1
|
Solano-Gálvez SG, Gutiérrez-Kobeh L, Wilkins-Rodríguez AA, Vázquez-López R. Artemisinin: An Anti-Leishmania Drug that Targets the Leishmania Parasite and Activates Apoptosis of Infected Cells. Arch Med Res 2024; 55:103041. [PMID: 38996535 DOI: 10.1016/j.arcmed.2024.103041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
Leishmaniasis is a relevant disease worldwide due to its presence in many countries and an estimated prevalence of 10 million people. The causative agent of this disease is the obligate intracellular parasite Leishmania which can infect different cell types. Part of its success depends on its ability to evade host defense mechanisms such as apoptosis. Apoptosis is a finely programmed process of cell death in which cells silently dismantle and actively participate in several processes such as immune response, differentiation, and cell growth. Leishmania has the ability to delay its initiation to persist in the cell. It has been well documented that different Leishmania species target different pathways that lead to apoptosis of cells such as macrophages, neutrophils, and dendritic cells. In many cases, the observed anti-apoptotic effect has been associated with a significant reduction in caspase-3 activity. Leishmania has also been shown to target several pathways involved in apoptosis such as MAPK, PI3K/Akt, and the antiapoptotic protein Bcl-xL. Understanding the strategies used by Leishmania to subvert the defense mechanisms of host cells, particularly apoptosis, is very relevant for the development of therapies and vaccines. In recent years, the drug artemisinin has been shown to be effective against several parasitic diseases. Its role against Leishmania may be promising. In this review, we provide important aspects of the disease, the strategies used by the parasite to suppress apoptosis, and the role of artemisinin in Leishmania infection.
Collapse
Affiliation(s)
- Sandra Georgina Solano-Gálvez
- Unidad de Investigación, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laila Gutiérrez-Kobeh
- Unidad de Investigación, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Arturo A Wilkins-Rodríguez
- Unidad de Investigación, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosalino Vázquez-López
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud Universidad Anáhuac México Norte, Huixquilucan, Estado de México, Mexico.
| |
Collapse
|
2
|
Amado PSM, Lopes S, Brás EM, Paixão JA, Takano MA, Abe M, Fausto R, Cristiano MLS. Molecular and Crystal Structure, Spectroscopy, and Photochemistry of a Dispiro Compound Bearing the Tetraoxane Pharmacophore. Chemistry 2023; 29:e202301315. [PMID: 37343198 DOI: 10.1002/chem.202301315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
The molecular structure and photochemistry of dispiro[cyclohexane-1,3'-[1,2,4,5]tetraoxane-6',2''-tricyclo[3.3.1.13,7 ]decan]-4-one (TX), an antiparasitic 1,2,4,5-tetraoxane was investigated using matrix isolation IR and EPR spectroscopies, together with quantum chemical calculations undertaken at the DFT(B3LYP)/6-311++G(3df,3pd) level of theory, with and without Grimme's dispersion correction. Photolysis of the matrix-isolated TX, induced by in situ broadband (λ>235 nm) or narrowband (λ in the range 220-263 nm) irradiation, led to new bands in the infrared spectrum that could be ascribed to two distinct photoproducts, oxepane-2,5-dione, and 4-oxohomoadamantan-5-one. Our studies show that these photoproducts result from initial photoinduced cleavage of an O-O bond, with the formation of an oxygen-centered diradical that regioselectivity rearranges to a more stable (secondary carbon-centered)/(oxygen-centered) diradical, yielding the final products. Formation of the diradical species was confirmed by EPR measurements, upon photolysis of the compound at λ=266 nm, in acetonitrile ice (T=10-80 K). Single-crystal X-ray diffraction (XRD) studies demonstrated that the TX molecule adopts nearly the same conformation in the crystal and matrix-isolation conditions, revealing that the intermolecular interactions in the TX crystal are weak. This result is in keeping with observed similarities between the infrared spectrum of the crystalline material and that of matrix-isolated TX. The detailed structural, vibrational, and photochemical data reported here appear relevant to the practical uses of TX in medicinal chemistry, considering its efficient and broad parasiticidal properties.
Collapse
Affiliation(s)
- Patrícia S M Amado
- Center of Marine Sciences, CCMAR, Gambelas Campus, University of Algarve UAlg, 8005-139, Faro, Portugal
- Department of Chemistry and Pharmacy Faculty of Sciences and Technology, Gambelas Campus, University of Algarve UAlg, 8005-139, Faro, Portugal
| | - Susy Lopes
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Elisa M Brás
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| | - José A Paixão
- CFisUC, Department of Physics, University of Coimbra, 3004-516, Coimbra, Portugal
| | - Ma-Aya Takano
- Department of Chemistry Graduate School of Advanced Science and Engineering, Hiroshima University Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2) Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Manabu Abe
- Department of Chemistry Graduate School of Advanced Science and Engineering, Hiroshima University Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2) Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Rui Fausto
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
- Faculty of Sciences and Letters, Department of Physics, Istanbul Kultur University Ataköy Campus, Bakirköy, 34156, Istanbul, Turkey
| | - Maria L S Cristiano
- Center of Marine Sciences, CCMAR, Gambelas Campus, University of Algarve UAlg, 8005-139, Faro, Portugal
- Department of Chemistry and Pharmacy Faculty of Sciences and Technology, Gambelas Campus, University of Algarve UAlg, 8005-139, Faro, Portugal
| |
Collapse
|
3
|
Barman M, Dandasena D, Suresh A, Bhandari V, Kamble S, Singh S, Subudhi M, Sharma P. Artemisinin derivatives induce oxidative stress leading to DNA damage and caspase-mediated apoptosis in Theileria annulata-transformed cells. Cell Commun Signal 2023; 21:78. [PMID: 37069625 PMCID: PMC10111749 DOI: 10.1186/s12964-023-01067-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/04/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Bovine theileriosis caused by the eukaryotic parasite Theileria annulata is an economically important tick-borne disease. If it is not treated promptly, this lymphoproliferative disease has a significant fatality rate. Buparvaquone (BPQ) is the only chemotherapy-based treatment available right now. However, with the emergence of BPQ resistance on the rise and no backup therapy available, it is critical to identify imperative drugs and new targets against Theileria parasites. METHODS Artemisinin and its derivatives artesunate (ARS), artemether (ARM), or dihydroartemisinin (DHART) are the primary defence line against malaria parasites. This study has analysed artemisinin and its derivatives for their anti-Theilerial activity and mechanism of action. RESULTS ARS and DHART showed potent activity against the Theileria-infected cells. BPQ in combination with ARS or DHART showed a synergistic effect. The compounds act specifically on the parasitised cells and have minimal cytotoxicity against the uninfected host cells. Treatment with ARS or DHART induces ROS-mediated oxidative DNA damage leading to cell death. Further blocking intracellular ROS by its scavengers antagonised the anti-parasitic activity of the compounds. Increased ROS production induces oxidative stress and DNA damage causing p53 activation followed by caspase-dependent apoptosis in the Theileria-infected cells. CONCLUSIONS Our findings give unique insights into the previously unknown molecular pathways underpinning the anti-Theilerial action of artemisinin derivatives, which may aid in formulating new therapies against this deadly parasite. Video abstract.
