1
|
Vahedi-Shahandashti R, Houbraken J, Hubka V, Meijer M, Zelger BG, Binder U, Lass-Flörl C. Deciphering Aspergillus section Terrei in Galleria mellonella model: a clade-specific pathogenicity characterization. Microbiol Spectr 2025; 13:e0257624. [PMID: 40094356 PMCID: PMC12053913 DOI: 10.1128/spectrum.02576-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
The Aspergillus genus encompasses a diverse array of species, some of which are opportunistic pathogens. Traditionally, human aspergillosis has primarily been linked to a few Aspergillus species, predominantly A. fumigatus. Changes in epidemiology and advancements in molecular techniques have brought attention to less common and previously unrecognized pathogenic cryptic species. Despite the taxonomic recognition of many cryptic species in section Terrei, their virulence potential and clinical implications, compared to A. terreus sensu stricto, remain poorly understood. Hence, the current study utilized the alternative in vivo model Galleria mellonella to evaluate the virulence potential of 19 accepted Aspergillus species in section Terrei, classified into three series (major phylogenetic clades): Terrei, Nivei, and Ambigui. Analyzing the median survival rates of infected larvae of all species in each series revealed that series Ambigui has a significantly lower virulence compared to series Terrei and Nivei. Taking a closer look at series Terrei and Nivei revealed a trend of survival within each clade, dividing the species into two groups: highly virulent (up to 72 h survival) and less virulent (up to 144 h survival). Histological observation, considering fungal distribution and filamentation, further supported this assessment, revealing increased distribution and hyphal formation in virulent species. Additionally, the susceptibility profile of conventional antifungals was determined, revealing an increased azole minimum inhibitory concentration for some tested cryptic species such as A. niveus and A. iranicus. Our results highlight the importance of cryptic species identification, as they can exhibit different levels of virulence and show reduced antifungal susceptibility. IMPORTANCE With changing fungal epidemiology and an increasingly vulnerable population, cryptic Aspergillus species are emerging as human pathogens. Their diversity and clinical relevance remain underexplored, with some species showing reduced antifungal susceptibility and higher virulence, highlighting the need for better preparedness in clinical practice. Using the Galleria mellonella model, we assessed the virulence of Aspergillus species of section Terrei, including cryptic and non-cryptic species, across three series Terrei, Nivei, and Ambigui. The results revealed significant virulence variation among the series, with some cryptic species displaying high virulence. Histological analysis confirmed increased hyphal formation and fungal spread in the more virulent species. Additionally, elevated azole minimum inhibitory concentrations were also observed in certain cryptic species. This study presents novel insights into the pathogenicity of Aspergillus section Terrei, emphasizing the critical importance of accurately identifying cryptic species due to their diverse virulence potential and antifungal resistance, which may have substantial clinical implications.
Collapse
Affiliation(s)
- Roya Vahedi-Shahandashti
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, ECMM Excellent Center of Mycology, ISHAM Working Group Member of A. terreus, Innsbruck, Austria
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Vit Hubka
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Meijer
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Bettina Gudrun Zelger
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Ulrike Binder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, ECMM Excellent Center of Mycology, ISHAM Working Group Member of A. terreus, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, ECMM Excellent Center of Mycology, ISHAM Working Group Member of A. terreus, Innsbruck, Austria
| |
Collapse
|
2
|
Morrissey CO. Diagnosis and management of invasive fungal infections due to non-Aspergillus moulds. J Antimicrob Chemother 2025; 80:i17-i39. [PMID: 40085540 PMCID: PMC11908538 DOI: 10.1093/jac/dkaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025] Open
Abstract
Invasive fungal infection (IFI) due to moulds other than Aspergillus are a significant cause of morbidity and mortality. Non-Aspergillus mould (NAM) infections appear to be on the increase due to an ever-expanding population of immunocompromised hosts. In this review, Mucorales, Scedosporium species, Lomentospora prolificans and Fusarium species are examined in detail, and the microbiology, risk factors, diagnosis and treatment of emerging NAMs such as Paecilomyces variotti, Purpureocillium lilacinum and Rasamsonia are summarized. The challenges in diagnosis are emphasized and the emerging importance of molecular methods is discussed. Treatment of IFI due to NAMs is a multi-pronged and multi-disciplinary approach. Surgery, correction of underlying risk factors, and augmentation of the host immune response are as important as antifungal therapy. Many of these NAMs are intrinsically resistant to the currently licensed antifungal agents, so selection of therapy needs to be guided by susceptibility testing. There are new antifungal agents in development, and these have the potential to improve the efficacy and safety of antifungal treatment in the future. Ongoing research is required to fully delineate the epidemiology of NAM infections, and to develop better diagnostic tools and treatments so that outcomes from these infections can continue to improve.
Collapse
Affiliation(s)
- C Orla Morrissey
- Department of Infectious Diseases, Alfred Health, Melbourne, Victoria, Australia
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Tashiro M, Nakano Y, Shirahige T, Kakiuchi S, Fujita A, Tanaka T, Takazono T, Izumikawa K. Comprehensive Review of Environmental Surveillance for Azole-Resistant Aspergillus fumigatus: A Practical Roadmap for Hospital Clinicians and Infection Control Teams. J Fungi (Basel) 2025; 11:96. [PMID: 39997390 PMCID: PMC11856238 DOI: 10.3390/jof11020096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
As azole-resistant Aspergillus fumigatus emerges globally, healthcare facilities face mounting challenges in managing invasive aspergillosis. This review synthesizes worldwide azole resistance data to reveal profound regional variability, demonstrating that findings from other regions cannot be directly extrapolated to local settings. Consequently, hospital-level environmental surveillance is crucial for tailoring interventions to local epidemiology and detecting resistant strains in real-time. We outline practical approaches-encompassing sampling site prioritization, diagnostic workflows (culture-based and molecular), and PDCA-driven continuous improvement-so that even resource-limited facilities can manage resistant isolates more effectively. By linking real-time surveillance findings with clinical decisions, hospitals can tailor antifungal stewardship programs and swiftly adjust prophylaxis or treatment regimens. Our approach aims to enable accurate, ongoing evaluations of emerging resistance patterns, ensuring that institutions maintain efficient and adaptive programs. Ultimately, we advocate for sustained, collaborative efforts worldwide, where facilities adapt protocols to local conditions, share data through international networks, and contribute to a global knowledge base on resistance mechanisms. Through consistent application of these recommendations, healthcare systems can better preserve azole efficacy, safeguard immunocompromised populations, and refine infection control practices in the face of evolving challenges.
