cases. In most areas of Africa, P. vivax infection is essentially absent because of the inherited lack of Duffy antigen receptor for chemokines on the surface of red blood cells that is involved in the parasite invasion of erythrocytes. Therefore, in Africa, most malaria infections are by P. falciparum and the highest burden of P. vivax infection is in Southeast Asia and South America. Plasmodium falciparum is the most virulent and as such, it is responsible for the majority of malarial mortality, particularly in Africa. Although, P. vivax infection has long been considered to be benign, recent studies have reported life-threatening consequences, including acute respiratory distress syndrome, cerebral malaria, multi-organ failure, dyserythropoiesis and anaemia. Despite exhibiting low parasite biomass in infected people due to parasite's specificity to infect only reticulocytes, P. vivax infection triggers higher inflammatory responses and exacerbated clinical symptoms than P. falciparum, such as fever and chills. Another characteristic feature of P. vivax infection, compared to P. falciparum infection, is persistence of the parasite as dormant liver-stage hypnozoites, causing recurrent episodes of malaria. This review article summarizes the published information on P. vivax epidemiology, drug resistance and pathophysiology.
Collapse
Affiliation(s)
- Kiran K Dayananda
- Department of Biochemistry, K.S. Hegde Medical Academy, NITTE University, Mangaluru, Karnataka, India
| | - Rajeshwara N Achur
- Department of Biochemistry, Kuvempu University, Shankaraghatta, Karnataka, India
| | - D Channe Gowda
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
20
|
Kittichai V, Nguitragool W, Ngassa Mbenda HG, Sattabongkot J, Cui L. Genetic diversity of the Plasmodium vivax multidrug resistance 1 gene in Thai parasite populations. INFECTION GENETICS AND EVOLUTION 2018; 64:168-177. [PMID: 29936038 DOI: 10.1016/j.meegid.2018.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 11/19/2022]
Abstract
Plasmodium vivax resistance to chloroquine (CQ) was first reported over 60 years ago. Here we analyzed sequence variations in the multidrug resistance 1 gene (Pvmdr1), a putative molecular marker for P. vivax CQ resistance, in field isolates collected from three sites in Thailand during 2013-2016. Several single nucleotide polymorphisms previously implicated in reduced CQ sensitivity were found. These genetic variations encode amino acids in the two nucleotide-binding domains as well as the transmembrane domains of the protein. The high level of genetic diversity of Pvmdr1 provides insights into the evolutionary history of this gene. Specifically, there was little evidence of positive selection at amino acid F1076L in global isolates to be promoted as a possible marker for CQ resistance. Population genetic analysis clearly divided the parasites into eastern and western populations, which is consistent with their geographical separation by the central malaria-free area of Thailand. With CQ-primaquine remaining as the frontline treatment for vivax malaria in all regions of Thailand, such a population subdivision could be shaped and affected by the current drugs for P. falciparum since mixed P. falciparum/P. vivax infections often occur in this region.
Collapse
Affiliation(s)
- Veerayuth Kittichai
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Liwang Cui
- Department of Entomology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
21
|
Cubides JR, Camargo-Ayala PA, Niño CH, Garzón-Ospina D, Ortega-Ortegón A, Ospina-Cantillo E, Orduz-Durán MF, Patarroyo ME, Patarroyo MA. Simultaneous detection of Plasmodium vivax dhfr, dhps, mdr1 and crt-o resistance-associated mutations in the Colombian Amazonian region. Malar J 2018; 17:130. [PMID: 29580244 PMCID: PMC5870912 DOI: 10.1186/s12936-018-2286-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/21/2018] [Indexed: 12/29/2022] Open
Abstract
Background Malaria continues being a public health problem worldwide. Plasmodium vivax is the species causing the largest number of cases of malaria in Asia and South America. Due to the lack of a completely effective anti-malarial vaccine, controlling this disease has been based on transmission vector management, rapid diagnosis and suitable treatment. However, parasite resistance to anti-malarial drugs has become a major yet-to-be-overcome challenge. This study was thus aimed at determining pvmdr1, pvdhfr, pvdhps and pvcrt-o gene mutations and haplotypes from field samples obtained from an endemic area in the Colombian Amazonian region. Methods Fifty samples of parasite DNA infected by a single P. vivax strain from symptomatic patients from the Amazonas department in Colombia were analysed by PCR and the pvdhfr, pvdhps, pvmdr1 and pvcrt-o genes were sequenced. Diversity estimators were calculated from the sequences and the haplotypes circulating in the Colombian Amazonian region were obtained. Conclusion pvdhfr, pvdhps, pvmdr1 and pvcrt-o genes in the Colombian Amazonian region are characterized by low genetic diversity. Some resistance-associated mutations were found circulating in this population. New variants are also being reported. A selective sweep signal was located in pvdhfr and pvmdr1 genes, suggesting that these mutations (or some of them) could be providing an adaptive advantage.
Collapse
Affiliation(s)
- Juan Ricardo Cubides
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia
| | - Paola Andrea Camargo-Ayala
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia
| | - Carlos Hernando Niño
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia
| | - Diego Garzón-Ospina
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24#63C-69, Bogotá, Colombia
| | - Anggie Ortega-Ortegón
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia
| | - Estefany Ospina-Cantillo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia
| | - María Fernanda Orduz-Durán
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia
| | - Manuel Elkin Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia.,School of Medicine, Universidad Nacional de Colombia, Avenida Carrera 30 # 45, Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia. .,School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24#63C-69, Bogotá, Colombia.
| |
Collapse
|
22
|
Joy S, Mukhi B, Ghosh SK, Achur RN, Gowda DC, Surolia N. Drug resistance genes: pvcrt-o and pvmdr-1 polymorphism in patients from malaria endemic South Western Coastal Region of India. Malar J 2018; 17:40. [PMID: 29351800 PMCID: PMC5775544 DOI: 10.1186/s12936-018-2188-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 01/15/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Malaria is highly prevalent in many parts of India and is mostly caused by the parasite species Plasmodium vivax followed by Plasmodium falciparum. Chloroquine (CQ) is the first-line treatment for blood stage P. vivax parasites, but cases of drug resistance to CQ have been reported from India. One of the surveillance strategies which is used to monitor CQ drug resistance, is the analysis of single nucleotide polymorphisms (SNPs) of the associated gene markers. Susceptibility to CQ can also be determined by copy number assessment of multidrug resistant gene (mdr-1). The current study has examined the prevalence of SNPs in P. vivax orthologs of P. falciparum chloroquine resistant and multi-drug resistant genes (pvcrt-o and pvmdr-1, respectively) and pvmdr-1 copy number variations in isolates from the highly endemic Mangaluru city near the South Western Coastal region of India. METHODS A total of 140 blood samples were collected from P. vivax infected patients attending Wenlock Hospital Mangaluru during July 2014 to January 2016. Out of these 140 samples, sequencing was carried out for 54 (38.5%) and 85 (60.7%) isolates for pvcrt-o and pvmdr-1, respectively. Single nucleotide polymorphisms (SNPs) in the pvcrt-o and pvmdr-1 genes were analysed by direct sequencing method, while copy number variations of 60 isolates (42. 8%) were determined by real time PCR. RESULTS Out of 54 clinical isolates analysed for pvcrt-o, three (5.6%) showed K10 insertion and the rest had wild type sequence. This is the first report to show K10 insertion in P. vivax isolates from India. Further, out of 85 clinical isolates of P. vivax analysed for mutations in pvmdr-1 gene, only one isolate had wild type sequence (~ 1%) while the remaining (99%) carried mutant alleles. Seven non-synonymous mutations with two novel mutations (I946V and Y1028C) were observed. Of all the observed mutations in pvmdr-1 gene, T958M was most highly prevalent (present in 90% of samples) followed by F1076L (76%), and Y976F (7%). Amplification of pvmdr-1 gene was observed in 31.6% of the isolates, out of 60 amplified. CONCLUSION The observed variations both in pvmdr-1 and pvcrt-o genes indicate a trend towards parasite acquiring CQ resistance in this endemic area.
Collapse
Affiliation(s)
- Shiny Joy
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre For Advanced Scientific Research, Jakkur, Bangalore, India
| | - Benudhar Mukhi
- Department of Biological Control, National Institute of Malaria Research, Poojanahalli, Bangalore, India
| | - Susanta K Ghosh
- Department of Biological Control, National Institute of Malaria Research, Poojanahalli, Bangalore, India
| | - Rajeshwara N Achur
- Department of Biochemistry, Kuvempu University, Shivamogga District, Shankaraghatta, Karnataka, India
| | - D Channe Gowda
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Namita Surolia
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre For Advanced Scientific Research, Jakkur, Bangalore, India.
| |
Collapse
|
23
|
Hassett MR, Riegel BE, Callaghan PS, Roepe PD. Analysis of Plasmodium vivax Chloroquine Resistance Transporter Mutant Isoforms. Biochemistry 2017; 56:5615-5622. [PMID: 28898049 DOI: 10.1021/acs.biochem.7b00749] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chloroquine (CQ) resistance (CQR) in Plasmodium falciparum malaria is widespread and has limited the use of CQ in many regions of the globe. Malaria caused by the related human parasite P. vivax is as widespread as is P. falciparum malaria and has been treated with CQ as extensively as has P. falciparum, suggesting that P. vivax parasites have been selected with CQ as profoundly as have P. falciparum parasites. Indeed, a growing number of clinical reports have presented data suggesting increased P. vivax CQR. Cytostatic (growth inhibitory) CQR for P. falciparum is caused by Plasmodium falciparum chloroquine resistance transporter (PfCRT) mutations, and it has been proposed that mutations in the PvCRT orthologue may simliarly cause P. vivax CQR via increasing CQ transport from the P. vivax digestive vacuole. Here we report the first quantitative analysis of drug transport mediated by all known mutant isoforms of Plasmodium vivax chloroquine resistance transporter (PvCRT) in order to test the protein's potential link to growing P. vivax CQR phenomena. Small, but statistically significant, differences in the transport of CQ and other quinoline antimalarial drugs were found for multiple PvCRT isoforms, relative to wild type PvCRT, suggesting that mutations in PvCRT can contribute to P. vivax CQR and other examples of quinoline antimalarial drug resistance.