Collapse
Affiliation(s)
| | - Debabrata Dandasena
- National Institute of Animal Biotechnology, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Akash Suresh
- National Institute of Animal Biotechnology, Hyderabad, India
| | - Vasundhra Bhandari
- National Institute of Animal Biotechnology, Hyderabad, India
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Sonam Kamble
- National Institute of Animal Biotechnology, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Sakshi Singh
- National Institute of Animal Biotechnology, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology (RCB), Faridabad, India
| | | | - Paresh Sharma
- National Institute of Animal Biotechnology, Hyderabad, India.
| |
Collapse
|
4
|
Machin L, Piontek M, Todhe S, Staniek K, Monzote L, Fudickar W, Linker T, Gille L. Antileishmanial Anthracene Endoperoxides: Efficacy In Vitro, Mechanisms and Structure-Activity Relationships. Molecules 2022; 27:6846. [PMID: 36296439 PMCID: PMC9612231 DOI: 10.3390/molecules27206846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022] Open
Abstract
Leishmaniasis is a vector-borne disease caused by protozoal Leishmania parasites. Previous studies have shown that endoperoxides (EP) can selectively kill Leishmania in host cells. Therefore, we studied in this work a set of new anthracene-derived EP (AcEP) together with their non-endoperoxidic analogs in model systems of Leishmania tarentolae promastigotes (LtP) and J774 macrophages for their antileishmanial activity and selectivity. The mechanism of effective compounds was explored by studying their reaction with iron (II) in chemical systems and in Leishmania. The correlation of structural parameters with activity demonstrated that in this compound set, active compounds had a LogPOW larger than 3.5 and a polar surface area smaller than 100 Å2. The most effective compounds (IC50 in LtP < 2 µM) with the highest selectivity (SI > 30) were pyridyl-/tert-butyl-substituted AcEP. Interestingly, also their analogs demonstrated activity and selectivity. In mechanistic studies, it was shown that EP were activated by iron in chemical systems and in LtP due to their EP group. However, the molecular structure beyond the EP group significantly contributed to their differential mitochondrial inhibition in Leishmania. The identified compound pairs are a good starting point for subsequent experiments in pathogenic Leishmania in vitro and in animal models.
Collapse
Affiliation(s)
- Laura Machin
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
- Pharmacy Department, Institute of Pharmacy and Food Sciences, University of Havana, Havana 13600, Cuba
| | - Martin Piontek
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Sara Todhe
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Katrin Staniek
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Lianet Monzote
- Parasitology Department, Institute of Tropical Medicine “Pedro Kouri”, Havana 11400, Cuba
| | - Werner Fudickar
- Department of Organic Chemistry, Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Torsten Linker
- Department of Organic Chemistry, Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Lars Gille
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
5
|
Synthesis, Structure and Antileishmanial Evaluation of Endoperoxide–Pyrazole Hybrids. Molecules 2022; 27:molecules27175401. [PMID: 36080174 PMCID: PMC9457810 DOI: 10.3390/molecules27175401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Leishmaniases are among the most impacting neglected tropical diseases. In attempts to repurpose antimalarial drugs or candidates, it was found that selected 1,2,4-trioxanes, 1,2,4,5-tetraoxanes, and pyrazole-containing chemotypes demonstrated activity against Leishmania parasites. This study reports the synthesis and structure of trioxolane–pyrazole (OZ1, OZ2) and tetraoxane–pyrazole (T1, T2) hybrids obtained from the reaction of 3(5)-aminopyrazole with endoperoxide-containing building blocks. Interestingly, only the endocyclic amine of 3(5)-aminopyrazole was found to act as nucleophile for amide coupling. However, the fate of the reaction was influenced by prototropic tautomerism of the pyrazole heterocycle, yielding 3- and 5-aminopyrazole containing hybrids which were characterized by different techniques, including X-ray crystallography. The compounds were evaluated for in vitro antileishmanial activity against promastigotes of L. tropica and L. infantum, and for cytotoxicity against THP-1 cells. Selected compounds were also evaluated against intramacrophage amastigote forms of L. infantum. Trioxolane–pyrazole hybrids OZ1 and OZ2 exhibited some activity against Leishmania promastigotes, while tetraoxane–pyrazole hybrids proved inactive, most likely due to solubility issues. Eight salt forms, specifically tosylate, mesylate, and hydrochloride salts, were then prepared to improve the solubility of the corresponding peroxide hybrids and were uniformly tested. Biological evaluations in promastigotes showed that the compound OZ1•HCl was the most active against both strains of Leishmania. Such finding was corroborated by the results obtained in assessments of the L. infantum amastigote susceptibility. It is noteworthy that the salt forms of the endoperoxide–pyrazole hybrids displayed a broader spectrum of action, showing activity in both strains of Leishmania. Our preliminary biological findings encourage further optimization of peroxide–pyrazole hybrids to identify a promising antileishmanial lead.
Collapse
|
6
|
Mendes A, Armada A, Cabral LIL, Amado PSM, Campino L, Cristiano MLS, Cortes S. 1,2,4-Trioxolane and 1,2,4,5-Tetraoxane Endoperoxides against Old-World Leishmania Parasites: In Vitro Activity and Mode of Action. Pharmaceuticals (Basel) 2022; 15:ph15040446. [PMID: 35455443 PMCID: PMC9024893 DOI: 10.3390/ph15040446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 12/15/2022] Open
Abstract
Leishmaniasis remains one of the ten Neglected Tropical Diseases with significant morbidity and mortality in humans. Current treatment of visceral leishmaniasis is difficult due to a lack of effective, non-toxic, and non-extensive medications. This study aimed to evaluate the selectivity of 12 synthetic endoperoxides (1,2,4-trioxolanes; 1,2,4,5-tetraoxanes) and uncover their biochemical effects on Leishmania parasites responsible for visceral leishmaniasis. The compounds were screened for in vitro activity against L. infantum and L. donovani and for cytotoxicity in two monocytic cell lines (J774A.1 and THP-1) using the methyl thiazol tetrazolium assay. Reactive oxygen species formation, apoptosis, and mitochondrial impairment were measured by flow cytometry. The compounds exhibited fair to moderate anti-proliferative activity against promastigotes of the 2 Leishmania species, with IC50 values ranging from 13.0 ± 1.7 µM to 793.0 ± 37.2 µM. Tetraoxanes LC132 and LC138 demonstrated good leishmanicidal activity on L. infantum amastigotes (IC50 13.2 ± 5.2 and 23.9 ± 2.7 µM) with low cytotoxicity in mammalian cells (SIs 22.1 and 118.6), indicating selectivity towards the parasite. Furthermore, LC138 was able to induce late apoptosis and dose-dependent oxidative stress without affecting mithocondria. Compounds LC132 and LC138 can be further explored as potential antileishmanial chemotypes.
Collapse
Affiliation(s)
- Andreia Mendes
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; (A.M.); (A.A.); (L.C.)
| | - Ana Armada
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; (A.M.); (A.A.); (L.C.)
- Global Health Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Lília I. L. Cabral
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.I.L.C.); (P.S.M.A.)