Collapse
Affiliation(s)
- Masato Tashiro
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan; (Y.N.); (T.S.); (T.T.); (K.I.)
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki 852-8501, Japan; (S.K.); (A.F.); (T.T.)
| | - Yuichiro Nakano
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan; (Y.N.); (T.S.); (T.T.); (K.I.)
| | - Tomoyuki Shirahige
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan; (Y.N.); (T.S.); (T.T.); (K.I.)
| | - Satoshi Kakiuchi
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki 852-8501, Japan; (S.K.); (A.F.); (T.T.)
| | - Ayumi Fujita
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki 852-8501, Japan; (S.K.); (A.F.); (T.T.)
| | - Takeshi Tanaka
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki 852-8501, Japan; (S.K.); (A.F.); (T.T.)
| | - Takahiro Takazono
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan; (Y.N.); (T.S.); (T.T.); (K.I.)
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Koichi Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan; (Y.N.); (T.S.); (T.T.); (K.I.)
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki 852-8501, Japan; (S.K.); (A.F.); (T.T.)
| |
Collapse
|
4
|
Monzo-Gallo P, Alastruey-Izquierdo A, Chumbita M, Aiello TF, Gallardo-Pizarro A, Peyrony O, Teijon-Lumbreras C, Alcazar-Fuoli L, Espasa M, Soriano A, Marco F, Garcia-Vidal C. Report of three azole-resistant Aspergillus fumigatus cases with TR34/L98H mutation in hematological patients in Barcelona, Spain. Infection 2024; 52:1651-1656. [PMID: 38801514 PMCID: PMC11499435 DOI: 10.1007/s15010-024-02236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/12/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVES We aimed to report the emergence of azole-resistant invasive aspergillosis in hematologic patients admitted to a tertiary hospital in Spain during the last 4 months. METHODS Prospective, descriptive study was performed to describe and follow all consecutive proven and probable invasive aspergillosis resistant to azoles from hematological cohort during the last 4 months. All patients had fungal cultures and antifungal susceptibility or real-time PCR detection for Aspergillus species and real-time PCR detection for azole-resistant mutation. RESULTS Four cases of invasive aspergillosis were diagnosed in 4 months. Three of them had azole-resistant aspergillosis. Microbiological diagnosis was achieved in three cases by means of fungal culture isolation and subsequent antifungal susceptibility whereas one case was diagnosed by PCR-based aspergillus and azole resistance detection. All the azole-resistant aspergillosis presented TR34/L98H mutation. Patients with azole-resistant aspergillosis had different hematologic diseases: multiple myeloma, lymphoblastic acute leukemia, and angioimmunoblastic T lymphoma. Regarding risk factors, one had prolonged neutropenia, two had corticosteroids, and two had viral co-infection. Two of the patients developed aspergillosis under treatment with azoles. CONCLUSION We have observed a heightened risk of azole-resistant aspergillosis caused by A. fumigatus harboring the TR34/L98H mutation in patients with hematologic malignancies. The emergence of azole-resistant aspergillosis raises concerns for the community, highlighting the urgent need for increased surveillance and the importance of susceptibility testing and new drugs development.
Collapse
Affiliation(s)
- Patricia Monzo-Gallo
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Carrer de Villarroel 170, 08036, Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), c. Casanova, 143, 08036, Barcelona, Spain.
| | - Ana Alastruey-Izquierdo
- ISCIII, Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFECT, Centro de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | - Mariana Chumbita
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Carrer de Villarroel 170, 08036, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), c. Casanova, 143, 08036, Barcelona, Spain
| | - Tommaso Francesco Aiello
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Carrer de Villarroel 170, 08036, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), c. Casanova, 143, 08036, Barcelona, Spain
| | - Antonio Gallardo-Pizarro
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Carrer de Villarroel 170, 08036, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), c. Casanova, 143, 08036, Barcelona, Spain
| | - Olivier Peyrony
- Emergency Department, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Christian Teijon-Lumbreras
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Carrer de Villarroel 170, 08036, Barcelona, Spain
| | - Laura Alcazar-Fuoli
- ISCIII, Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFECT, Centro de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | - Mateu Espasa
- Department of Microbiology, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Alex Soriano
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Carrer de Villarroel 170, 08036, Barcelona, Spain
- CIBERINFECT, Centro de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), c. Casanova, 143, 08036, Barcelona, Spain
| | - Francesc Marco
- Department of Microbiology, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Carolina Garcia-Vidal
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Carrer de Villarroel 170, 08036, Barcelona, Spain.
- CIBERINFECT, Centro de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), c. Casanova, 143, 08036, Barcelona, Spain.
| |
Collapse
|
5
|
Morrissey CO, Kim HY, Garnham K, Dao A, Chakrabarti A, Perfect JR, Alastruey-Izquierdo A, Harrison TS, Bongomin F, Galas M, Siswanto S, Dagne DA, Roitberg F, Gigante V, Sati H, Alffenaar JW, Beardsley J. Mucorales: A systematic review to inform the World Health Organization priority list of fungal pathogens. Med Mycol 2024; 62:myad130. [PMID: 38935901 PMCID: PMC11210621 DOI: 10.1093/mmy/myad130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/18/2023] [Accepted: 12/11/2023] [Indexed: 06/29/2024] Open
Abstract
The World Health Organization, in response to the growing burden of fungal disease, established a process to develop a fungal priority pathogens list (FPPL). This systematic review aimed to evaluate the epidemiology and impact of invasive fungal disease due to Mucorales. PubMed and Web of Science were searched to identify studies published between January 1, 2011 and February 23, 2021. Studies reporting on mortality, inpatient care, complications and sequelae, antifungal susceptibility, risk factors, preventability, annual incidence, global distribution, and emergence during the study time frames were selected. Overall, 24 studies were included. Mortality rates of up to 80% were reported. Antifungal susceptibility varied across agents and species, with the minimum inhibitory concentrations lowest for amphotericin B and posaconazole. Diabetes mellitus was a common risk factor, detected in 65%-85% of patients with mucormycosis, particularly in those with rhino-orbital disease (86.9%). Break-through infection was detected in 13.6%-100% on azole or echinocandin antifungal prophylaxis. The reported prevalence rates were variable, with some studies reporting stable rates in the USA of 0.094-0.117/10 000 discharges between 2011 and 2014, whereas others reported an increase in Iran from 16.8% to 24% between 2011 and 2015. Carefully designed global surveillance studies, linking laboratory and clinical data, are required to develop clinical breakpoints to guide antifungal therapy and determine accurate estimates of complications and sequelae, annual incidence, trends, and global distribution. These data will provide robust estimates of disease burden to refine interventions and better inform future FPPL.