Collapse
Affiliation(s)
- Matthew R Hassett
- Departments of Chemistry and of Biochemistry & Cellular & Molecular Biology, Georgetown University , 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Bryce E Riegel
- Departments of Chemistry and of Biochemistry & Cellular & Molecular Biology, Georgetown University , 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Paul S Callaghan
- Departments of Chemistry and of Biochemistry & Cellular & Molecular Biology, Georgetown University , 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Paul D Roepe
- Departments of Chemistry and of Biochemistry & Cellular & Molecular Biology, Georgetown University , 37th and O Streets NW, Washington, D.C. 20057, United States
| |
Collapse
|
24
|
Uppal K, Salinas JL, Monteiro WM, Val F, Cordy RJ, Liu K, Melo GC, Siqueira AM, Magalhaes B, Galinski MR, Lacerda MVG, Jones DP. Plasma metabolomics reveals membrane lipids, aspartate/asparagine and nucleotide metabolism pathway differences associated with chloroquine resistance in Plasmodium vivax malaria. PLoS One 2017; 12:e0182819. [PMID: 28813452 PMCID: PMC5559093 DOI: 10.1371/journal.pone.0182819] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/25/2017] [Indexed: 11/18/2022] Open
Abstract
Background Chloroquine (CQ) is the main anti-schizontocidal drug used in the treatment of uncomplicated malaria caused by Plasmodium vivax. Chloroquine resistant P. vivax (PvCR) malaria in the Western Pacific region, Asia and in the Americas indicates a need for biomarkers of resistance to improve therapy and enhance understanding of the mechanisms associated with PvCR. In this study, we compared plasma metabolic profiles of P. vivax malaria patients with PvCR and chloroquine sensitive parasites before treatment to identify potential molecular markers of chloroquine resistance. Methods An untargeted high-resolution metabolomics analysis was performed on plasma samples collected in a malaria clinic in Manaus, Brazil. Male and female patients with Plasmodium vivax were included (n = 46); samples were collected before CQ treatment and followed for 28 days to determine PvCR, defined as the recurrence of parasitemia with detectable plasma concentrations of CQ ≥100 ng/dL. Differentially expressed metabolic features between CQ-Resistant (CQ-R) and CQ-Sensitive (CQ-S) patients were identified using partial least squares discriminant analysis and linear regression after adjusting for covariates and multiple testing correction. Pathway enrichment analysis was performed using Mummichog. Results Linear regression and PLS-DA methods yielded 69 discriminatory features between CQ-R and CQ-S groups, with 10-fold cross-validation classification accuracy of 89.6% using a SVM classifier. Pathway enrichment analysis showed significant enrichment (p<0.05) of glycerophospholipid metabolism, glycosphingolipid metabolism, aspartate and asparagine metabolism, purine and pyrimidine metabolism, and xenobiotics metabolism. Glycerophosphocholines levels were significantly lower in the CQ-R group as compared to CQ-S patients and also to independent control samples. Conclusions The results show differences in lipid, amino acids, and nucleotide metabolism pathways in the plasma of CQ-R versus CQ-S patients prior to antimalarial treatment. Metabolomics phenotyping of P. vivax samples from patients with well-defined clinical CQ-resistance is promising for the development of new tools to understand the biological process and to identify potential biomarkers of PvCR.
Collapse
Affiliation(s)
- Karan Uppal
- Clinical Biomarkers Laboratory, Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
- Malaria Host–Pathogen Interaction Center, Atlanta, Georgia, United States of America
- * E-mail: ;
| | - Jorge L. Salinas
- Malaria Host–Pathogen Interaction Center, Atlanta, Georgia, United States of America
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, Georgia, United States of America
- Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Wuelton M. Monteiro
- Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Fernando Val
- Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Regina J. Cordy
- Malaria Host–Pathogen Interaction Center, Atlanta, Georgia, United States of America
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, Georgia, United States of America
| | - Ken Liu
- Clinical Biomarkers Laboratory, Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Gisely C. Melo
- Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Andre M. Siqueira
- Instituto Nacional de Infectologia Evandro Chagas (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Mary R. Galinski
- Malaria Host–Pathogen Interaction Center, Atlanta, Georgia, United States of America
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, Georgia, United States of America
- Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Marcus V. G. Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Instituto Leônidas & Maria Deane (FIOCRUZ), Manaus, Amazonas, Brazil
- * E-mail: ;
| | - Dean P. Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
- Malaria Host–Pathogen Interaction Center, Atlanta, Georgia, United States of America
| |
Collapse
|
25
|
de Oliveira TC, Rodrigues PT, Menezes MJ, Gonçalves-Lopes RM, Bastos MS, Lima NF, Barbosa S, Gerber AL, Loss de Morais G, Berná L, Phelan J, Robello C, de Vasconcelos ATR, Alves JMP, Ferreira MU. Genome-wide diversity and differentiation in New World populations of the human malaria parasite Plasmodium vivax. PLoS Negl Trop Dis 2017; 11:e0005824. [PMID: 28759591 PMCID: PMC5552344 DOI: 10.1371/journal.pntd.0005824] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/10/2017] [Accepted: 07/20/2017] [Indexed: 01/15/2023] Open
Abstract
Background The Americas were the last continent colonized by humans carrying malaria parasites. Plasmodium falciparum from the New World shows very little genetic diversity and greater linkage disequilibrium, compared with its African counterparts, and is clearly subdivided into local, highly divergent populations. However, limited available data have revealed extensive genetic diversity in American populations of another major human malaria parasite, P. vivax. Methods We used an improved sample preparation strategy and next-generation sequencing to characterize 9 high-quality P. vivax genome sequences from northwestern Brazil. These new data were compared with publicly available sequences from recently sampled clinical P. vivax isolates from Brazil (BRA, total n = 11 sequences), Peru (PER, n = 23), Colombia (COL, n = 31), and Mexico (MEX, n = 19). Principal findings/Conclusions We found that New World populations of P. vivax are as diverse (nucleotide diversity π between 5.2 × 10−4 and 6.2 × 10−4) as P. vivax populations from Southeast Asia, where malaria transmission is substantially more intense. They display several non-synonymous nucleotide substitutions (some of them previously undescribed) in genes known or suspected to be involved in antimalarial drug resistance, such as dhfr, dhps, mdr1, mrp1, and mrp-2, but not in the chloroquine resistance transporter ortholog (crt-o) gene. Moreover, P. vivax in the Americas is much less geographically substructured than local P. falciparum populations, with relatively little between-population genome-wide differentiation (pairwise FST values ranging between 0.025 and 0.092). Finally, P. vivax populations show a rapid decline in linkage disequilibrium with increasing distance between pairs of polymorphic sites, consistent with very frequent outcrossing. We hypothesize that the high diversity of present-day P. vivax lineages in the Americas originated from successive migratory waves and subsequent admixture between parasite lineages from geographically diverse sites. Further genome-wide analyses are required to test the demographic scenario suggested by our data. Plasmodium vivax is the most common human malaria parasite in the Americas, but how and when this species arrived in the New World remains unclear. Here we describe high-quality whole-genome sequence data for nine P. vivax isolates from Brazil, a country that accounts for 37% of the malaria burden in this continent, and compare these data with additional publicly available P. vivax genomes from Brazil, Peru, Colombia, and Mexico. P. vivax populations from the New World were found to be as diverse as their counterparts from areas with substantially higher malaria transmission, such as Southeast Asia, and to carry several non-synonymous substitutions in candidate drug-resistance genes. Moreover, genome-wide patterns of linkage disequilibrium between pairs of polymorphic sites are consistent with very frequent outcrossing in these populations. Interestingly, local P. vivax is more polymorphic, with less between-population differentiation, than sympatric populations of P. falciparum, possibly as a result of different demographic histories of these two species in the Americas. We hypothesize that local P. vivax lineages originated from successive migratory waves and subsequent admixture between parasites from geographically diverse sites.
Collapse
Affiliation(s)
- Thais C. de Oliveira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Priscila T. Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria José Menezes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Raquel M. Gonçalves-Lopes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Melissa S. Bastos
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nathália F. Lima
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Susana Barbosa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexandra L. Gerber
- Unit of Computational Genomics Darcy Fontoura de Almeida, Laboratory of Bioinformatics, National Laboratory of Scientific Computation, Petrópolis, Brazil
| | - Guilherme Loss de Morais
- Unit of Computational Genomics Darcy Fontoura de Almeida, Laboratory of Bioinformatics, National Laboratory of Scientific Computation, Petrópolis, Brazil
| | - Luisa Berná
- Unit of Molecular Biology, Pasteur Institute of Montevideo, Montevideo, Uruguay
| | - Jody Phelan
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Carlos Robello
- Unit of Molecular Biology, Pasteur Institute of Montevideo, Montevideo, Uruguay
| | - Ana Tereza R. de Vasconcelos
- Unit of Computational Genomics Darcy Fontoura de Almeida, Laboratory of Bioinformatics, National Laboratory of Scientific Computation, Petrópolis, Brazil
| | - João Marcelo P. Alves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
26
|
Plasmodium falciparum and Plasmodium vivax Demonstrate Contrasting Chloroquine Resistance Reversal Phenotypes. Antimicrob Agents Chemother 2017; 61:AAC.00355-17. [PMID: 28533239 PMCID: PMC5527611 DOI: 10.1128/aac.00355-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/08/2017] [Indexed: 01/12/2023] Open
Abstract
High-grade chloroquine (CQ) resistance has emerged in both Plasmodium falciparum and P. vivax The aim of the present study was to investigate the phenotypic differences of CQ resistance in both of these species and the ability of known CQ resistance reversal agents (CQRRAs) to alter CQ susceptibility. Between April 2015 and April 2016, the potential of verapamil (VP), mibefradil (MF), L703,606 (L7), and primaquine (PQ) to reverse CQ resistance was assessed in 46 P. falciparum and 34 P. vivax clinical isolates in Papua, Indonesia, where CQ resistance is present in both species, using a modified schizont maturation assay. In P. falciparum, CQ 50% inhibitory concentrations (IC50s) were reduced when CQ was combined with VP (1.4-fold), MF (1.2-fold), L7 (4.2-fold), or PQ (1.8-fold). The degree of CQ resistance reversal in P. falciparum was highly correlated with CQ susceptibility for all CQRRAs (R2 = 0.951, 0.852, 0.962, and 0.901 for VP, MF, L7, and PQ, respectively), in line with observations in P. falciparum laboratory strains. In contrast, no reduction in the CQ IC50s was observed with any of the CQRRAs in P. vivax, even in those isolates with high chloroquine IC50s. The differential effect of CQRRAs in P. falciparum and P. vivax suggests significant differences in CQ kinetics and, potentially, the likely mechanism of CQ resistance between these two species.