- Departamento de Química e Farmácia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Patrícia S. M. Amado
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.I.L.C.); (P.S.M.A.)
- Departamento de Química e Farmácia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Lenea Campino
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; (A.M.); (A.A.); (L.C.)
| | - Maria L. S. Cristiano
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.I.L.C.); (P.S.M.A.)
- Departamento de Química e Farmácia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Correspondence: (M.L.S.C.); (S.C.)
| | - Sofia Cortes
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; (A.M.); (A.A.); (L.C.)
- Global Health Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
- Correspondence: (M.L.S.C.); (S.C.)
| |
Collapse
|
7
|
Intakhan N, Siriyasatien P, Chanmol W. Anti-Leishmania activity of artesunate and combination effects with amphotericin B against Leishmania (Mundinia) martiniquensis in vitro. Acta Trop 2022; 226:106260. [PMID: 34848183 DOI: 10.1016/j.actatropica.2021.106260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 01/18/2023]
Abstract
Leishmaniasis is an emerging disease in several countries over the world, especially in tropical regions. In Thailand, Leishmania (Mundinia) martiniquensis is the most frequent cause of visceral leishmaniasis and disseminated cutaneous leishmaniasis among HIV/AIDs patients. Amphotericin B (AmB) is the only drug currently available for the treatment of leishmaniasis in Thailand, but has some limitations like high renal toxicity and the prolonged hospitalization required for the treatment. Moreover, recurrence of the disease has been reported in several cases, indicating that new drugs or treatment strategies should be improved. In this study, Artesunate (ARS) was determined for anti-Leishmania activity against L. martiniquensis in promastigotes and amastigotes. In addition, the combination effects of ARS and AmB against intracellular amastigotes on THP-1 derived macrophages were also investigated for the first time. The result showed that L. martiniquensis was susceptible to ARS in both stages of the parasite. ARS was effective against intracellular amastigotes and safe to macrophage host cells, showing a SI value of 1,065. Furthermore, combination effects of ARS and AmB showed five synergistic combinations with a combination index (CI) value less than 1.0 (0.28-0.92) for intracellular amastigotes ranging from slight synergism to strong synergism. The strong synergistic combination had the highest dose reduction index (DRI), approximately a 9.7-fold reduction in AmB used. None of the treatments in combination had noticeable toxicity to THP-1 derived macrophages in the concentration range examined. The data provided in this study lead to further study in vivo and to develop a novel formulation of drug combinations to improve the outcome of leishmaniasis treatment.
Collapse
|
8
|
In Vitro and In Vivo Anti-parasitic Activity of Artemisinin Combined With Glucantime and Shark Cartilage Extract on Iranian Strain of Leishmania major (MRHO/IR/75/ER). Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.113313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Background: The adverse effects and increased resistance of drugs necessities the discovery of novel combination therapy. Objectives: This study aimed to examine the effects of Artemisinin plus glucantime or shark cartilage extract on the Iranian strain of Leishmania major (MRHO/IR/75/ER) in vitro and in vivo. Methods: In in vitro experiments, the effects of drugs and their combination in different concentrations (3.12 - 400 µg/mL) on the promastigotes, amastigotes, and un-infected macrophage cells were evaluated. In in vivo experiments, infected BALB/c mice were used as a cutaneous leishmaniasis model to evaluate the effects of the drugs and their combinations with different routes of administrations (namely Artemisinin: oral, ointment, and intraperitoneal; glucantime: intraperitoneal, intramuscular, intralesional, and subcutaneous; shark cartilage extract: oral) on parasite burden, lesion size, and immune system modulation. Results: The results revealed that Artemisinin and glucantime in combination with shark cartilage extract had greater effects on promastigotes than either Artemisinin or glucantime (P < 0.05), and that the combinations also had high cytotoxic effects on promastigotes and uninfected macrophages (P = 0.001). These combinations had more inhibitory effects on amastigotes and infected macrophages than promastigotes. The lesion sizes and parasite burden in the spleen decreased against the combinations of the drugs in different administrations. It was also noticed that the best combination administration route of Artemisinin and glucantime, as strong inducers of INF-γ and Th1 immune response, were ointment and intramuscular, respectively (P < 0.05). Conclusions: The findings indicate that Artemisinin- glucantime or Artemisinin- Shark cartilage combinations are effective inhibitors of L. major. However, further clinical trials are recommended to evaluate the effects of these combinations in human subjects.
Collapse
|
9
|
Dighal A, De Sarkar S, Gille L, Chatterjee M. Can the iron content of culture media impact on the leishmanicidal effect of artemisinin? Free Radic Res 2021; 55:282-295. [PMID: 34121571 DOI: 10.1080/10715762.2021.1939325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Endoperoxides (EPs) like artemisinin following cleavage of their EP bridge can kill parasites via generation of carbon-centered radicals. As the presence of low molecular mass iron and/or heme is crucial, this study aimed to establish the influence of iron on the leishmanicidal action of artemisinin when present in differing amounts in culture media. In promastigotes cultured in Schneiders insect medium (SIM), that had a 8.0-fold higher amount of iron as compared to Medium 199 (M199), the impact of artemisinin on cell viability, redox status, labile iron pool (LIP), and Annexin-V positivity was evaluated. In SIM, the IC50 of artemisinin was 25.50-fold lower than M199, and in both media its cytotoxicity was decreased by the addition of hemin or following chelation of Fe2+ by Deferoxamine (DFO). In SIM vis-a-vis M199, artemisinin caused a greater redox imbalance which translated into a higher degree of externalization of phosphatidylserine and depletion of the LIP. The presence of a higher proportion of iron in SIM as compared to M199 significantly enhanced the cytotoxicity of artemisinin in Leishmania promastigotes, and was attributed to a higher degree of iron-mediated cleavage of its EP bridge that led to a higher generation of free radicals.
Collapse
Affiliation(s)
- Aishwarya Dighal
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India
| | - Sritama De Sarkar
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India
| | - Lars Gille
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India
| |
Collapse
|
10
|
Grazzia N, Boaventura S, Garcia VL, Gadelha FR, Miguel DC. Dihydroartemisinin, an active metabolite of artemisinin, interferes with Leishmania braziliensis mitochondrial bioenergetics and survival. Parasitol Res 2021; 120:705-713. [PMID: 33415404 DOI: 10.1007/s00436-020-07019-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/10/2020] [Indexed: 12/25/2022]
Abstract
Leishmaniasis is one of the most neglected parasitic infections of the world and current therapeutic options show several limitations. In the search for more effective drugs, plant compounds represent a powerful natural source. Artemisinin is a sesquiterpene lactone extracted from Artemisia annua L. leaves, from which dihydroartemisinin (DQHS) and artesunic acid (AA)/artesunate are examples of active derivatives. These lactones have been applied successfully on malaria therapy for decades. Herein, we investigated the sensitivity of Leishmania braziliensis, one of the most prevalent Leishmania species that cause cutaneous manifestations in the New World, to artemisinin, DQHS, and AA. L. braziliensis promastigotes and the stage that is targeted for therapy, intracelular amastigotes, were more sensitive to DQHS, showing EC50 of 62.3 ± 1.8 and 8.9 ± 0.9 μM, respectively. Cytotoxicity assays showed that 50% of bone marrow-derived macrophages cultures were inhibited with 292.8 ± 3.8 μM of artemisinin, 236.2 ± 4.0 μM of DQHS, and 396.8 ± 6.7 μM of AA. The control of intracellular infection may not be essentially attributed to the production of nitric oxide. However, direct effects on mitochondrial bioenergetics and H2O2 production appear to be associated with the leishmanicidal effect of DQHS. Our data provide support for further studies of artemisinin and derivatives repositioning for experimental leishmaniasis.