Collapse
Affiliation(s)
- C Orla Morrissey
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Victoria, Australia
| | - Hannah Yejin Kim
- Infectious Diseases Institute (Sydney ID), The University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Camperdown, New South Wales, Australia
- Department of Pharmacy, Westmead Hospital, Westmead, New South Wales, Australia
| | - Katherine Garnham
- Department of Infectious Diseases and Microbiology, Gold Coast University Hospital, Southport, Queensland, Australia
| | - Aiken Dao
- Infectious Diseases Institute (Sydney ID), The University of Sydney, Camperdown, New South Wales, Australia
- Department of Infectious Diseases, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
- Orthopaedic Research and Biotechnology Unit, Children’s Hospital at Westmead, Westmead, New South Wales, Australia
| | | | - John R Perfect
- Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Thomas S Harrison
- Institute for Infection and Immunity, and Clinical Academic Group in Infection and Immunity, St. George’s, University of London, and St. George's University Hospitals NHS Foundation Trust, London, United Kingdom
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Felix Bongomin
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Gulu University, Gulu, Uganda
| | - Marcelo Galas
- Antimicrobial Resistance Special Program, Communicable Diseases and Environmental Determinants of Health, Pan American Health Organization, Washington, District of Columbia, USA
| | - Siswanto Siswanto
- World Health Organization, South-East Asia Region Office, New Delhi, India
| | - Daniel Argaw Dagne
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| | - Felipe Roitberg
- Department of Noncommunicable Diseases, World Health Organization, Geneva, Switzerland
| | - Valeria Gigante
- AMR Division, World Health Organization, Geneva, Switzerland
| | - Hatim Sati
- AMR Division, World Health Organization, Geneva, Switzerland
| | - Jan-Willem Alffenaar
- Infectious Diseases Institute (Sydney ID), The University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Camperdown, New South Wales, Australia
- Department of Pharmacy, Westmead Hospital, Westmead, New South Wales, Australia
| | - Justin Beardsley
- Infectious Diseases Institute (Sydney ID), The University of Sydney, Camperdown, New South Wales, Australia
- Department of Pharmacy, Westmead Hospital, Westmead, New South Wales, Australia
- Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| |
Collapse
|
6
|
Morrissey CO, Kim HY, Duong TMN, Moran E, Alastruey-Izquierdo A, Denning DW, Perfect JR, Nucci M, Chakrabarti A, Rickerts V, Chiller TM, Wahyuningsih R, Hamers RL, Cassini A, Gigante V, Sati H, Alffenaar JW, Beardsley J. Aspergillus fumigatus-a systematic review to inform the World Health Organization priority list of fungal pathogens. Med Mycol 2024; 62:myad129. [PMID: 38935907 PMCID: PMC11210617 DOI: 10.1093/mmy/myad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/06/2023] [Accepted: 12/11/2023] [Indexed: 06/29/2024] Open
Abstract
Recognizing the growing global burden of fungal infections, the World Health Organization established a process to develop a priority list of fungal pathogens (FPPL). In this systematic review, we aimed to evaluate the epidemiology and impact of invasive infections caused by Aspergillus fumigatus to inform the first FPPL. The pre-specified criteria of mortality, inpatient care, complications and sequelae, antifungal susceptibility, risk factors, preventability, annual incidence, global distribution, and emergence were used to search for relevant articles between 1 January 2016 and 10 June 2021. Overall, 49 studies were eligible for inclusion. Azole antifungal susceptibility varied according to geographical regions. Voriconazole susceptibility rates of 22.2% were reported from the Netherlands, whereas in Brazil, Korea, India, China, and the UK, voriconazole susceptibility rates were 76%, 94.7%, 96.9%, 98.6%, and 99.7%, respectively. Cross-resistance was common with 85%, 92.8%, and 100% of voriconazole-resistant A. fumigatus isolates also resistant to itraconazole, posaconazole, and isavuconazole, respectively. The incidence of invasive aspergillosis (IA) in patients with acute leukemia was estimated at 5.84/100 patients. Six-week mortality rates in IA cases ranged from 31% to 36%. Azole resistance and hematological malignancy were poor prognostic factors. Twelve-week mortality rates were significantly higher in voriconazole-resistant than in voriconazole-susceptible IA cases (12/22 [54.5%] vs. 27/88 [30.7%]; P = .035), and hematology patients with IA had significantly higher mortality rates compared with solid-malignancy cases who had IA (65/217 [30%] vs. 14/78 [18%]; P = .04). Carefully designed surveillance studies linking laboratory and clinical data are required to better inform future FPPL.
Collapse
Affiliation(s)
- C Orla Morrissey
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Victoria, Australia
| | - Hannah Y Kim
- The University of Sydney Infectious Diseases Institute (Sydney ID), New South Wales, Australia
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, New South Wales, Australia
- Westmead Hospital, Westmead, New South Wales, Australia
| | - Tra-My N Duong
- The University of Sydney Infectious Diseases Institute (Sydney ID), New South Wales, Australia
| | - Eric Moran
- Sinclair Dermatology, East Melbourne, Victoria, Australia
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - David W Denning
- Global Action for Fungal Infections, Geneva, Switzerland
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - John R Perfect
- Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, NC, USA
| | - Marcio Nucci
- Universidade Federal do Rio de Janeiro and Grupo Oncoclinicas, Rio de Janeiro, RJ, Brazil
| | | | - Volker Rickerts
- Robert Koch Institute Berlin, FG16, Seestrasse 10, 13353 Berlin, Germany
| | - Tom M Chiller
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Retno Wahyuningsih
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Parasitology, Faculty of Medicine, Universitas Kristen, Jakarta, Indonesia
| | - Raph L Hamers
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alessandro Cassini
- Infectious Diseases Service, Lausanne University Hospital, Lausanne, Switzerland
- Public Health Department, Canton of Vaud, Lausanne, Switzerland
| | - Valeria Gigante
- AMR Division, World Health Organization, Geneva, Switzerland
| | - Hatim Sati
- AMR Division, World Health Organization, Geneva, Switzerland
| | - Jan-Willem Alffenaar
- The University of Sydney Infectious Diseases Institute (Sydney ID), New South Wales, Australia
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, New South Wales, Australia
- Westmead Hospital, Westmead, New South Wales, Australia
| | - Justin Beardsley
- The University of Sydney Infectious Diseases Institute (Sydney ID), New South Wales, Australia
- Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| |
Collapse
|
7
|
Neoh CF, Chen SCA, Lanternier F, Tio SY, Halliday CL, Kidd SE, Kong DCM, Meyer W, Hoenigl M, Slavin MA. Scedosporiosis and lomentosporiosis: modern perspectives on these difficult-to-treat rare mold infections. Clin Microbiol Rev 2024; 37:e0000423. [PMID: 38551323 PMCID: PMC11237582 DOI: 10.1128/cmr.00004-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYAlthough Scedosporium species and Lomentospora prolificans are uncommon causes of invasive fungal diseases (IFDs), these infections are associated with high mortality and are costly to treat with a limited armamentarium of antifungal drugs. In light of recent advances, including in the area of new antifungals, the present review provides a timely and updated overview of these IFDs, with a focus on the taxonomy, clinical epidemiology, pathogenesis and host immune response, disease manifestations, diagnosis, antifungal susceptibility, and treatment. An expansion of hosts at risk for these difficult-to-treat infections has emerged over the last two decades given the increased use of, and broader population treated with, immunomodulatory and targeted molecular agents as well as wider adoption of antifungal prophylaxis. Clinical presentations differ not only between genera but also across the different Scedosporium species. L. prolificans is intrinsically resistant to most currently available antifungal agents, and the prognosis of immunocompromised patients with lomentosporiosis is poor. Development of, and improved access to, diagnostic modalities for early detection of these rare mold infections is paramount for timely targeted antifungal therapy and surgery if indicated. New antifungal agents (e.g., olorofim, fosmanogepix) with novel mechanisms of action and less cross-resistance to existing classes, availability of formulations for oral administration, and fewer drug-drug interactions are now in late-stage clinical trials, and soon, could extend options to treat scedosporiosis/lomentosporiosis. Much work remains to increase our understanding of these infections, especially in the pediatric setting. Knowledge gaps for future research are highlighted in the review.