Collapse
|
27
|
González-Cerón L, Montoya A, Corzo-Gómez JC, Cerritos R, Santillán F, Sandoval MA. Genetic diversity and natural selection of Plasmodium vivax multi-drug resistant gene (pvmdr1) in Mesoamerica. Malar J 2017; 16:261. [PMID: 28666481 PMCID: PMC5493867 DOI: 10.1186/s12936-017-1905-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/23/2017] [Indexed: 01/09/2023] Open
Abstract
Background The Plasmodium vivax multidrug resistant 1 gene (pvmdr1) codes for a transmembrane protein of the parasite’s digestive vacuole. It is likely that the pvmdr1 gene mutations occur at different sites by convergent evolution. In here, the genetic variation of pvmdr1 at three sites of the Mesoamerican region was studied. Since 1950s, malarious patients of those areas have been treated only with chloroquine and primaquine. Methods Blood samples from patients infected with P. vivax were obtained in southern Mexico (SMX), in the Northwest (NIC-NW) and in the northeast (NIC-NE) of Nicaragua. Genomic DNA was obtained and fragments of pvmdr1 were amplified and sequenced. The nucleotide and amino acid changes as well as the haplotype frequency in pvmdr1 were determined per strain and per geographic site. The sequences of pvmdr1 obtained from the studied regions were compared with homologous sequences from the GenBank database to explore the P. vivax genetic structure. Results In 141 parasites, eight nucleotide changes (two changes were synonymous and other six were nonsynonymous) were detected in 1536 bp. The PvMDR1 amino acid changes Y976F, F1076FL were predominant in endemic parasites from NIC-NE and outbreak parasites in NIC-NW but absent in SMX. Thirteen haplotypes were resolved, and found to be closely related, but their frequency at each geographic site was different (P = 0.0001). The pvmdr1codons 925–1083 gene fragment showed higher genetic and haplotype diversity in parasites from NIC-NE than the other areas outside Latin America. The haplotype networks suggested local diversification of pvmdr1 and no significant departure from neutrality. The FST values were low to moderate regionally, but high between NIC-NE or NIC-NW and other regions inside and outside Latin America. Conclusions The pvmdr1 gene might have diversified recently at regional level. In the absence of significant natural, genetic drift might have caused differential pvmdr1 haplotype frequencies at different geographic sites in Mesoamerica. A very recent expansion of divergent pvmdr1 haplotypes in NIC-NE/NIC-NW produced high differentiation between these and parasites from other sites including SMX. These data are useful to set a baseline for epidemiological surveillance.
Collapse
Affiliation(s)
- Lilia González-Cerón
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, Mexico.
| | - Alberto Montoya
- Departamento de Parasitología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | - Josselin C Corzo-Gómez
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, Mexico
| | - Rene Cerritos
- Division de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Frida Santillán
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, Mexico
| | - Marco A Sandoval
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, Mexico
| |
Collapse
|
28
|
Pisciotta JM, Scholl PF, Shuman JL, Shualev V, Sullivan DJ. Quantitative characterization of hemozoin in Plasmodium berghei and vivax. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:110-119. [PMID: 28279945 PMCID: PMC5342986 DOI: 10.1016/j.ijpddr.2017.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 12/21/2022]
Abstract
The incidence and global distribution of chloroquine resistant (CR) Plasmodium vivax infection has increased since emerging in 1989. The mechanism of resistance in CR P. vivax has not been defined. The resistance likely relates to the formation and disposition of hemozoin as chloroquine's primary mechanism of action involves disruption of hemozoin formation. CR P. berghei strains, like CR P. vivax strains, are confined to reticulocyte host cells and reportedly they do not accumulate appreciable intraerythrocytic hemozoin. Reports comparing hemozoin production between P. vivax strains and CR to chloroquine sensitive (CS) P. berghei are absent. Here we compare in vivo patterns of hemozoin formation and distribution in blood, spleen and liver tissue of male Swiss mice infected with CS or CR P. berghei not treated with chloroquine and CR P. berghei also treated with chloroquine. Light microscopy, laser desorption mass spectrometry and a colorimetric hemozoin assay detect trace hemozoin in the blood of CR P. berghei infected mice but significant hemozoin accumulation in liver and spleen tissue. Field emission in lens scanning electron microscopy reveals CR P. berghei hemozoin crystals are morphologically smaller but similar to those formed by CS parasites. CR P. berghei produces approximately five-fold less total hemozoin than CS strain. Lipid analysis of CS and CR P. berghei sucrose gradient purified bloodstage hemozoin indicates a similar lipid environment around the isolated hemozoin, predominately monopalmitic glycerol and monostearic glycerol. In contrast to CR and CS P. berghei, colorimetric hemozoin analysis of P. vivax strains indicates similar amounts of hemozoin are produced despite differing chloroquine sensitivities. These results suggest CR P. berghei forms significant hemozoin which accumulates in liver and spleen tissues and that the P. vivax chloroquine resistance mechanism differs from P. berghei. Chloroquine resistant Plasmodium berghei release measurable hemozoin into tissues with blood hemozoin 100 times less per parasite while total in all tissues is only 5 times less than chloroquine sensitive. Chloroquine resistant P. bergheihemozoin crystals are morphologically smaller but similar to those formed by chloroquine sensitive parasites. Chloroquine resistance in P. vivax is distinct from P. berghei even though both infect reticulocytes.
Collapse
Affiliation(s)
- John M Pisciotta
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205-2179, USA
| | - Peter F Scholl
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205-2103, USA
| | - Joel L Shuman
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Vladimir Shualev
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205-2179, USA.
| |
Collapse
|
29
|
Hamedi Y, Sharifi-Sarasiabi K, Dehghan F, Safari R, To S, Handayuni I, Trimarsanto H, Price RN, Auburn S. Molecular Epidemiology of P. vivax in Iran: High Diversity and Complex Sub-Structure Using Neutral Markers, but No Evidence of Y976F Mutation at pvmdr1. PLoS One 2016; 11:e0166124. [PMID: 27829067 PMCID: PMC5102416 DOI: 10.1371/journal.pone.0166124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/24/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Malaria remains endemic at low levels in the south-eastern provinces of Iran bordering Afghanistan and Pakistan, with the majority of cases attributable to P. vivax. The national guidelines recommend chloroquine (CQ) as blood-stage treatment for uncomplicated P. vivax, but the large influx of imported cases enhances the risk of introducing CQ resistance (CQR). METHODOLOGY AND PRINCIPAL FINDINGS The genetic diversity at pvmdr1, a putative modulator of CQR, and across nine putatively neutral short tandem repeat (STR) markers were assessed in P. vivax clinical isolates collected between April 2007 and January 2013 in Hormozgan Province, south-eastern Iran. One hundred blood samples were collected from patients with microscopy-confirmed P. vivax enrolled at one of five district clinics. In total 73 (73%) were autochthonous cases, 23 (23%) imported cases from Afghanistan or Pakistan, and 4 (4%) with unknown origin. 97% (97/100) isolates carried the F1076L mutation, but none carried the Y976F mutation. STR genotyping was successful in 71 (71%) isolates, including 57(57%) autochthonous and 11 (11%) imported cases. Analysis of population structure revealed 2 major sub-populations, K1 and K2, with further sub-structure within K2. The K1 sub-population had markedly lower diversity than K2 (HE = 0.06 vs HE = 0.82) suggesting that the sub-populations were sustained by distinct reservoirs with differing transmission dynamics, possibly reflecting local versus imported/introduced populations. No notable separation was observed between the local and imported cases although the sample size was limited. CONCLUSIONS The contrasting low versus high diversity in the two sub-populations (K1 and K2) infers that a combination of local transmission and cross-border malaria from higher transmission regions shape the genetic make-up of the P. vivax population in south-eastern Iran. There was no molecular evidence of CQR amongst the local or imported cases, but ongoing clinical surveillance is warranted.