Collapse
Affiliation(s)
- Nathalia Grazzia
- Departamento de Biologia Animal - Parasitologia, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Sinésio Boaventura
- Divisão de Química Orgânica e Farmacêutica, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, UNICAMP, Paulínia, São Paulo, Brazil
| | - Vera Lucia Garcia
- Divisão de Química Orgânica e Farmacêutica, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, UNICAMP, Paulínia, São Paulo, Brazil
| | - Fernanda R Gadelha
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Danilo C Miguel
- Departamento de Biologia Animal - Parasitologia, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, São Paulo, Brazil.
| |
Collapse
|
11
|
Medkour H, Bitam I, Laidoudi Y, Lafri I, Lounas A, Hamidat HK, Mekroud A, Varloud M, Davoust B, Mediannikov O. Potential of Artesunate in the treatment of visceral leishmaniasis in dogs naturally infected by Leishmania infantum: Efficacy evidence from a randomized field trial. PLoS Negl Trop Dis 2020; 14:e0008947. [PMID: 33338041 PMCID: PMC7781483 DOI: 10.1371/journal.pntd.0008947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/04/2021] [Accepted: 11/03/2020] [Indexed: 12/19/2022] Open
Abstract
Leishmaniasis is among the world’s most neglected diseases. Dogs are the main reservoirs/hosts of Leishmania infantum, causative agent of both canine and human visceral leishmaniosis. Canine leishmaniasis (CanL) represents a public health problem as one of the most prevalent zoonotic diseases worldwide. Current therapeutics present drawbacks; thus, there is a need for more effective, safer, and cheaper drugs. The aim of this study was to evaluate and to compare the efficacy of oral administration of artesunate or meglumine antimoniate/allopurinol in dogs with clinical leishmaniasis. Forty-two dogs with naturally occurring clinical leishmaniasis were included in this open-label, simple randomized positive-control clinical field trial with 6 months of follow-up. Dogs received meglumine antimoniate 100 mg/kg/day and allopurinol 30 mg/kg/day for 28 days (control group, n = 26) or artesunate 25 mg/kg/day for 6 days (test group, n = 16). The animals were evaluated for their clinical evolution, parasite load (by qPCR) and humoral response at different time points: 0, 30, 90, and 180 days after treatment. Data analyses showed a significant improvement in both groups in clinical scores, parasitemia and antibody titers after treatment. Compared to the control group, the artesunate group showed significantly lower clinical score (P = 0.0001), lower parasitemia (P = 0.0001) and antibody titers after 6 months of follow-up. Compared to baseline values, a rapid, significant reduction (P < 0.012) in antibody levels, 2.28- versus 3.04-fold for the control versus artesunate groups, respectively, was observed 30 days after treatment. Antibody levels continued to decrease further in the artesunate group, where 58% of cases became seronegative at the 6-month follow-up. All qPCR-positive dogs were negative after treatment with artesunate, while 14.3% remained positive with the appearance of two new cases in the control group. Artesunate was well tolerated, and no side effects were recorded. Treatment failures were similar in both groups with 27.27% (6/22), including 18.18% (4/22) mortality in the control group, versus 26.66% (4/15), including 13.33% (2/15) mortality in the artesunate group. This is the first report showing the potential of artesunate in the treatment of dogs with clinical leishmaniasis. Artesunate showed higher efficacy than the current first-line treatment for CanL without any adverse effects. It could be a good alternative chemotherapy for CanL, and may be considered for further studies in human leishmaniases. Further clinical trials are needed to confirm these findings, to determine if there are relapses after treatment and if dogs remain infective to sandflies, to define the ideal therapeutic dosage and duration of treatment with artesunate. Canine leishmaniasis (CanL) is a fatal, zoonotic vector-borne disease caused by Leishmania infantum, a common pathogen for both humans and dogs. Most CanL therapeutics are toxic, expensive, or ineffective. Artemisinin and derivatives have recently demonstrated potent antileishmanial activity in vitro and in experimental models. In this study, dogs with clinical leishmaniasis were randomly included in one of the treatment groups: meglumine antimoniate/allopurinol (control) or artesunate (alternative). Dogs were followed up for 6 months for their clinical score, parasitemia and Leishmania antibody levels. Both groups showed improved clinical scores, parasitemia and antibody titers after treatment. After six months of follow-up, treatment success was very similar in both groups, and 72.73% (16/22) of the controls versus 73.34% (11/15) in the artesunate group had clinical improvement. All dogs initially seropositive by PCR became negative after artesunate treatment, while 14.3% remained positive with the appearance of new cases in the control group. Antibody titers decreased rapidly (from day 30) from baseline especially in the artesunate group, where 58% of the dogs converted to seronegative after 6 months. Artesunate could be a good alternative for treatment of leishmaniasis. Additional clinical trials are needed to obtain more data on this drug.
Collapse
Affiliation(s)
- Hacène Medkour
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ., IRD, AP-HM, MEPHI, Marseille, France
- PADESCA Laboratory, Veterinary Science Institute, University Constantine 1, El Khroub, Algeria
| | - Idir Bitam
- Aix-Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- Superior School of Food Sciences and Food Industries of Algiers, Algeria
| | - Younes Laidoudi
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ., IRD, AP-HM, MEPHI, Marseille, France
- PADESCA Laboratory, Veterinary Science Institute, University Constantine 1, El Khroub, Algeria
| | - Ismail Lafri
- Aix-Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- Institute of Veterinary Sciences, University of Blida 1, Algeria
- Laboratory of Biotechnology related to Animal Reproduction (LBRA), University of Blida, Blida, Algeria
| | - Abdelaziz Lounas
- Institute of Veterinary Sciences, University of Blida 1, Algeria
- Laboratory of Biotechnology related to Animal Reproduction (LBRA), University of Blida, Blida, Algeria
| | - Hamza Karim Hamidat
- Department of Biology, Faculty of Sciences, University of Boumerdes, Algeria
| | - Abdeslam Mekroud
- PADESCA Laboratory, Veterinary Science Institute, University Constantine 1, El Khroub, Algeria
| | | | - Bernard Davoust
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ., IRD, AP-HM, MEPHI, Marseille, France
| | - Oleg Mediannikov
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ., IRD, AP-HM, MEPHI, Marseille, France
- * E-mail:
| |
Collapse
|
12
|
Ortalli M, Varani S, Cimato G, Veronesi R, Quintavalla A, Lombardo M, Monari M, Trombini C. Evaluation of the Pharmacophoric Role of the O-O Bond in Synthetic Antileishmanial Compounds: Comparison between 1,2-Dioxanes and Tetrahydropyrans. J Med Chem 2020; 63:13140-13158. [PMID: 33091297 PMCID: PMC8018184 DOI: 10.1021/acs.jmedchem.0c01589] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 12/17/2022]
Abstract
Leishmaniases are neglected diseases that can be treated with a limited drug arsenal; the development of new molecules is therefore a priority. Recent evidence indicates that endoperoxides, including artemisinin and its derivatives, possess antileishmanial activity. Here, 1,2-dioxanes were synthesized with their corresponding tetrahydropyrans lacking the peroxide bridge, to ascertain if this group is a key pharmacophoric requirement for the antileishmanial bioactivity. Newly synthesized compounds were examined in vitro, and their mechanism of action was preliminarily investigated. Three endoperoxides and their corresponding tetrahydropyrans effectively inhibited the growth of Leishmania donovani promastigotes and amastigotes, and iron did not play a significant role in their activation. Further, reactive oxygen species were produced in both endoperoxide- and tetrahydropyran-treated promastigotes. In conclusion, the peroxide group proved not to be crucial for the antileishmanial bioactivity of endoperoxides, under the tested conditions. Our findings reveal the potential of both 1,2-dioxanes and tetrahydropyrans as lead compounds for novel therapies against Leishmania.