Collapse
Affiliation(s)
- Chin Fen Neoh
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
- The University of Sydney, Sydney, Australia
- Department of Infectious Diseases, Westmead Hospital, Sydney, Australia
| | - Fanny Lanternier
- Service de Maladies Infectieuses et Tropicales, Hôpital universitaire Necker-Enfants malades, Paris, France
- National Reference Center for Invasive Mycoses and Antifungals, Translational Mycology research group, Mycology Department, Institut Pasteur, Université Paris Cité, Paris, France
| | - Shio Yen Tio
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
| | - Sarah E. Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, Australia
| | - David C. M. Kong
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- The National Centre for Antimicrobial Stewardship, The Peter Doherty Institute for Infections and Immunity, Melbourne, Australia
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Australia
- School of Medicine, Deakin University, Waurn Ponds, Geelong, Australia
| | - Wieland Meyer
- The University of Sydney, Sydney, Australia
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Translational Medical Mycology Research Group, ECMM Excellence Center for Clinical Mycology, Medical University of Graz, Graz, Austria
| | - Monica A. Slavin
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
8
|
Lucio J, Alcazar-Fuoli L, Gil H, Cano-Pascual S, Hernandez-Egido S, Cuetara MS, Mellado E. Distribution of Aspergillus species and prevalence of azole resistance in clinical and environmental samples from a Spanish hospital during a three-year study period. Mycoses 2024; 67:e13719. [PMID: 38551063 DOI: 10.1111/myc.13719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/05/2024] [Accepted: 03/17/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Surveillance studies are crucial for updating trends in Aspergillus species and antifungal susceptibility information. OBJECTIVES Determine the Aspergillus species distribution and azole resistance prevalence during this 3-year prospective surveillance study in a Spanish hospital. MATERIALS AND METHODS Three hundred thirty-five Aspergillus spp. clinical and environmental isolates were collected during a 3-year study. All isolates were screened for azole resistance using an agar-based screening method and resistance was confirmed by EUCAST antifungal susceptibility testing. The azole resistance mechanism was confirmed by sequencing the cyp51A gene and its promoter. All Aspergillus fumigatus strains were genotyped using TRESPERG analysis. RESULTS Aspergillus fumigatus was the predominant species recovered with a total of 174 strains (51.94%). The rest of Aspergillus spp. were less frequent: Aspergillus niger (14.93%), Aspergillus terreus (9.55%), Aspergillus flavus (8.36%), Aspergillus nidulans (5.37%) and Aspergillus lentulus (3.28%), among other Aspergillus species (6.57%). TRESPERG analysis showed 99 different genotypes, with 72.73% of the strains being represented as a single genotype. Some genotypes were common among clinical and environmental A. fumigatus azole-susceptible strains, even when isolated months apart. We describe the occurrence of two azole-resistant A. fumigatus strains, one clinical and another environmental, that were genotypically different and did not share genotypes with any of the azole-susceptible strains. CONCLUSIONS Aspergillus fumigatus strains showed a very diverse population although several genotypes were shared among clinical and environmental strains. The isolation of azole-resistant strains from both settings suggest that an efficient analysis of clinical and environmental sources must be done to detect azole resistance in A. fumigatus.
Collapse
Affiliation(s)
- Jose Lucio
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Laura Alcazar-Fuoli
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC-CB21/13/00105), Instituto de Salud Carlos III, Madrid, Spain
| | - Horacio Gil
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Samuel Cano-Pascual
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Sara Hernandez-Egido
- Microbiology Department, University Hospital Severo Ochoa, Leganés, Madrid, Spain
| | | | - Emilia Mellado
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC-CB21/13/00105), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Abstract
Invasive fusariosis is a serious invasive fungal disease, affecting immunocompetent and, more frequently, immunocompromised patients. Localized disease is the typical clinical form in immunocompetent patients. Immunocompromised hosts at elevated risk of developing invasive fusariosis are patients with acute leukemia receiving chemotherapeutic regimens for remission induction, and those undergoing allogeneic hematopoietic cell transplant. In this setting, the infection is usually disseminated with positive blood cultures, multiple painful metastatic skin lesions, and lung involvement. Currently available antifungal agents have poor in vitro activity against Fusarium species, but a clear-cut correlation between in vitro activity and clinical effectiveness does not exist. The outcome of invasive fusariosis is largely dependent on the resolution of immunosuppression, especially neutrophil recovery in neutropenic patients.