Collapse
Affiliation(s)
- Yaghoob Hamedi
- Infectious and Tropical Diseases Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan Province, Iran
| | - Khojasteh Sharifi-Sarasiabi
- Infectious and Tropical Diseases Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan Province, Iran
| | - Farzaneh Dehghan
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan Province, Iran
| | - Reza Safari
- Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan Province, Iran
| | - Sheren To
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Irene Handayuni
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Hidayat Trimarsanto
- Bioinformatics Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- The Ministry of Research and Technology (RISTEK), Jakarta, Indonesia
- Agency for Assessment and Application of Technology, Jakarta, Indonesia
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
30
|
Faway E, Musset L, Pelleau S, Volney B, Casteras J, Caro V, Menard D, Briolant S, Legrand E. Plasmodium vivax multidrug resistance-1 gene polymorphism in French Guiana. Malar J 2016; 15:540. [PMID: 27825387 PMCID: PMC5101641 DOI: 10.1186/s12936-016-1595-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/31/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Plasmodium vivax malaria is a major public health problem in French Guiana. Some cases of resistance to chloroquine, the first-line treatment used against P. vivax malaria, have been described in the Brazilian Amazon region. The aim of this study is to investigate a possible dispersion of chloroquine-resistant P. vivax isolates in French Guiana. The genotype, polymorphism and copy number variation, of the P. vivax multidrug resistance gene-1 (pvmdr1) have been previously associated with modification of the susceptibility to chloroquine. METHODS The pvmdr1 gene polymorphism was evaluated by sequencing and copy number variation was assessed by real-time PCR, in P. vivax isolates obtained from 591 symptomatic patients from 1997 to 2013. RESULTS The results reveal that 1.0% [95% CI 0.4-2.2] of French Guiana isolates carry the mutations Y976F and F1076L, and that the proportion of isolates with multiple copies of pvmdr1 has significantly decreased over time, from 71.3% (OR = 6.2 [95% CI 62.9-78.7], p < 0.0001) in 1997-2004 to 12.8% (OR = 0.03 [95% CI 9.4-16.9], p < 0.0001) in 2009-2013. A statistically significant relationship was found between Guf-A (harboring the single mutation T958M) and Sal-1 (wild type) alleles and pvmdr1 copy number. CONCLUSIONS Few P. vivax isolates harboring chloroquine-resistant mutations in the pvmdr1 gene are circulating in French Guiana. However, the decrease in the prevalence of isolates carrying multiple copies of pvmdr1 might indicate that the P. vivax population in French Guiana is evolving towards a decreased susceptibility to chloroquine.
Collapse
Affiliation(s)
- Emilie Faway
- Laboratoire de Parasitologie, Institut Pasteur de la Guyane, Cayenne, French Guiana.,URPhyM-NARILIS, University of Namur, Namur, Belgium
| | - Lise Musset
- Laboratoire de Parasitologie, Institut Pasteur de la Guyane, Cayenne, French Guiana.,National Reference Center for Malaria, Institut Pasteur de la Guyane, Cayenne, French Guiana.,World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Stéphane Pelleau
- Laboratoire de Parasitologie, Institut Pasteur de la Guyane, Cayenne, French Guiana.,National Reference Center for Malaria, Institut Pasteur de la Guyane, Cayenne, French Guiana.,World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Béatrice Volney
- Laboratoire de Parasitologie, Institut Pasteur de la Guyane, Cayenne, French Guiana.,National Reference Center for Malaria, Institut Pasteur de la Guyane, Cayenne, French Guiana.,World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Jessica Casteras
- Laboratoire de Parasitologie, Institut Pasteur de la Guyane, Cayenne, French Guiana.,National Reference Center for Malaria, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Valérie Caro
- Environment and Infectious Risks unit, Genotyping of Pathogens Pole, Institut Pasteur, Paris, France
| | - Didier Menard
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Sébastien Briolant
- Laboratoire de Parasitologie, Institut Pasteur de la Guyane, Cayenne, French Guiana.,Direction Interarmées du Service de Santé, Cayenne, French Guiana.,Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France
| | - Eric Legrand
- Laboratoire de Parasitologie, Institut Pasteur de la Guyane, Cayenne, French Guiana. .,National Reference Center for Malaria, Institut Pasteur de la Guyane, Cayenne, French Guiana. .,World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, Institut Pasteur de la Guyane, Cayenne, French Guiana. .,Malaria Translational Research Unit, Institut Pasteur, Paris, France. .,Genetics and Genomics of Insect Vectors Unit, Institut Pasteur, Paris, France.
| |
Collapse
|
31
|
Gunawardena S, Karunaweera ND. Advances in genetics and genomics: use and limitations in achieving malaria elimination goals. Pathog Glob Health 2016; 109:123-41. [PMID: 25943157 DOI: 10.1179/2047773215y.0000000015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Success of the global research agenda towards eradication of malaria will depend on the development of new tools, including drugs, vaccines, insecticides and diagnostics. Genetic and genomic information now available for the malaria parasites, their mosquito vectors and human host, can be harnessed to both develop these tools and monitor their effectiveness. Here we review and provide specific examples of current technological advances and how these genetic and genomic tools have increased our knowledge of host, parasite and vector biology in relation to malaria elimination and in turn enhanced the potential to reach that goal. We then discuss limitations of these tools and future prospects for the successful achievement of global malaria elimination goals.
Collapse
|
32
|
Gomes LR, Almeida-de-Oliveira NK, de Lavigne AR, de Lima SRF, de Pina-Costa A, Brasil P, Daniel-Ribeiro CT, Ménard D, Ferreira-da-Cruz MDF. Plasmodium vivax mdr1 genotypes in isolates from successfully cured patients living in endemic and non-endemic Brazilian areas. Malar J 2016; 15:96. [PMID: 26887935 PMCID: PMC4758108 DOI: 10.1186/s12936-016-1141-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/03/2016] [Indexed: 01/10/2023] Open
Abstract
Background Plasmodium vivax is the most widely distributed species causing the highest number of malaria cases in the world. In Brazil, P. vivax is responsible for approximately 84 % of reported cases. In the absence of a vaccine, control strategies are based on the management of cases through rapid diagnosis and adequate treatment, in addition to vector control measures. The approaches used to investigate P. vivax resistance to chloroquine (CQ) were exclusively in vivo studies because of the difficulty in keeping parasites in continuous in vitro culture. In view of the limitations related to follow-up of patients and to assessing the plasma dosage of CQ and its metabolites, an alternative approach to monitor chemo-resistance (QR) is to use molecular markers. Single nucleotide polymorphisms (SNPs) in the multidrug resistance gene pvmdr1 are putative determinants of CQ resistance (CQR), but such SNPs in P. vivax isolates from patients with good response to treatment should be further explored. The aim of this study is to investigate the mutations in the gene, supposedly associated to QR, in P. vivax isolates from successfully cured patients, living in Brazilian endemic and non-endemic areas. Methods Blood samples were collected from 49 vivax malaria patients from endemic (Amazon Basin: 45) and non-endemic (Atlantic Forest: four) Brazilian regions and analysed for SNPs in the CQR-related P. vivax gene (pvmdr1), using PCR-based methods. Results Among the 49 isolates genetically characterized for the gene pvmdr1, 34 (70 %) presented at least one mutation. T958M mutant alleles were the most frequent (73 %) followed Y976F (15 %) and F1076L (12 %). Single mutation was detected in 24 (70.5 %) isolates and double mutations in ten (29.5 %). The most common single mutant genotype was the 958M/Y976/F1076 (79 %), followed by 976F/F1076 (21 %) whereas 958M/Y976/1076L (60 %) and 976F/1076L (40 %) double mutant genotypes were detected. Single mutant profile was observed only in isolates from Amazon Basin, although double mutants were found both in the Amazon and Atlantic Forest regions. Interestingly, the genotype 958M/Y976/1076L was present in all isolates from the Atlantic Forest in the Rio de Janeiro State. Conclusions Considering that primaquine (PQ) efficacy is highly dependent on concurrent administration of a blood schizontocidal agent and that PQ could not circumvent CQR, together with the fact that no pvmdr1 mutation should be expected in successfully cured patients, these findings seem to indicate that the pvmdr1 gene is not a reliable marker of CQR. Further investigations are needed to define a reliable molecular marker for monitoring P. vivax CQR in P. vivax populations.
Collapse
Affiliation(s)
- Larissa Rodrigues Gomes
- Laboratório de Pesquisa em Malária - Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) Fiocruz, Rio de Janeiro, Brazil.
| | - Natália Ketrin Almeida-de-Oliveira
- Laboratório de Pesquisa em Malária - Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) Fiocruz, Rio de Janeiro, Brazil.
| | - Aline Rosa de Lavigne
- Laboratório de Pesquisa em Malária - Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) Fiocruz, Rio de Janeiro, Brazil.
| | - Suelen Rezende Félix de Lima
- Laboratório de Pesquisa em Malária - Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) Fiocruz, Rio de Janeiro, Brazil.
| | - Anielle de Pina-Costa
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) Fiocruz, Rio de Janeiro, Brazil. .,Laboratório de Doenças Febris Agudas - Instituto Nacional de Infectologia Evandro Chagas (INI-IPEC) (Fiocruz), Rio de Janeiro, Brazil.
| | - Patrícia Brasil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) Fiocruz, Rio de Janeiro, Brazil. .,Laboratório de Doenças Febris Agudas - Instituto Nacional de Infectologia Evandro Chagas (INI-IPEC) (Fiocruz), Rio de Janeiro, Brazil.