Collapse
Affiliation(s)
- Margherita Ortalli
- Unit of Clinical Microbiology, Regional Reference
Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi
University Hospital, Via Massarenti 9, 40138 Bologna,
Italy
| | - Stefania Varani
- Unit of Clinical Microbiology, Regional Reference
Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi
University Hospital, Via Massarenti 9, 40138 Bologna,
Italy
- Department of Experimental, Diagnostic and Specialty
Medicine, Alma Mater Studiorum - University of Bologna, Via
Massarenti 9, 40138 Bologna, Italy
| | - Giorgia Cimato
- Unit of Clinical Microbiology, Regional Reference
Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi
University Hospital, Via Massarenti 9, 40138 Bologna,
Italy
| | - Ruben Veronesi
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
| | - Arianna Quintavalla
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
- Centro Interuniversitario di Ricerca sulla Malaria
(CIRM) - Italian Malaria Network (IMN), University of Milan,
20100 Milan, Italy
| | - Marco Lombardo
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
- Centro Interuniversitario di Ricerca sulla Malaria
(CIRM) - Italian Malaria Network (IMN), University of Milan,
20100 Milan, Italy
| | - Magda Monari
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
| | - Claudio Trombini
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
- Centro Interuniversitario di Ricerca sulla Malaria
(CIRM) - Italian Malaria Network (IMN), University of Milan,
20100 Milan, Italy
| |
Collapse
|
13
|
In vitro efficacy of synthesized artemisinin derivatives against Leishmania promastigotes. Bioorg Med Chem Lett 2020; 30:127581. [DOI: 10.1016/j.bmcl.2020.127581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 01/22/2023]
|
14
|
Machín L, Nápoles R, Gille L, Monzote L. Leishmania amazonensis response to artemisinin and derivatives. Parasitol Int 2020; 80:102218. [PMID: 33137506 DOI: 10.1016/j.parint.2020.102218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022]
Abstract
The worldwide presence of Leishmania parasites increases in the poorest regions. Current leishmaniasis treatments are unsatisfactory due to resistance development, side effects and cost. Herein, we describe the in vitro activity of artemisinin (ART), artemether (ATM), artesunate (ATS) and dihydroartemisinin (DHA) against Leishmania amazonensis. Selected compounds were assayed in the animal model of cutaneous leishmaniasis in BALB/c mice. On intracellular amastigotes, similar activity (p > 0.05) was observed for ART, ATM and ATS (IC50 = 15.0-19.2 μM), which were inferior (p < 0.05) respect to reference endoperoxide ascaridole (IC50 = 11.5 ± 1.0 μM) and superior (p < 0.05) compared with reference drug Glucantime® (IC50 = 30.1 ± 9.0 μM). In contrast, DHA (IC50 = 38.5 ± 4.7 μM) showed higher IC50 values (p < 0.05) than other artemisinins and ascaridole, but similar (p > 0.05) than Glucantime®; while deoxyartemisinin caused smaller inhibition (IC50 = 88.9 ± 5.2 μM). Selectivity indexes of >13, 6, 11 and 1 were obtained for ART, ATM, ATS and DHA, respectively. In addition, the potential effect of ART and ATS was also demonstrated in the murine model, causing a significant reduction (p < 0.05) of the lesion size and parasite load regarding untreated animals and treated with vehicle. Effects of both artemisinins were comparable (p > 0.05) with Glucantime® and ascaridole-treated mice. In particular, artemisinin is recommended to further studies, which could be an advantage over the ascaridole endoperoxide and could be useful in endemic areas of parasite resistance to antimonials.
Collapse
Affiliation(s)
- Laura Machín
- Department of Pharmacy, Institute of Pharmacy and Foods Sciences, University of Havana, Street 222, e/ 23 y 29, # 2317, La Coronela. La Lisa, Havana, Cuba
| | - Rachel Nápoles
- Department of Pharmacy, Institute of Pharmacy and Foods Sciences, University of Havana, Street 222, e/ 23 y 29, # 2317, La Coronela. La Lisa, Havana, Cuba
| | - Lars Gille
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Lianet Monzote
- Parasitology Department, Institute of Tropical Medicine "Pedro Kouri", Autopista Novia del Mediodía Km 6 1/2. La Lisa, Havana, Cuba.
| |
Collapse
|
15
|
Medrán NS, Sayé M, Pereira CA, Tekwani BL, La-Venia A, Labadie GR. Expanding the scope of synthetic 1,2,4-trioxanes towards Trypanosoma cruzi and Leishmania donovani. Bioorg Med Chem Lett 2020; 30:127491. [PMID: 32795626 DOI: 10.1016/j.bmcl.2020.127491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 01/29/2023]
Abstract
A series of synthetic 1,2,4-trioxanes related to artemisinin was tested against L. donovani and T. cruzi parasites. This screening identified some active compounds, with key common structural features. Interestingly, these selected trioxanes were efficient against both parasites, and achieved antiparasitic activities comparable or superior than those presented by the corresponding reference drugs, artemisinin and artesunate. This study represents the first example of synthetic trioxanes evaluated on T. cruzi and provides possible candidates for developing new drugs for the treatment of leishmaniasis and Chagas disease.