Collapse
Affiliation(s)
- Marcio Nucci
- University Hospital, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Grupo Oncoclínicas, Rio de Janeiro, Brazil
| | - Elias Anaissie
- CTI Clinical Trial and Consulting, Cincinnati, Ohio, USA
| |
Collapse
|
10
|
Vallejo C, Jarque I, Fortun J, Casado A, Peman J. IFISTRATEGY: Spanish National Survey of Invasive Fungal Infection in Hemato-Oncologic Patients. J Fungi (Basel) 2023; 9:628. [PMID: 37367564 DOI: 10.3390/jof9060628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Recent advances in the treatment of hematologic malignancies have improved the overall survival rate, but the number of patients at risk of developing an invasive fungal infection (IFI) has increased. Invasive infections caused by non-Candida albicans species, non-Aspergillus molds, and azole-resistant Aspergillus fumigatus have been increasingly reported in recent years. We developed a cross-sectional multicenter survey which involved a total of 55 hematologists and infectious disease specialists from a total of 31 Spanish hospitals, to determine the most frequent strategies used for the management of IFIs. Data collection was undertaken through an online survey which took place in 2022. Regarding key strategies, experts usually prefer early treatment for persistent febrile neutropenia, switching to another broad-spectrum antifungal family if azole-resistant Aspergillus is suspected, broad-spectrum azoles and echinocandins as prophylactic treatment in patients receiving midostaurin or venetoclax, and liposomal amphotericin B for breakthrough IFIs after prophylaxis with echinocandins in patients receiving new targeted therapies. For antifungals failing to reach adequate levels during the first days and suspected invasive aspergillosis, the most appropriate strategy would be to associate an antifungal from another family.
Collapse
Affiliation(s)
- Carlos Vallejo
- Hematology Department, Clinic University Hospital of Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Isidro Jarque
- Hematology Department, Hospital La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 28029 Madrid, Spain
| | - Jesus Fortun
- Infectious Diseases Department, Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, 28034 Madrid, Spain
- Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28805 Madrid, Spain
| | - Araceli Casado
- Pharmacoeconomics and Outcomes Research Iberia (PORIB), 28224 Madrid, Spain
| | - Javier Peman
- Microbiology Department, Hospital La Fe de Valencia, 46026 Valencia, Spain
- Grupo de Investigación Infección Grave, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| |
Collapse
|
11
|
Salmanton-García J, Hoenigl M, Gangneux JP, Segal E, Alastruey-Izquierdo A, Arikan Akdagli S, Lagrou K, Özenci V, Vena A, Cornely OA. The current state of laboratory mycology and access to antifungal treatment in Europe: a European Confederation of Medical Mycology survey. THE LANCET. MICROBE 2023; 4:e47-e56. [PMID: 36463916 DOI: 10.1016/s2666-5247(22)00261-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/16/2022] [Accepted: 09/02/2022] [Indexed: 12/04/2022]
Abstract
Access to the appropriate tools is crucial for early diagnosis and clinical management of invasive fungal infections. This Review aims to describe the invasive fungal infection diagnostic capacity of Europe to better understand the status and the most pressing aspects that need improvement. To our knowledge, this is the first time that the mycological diagnostic capability and access to antifungal treatments of institutions has been evaluated at a pan-European level. Between Nov 1, 2021, and Jan 31, 2022, 388 institutions in Europe self-assessed their invasive fungal infection management capability. Of the 388 participating institutions from 45 countries, 383 (99%) had access to cultures, 375 (97%) to microscopy, 363 (94%) to antigen-detection assays, 329 (85%) to molecular tests (mostly PCR), and 324 (84%) to antibody tests for diagnosis and management. With the exception of microscopy, there were considerable differences in access to techniques among countries according to their gross domestic product. At least one triazole was available in 363 (94%) of the institutions, one echinocandin in 346 (89%), and liposomal amphotericin B in 301 (78%), with country gross domestic product-based differences. Differences were also observed in the access to therapeutic drug monitoring. Although Europe is well prepared to manage invasive fungal infections, some institutions do not have access to certain diagnostic tools and antifungal drugs, despite most being considered essential by WHO. These limitations need to be overcome to ensure that all patients receive the best diagnostic and therapeutic management.
Collapse
Affiliation(s)
- Jon Salmanton-García
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany; Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Martin Hoenigl
- Division of Infectious Diseases, ECMM Center of Excellence for Medical Mycology, Medical University of Graz, Graz, Austria; Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jean-Pierre Gangneux
- CHU de Rennes, INSERM, Institut de Recherche en Santé, Environnement et Travail, (UMR_S 1085), University of Rennes, Rennes, France
| | - Esther Segal
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, Spanish National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Sevtap Arikan Akdagli
- Hacettepe University Faculty of Medicine, Department of Medical Microbiology, Ankara, Türkiye
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Laboratory Medicine, Center of Excellence for Medical Mycology, and National Reference Center for Mycosis, UZ Leuven, Leuven, Belgium
| | - Volkan Özenci
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden; Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Antonio Vena
- Department of Health Sciences, University of Genoa, Genoa, Italy; Infectious Diseases Unit, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Oliver A Cornely
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Clinical Trials Centre Cologne, University of Cologne, Cologne, Germany; Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
12
|
A Practical Workflow for the Identification of Aspergillus, Fusarium, Mucorales by MALDI-TOF MS: Database, Medium, and Incubation Optimization. J Clin Microbiol 2022; 60:e0103222. [PMID: 36326257 PMCID: PMC9769873 DOI: 10.1128/jcm.01032-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is an increasing body of literature on the utility of MALDI-TOF MS in the identification of filamentous fungi. However, the process still lacks standardization. In this study, we attempted to establish a practical workflow for the identification of three clinically important molds: Aspergillus, Fusarium, and Mucorales using MALDI-TOF MS. We evaluated the performance of Bruker Filamentous Fungi database v3.0 for the identification of these fungi, highlighting when there would be a benefit of using an additional database, the MSI-2 for further identification. We also examined two other variables, namely, medium effect and incubation time on the accuracy of fungal identification. The Bruker database achieved correct species level identification in 85.7% of Aspergillus and 90% of Mucorales, and correct species-complex level in 94.4% of Fusarium. Analysis of spectra using the MSI-2 database would also offer additional value for species identification of Aspergillus species, especially when suspecting species with known identification limits within the Bruker database. This issue would only be of importance in selected cases where species-level identification would impact therapeutic options. Id-Fungi plates (IDFP) had almost equivalent performance to Sabouraud dextrose agar (SDA) for species-level identification of isolates and enabled an easier harvest of the isolates with occasional faster identification. Our study showed accurate identification at 24 h for Fusarium and Mucorales species, but not for Aspergillus species, which generally required 48 h.