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária - Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) Fiocruz, Rio de Janeiro, Brazil.
| | - Didier Ménard
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia.
| | - Maria de Fatima Ferreira-da-Cruz
- Laboratório de Pesquisa em Malária - Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) Fiocruz, Rio de Janeiro, Brazil.
| |
Collapse
|
33
|
Multiple Origins of Mutations in the mdr1 Gene--A Putative Marker of Chloroquine Resistance in P. vivax. PLoS Negl Trop Dis 2015; 9:e0004196. [PMID: 26539821 PMCID: PMC4634971 DOI: 10.1371/journal.pntd.0004196] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/05/2015] [Indexed: 12/02/2022] Open
Abstract
Background Chloroquine combined with primaquine has been the recommended antimalarial treatment of Plasmodium vivax malaria infections for six decades but the efficacy of this treatment regimen is threatened by chloroquine resistance (CQR). Single nucleotide polymorphisms (SNPs) in the multidrug resistance gene, Pvmdr1 are putative determinants of CQR but the extent of their emergence at population level remains to be explored. Objective In this study we describe the prevalence of SNPs in the Pvmdr1 among samples collected in seven P. vivax endemic countries and we looked for molecular evidence of drug selection by characterising polymorphism at microsatellite (MS) loci flanking the Pvmdr1 gene. Methods We examined the prevalence of SNPs in the Pvmdr1 gene among 267 samples collected from Pakistan, Afghanistan, Sri Lanka, Nepal, Sudan, São Tomé and Ecuador. We measured and diversity in four microsatellite (MS) markers flanking the Pvmdr1 gene to look evidence of selection on mutant alleles. Results SNP polymorphism in the Pvmdr1 gene was largely confined to codons T958M, Y976F and F1076L. Only 2.4% of samples were wildtype at all three codons (TYF, n = 5), 13.3% (n = 28) of the samples were single mutant MYF, 63.0% of samples (n = 133) were double mutant MYL, and 21.3% (n = 45) were triple mutant MFL. Clear geographic differences in the prevalence of these Pvmdr mutation combinations were observed. Significant linkage disequilibrium (LD) between Pvmdr1 and MS alleles was found in populations sampled in Ecuador, Nepal and Sri Lanka, while significant LD between Pvmdr1 and the combined 4 MS locus haplotype was only seen in Ecuador and Sri Lanka. When combining the 5 loci, high level diversity, measured as expected heterozygosity (He), was seen in the complete sample set (He = 0.99), while He estimates for individual loci ranged from 0.00–0.93. Although Pvmdr1 haplotypes were not consistently associated with specific flanking MS alleles, there was significant differentiation between geographic sites which could indicate directional selection through local drug pressure. Conclusions Our observations suggest that Pvmdr1 mutations emerged independently on multiple occasions even within the same population. In Sri Lanka population analysis at multiple sites showed evidence of local selection and geographical dispersal of Pvmdr1 mutations between sites. Chloroquine combined with primaquine has been the recommended antimalarial treatment for Plasmodium vivax malaria infections for sixty years but the efficacy of this treatment regimen is threatened by chloroquine resistance. In this study we describe the prevalence of mutations in the P. vivax gene, Pvmdr1 among samples collected in seven endemic countries. The mutations are thought to be associated with chloroquine resistance and here we looked for evidence of drug selection by characterising polymorphism in DNA repeat regions (microsatellite (MS) loci) flanking the Pvmdr1 gene. Mutations in the Pvmdr1 gene were mainly identified at codons T958M, Y976F and F1076L. Just 2.4% of samples were wildtype at all three codons, while 63% were single mutants (MYF). Clear geographic differences in the prevalence of these Pvmdr mutation combinations were observed. At the flanking MS loci, we found high levels of diversity, and significant differentiation between geographic sites. This pattern of variation could indicate directional selection through local drug pressure. In summary, our observations suggest that Pvmdr1 mutations and thus, chloroquine resistance has emerged independently on multiple occasions even within the same population.
Collapse
|
34
|
Expression of Plasmodium vivax crt-o Is Related to Parasite Stage but Not Ex Vivo Chloroquine Susceptibility. Antimicrob Agents Chemother 2015; 60:361-7. [PMID: 26525783 PMCID: PMC4704153 DOI: 10.1128/aac.02207-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/19/2015] [Indexed: 11/20/2022] Open
Abstract
Chloroquine (CQ)-resistant Plasmodium vivax is present in most countries where P. vivax infection is endemic, but the underlying molecular mechanisms responsible remain unknown. Increased expression of P. vivaxcrt-o (pvcrt-o) has been correlated with in vivo CQ resistance in an area with low-grade resistance. We assessed pvcrt-o expression in isolates from Papua (Indonesia), where P. vivax is highly CQ resistant. Ex vivo drug susceptibilities to CQ, amodiaquine, piperaquine, mefloquine, and artesunate were determined using a modified schizont maturation assay. Expression levels of pvcrt-o were measured using a novel real-time quantitative reverse transcription-PCR method. Large variations in pvcrt-o expression were observed across the 51 isolates evaluated, with the fold change in expression level ranging from 0.01 to 59 relative to that seen with the P. vivax β-tubulin gene and from 0.01 to 24 relative to that seen with the P. vivax aldolase gene. Expression was significantly higher in isolates with the majority of parasites at the ring stage of development (median fold change, 1.7) compared to those at the trophozoite stage (median fold change, 0.5; P < 0.001). Twenty-nine isolates fulfilled the criteria for ex vivo drug susceptibility testing and showed high variability in CQ responses (median, 107.9 [range, 6.5 to 345.7] nM). After controlling for the parasite stage, we found that pvcrt-o expression levels did not correlate with the ex vivo response to CQ or with that to any of the other antimalarials tested. Our results highlight the importance of development-stage composition for measuring pvcrt-o expression and suggest that pvcrt-o transcription is not a primary determinant of ex vivo drug susceptibility. A comprehensive transcriptomic approach is warranted for an in-depth investigation of the role of gene expression levels and P. vivax drug resistance.
Collapse
|
35
|
Barnadas C, Timinao L, Javati S, Iga J, Malau E, Koepfli C, Robinson LJ, Senn N, Kiniboro B, Rare L, Reeder JC, Siba PM, Zimmerman PA, Karunajeewa H, Davis TM, Mueller I. Significant geographical differences in prevalence of mutations associated with Plasmodium falciparum and Plasmodium vivax drug resistance in two regions from Papua New Guinea. Malar J 2015; 14:399. [PMID: 26452541 PMCID: PMC4600278 DOI: 10.1186/s12936-015-0879-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/31/2015] [Indexed: 12/22/2022] Open
Abstract
Background Drug resistance remains a major obstacle to malaria treatment and control. It can arise and spread rapidly, and vary substantially even at sub-national level. National malaria programmes require cost-effective and timely ways of characterizing drug-resistance at multiple sites within their countries. Methods An improved multiplexed post-PCR ligase detection reaction—fluorescent microsphere assay (LDR-FMA) was used to simultaneously determine the presence of mutations in chloroquine resistance transporter (crt), multidrug resistance 1 (mdr1), dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes in Plasmodium falciparum (n = 727) and Plasmodium vivax (n = 574) isolates collected in 2006 from cross-sectional community population surveys in two geographically distinct regions (Madang and East Sepik) of Papua New Guinea (PNG) where strong regional differences in in vivo aminoquinoline and antifolate therapeutic efficacy had previously been observed. Data were compared to those of a follow-up survey conducted in 2010. Results Despite some very low parasite densities, the assay successfully amplified all P. falciparum and P. vivax loci in 77 and 69 % of samples, respectively. In 2006, prevalences of pfdhfr (59R-108 N) double mutation/wild type pfdhps haplotype, pfcrt SVMNT haplotype (72S-76T double mutation), and 86Y pfmdr1 mutation all exceeded 90 %. For P. vivax, 65 % carried at least two pvdhfr mutations, 97 % the 647P pvdhps mutation and 54 % the 976F pvmdr1 mutation. Prevalence of mutant haplotypes was higher in Madang than East Sepik for pfcrt SVMNT (97.4 vs 83.3 %, p = 0.001), pfdhfr (59R-108 N) (100 vs 90.6 %, p = 0.001), pvdhfr haplotypes (75.8 vs 47.6 %, p = 0.001) and pvmdr1 976F (71.2 vs 26.2 %, p < 0.001). Data from a subsequent Madang survey in 2010 showed that the prevalence of pfdhps mutations increased significantly from <5 % to >30 % (p < 0.001) as did the prevalence of pvdhfr mutant haplotypes (from 75.8 to 97.4 %, p = 0.012). Conclusions This LDR-FMA multiplex platform shows feasibility for low-cost, high-throughput, rapid characterization of a broad range of drug-resistance markers in low parasitaemia infections. Significant geographical differences in mutation prevalence correlate with previous genotyping surveys and in vivo trials and may reflect variable drug pressure and differences in health-care access in these two PNG populations. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0879-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Céline Barnadas
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea. .,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Lincoln Timinao
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea.
| | - Sarah Javati
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea.
| | - Jonah Iga
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea.
| | - Elisheba Malau
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Cristian Koepfli
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Leanne J Robinson
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea. .,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Nicolas Senn
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea. .,Swiss Tropical and Public Health Institute, Basel, Switzerland.
| | - Benson Kiniboro
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea.
| | - Lawrence Rare
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea.
| | | | - Peter M Siba
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea.
| | - Peter A Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, USA.
| | - Harin Karunajeewa
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Timothy M Davis
- School of Medicine and Pharmacology, University of Western Australia, Perth, Australia.
| | - Ivo Mueller
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia. .,Centre de Recerca en Salut Internacional de Barcelona, Barcelona, Spain.
| |
Collapse
|
36
|
Gonçalves LA, Cravo P, Ferreira MU. Emerging Plasmodium vivax resistance to chloroquine in South America: an overview. Mem Inst Oswaldo Cruz 2015. [PMID: 25184999 PMCID: PMC4156446 DOI: 10.1590/0074-0276130579] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The global emergence of Plasmodium vivax strains resistant to
chloroquine (CQ) since the late 1980s is complicating the current international
efforts for malaria control and elimination. Furthermore, CQ-resistant vivax malaria
has already reached an alarming prevalence in Indonesia, East Timor and Papua New
Guinea. More recently, in vivo studies have documented CQ-resistant P.
vivax infections in Guyana, Peru and Brazil. Here, we summarise the
available data on CQ resistance across P. vivax-endemic areas of
Latin America by combining published in vivo and in vitro studies. We also review the
current knowledge regarding the molecular mechanisms of CQ resistance in P.
vivax and the prospects for developing and standardising reliable
molecular markers of drug resistance. Finally, we discuss how the Worldwide
Antimalarial Resistance Network, an international collaborative effort involving
malaria experts from all continents, might contribute to the current regional efforts
to map CQ-resistant vivax malaria in South America.