Collapse
Affiliation(s)
- Noelia S Medrán
- Instituto de Química Rosario (IQUIR-CONICET), Universidad Nacional de Rosario-CONICET, Suipacha 531, S2002LRK Rosario, Argentina; Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Melisa Sayé
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Claudio A Pereira
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Babu L Tekwani
- National Center for Natural Products Research & Department of Pharmacology, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Agustina La-Venia
- Instituto de Química Rosario (IQUIR-CONICET), Universidad Nacional de Rosario-CONICET, Suipacha 531, S2002LRK Rosario, Argentina; Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| | - Guillermo R Labadie
- Instituto de Química Rosario (IQUIR-CONICET), Universidad Nacional de Rosario-CONICET, Suipacha 531, S2002LRK Rosario, Argentina; Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
16
|
Brás EM, Cabral LIL, Amado PSM, Abe M, Fausto R, Cristiano MLS. Photoinduced Reactivity in a Dispiro-1,2,4-trioxolane: Adamantane Ring Expansion and First Direct Observation of the Long-Lived Triplet Diradical Intermediates. J Phys Chem A 2020; 124:4202-4210. [DOI: 10.1021/acs.jpca.0c01974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elisa M. Brás
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus Gambelas, Faro 8005-139, Portugal
- CQC, Department of Chemistry, University of Coimbra, Coimbra 3004-531, Portugal
| | - Lília I. L. Cabral
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus Gambelas, Faro 8005-139, Portugal
- Departamento de Química e Farmácia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal
| | - Patrícia S. M. Amado
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus Gambelas, Faro 8005-139, Portugal
- Departamento de Química e Farmácia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal
| | - Manabu Abe
- Department of Chemistry, Graduate School of Science, Hiroshima University, Hiroshima 739-8511, Japan
| | - Rui Fausto
- CQC, Department of Chemistry, University of Coimbra, Coimbra 3004-531, Portugal
| | - Maria L. S. Cristiano
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus Gambelas, Faro 8005-139, Portugal
- Departamento de Química e Farmácia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal
| |
Collapse
|
17
|
Secrieru A, Costa ICC, O’Neill PM, Cristiano MLS. Antimalarial Agents as Therapeutic Tools Against Toxoplasmosis-A Short Bridge between Two Distant Illnesses. Molecules 2020; 25:E1574. [PMID: 32235463 PMCID: PMC7181032 DOI: 10.3390/molecules25071574] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 11/16/2022] Open
Abstract
Toxoplasmosis is an infectious disease with paramount impact worldwide, affecting many vulnerable populations and representing a significant matter of concern. Current therapies used against toxoplasmosis are based essentially on old chemotypes, which fail in providing a definitive cure for the disease, placing the most sensitive populations at risk for irreversible damage in vital organs, culminating in death in the most serious cases. Antimalarial drugs have been shown to possess key features for drug repurposing, finding application in the treatment of other parasite-borne illnesses, including toxoplasmosis. Antimalarials provide the most effective therapeutic solutions against toxoplasmosis and make up for the majority of currently available antitoxoplasmic drugs. Additionally, other antiplasmodial drugs have been scrutinized and many promising candidates have emanated in recent developments. Available data demonstrate that it is worthwhile to explore the activity of classical and most recent antimalarial chemotypes, such as quinolines, endoperoxides, pyrazolo[1,5-a]pyrimidines, and nature-derived peptide-based parasiticidal agents, in the context of toxoplasmosis chemotherapy, in the quest for encountering more effective and safer tools for toxoplasmosis control or eradication.
Collapse
Affiliation(s)
- Alina Secrieru
- Center of Marine Sciences, CCMAR, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal; (A.S.); (I.C.C.C.)
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, FCT, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK;
| | - Inês C. C. Costa
- Center of Marine Sciences, CCMAR, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal; (A.S.); (I.C.C.C.)
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, FCT, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal
| | - Paul M. O’Neill
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK;
| | - Maria L. S. Cristiano
- Center of Marine Sciences, CCMAR, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal; (A.S.); (I.C.C.C.)
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, FCT, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal
| |
Collapse
|
18
|
Geroldinger G, Tonner M, Quirgst J, Walter M, De Sarkar S, Machín L, Monzote L, Stolze K, Catharina Duvigneau J, Staniek K, Chatterjee M, Gille L. Activation of artemisinin and heme degradation in Leishmania tarentolae promastigotes: A possible link. Biochem Pharmacol 2020; 173:113737. [PMID: 31786259 PMCID: PMC7116464 DOI: 10.1016/j.bcp.2019.113737] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/26/2019] [Indexed: 11/17/2022]
Abstract
Endoperoxides (EPs) appear to be promising drug candidates against protozoal diseases, including malaria and leishmaniasis. Previous studies have shown that these drugs need an intracellular activation to exert their pharmacological potential. The efficiency of these drugs is linked to the extensive iron demand of these intracellular protozoal parasites. An essential step of the activation mechanism of these drugs is the formation of radicals in Leishmania. Iron is a known trigger for intracellular radical formation. However, the activation of EPs by low molecular iron or by heme iron may strongly depend on the structure of the EPs themselves. In this study, we focused on the activation of artemisinin (Art) in Leishmania tarentolae promastigotes (LtP) in comparison to reference compounds. Viability assays in different media in the presence of different iron sources (hemin/fetal calf serum) showed that IC50 values of Art in LtP were modulated by assay conditions, but overall were within the low micromolar range. Low temperature electron paramagnetic resonance (EPR) spectroscopy of LtP showed that Art shifted the redox state of the labile iron pool less than the EP ascaridole questioning its role as a major activator of Art in LtP. Based on the high reactivity of Art with hemin in previous biomimetic experiments, we focused on putative heme-metabolizing enzymes in Leishmania, which were so far not well described. Inhibitors of mammalian heme oxygenase (HO; tin and chromium mesoporphyrin) acted antagonistically to Art in LtP and boosted its IC50 value for several magnitudes. By inductively coupled plasma methods (ICP-OES, ICP-MS) we showed that these inhibitors do not block iron (heme) accumulation, but are taken up and act within LtP. These inhibitors blocked the conversion of hemin to bilirubin in LtP homogenates, suggesting that an HO-like enzyme activity in LtP exists. NADPH-dependent degradation of Art and hemin was highest in the small granule and microsomal fractions of LtP. Photometric measurements in the model Art/hemin demonstrated that hemin requires reduction to heme and that subsequently an Art/heme complex (λmax 474 nm) is formed. EPR spin-trapping in the system Art/hemin revealed that NADPH, ascorbate and cysteine are suitable reductants and finally activate Art to acyl-carbon centered radicals. These findings suggest that heme is a major activator of Art in LtP either via HO-like enzyme activities and/or chemical interaction of heme with Art.
Collapse
Affiliation(s)
- Gerald Geroldinger
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Matthias Tonner
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Judith Quirgst
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Martin Walter
- Department of Environmental Geosciences, University of Vienna, Vienna, Austria
| | - Sritama De Sarkar
- Department of Pharmacology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Laura Machín
- Institute of Pharmacy and Food, Havana University, Havana, Cuba
| | - Lianet Monzote
- Parasitology Department, Institute of Tropical Medicine "Pedro Kouri", Havana, Cuba
| | - Klaus Stolze
- Institute of Animal Nutrition and Functional Plant Compounds, Department of Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - J Catharina Duvigneau
- Institute for Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Katrin Staniek
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Lars Gille
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
19
|
Synthesis and Antileishmanial Activity of 1,2,4,5-Tetraoxanes against Leishmania donovani. Molecules 2020; 25:molecules25030465. [PMID: 31979089 PMCID: PMC7038143 DOI: 10.3390/molecules25030465] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
A chemically diverse range of novel tetraoxanes was synthesized and evaluated in vitro against intramacrophage amastigote forms of Leishmania donovani. All 15 tested tetraoxanes displayed activity, with IC50 values ranging from 2 to 45 µm. The most active tetraoxane, compound LC140, exhibited an IC50 value of 2.52 ± 0.65 µm on L. donovani intramacrophage amastigotes, with a selectivity index of 13.5. This compound reduced the liver parasite burden of L. donovani-infected mice by 37% after an intraperitoneal treatment at 10 mg/kg/day for five consecutive days, whereas miltefosine, an antileishmanial drug in use, reduced it by 66%. These results provide a relevant basis for the development of further tetraoxanes as effective, safe, and cheap drugs against leishmaniasis.