Collapse
|
13
|
Hoenigl M, Lewis R, van de Veerdonk FL, Verweij PE, Cornely OA. Liposomal amphotericin B—the future. J Antimicrob Chemother 2022; 77:ii21-ii34. [PMID: 36426674 PMCID: PMC9693803 DOI: 10.1093/jac/dkac353] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Advances in medicine have led to a growing number of people with compromised or suppressed immune systems who are susceptible to invasive fungal infections. In particular, severe fungal infections are becoming increasingly common in ICUs, affecting people within and outside of traditional risk groups alike. This is exemplified by the emergence of severe viral pneumonia as a significant risk factor for invasive pulmonary aspergillosis, and the recognition of influenza-associated pulmonary aspergillosis and, more recently, COVID-19-associated pulmonary aspergillosis. The treatment landscape for haematological malignancies has changed considerably in recent years, and some recently introduced targeted agents, such as ibrutinib, are increasing the risk of invasive fungal infections. Consideration must also be given to the risk of drug–drug interactions between mould-active azoles and small-molecule kinase inhibitors. At the same time, infections caused by rare moulds and yeasts are increasing, and diagnosis continues to be challenging. There is growing concern about azole resistance among both moulds and yeasts, mandating continuous surveillance and personalized treatment strategies. It is anticipated that the epidemiology of fungal infections will continue to change and that new populations will be at risk. Early diagnosis and appropriate treatment remain the most important predictors of survival, and broad-spectrum antifungal agents will become increasingly important. Liposomal amphotericin B will remain an essential therapeutic agent in the armamentarium needed to manage future challenges, given its broad antifungal spectrum, low level of acquired resistance and limited potential for drug–drug interactions.
Collapse
Affiliation(s)
- M Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz , Graz , Austria
- BioTechMed-Graz , Graz , Austria
- European Confederation of Medical Mycology (ECMM) Excellence Center, Medical University of Graz , Graz , Austria
| | - R Lewis
- Department of Medical and Surgical Sciences, Infectious Diseases Hospital, IRCSS S’Orsola-Malpighi, University of Bologna , Bologna , Italy
| | - F L van de Veerdonk
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center , Nijmegen , The Netherlands
| | - P E Verweij
- Department of Medical Microbiology, Radboud University Medical Center—CWZ Center of Expertise for Mycology , Nijmegen , The Netherlands
- Center for Infectious Disease Research, Diagnostics and Laboratory Surveillance, National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| | - O A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) , Cologne , Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM) , Cologne , Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne , Cologne , Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln) , Cologne , Germany
| |
Collapse
|
14
|
Fakhim H, Badali H, Dannaoui E, Nasirian M, Jahangiri F, Raei M, Vaseghi N, Ahmadikia K, Vaezi A. Trends in the Prevalence of Amphotericin B-Resistance (AmBR) among Clinical Isolates of Aspergillus Species. J Mycol Med 2022; 32:101310. [PMID: 35907396 DOI: 10.1016/j.mycmed.2022.101310] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022]
Abstract
The challenges of the invasive infections caused by the resistant Aspergillus species include the limited access to antifungals for treatment and high mortality. This study aimed to provide a global perspective of the prevalence of amphotericin B resistance (AmBR), geographic distribution, and the trend of AmBR from 2010 to 2020. To analyze the prevalence of in vitro AmBR in clinical Aspergillus species, we reviewed the literature and identified a total of 72 articles. AmBR was observed in 1128 out of 3061 Aspergillus terreus (36.8%), 538 out of 3663 Aspergillus flavus (14.9%), 141 out of 2691 Aspergillus niger (5.2%), and 353 out of 17,494 Aspergillus fumigatus isolates (2.01%). An increasing trend in AmB-resistant isolates of A. fumigatus and a decreasing trend in AmB-resistant A. terreus and A. flavus isolates were observed between 2016 and 2020. AmB-resistant A. terreus and A. niger isolates, accounting for 40.4% and 20.9%, respectively, were the common AmB-resistant Aspergillus species in Asian studies. However, common AmB-resistant Aspergillus species reported by European and American studies were A. terreus and A. flavus isolates, accounting for 40.1% and 14.3% in 31 studies from Europe and 25.1% and 11.7% in 14 studies from America, respectively. The prevalence of AmB-resistant A. niger in Asian isolates was higher than in American and European. We found a low prevalence of A. terreus in American isolates (25.1%) compared to Asian (40.4%) and European (40.1%). Future studies should focus on analyzing the trend of AmBR on a regional basis and using the same methodologies.
Collapse
Affiliation(s)
- Hamed Fakhim
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Badali
- Department of Molecular Microbiology & Immunology/South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Eric Dannaoui
- Université de Paris, Faculté de Médecine, APHP, Hôpital Européen Georges Pompidou, Unité de Parasitologie-Mycologie, Service de Microbiologie, Paris, France
| | - Maryam Nasirian
- Infectious Diseases and Tropical Medicine Research Center; and Epidemiology and Biostatistics Department, Health School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fateme Jahangiri
- Department of Medical Laboratory Science, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Maedeh Raei
- Faculty of medicine, Sari branch, Islamic Azad University, Sari, Iran
| | - Narges Vaseghi
- Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kazem Ahmadikia
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Afsane Vaezi
- Department of Medical Laboratory Science, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Rozaliyani A, Abdullah A, Setianingrum F, Sjamsuridzal W, Wahyuningsih R, Bowolaksono A, Fatril AE, Adawiyah R, Tugiran M, Syam R, Wibowo H, Kosmidis C, Denning DW. Unravelling the Molecular Identification and Antifungal Susceptibility Profiles of Aspergillus spp. Isolated from Chronic Pulmonary Aspergillosis Patients in Jakarta, Indonesia: The Emergence of Cryptic Species. J Fungi (Basel) 2022; 8:411. [PMID: 35448642 PMCID: PMC9024953 DOI: 10.3390/jof8040411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/16/2022] Open
Abstract
Cryptic species of Aspergillus have rapidly increased in the last few decades. Chronic pulmonary aspergillosis (CPA) is a debilitating fungal infection frequently affecting patients with previous TB. The identification and antifungal susceptibility profiles of different species of Aspergillus are important to support the management of CPA. The aim of this study was to describe the molecular and susceptibility profiles of Aspergillus isolated from CPA patients. The species identity of isolates was determined by combined DNA analyses of internal transcribed space (ITS), partial β-tubulin genes, and part of the calmodulin gene. We revealed a high (27%) prevalence of cryptic species among previous tuberculosis patients with persistent symptoms. Twenty-nine (49%) patients met the criteria for diagnosis of CPA with 24% containing Aspergillus cryptic species. This is the first report of five cryptic Aspergillus species from clinical isolates in Indonesia: A. aculea tus, A. neoniger, A. brunneoviolacues, A. welwitschiae, and A. tubingensis. Significantly, there was decreased sensitivity against itraconazole in the CPA group (66% susceptible to itraconazole) compared to the non-CPA group (90% susceptible to itraconazole) (p = 0.003). The species-level characterisation of Aspergillus and its antifungal susceptibility tests demands greater attention to better the management of CPA patients.