Collapse
Affiliation(s)
| | - Pedro Cravo
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - Marcelo Urbano Ferreira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
37
|
Rungsihirunrat K, Muhamad P, Chaijaroenkul W, Kuesap J, Na-Bangchang K. Plasmodium vivax drug resistance genes; Pvmdr1 and Pvcrt-o polymorphisms in relation to chloroquine sensitivity from a malaria endemic area of Thailand. THE KOREAN JOURNAL OF PARASITOLOGY 2015; 53:43-9. [PMID: 25748708 PMCID: PMC4384798 DOI: 10.3347/kjp.2015.53.1.43] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 11/16/2014] [Accepted: 12/03/2014] [Indexed: 11/23/2022]
Abstract
The aim of the study was to explore the possible molecular markers of chloroquine resistance in Plasmodium vivax isolates in Thailand. A total of 30 P. vivax isolates were collected from a malaria endemic area along the Thai-Myanmar border in Mae Sot district of Thailand. Dried blood spot samples were collected for analysis of Pvmdr1 and Pvcrt-o polymorphisms. Blood samples (100 μl) were collected by finger-prick for in vitro chloroquine susceptibility testing by schizont maturation inhibition assay. Based on the cut-off IC50 of 100 nM, 19 (63.3%) isolates were classified as chloroquine resistant P. vivax isolates. Seven non-synonymous mutations and 2 synonymous were identified in Pvmdr1 gene. Y976F and F1076L mutations were detected in 7 (23.3%) and 16 isolates (53.3%), respectively. Analysis of Pvcrt-o gene revealed that all isolates were wild-type. Our results suggest that chloroquine resistance gene is now spreading in this area. Monitoring of chloroquine resistant molecular markers provide a useful tool for future control of P. vivax malaria.
Collapse
Affiliation(s)
| | - Poonuch Muhamad
- Drug Discovery and Development Center, Thammasat University, Pathumthani, Thailand
| | - Wanna Chaijaroenkul
- Center of Excellence in Molecular Biology and Pharmacology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Patumthani, Thailand
| | - Jiraporn Kuesap
- Graduate Program in Biomedical Sciences, Allied Health Sciences, Thammasat University, Pathumthani, Thailand
| | - Kesara Na-Bangchang
- Center of Excellence in Molecular Biology and Pharmacology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Patumthani, Thailand
| |
Collapse
|
38
|
Ecotope-based entomological surveillance and molecular xenomonitoring of multidrug resistant malaria parasites in anopheles vectors. Interdiscip Perspect Infect Dis 2014; 2014:969531. [PMID: 25349605 PMCID: PMC4198816 DOI: 10.1155/2014/969531] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/24/2014] [Indexed: 11/29/2022] Open
Abstract
The emergence and spread of multidrug resistant (MDR) malaria caused by Plasmodium falciparum or Plasmodium vivax have become increasingly important in the Greater Mekong Subregion (GMS). MDR malaria is the heritable and hypermutable property of human malarial parasite populations that can decrease in vitro and in vivo susceptibility to proven antimalarial drugs as they exhibit dose-dependent drug resistance and delayed parasite clearance time in treated patients. MDR malaria risk situations reflect consequences of the national policy and strategy as this influences the ongoing national-level or subnational-level implementation of malaria control strategies in endemic GMS countries. Based on our experience along with current literature review, the design of ecotope-based entomological surveillance (EES) and molecular xenomonitoring of MDR falciparum and vivax malaria parasites in Anopheles vectors is proposed to monitor infection pockets in transmission control areas of forest and forest fringe-related malaria, so as to bridge malaria landscape ecology (ecotope and ecotone) and epidemiology. Malaria ecotope and ecotone are confined to a malaria transmission area geographically associated with the infestation of Anopheles vectors and particular environments to which human activities are related. This enables the EES to encompass mosquito collection and identification, salivary gland DNA extraction, Plasmodium- and species-specific identification, molecular marker-based PCR detection methods for putative drug resistance genes, and data management. The EES establishes strong evidence of Anopheles vectors carrying MDR P. vivax in infection pockets epidemiologically linked with other data obtained during which a course of follow-up treatment of the notified P. vivax patients receiving the first-line treatment was conducted. For regional and global perspectives, the EES would augment the epidemiological surveillance and monitoring of MDR falciparum and vivax malaria parasites in hotspots or suspected areas established in most endemic GMS countries implementing the National Malaria Control Programs, in addition to what is guided by the World Health Organization.
Collapse
|
39
|
Expression levels of pvcrt-o and pvmdr-1 are associated with chloroquine resistance and severe Plasmodium vivax malaria in patients of the Brazilian Amazon. PLoS One 2014; 9:e105922. [PMID: 25157811 PMCID: PMC4144906 DOI: 10.1371/journal.pone.0105922] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/25/2014] [Indexed: 11/19/2022] Open
Abstract
Molecular markers associated with the increase of chloroquine resistance and disease severity in Plasmodium vivax are needed. The objective of this study was to evaluate the expression levels of pvcrt-o and pvmdr-1 genes in a group of patients presenting CQRPv and patients who developed severe complications triggered exclusively by P. vivax infection. Two different sets of patients were included to this comprehensive study performed in the Brazilian Amazon: 1) patients with clinically characterized chloroquine-resistant P. vivax compared with patients with susceptible parasites from invivo studies and 2) patients with severe vivax malaria compared with patients without severity. Quantitative real-time PCR was performed to compare the transcript levels of two main transporters genes, P. vivax chloroquine resistance transporter (pvcrt-o) and the P. vivax multidrug resistance transporter (pvmdr-1). Twelve chloroquine resistant cases and other 15 isolates from susceptible cases were included in the first set of patients. For the second set, seven patients with P. vivax-attributed severe and 10 mild manifestations were included. Parasites from patients with chloroquine resistance presented up to 6.1 (95% CI: 3.8–14.3) and 2.4 (95% CI: 0.53–9.1) fold increase in pvcrt-o and pvmdr-1 expression levels, respectively, compared to the susceptible group. Parasites from the severe vivax group had a 2.9 (95% CI: 1.1–8.3) and 4.9 (95% CI: 2.3–18.8) fold increase in pvcrt-o and pvmdr-1 expression levels as compared to the control group with mild disease. These findings suggest that chloroquine resistance and clinical severity in P. vivax infections are strongly associated with increased expression levels of the pvcrt-o and pvmdr-1 genes likely involved in chloroquine resistance.
Collapse
|
40
|
Shalini S, Chaudhuri S, Sutton PL, Mishra N, Srivastava N, David JK, Ravindran KJ, Carlton JM, Eapen A. Chloroquine efficacy studies confirm drug susceptibility of Plasmodium vivax in Chennai, India. Malar J 2014; 13:129. [PMID: 24685286 PMCID: PMC4021252 DOI: 10.1186/1475-2875-13-129] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/24/2014] [Indexed: 02/06/2023] Open
Abstract
Background Assessing the Plasmodium vivax burden in India is complicated by the potential threat of an emerging chloroquine (CQ) resistant parasite population from neighbouring countries in Southeast Asia. Chennai, the capital of Tamil Nadu and an urban setting for P. vivax in southern India, was selected as a sentinel site for investigating CQ efficacy and sensitivity in vivax malaria. Methods CQ efficacy was evaluated with a 28-day in vivo therapeutic study, while CQ sensitivity was measured with an in vitro drug susceptibility assay. In both studies, isolates also underwent molecular genotyping to investigate correlations between parasite diversity and drug susceptibility to CQ. Molecular genotyping included sequencing a 604 base pair (bp) fragment of the P. vivax multidrug resistant gene-1 (Pvmdr1) for single nucleotide polymorphisms (SNPs) and also the amplification of eight microsatellite (MS) loci located across the genome on eight different chromosomes. Results In the 28-day in vivo study (N=125), all subjects were aparasitaemic by Day 14. Passive case surveillance continuing beyond Day 28 in 22 subjects exposed 17 recurrent infections, which ranged from 44 to 148 days post-enrollment. Pvmdr1 sequencing of these recurrent infections revealed that 93.3% had identical mutant haplotypes (958M/Y976/1076L) to their baseline Day 0 infection. MS genotyping further revealed that nine infection pairs were related with ≥75% haplotype similarity (same allele at six or more loci). To test the impact of this mutation on CQ efficacy, an in vitro drug assay (N=68) was performed. No correlation between IC50 values and the percentage of ring-stage parasites prior to culture was observed (rsadj: -0.00063, p = 0.3307) and the distribution of alleles among the Pvmdr1 SNPs and MS haplotypes showed no significant associations with IC50 values. Conclusions Plasmodium vivax was found to be susceptible to CQ drug treatment in both the in vivo therapeutic drug study and the in vitro drug assay. Though the mutant 1076L of Pvmdr1 was found in a majority of isolates tested, this single mutation did not associate with CQ resistance. MS haplotypes revealed strong heterogeneity in this population, indicating a low probability of reinfection with highly related haplotypes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alex Eapen
- National Institute of Malaria Research (Indian Council of Medical Research), National Institute of Epidemiology Campus, Second Main Road, Tamil Nadu Housing Board, Ayapakkam, Chennai 600 077, Tamil Nadu, India.