Collapse
|
20
|
Moraes Neto RN, Setúbal RFB, Higino TMM, Brelaz-de-Castro MCA, da Silva LCN, Aliança ASDS. Asteraceae Plants as Sources of Compounds Against Leishmaniasis and Chagas Disease. Front Pharmacol 2019; 10:477. [PMID: 31156427 PMCID: PMC6530400 DOI: 10.3389/fphar.2019.00477] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 04/16/2019] [Indexed: 12/28/2022] Open
Abstract
Leishmaniasis and Chagas disease cause great impact on social and economic aspects of people living in developing countries. The treatments for these diseases are based on the same regimen for over 40 years, thus, there is an urgent need for the development of new drugs. In this scenario, Asteraceae plants (a family widely used in folk medicine worldwide) are emerging as an interesting source for new trypanocidal and leishmanicidal compounds. Herein, we provide a non-exhaustive review about the activity of plant-derived products from Asteraceae with inhibitory action toward Leishmania spp. and T. cruzi. Special attention was given to those studies aiming the isolation (or identification) of the bioactive compounds. Ferulic acid, rosmarinic acid, and ursolic acid (Baccharis uncinella DC.) were efficient to treat experimental leishmaniasis; while deoxymikanolide (Mikania micrantha) and (+)-15-hydroxy-labd-7-en-17-al (Aristeguietia glutinosa Lam.) showed in vivo anti-T. cruzi action. It is also important to highlight that several plant-derived products (compounds, essential oils) from Artemisia plants have shown high inhibitory potential against Leishmania spp., such as artemisinin and its derivatives. In summary, these compounds may help the development of new effective agents against these neglected diseases.
Collapse
|
21
|
Ortalli M, Varani S, Rosso C, Quintavalla A, Lombardo M, Trombini C. Evaluation of synthetic substituted 1,2-dioxanes as novel agents against human leishmaniasis. Eur J Med Chem 2019; 170:126-140. [PMID: 30878827 DOI: 10.1016/j.ejmech.2019.02.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/29/2019] [Accepted: 02/25/2019] [Indexed: 01/28/2023]
Abstract
The treatment of human leishmaniasis is currently based on few compounds that are highly toxic, expensive and have a high rate of treatment failure. A number of recent studies on new drugs focuses on natural or semi-synthetic compounds. Among them, the endoperoxide artemisinin, extracted from Artemisia annua, and some of its derivatives have shown leishmanicidal activity. In the present work, a series of structurally simple, fully synthetic 1,2-dioxanes were evaluated for in vitro antileishmanial activity against promastigotes of Leishmania donovani; the cytotoxicity for mammalian cells was also assessed. The six most promising compounds in terms of activity and selectivity were further investigated for their antileishmanial activity on the promastigote forms of L. tropica, L. major and L. infantum and against L. donovani amastigotes. The good performance in terms of potency and selectivity makes these six hits promising candidates for a preliminary lead optimization as antileishmanial agents.
Collapse
Affiliation(s)
- M Ortalli
- Alma Mater Studiorum - University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine, Via Massarenti 9, 40138, Bologna, Italy
| | - S Varani
- Alma Mater Studiorum - University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine, Via Massarenti 9, 40138, Bologna, Italy; Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi University Hospital, Via Massarenti 9, 40138, Bologna, Italy
| | - C Rosso
- Alma Mater Studiorum - University of Bologna, Department of Chemistry "G. Ciamician", Via Selmi 2, 40126, Bologna, Italy
| | - A Quintavalla
- Alma Mater Studiorum - University of Bologna, Department of Chemistry "G. Ciamician", Via Selmi 2, 40126, Bologna, Italy.
| | - M Lombardo
- Alma Mater Studiorum - University of Bologna, Department of Chemistry "G. Ciamician", Via Selmi 2, 40126, Bologna, Italy
| | - C Trombini
- Alma Mater Studiorum - University of Bologna, Department of Chemistry "G. Ciamician", Via Selmi 2, 40126, Bologna, Italy
| |
Collapse
|
22
|
Ghasemi E, Ghaffarifar F, Dalimi A, Sadraei J. In-vitro and In-vivo Antileishmanial Activity of a Compound Derived of Platinum, Oxaliplatin, against Leishmania Major. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:2028-2041. [PMID: 32184867 PMCID: PMC7059061 DOI: 10.22037/ijpr.2019.15364.13046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study aimed to evaluate the antileishmanial efficacy of oxaliplatin against Leishmania major (L. major) both in-vitro and in-vivo. The IC50, CC50, and SI of oxaliplatin against promastigotes, murine macrophages, Raw 264.7 cells, and intramacrophage amastigotes of L. major were investigated in-vitro. The effects of this drug on intracellular amastigotes were also assayed, and the percentage of infectivity and IIR were calculated. Flow cytometry was performed to assay apoptosis, using 50 and 100 µg/mL of oxaliplatin in the promastigotes and macrophages. In-vivo, the BALB/c mice were classified into three groups, receiving oxaliplatin, glucantime, and phosphate-buffered saline for one month, respectively. The lesion size, IFN-γ, and IL-4 levels, and parasite burden were also evaluated in the animals. After 72 h, the IC50 and CC50 of oxaliplatin against promastigotes and macrophages were respectively 0.5 and 66.78 µg/mL. The apoptosis of promastigotes and macrophages using 50 µg/mL of oxaliplatin was 7.25% and 2.14%, respectively, while apoptosis induced at 100 µg/mL was 15.48% and 2.80%, respectively. Similar to the glucantime group, the mice treated with oxaliplatin showed a lower parasite burden and smaller lesions, compared with the PBS group (p < 0.01). Furthermore, higher IFN-γ levels were reported in mice receiving oxaliplatin in comparison with those receiving PBS (p < 0.01). The current findings indicated the efficacy of oxaliplatin against promastigote and amastigote forms of Leishmania and L. major-induced leishmaniasis.