Collapse
Affiliation(s)
- Anna Rozaliyani
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia; (F.S.); (R.W.); (A.E.F.); (R.A.); (M.T.); (R.S.); (H.W.)
- Indonesia Pulmonary Mycoses Centre, Jakarta 10430, Indonesia
| | - Asriyani Abdullah
- Magister Program of Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia;
| | - Findra Setianingrum
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia; (F.S.); (R.W.); (A.E.F.); (R.A.); (M.T.); (R.S.); (H.W.)
- Indonesia Pulmonary Mycoses Centre, Jakarta 10430, Indonesia
| | - Wellyzar Sjamsuridzal
- Department of Biology, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Depok 16424, Indonesia; (W.S.); (A.B.)
| | - Retno Wahyuningsih
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia; (F.S.); (R.W.); (A.E.F.); (R.A.); (M.T.); (R.S.); (H.W.)
- Department of Parasitology, Faculty of Medicine, Universitas Kristen, Jakarta 13530, Indonesia
| | - Anom Bowolaksono
- Department of Biology, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Depok 16424, Indonesia; (W.S.); (A.B.)
| | - Ayu Eka Fatril
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia; (F.S.); (R.W.); (A.E.F.); (R.A.); (M.T.); (R.S.); (H.W.)
| | - Robiatul Adawiyah
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia; (F.S.); (R.W.); (A.E.F.); (R.A.); (M.T.); (R.S.); (H.W.)
- Indonesia Pulmonary Mycoses Centre, Jakarta 10430, Indonesia
| | - Mulyati Tugiran
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia; (F.S.); (R.W.); (A.E.F.); (R.A.); (M.T.); (R.S.); (H.W.)
- Indonesia Pulmonary Mycoses Centre, Jakarta 10430, Indonesia
| | - Ridhawati Syam
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia; (F.S.); (R.W.); (A.E.F.); (R.A.); (M.T.); (R.S.); (H.W.)
- Indonesia Pulmonary Mycoses Centre, Jakarta 10430, Indonesia
| | - Heri Wibowo
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia; (F.S.); (R.W.); (A.E.F.); (R.A.); (M.T.); (R.S.); (H.W.)
- Magister Program of Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia;
| | - Chris Kosmidis
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M23 9LT, UK; (C.K.); (D.W.D.)
- Manchester Academic Health Science Centre, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M23 9LT, UK
| | - David W. Denning
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M23 9LT, UK; (C.K.); (D.W.D.)
- Manchester Academic Health Science Centre, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M23 9LT, UK
| |
Collapse
|
16
|
Bupha-Intr O, Butters C, Reynolds G, Kennedy K, Meyer W, Patil S, Bryant P, Morrissey CO. Consensus guidelines for the diagnosis and management of invasive fungal disease due to moulds other than Aspergillus in the haematology/oncology setting, 2021. Intern Med J 2021; 51 Suppl 7:177-219. [PMID: 34937139 DOI: 10.1111/imj.15592] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Invasive fungal disease (IFD) due to moulds other than Aspergillus is a significant cause of mortality in patients with malignancies or post haemopoietic stem cell transplantation. The current guidelines focus on the diagnosis and management of the common non-Aspergillus moulds (NAM), such as Mucorales, Scedosporium species (spp.), Lomentospora prolificans and Fusarium spp. Rare but emerging NAM including Paecilomyces variotii, Purpureocillium lilacinum and Scopulariopsis spp. are also reviewed. Culture and histological examination of tissue biopsy specimens remain the mainstay of diagnosis, but molecular methods are increasingly being used. As NAM frequently disseminate, blood cultures and skin examination with biopsy of any suspicious lesions are critically important. Treatment requires a multidisciplinary approach with surgical debridement as a central component. Other management strategies include control of the underlying disease/predisposing factors, augmentation of the host response and the reduction of immunosuppression. Carefully selected antifungal therapy, guided by susceptibility testing, is critical to cure. We also outline novel antifungal agents still in clinical trial which offer substantial potential for improved outcomes in the future. Paediatric recommendations follow those of adults. Ongoing epidemiological research, improvement in diagnostics and the development of new antifungal agents will continue to improve the poor outcomes that have been traditionally associated with IFD due to NAM.
Collapse
Affiliation(s)
- Olivia Bupha-Intr
- Department of Infection Services, Wellington Regional Hospital, Wellington, New Zealand
| | - Coen Butters
- Department of General Paediatric and Adolescent Medicine, John Hunter Children's Hospital, Newcastle, New South Wales, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Gemma Reynolds
- Department of Infectious Diseases, Austin Health, Melbourne, Victoria, Australia
| | - Karina Kennedy
- Department of Infectious Diseases and Microbiology, Canberra Hospital and Health Services, Canberra, Australian Capital Territory, Australia.,ANU Medical School, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School and Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Research and Education Network, Westmead Hospital, Sydney, New South Wales, Australia.,Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia
| | - Sushrut Patil
- Malignant Haematology and Stem Cell Transplantation Service, Department of Clinical Haematology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Penelope Bryant
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Department of Infectious Diseases, The Royal Children's Hospital, Melbourne, Victoria, Australia.,Infection and Immunity, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Catherine O Morrissey
- Department of Infectious Diseases, The Alfred Hospital, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | | |
Collapse
|
17
|
Lucio J, Gonzalez-Jimenez I, Garcia-Rubio R, Cuetara MS, Mellado E. An expanded agar-based screening method for azole-resistant Aspergillus fumigatus. Mycoses 2021; 65:178-185. [PMID: 34806786 DOI: 10.1111/myc.13400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022]
Abstract
Antifungal susceptibility testing is an essential tool for guiding antifungal therapy. Reference methods are complex and usually only available in specialised laboratories. We have designed an expanded agar-based screening method for the detection of azole-resistant Aspergillus fumigatus isolates. Normally, identification of resistance mechanisms is obtained only after sequencing the cyp51A gene and promoter. However, our screening method provides azole resistance detection and presumptive resistance mechanisms identification. A previous agar-based method consisting of four wells containing voriconazole, itraconazole, posaconazole and a growth control, detected azole resistance to clinical azoles. Here, we have modified the concentrations of voriconazole and posaconazole to adapt to the updated EUCAST breakpoints against A. fumigatus. We have also expanded the method to include environmental azoles to assess azole resistance and the azole resistance mechanism involved. We used a collection of A. fumigatus including 54 azole-resistant isolates with Cyp51A modifications (G54, M220, G448S, TR53 , TR34 /L98H, TR46 /Y121F/T289A, TR34 /L98H/S297T/F495I), and 50 azole susceptible isolates with wild-type Cyp51A. The screening method detects azole-resistant A. fumigatus isolates when there is growth in any of the azole-containing wells after 48h. The growth pattern in the seven azoles tested helps determine the underlying azole resistance mechanism. This approach is designed for surveillance screening of A. fumigatus azole-resistant isolates and can be useful for the clinical management of patients prior to antifungal susceptibility testing confirmation.