| |
Collapse
|
41
|
Aguiar ACC, Pereira DB, Amaral NS, De Marco L, Krettli AU. Plasmodium vivax and Plasmodium falciparum ex vivo susceptibility to anti-malarials and gene characterization in Rondônia, West Amazon, Brazil. Malar J 2014; 13:73. [PMID: 24581308 PMCID: PMC3945814 DOI: 10.1186/1475-2875-13-73] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/09/2014] [Indexed: 11/22/2022] Open
Abstract
Background Chloroquine (CQ), a cost effective antimalarial drug with a relatively good safety profile and therapeutic index, is no longer used by itself to treat patients with Plasmodium falciparum due to CQ-resistant strains. P. vivax, representing over 90% of malaria cases in Brazil, despite reported resistance, is treated with CQ as well as with primaquine to block malaria transmission and avoid late P. vivax malaria relapses. Resistance to CQ and other antimalarial drugs influences malaria control, thus monitoring resistance phenotype by parasite genotyping is helpful in endemic areas. Methods A total of 47 P. vivax and nine P. falciparum fresh isolates were genetically characterized and tested for CQ, mefloquine (MQ) and artesunate (ART) susceptibility in vitro. The genes mdr1 and pfcrt, likely related to CQ resistance, were analyzed in all isolates. Drug susceptibility was determined using short-term parasite cultures of ring stages for 48 to 72 hour and thick blood smears counts. Each parasite isolate was tested with the antimalarials to measure the geometric mean of 50% inhibitory concentration. Results The low numbers of P. falciparum isolates reflect the species prevalence in Brazil; most displayed low sensitivity to CQ (IC50 70 nM). However, CQ resistance was rare among P. vivax isolates (IC50 of 32 nM). The majority of P. vivax and P. falciparum isolates were sensitive to ART and MQ. One hundred percent of P. falciparum isolates carried non-synonymous mutations in the pfmdr1 gene in codons 184, 1042 and 1246, 84% in codons 1034 and none in codon 86, a well-known resistance mutation. For the pfcrt gene, mutations were observed in codons 72 and 76 in all P. falciparum isolates. One P. falciparum isolate from Angola, Africa, showing sensitivity to the antimalarials, presented no mutations. In P. vivax, mutations of pvmdr1 and the multidrug resistance gene 1 marker at codon F976 were absent. Conclusion All P. falciparum Brazilian isolates showed CQ resistance and presented non-synonymous mutations in pfmdr1 and pfcrt. CQ resistant genotypes were not present among P. vivax isolates and the IC50 values were low in all samples of the Brazilian West Amazon.
Collapse
Affiliation(s)
| | | | | | | | - Antoniana U Krettli
- Laboratório de Malária, Centro de Pesquisas René Rachou, FIOCRUZ, Av, Augusto de Lima 1715, 30190-002 Belo Horizonte, MG, Brazil.
| |
Collapse
|
42
|
Plasmodium vivax chloroquine resistance and anemia in the western Brazilian Amazon. Antimicrob Agents Chemother 2013; 58:342-7. [PMID: 24165179 DOI: 10.1128/aac.02279-12] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Data on chloroquine (CQ)-resistant Plasmodium vivax in Latin America is limited, even with the current research efforts to sustain an efficient malaria control program in all these countries where P. vivax is endemic and where malaria still is a major public health issue. This study estimated in vivo CQ resistance in patients with uncomplicated P. vivax malaria, with use of CQ and primaquine simultaneously, in the Brazilian Amazon. Of a total of 135 enrolled subjects who accomplished the 28-day follow-up, parasitological failure was observed in 7 (5.2%) patients, in whom plasma CQ and desethylchloroquine (DCQ) concentrations were above 100 ng/dl. Univariate analysis showed that previous exposure to malaria and a higher initial mean parasitemia were associated with resistance but not with age or gender. In the multivariate analysis, only high initial parasitemia remained significant. Hemoglobin levels were similar at the beginning of the follow-up and were not associated with parasitemia. However, at day 3 and day 7, hemoglobin levels were significantly lower in patients presenting CQ resistance. The P. vivax dhfr (pvdhfr), pvmrp1, pvmdr1, and pvdhps gene mutations were not related to resistance in this small sample. P. vivax CQ resistance is already a problem in the Brazilian Amazon, which could be to some extent associated with the simultaneous report of anemia triggered by this parasite, a common complication of the disease in most of the areas of endemicity.
Collapse
|
43
|
Khattak AA, Venkatesan M, Khatoon L, Ouattara A, Kenefic LJ, Nadeem MF, Nighat F, Malik SA, Plowe CV. Prevalence and patterns of antifolate and chloroquine drug resistance markers in Plasmodium vivax across Pakistan. Malar J 2013; 12:310. [PMID: 24007534 PMCID: PMC3766695 DOI: 10.1186/1475-2875-12-310] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/29/2013] [Indexed: 01/10/2023] Open
Abstract
Background Plasmodium vivax is the most prevalent malaria species in Pakistan, with a distribution that coincides with Plasmodium falciparum in many parts of the country. Both species are likely exposed to drug pressure from a number of anti-malarials including chloroquine, sulphadoxine-pyrimethamine (SP), and artemisinin combination therapy, yet little is known regarding the effects of drug pressure on parasite genes associated with drug resistance. The aims of this study were to determine the prevalence of polymorphisms in the SP resistance-associated genes pvdhfr, pvdhps and chloroquine resistance-associated gene pvmdr1 in P. vivax isolates collected from across the country. Methods In 2011, 801 microscopically confirmed malaria-parasite positive filter paper blood samples were collected at 14 sites representing four provinces and the capital city of Islamabad. Species-specific polymerase chain reaction (PCR) was used to identify human Plasmodium species infection. PCR-positive P. vivax isolates were subjected to sequencing of pvdhfr, pvdhps and pvmdr1 and to real-time PCR analysis to assess pvmdr1 copy number variation. Results Of the 801 samples, 536 were determined to be P. vivax, 128 were P. falciparum, 43 were mixed vivax/falciparum infections and 94 were PCR-negative for Plasmodium infection. Of PCR-positive P. vivax samples, 372 were selected for sequence analysis. Seventy-six of the isolates (23%) were double mutant at positions S58R and S117N in pvdhfr. Additionally, two mutations at positions N50I and S93H were observed in 55 (15%) and 24 (7%) of samples, respectively. Three 18 base pair insertion-deletions (indels) were observed in pvdhfr, with two insertions at different nucleotide positions in 36 isolates and deletions in 10. Ninety-two percent of samples contained the pvdhps (S382/A383G/K512/A553/V585) SAKAV wild type haplotype. For pvmdr1, all isolates were wild type at position Y976F and 335 (98%) carried the mutation at codon F1076L. All isolates harboured single copies of the pvmdr1 gene. Conclusions The prevalence of mutations associated with SP resistance in P. vivax is low in Pakistan. The high prevalence of P. vivax mutant pvmdr1 codon F1076L indicates that efficacy of chloroquine plus primaquine could be in danger of being compromised, but further studies are required to assess the clinical relevance of this observation. These findings will serve as a baseline for further monitoring of drug-resistant P. vivax malaria in Pakistan.
Collapse
Affiliation(s)
- Aamer A Khattak
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chehuan YF, Costa MRF, Costa JS, Alecrim MGC, Nogueira F, Silveira H, Brasil LW, Melo GC, Monteiro WM, Lacerda MVG. In vitro chloroquine resistance for Plasmodium vivax isolates from the Western Brazilian Amazon. Malar J 2013; 12:226. [PMID: 23819884 PMCID: PMC3704965 DOI: 10.1186/1475-2875-12-226] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/24/2013] [Indexed: 11/20/2022] Open
Abstract
Background Chloroquine (CQ) and primaquine (PQ) are still the drugs of choice to treat Plasmodium vivax malaria in many endemic areas, Brazil included. There is in vivo evidence for the P. vivax resistance to CQ in the Brazilian Amazon, where the increase in the proportion of P. vivax malaria parallels the increase of unusual clinical complications related to this species. In this study, in vitro CQ and mefloquine (MQ)-susceptibility of P. vivax isolates from the Western Brazilian Amazon was tested using the double-site enzyme-linked lactate dehydrogenase immunodetection (DELI) assay. Methods A total of 112 P. vivax isolates were tested in vitro for CQ-susceptibility and out of these 47 were also tested for MQ-susceptibility. The DELI assay was used to detect P. vivax growth at 48-hour short-term culture in isolates with ring stages ranging from 50 to %. Each isolate was tested in triplicate and geometric means of IC50’s was obtained. Nineteen isolates were genetically characterized for pvdhfr, pvmrp1, pvmdr1 and pvdhps candidate genes likely related to CQ resistance (10 with IC50<40 nM and 9 with IC50 >100 nM). Results Twelve out of 112 isolates were considered resistant to CQ, resulting in 10.7% (IC95% 5.0-16.4), while 3 out of 47 (6.4%; IC95% 0.0-12.8) were resistant to MQ. A discrete correlation was observed between IC50’s of CQ and MQ (Spearman=0.294; p=0.045). For pvdhps gene, a non-synonymous mutation was found at codon 382 (S→C) in 5/8 CQ-sensitive samples and 1/9 CQ-resistant samples (p=0.027). The other molecular markers were not associated to CQ-susceptibility. Conclusions In vitro CQ-resistance estimated in this study, estimated by the DELI test, was very similar to that observed in clinical trials, suggesting that in vitro procedures developed by capable local laboratories are useful in the surveillance of CQ-resistance in the Amazon; concurrent Amazon P. vivax strains with both CQ and MQ resistance may be common; and a non-synonymous mutation at pvdhps codon 382 (S→C) was associated to in vitro susceptibility to CQ, needing further studies to be confirmed.
Collapse
Affiliation(s)
- Yonne F Chehuan
- Fundação de Medicina Tropical Dr, Heitor Vieira Dourado, Av, Pedro Teixeira, 25, Dom Pedro, Manaus, AM 69040-000, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lehane AM, McDevitt CA, Kirk K, Fidock DA. Degrees of chloroquine resistance in Plasmodium - is the redox system involved? INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2012; 2:47-57. [PMID: 22773965 DOI: 10.1016/j.ijpddr.2011.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chloroquine (CQ) was once a very effective antimalarial drug that, at its peak, was consumed in the hundreds of millions of doses per year. The drug acts against the Plasmodium parasite during the asexual intraerythrocytic phase of its lifecycle. Unfortunately, clinical resistance to this drug is now widespread. Questions remain about precisely how CQ kills malaria parasites, and by what means some CQ-resistant (CQR) parasites can withstand much higher concentrations of the drug than others that also fall in the CQR category. In this review we investigate the evidence for and against the proposal that CQ kills parasites by generating oxidative stress. Further, we examine a long-held idea that the glutathione system of malaria parasites plays a role in CQ resistance. We conclude that there is strong evidence that glutathione levels modulate CQ response in the rodent malaria species P. berghei, but that a role for redox in contributing to the degree of CQ resistance in species infectious to humans has not been firmly established.