Collapse
Affiliation(s)
| | - Fatemeh Ghaffarifar
- Department of Parasitology and Entomology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | | |
Collapse
|
23
|
da Silva AD, Dos Santos JA, Machado PA, Alves LA, Laque LC, de Souza VC, Coimbra ES, Capriles PVSZ. Insights about resveratrol analogs against trypanothione reductase of Leishmania braziliensis: Molecular modeling, computational docking and in vitro antileishmanial studies. J Biomol Struct Dyn 2018; 37:2960-2969. [PMID: 30058445 DOI: 10.1080/07391102.2018.1502096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In this work, we combined molecular modeling, computational docking and in vitro analysis to explore the antileishmanial effect of some resveratrol analogs (ResAn), focusing on their pro-oxidant effect. The molecular target was the trypanothione reductase of Leishmania braziliensis (LbTryR), an essential component of the antioxidant defenses in trypanosomatid parasites. Three-dimensional structures of LbTryR were modeled and molecular docking studies of ResAn1-5 compounds showed the following affinity: ResAn1 > ResAn2 > ResAn4 > ResAn5 > ResAn3. Positive correlation was observed between these compounds' affinity to the LbTryR and the IC50 values against Leishmania sp (ResAn1 < ResAn2 < ResAn4), which allows for TryR being considered an important target for them. As the compound ResAn1 showed the best antileishmanial activity, and docking studies showed its high affinity for NADP binding site (NS) of TryR, plus having been able to induce ROS production in L. braziliensis promastigotes treated, ResAn1 probably occupies NS interfering in the electron transfer processes responsible for the catalytic reaction. The in silico prediction of ADMET properties suggests that ResAn1 may be a promising drug candidate with properties to cross biological membranes and high gastrointestinal absorption, not violating Lipinski's rules. Ultimately, the antileishmanial effect of ResAn can be associated with a pro-oxidant effect which, in turn, can be exploited as an antimicrobial agent. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Adilson D da Silva
- a Departamento de Química , I.C.E. Universidade Federal de Juiz de Fora , Juiz de Fora , Brazil
| | - Juliana A Dos Santos
- a Departamento de Química , I.C.E. Universidade Federal de Juiz de Fora , Juiz de Fora , Brazil
| | - Patrícia A Machado
- b Departamento de Parasitologia, Microbiologia e Imunologia , I.C.B. Universidade Federal de Juiz de Fora , Juiz de Fora , Brazil
| | - Lara A Alves
- c Programa de Pós-graduação em Modelagem Computacional, Departamento de Ciência da Computação , I.C.E. Universidade Federal de Juiz de Fora , Juiz de Fora , Brazil
| | - Larissa C Laque
- c Programa de Pós-graduação em Modelagem Computacional, Departamento de Ciência da Computação , I.C.E. Universidade Federal de Juiz de Fora , Juiz de Fora , Brazil
| | - Vinícius C de Souza
- c Programa de Pós-graduação em Modelagem Computacional, Departamento de Ciência da Computação , I.C.E. Universidade Federal de Juiz de Fora , Juiz de Fora , Brazil
| | - Elaine S Coimbra
- b Departamento de Parasitologia, Microbiologia e Imunologia , I.C.B. Universidade Federal de Juiz de Fora , Juiz de Fora , Brazil
| | - Priscila V S Z Capriles
- c Programa de Pós-graduação em Modelagem Computacional, Departamento de Ciência da Computação , I.C.E. Universidade Federal de Juiz de Fora , Juiz de Fora , Brazil
| |
Collapse
|
24
|
Leishmania treatment and prevention: Natural and synthesized drugs. Eur J Med Chem 2018; 160:229-244. [DOI: 10.1016/j.ejmech.2018.10.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/31/2022]
|
25
|
Antinarelli LMR, Souza IDO, Glanzmann N, Almeida ADC, Porcino GN, Vasconcelos EG, da Silva AD, Coimbra ES. Aminoquinoline compounds: Effect of 7-chloro-4-quinolinylhydrazone derivatives against Leishmania amazonensis. Exp Parasitol 2016; 171:10-16. [DOI: 10.1016/j.exppara.2016.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/08/2016] [Accepted: 10/09/2016] [Indexed: 12/13/2022]
|
26
|
Artemisinin and its derivatives in treating protozoan infections beyond malaria. Pharmacol Res 2016; 117:192-217. [PMID: 27867026 DOI: 10.1016/j.phrs.2016.11.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 01/09/2023]
Abstract
Parasitic protozoan diseases continue to rank among the world's greatest global health problems, which are also common among poor populations. Currently available drugs for treatment present drawbacks, urging the need for more effective, safer, and cheaper drugs. Artemisinin (ART) and its derivatives are some of the most important classes of antimalarial agents originally derived from Artemisia annua L. However, besides the outstanding antimalarial and antischistosomal activities, ART and its derivatives also possess activities against other parasitic protozoa. In this paper we review the activities of ART and its derivatives against protozoan parasites in vitro and in vivo, including Leishmania spp., Trypanosoma spp., Toxoplasma gondii, Neospora caninum, Eimeria tenella, Acanthamoeba castellanii, Naegleria fowleri, Cryptosporidium parvum, Giardia lamblia, and Babesia spp. We conclude that ART and its derivatives may be good alternatives for treating other non-malarial protozoan infections in developing countries, although more studies are necessary before they can be applied clinically.
Collapse
|
27
|
Coimbra ES, Antinarelli LMR, Silva NP, Souza IO, Meinel RS, Rocha MN, Soares RPP, da Silva AD. Quinoline derivatives: Synthesis, leishmanicidal activity and involvement of mitochondrial oxidative stress as mechanism of action. Chem Biol Interact 2016; 260:50-57. [PMID: 27789199 DOI: 10.1016/j.cbi.2016.10.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/11/2016] [Accepted: 10/21/2016] [Indexed: 12/28/2022]
Abstract
Leishmaniasis comprise a spectrum of diseases caused by protozoa parasites from the genus Leishmania, affecting millions of people worldwide, mainly in subtropical countries. Most antileishmanial drugs are highly toxic, present resistance issues or require long-term treatment. Consequently, new drugs are urgently needed. Quinoline-containing compounds have displayed an impressive array of biological properties over the years, including antileishmanial activity. In the present study, we report the synthesis and evaluation of novel quinoline derivatives (QuinDer) against Leishmania species and cytotoxic effect on mammalian cells. The ROS production and mitochondrial membrane potential analyses were also studied. The compound QuinDer1 showed activity on L. amazonensis and L. braziliensis promastigotes and this compound exhibited a strong inhibition of the proliferation of L. amazonensis amastigotes at nM concentration (IC50 of 0.0911 μM), being 139 times more active than miltefosine (IC50 of 12.7 μM), used as reference drug. This compound presents low cytotoxicity toward murine macrophages and human erythrocytes. In addition, promastigotes of L. amazonensis treated with the compound QuinDer1 present high generation of ROS levels with low alterations in mitochondrial membrane potential and maintenance of parasite membrane integrity. No substantial NO production in infected-macrophages treated with this compound was detected. These results suggest that the compound QuinDer 1 is a potent and selective antileishmanial agent by mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Elaine S Coimbra
- Departamento de Parasitologia, Microbiologia e Imunologia, I.C.B., Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil.
| | - Luciana M R Antinarelli
- Departamento de Parasitologia, Microbiologia e Imunologia, I.C.B., Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Natália P Silva
- Departamento de Parasitologia, Microbiologia e Imunologia, I.C.B., Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Isabela O Souza
- Departamento de Química, I.C.E., Universidade Federal Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Raissa S Meinel
- Departamento de Química, I.C.E., Universidade Federal Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Marcele N Rocha
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz/FIOCRUZ, 30190-002 Belo Horizonte, MG, Brazil
| | - Rodrigo P P Soares
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz/FIOCRUZ, 30190-002 Belo Horizonte, MG, Brazil
| | - Adilson D da Silva
- Departamento de Química, I.C.E., Universidade Federal Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil.
| |
Collapse
|