Collapse
Affiliation(s)
- Adele M Lehane
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | |
Collapse
|
46
|
Vargas-Rodríguez RDCM, da Silva Bastos M, Menezes MJ, Orjuela-Sánchez P, Ferreira MU. Single-nucleotide polymorphism and copy number variation of the multidrug resistance-1 locus of Plasmodium vivax: local and global patterns. Am J Trop Med Hyg 2012; 87:813-21. [PMID: 22949516 DOI: 10.4269/ajtmh.2012.12-0094] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Emerging resistance to chloroquine (CQ) poses a major challenge for Plasmodium vivax malaria control, and nucleotide substitutions and copy number variation in the P. vivax multidrug resistance 1 (pvmdr-1) locus, which encodes a digestive vacuole membrane transporter, may modulate this phenotype. We describe patterns of genetic variation in pvmdr-1 alleles from Acre and Amazonas in northwestern Brazil, and compare then with those reported in other malaria-endemic regions. The pvmdr-1 mutation Y976F, which is associated with CQ resistance in Southeast Asia and Oceania, remains rare in northwestern Brazil (1.8%) and its prevalence mirrors that of CQ resistance worldwide. Gene amplification of pvmdr-1, which is associated with mefloquine resistance but increased susceptibility to CQ, remains relatively rare in northwestern Brazil (0.9%) and globally (< 4%), but became common (> 10%) in Tak Province, Thailand, possibly because of drug-mediated selection. The global database we have assembled provides a baseline for further studies of genetic variation in pvmdr-1 and drug resistance in P. vivax malaria.
Collapse
|
47
|
Carmona-Fonseca J. Recurrencias de malaria por Plasmodium vivax según el uso de primaquina: análisis de estudios descriptivos longitudinales. REVISTA BRASILEIRA DE EPIDEMIOLOGIA 2012; 15:488-503. [DOI: 10.1590/s1415-790x2012000300005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 02/10/2012] [Indexed: 11/21/2022] Open
Abstract
ANTECEDENTES: la primaquina (PQ) es el único medicamento disponible en el mercado para prevenir recurrencias del paludismo por Plasmodium vivax pero varios aspectos suyos se desconocen. OBJETIVO: comparar regímenes de PQ para prevenir recurrencias de malaria vivax. METODOLOGÍA: revisión sistemática de datos. RESULTADOS: 1. ¿Según los estudios descriptivos, la PQ es eficaz para prevenir las recurrencias del paludismo vivax? Sí. La comparación de estudios que no usaron PQ con otros que sí la aplicaron, en cualquier esquema, mostró que si no se usa PQ la recurrencia es altamente probable. 2. ¿Tienen la misma eficacia dosis diarias (mg/kg) iguales pero dosis totales diferentes? La dosis total de 75 mg es tanto o más eficaz que la de 210 mg. 3. ¿La eficacia anti-recurrencias depende del lugar donde sucede la infección? Si. Hay variación según país y región. 4. ¿La frecuencia de recurrencias depende del tiempo de seguimiento post tratamiento? La respuesta no es uniforme para todos los lugares. CONCLUSIONES: la PQ resultó eficaz para prevenir las recurrencias, pero no fue 100%. Las dosis totales de 210 y de 75 mg tuvieron igual eficacia, pero 75 mg sólo han sido evaluados en India, donde P. vivax parece ser más sensible a la PQ que en otros lugares. Parece indudable la influencia del lugar en la proporción de recurrencias, incluso con una misma dosis total. El papel del tiempo de seguimiento no resultó claro. Deben evaluarse esquemas alternativos al estándar, que tiene eficacia promedio de 90% o más.
Collapse
|
48
|
Abstract
Drug-resistant micro-organisms became widespread in the 20th Century, often with devastating consequences, in response to widespread use of natural and synthetic drugs against infectious diseases. Antimalarial resistance provides one of the earliest examples, following the introduction of new medicines that filled important needs for prophylaxis and treatment around the globe. In the present chapter, we offer a brief synopsis of major antimalarial developments from two natural remedies, the qinghaosu and cinchona bark infusions, and of synthetic drugs inspired by the active components of these remedies. We review some contributions that early efficacy studies of antimalarial treatment brought to clinical pharmacology, including convincing documentation of atebrine-resistant malaria in the 1940s, prior to the launching of what soon became first-choice antimalarials, chloroquine and amodiaquine. Finally, we discuss some new observations on the molecular genetics of drug resistance, including delayed parasite clearances that have been increasingly observed in response to artemisinin derivatives in regions of South-East Asia.
Collapse
|
49
|
Arevalo-Herrera M, Quiñones ML, Guerra C, Céspedes N, Giron S, Ahumada M, Piñeros JG, Padilla N, Terrientes Z, Rosas A, Padilla JC, Escalante AA, Beier JC, Herrera S. Malaria in selected non-Amazonian countries of Latin America. Acta Trop 2012; 121:303-14. [PMID: 21741349 PMCID: PMC3237935 DOI: 10.1016/j.actatropica.2011.06.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 06/07/2011] [Accepted: 06/23/2011] [Indexed: 01/29/2023]
Abstract
Approximately 170 million inhabitants of the American continent live at risk of malaria transmission. Although the continent's contribution to the global malaria burden is small, at least 1-1.2 million malaria cases are reported annually. Sixty percent of the malaria cases occur in Brazil and the other 40% are distributed in 20 other countries of Central and South America. Plasmodium vivax is the predominant species (74.2%) followed by P. falciparum (25.7%) and P. malariae (0.1%), and no less than 10 Anopheles species have been identified as primary or secondary malaria vectors. Rapid deforestation and agricultural practices are directly related to increases in Anopheles species diversity and abundance, as well as in the number of malaria cases. Additionally, climate changes profoundly affect malaria transmission and are responsible for malaria epidemics in some regions of South America. Parasite drug resistance is increasing, but due to bio-geographic barriers there is extraordinary genetic differentiation of parasites with limited dispersion. Although the clinical spectrum ranges from uncomplicated to severe malaria cases, due to the generally low to middle transmission intensity, features such as severe anemia, cerebral malaria and other complications appear to be less frequent than in other endemic regions and asymptomatic infections are a common feature. Although the National Malaria Control Programs (NMCP) of different countries differ in their control activities these are all directed to reduce morbidity and mortality by using strategies like health promotion, vector control and impregnate bed nets among others. Recently, international initiatives such as the Malaria Control Program in Andean-country Border Regions (PAMAFRO) (implemented by the Andean Organism for Health (ORAS) and sponsored by The Global Fund to Fight AIDS, Tuberculosis and Malaria (GFATM)) and The Amazon Network for the Surveillance of Antimalarial Drug Resistance (RAVREDA) (sponsored by the Pan American Health Organization/World Health Organization (PAHO/WHO) and several other partners), have made great investments for malaria control in the region. We describe here the current status of malaria in a non-Amazonian region comprising several countries of South and Central America participating in the Centro Latino Americano de Investigación en Malaria (CLAIM), an International Center of Excellence for Malaria Research (ICEMR) sponsored by the National Institutes of Health (NIH) National Institute of Allergy and Infectious Diseases (NIAID).
Collapse
|
50
|
Lacerda MVG, Mourão MPG, Alexandre MAA, Siqueira AM, Magalhães BML, Martinez-Espinosa FE, Filho FSS, Brasil P, Ventura AMRS, Tada MS, Couto VSCD, Silva AR, Silva RSU, Alecrim MGC. Understanding the clinical spectrum of complicated Plasmodium vivax malaria: a systematic review on the contributions of the Brazilian literature. Malar J 2012; 11:12. [PMID: 22230294 PMCID: PMC3268102 DOI: 10.1186/1475-2875-11-12] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 01/09/2012] [Indexed: 12/12/2022] Open
Abstract
The resurgence of the malaria eradication agenda and the increasing number of severe manifestation reports has contributed to a renewed interested in the Plasmodium vivax infection. It is the most geographically widespread parasite causing human malaria, with around 2.85 billion people living under risk of infection. The Brazilian Amazon region reports more than 50% of the malaria cases in Latin America and since 1990 there is a marked predominance of this species, responsible for 85% of cases in 2009. However, only a few complicated cases of P. vivax have been reported from this region. A systematic review of the Brazilian indexed and non-indexed literature on complicated cases of vivax malaria was performed including published articles, masters' dissertations, doctoral theses and national congresses' abstracts. The following information was retrieved: patient characteristics (demographic, presence of co-morbidities and, whenever possible, associated genetic disorders); description of each major clinical manifestation. As a result, 27 articles, 28 abstracts from scientific events' annals and 13 theses/dissertations were found, only after 1987. Most of the reported information was described in small case series and case reports of patients from all the Amazonian states, and also in travellers from Brazilian non-endemic areas. The more relevant clinical complications were anaemia, thrombocytopaenia, jaundice and acute respiratory distress syndrome, present in all age groups, in addition to other more rare clinical pictures. Complications in pregnant women were also reported. Acute and chronic co-morbidities were frequent, however death was occasional. Clinical atypical cases of malaria are more frequent than published in the indexed literature, probably due to a publication bias. In the Brazilian Amazon (considered to be a low to moderate intensity area of transmission), clinical data are in accordance with the recent findings of severity described in diverse P. vivax endemic areas (especially anaemia in Southeast Asia), however in this region both children and adults are affected. Finally, gaps of knowledge and areas for future research are opportunely pointed out.
Collapse
Affiliation(s)
- Marcus V G Lacerda
- Fundação de Medicina Tropical Dr, Heitor Vieira Dourado, Av, Pedro Teixeira, 25, 69040-000, Manaus Amazonas, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|