Collapse
Affiliation(s)
- Jose Lucio
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| | - Irene Gonzalez-Jimenez
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| | - Rocio Garcia-Rubio
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| | | | - Emilia Mellado
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), ISCIII, Majadahonda, Spain
| |
Collapse
|
18
|
Slavin MA, Chen YC, Cordonnier C, Cornely OA, Cuenca-Estrella M, Donnelly JP, Groll AH, Lortholary O, Marty FM, Nucci M, Rex JH, Rijnders BJA, Thompson GR, Verweij PE, White PL, Hargreaves R, Harvey E, Maertens JA. When to change treatment of acute invasive aspergillosis: an expert viewpoint. J Antimicrob Chemother 2021; 77:16-23. [PMID: 34508633 PMCID: PMC8730679 DOI: 10.1093/jac/dkab317] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Invasive aspergillosis (IA) is an acute infection affecting patients who are immunocompromised, as a result of receiving chemotherapy for malignancy, or immunosuppressant agents for transplantation or autoimmune disease. Whilst criteria exist to define the probability of infection for clinical trials, there is little evidence in the literature or clinical guidelines on when to change antifungal treatment in patients who are receiving prophylaxis or treatment for IA. To try and address this significant gap, an advisory board of experts was convened to develop criteria for the management of IA for use in designing clinical trials, which could also be used in clinical practice. For primary treatment failure, a change in antifungal therapy should be made: (i) when mycological susceptibility testing identifies an organism from a confirmed site of infection, which is resistant to the antifungal given for primary therapy, or a resistance mutation is identified by molecular testing; (ii) at, or after, 8 days of primary antifungal treatment if there is increasing serum galactomannan, or galactomannan positivity in serum, or bronchoalveolar lavage fluid when the antigen was previously undetectable, or there is sudden clinical deterioration, or a new clearly distinct site of infection is detected; and (iii) at, or after, 15 days of primary antifungal treatment if the patient is clinically stable but with ≥2 serum galactomannan measurements persistently elevated compared with baseline or increasing, or if the original lesions on CT or other imaging, show progression by >25% in size in the context of no apparent change in immune status.
Collapse
Affiliation(s)
- Monica A Slavin
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, National Centre for Infections in Cancer, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Catherine Cordonnier
- Service d'Hématologie clinique et de Thérapie cellulaire, DMU Cancer, CHU Henri Mondor, 94000 Créteil, France
| | - Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); Clinical Trials Centre Cologne (ZKS Köln), Kerpener Str. 62, 50937 Cologne, Germany
| | - Manuel Cuenca-Estrella
- Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo Km2, Majadahonda, Madrid 28220, Spain
| | | | - Andreas H Groll
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| | - Olivier Lortholary
- Paris University, Necker Pasteur Center for Infectious Diseases and Tropical Medicine, IHU Imagine, Necker Enfants Malades University Hospital, and Institute Pasteur, CNRS, Molecular Mycology Unit, APHP 149, rue de Sèvres, 75015 Paris, France
| | | | - Marcio Nucci
- University Hospital, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - John H Rex
- F2G Ltd, Lankro Way, Eccles, Manchester, M30 0LX, UK.,McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Bart J A Rijnders
- Department of Internal Medicine, Section of Infectious Diseases and Department of Medical Microbiology and Infectious Diseases Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - George R Thompson
- Department of Internal Medicine, Division of Infectious Diseases, 4150 V Street, Suite G500, Sacramento, CA 95817, USA
| | - Paul E Verweij
- Radboudumc-CWZ Center of Expertise for Mycology, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.,Center for Infectious Disease Research, Diagnostics and Laboratory Surveillance National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - P Lewis White
- Public Health Wales Mycology Reference Laboratory, University Hospital of Wales, Heath Park, Cardiff, UK
| | | | - Emma Harvey
- F2G Ltd, Lankro Way, Eccles, Manchester, M30 0LX, UK
| | - Johan A Maertens
- Department of Microbiology, Immunology, and Transplantation, K.U. Leuven, Leuven, Belgium.,Department of Hematology, U.Z. Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Azole-Resistant Aspergillus fumigatus Clinical Isolate Screening in Azole-Containing Agar Plates (EUCAST E.Def 10.1): Low Impact of Plastic Trays Used and Poor Performance in Cryptic Species. Antimicrob Agents Chemother 2021; 65:e0048221. [PMID: 34252311 DOI: 10.1128/aac.00482-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Azole-containing agar is used in routine Aspergillus fumigatus azole resistance screening. We evaluated the impact of the type of plastic used to prepare in-house agar plates on the procedure's performance against A. fumigatus sensu stricto and cryptic species. A. fumigatus sensu stricto (n = 91) and cryptic species (n = 52) were classified as susceptible or resistant (EUCAST E.Def 9.3.2; clinical breakpoints v10). In-house azole-containing agar plates were prepared following EUCAST E.Def 10.1 on three types of multidish plates. We assessed the sensitivity, specificity, and agreement values of the agar plates to screen for azole resistance. Overall, sensitivity and specificity values of the agar screening method were 100% and 93.3%, respectively. The type of tray used did not affect these values. All isolates harboring TR34-L98H substitutions were classified as resistant to itraconazole and voriconazole by the agar method; however, false susceptibility (very major error) to posaconazole was not uncommon and happened in isolates with posaconazole MICs of 0.25 mg/liter. Isolates harboring G54R and TR46-Y121F-T289A substitutions were correctly classified by the agar method as itraconazole/posaconazole resistant and voriconazole resistant, respectively. False resistance (major error) occurred in isolates showing tiny fungal growth. Finally, agreements between both procedures against cryptic species were much lower. Azole-containing agar plates are a convenient and reliable tool to screen for resistance in A. fumigatus sensu stricto; the type of plastic tray used minimally affects the method. On the contrary, the performance against cryptic species is rather poor.
Collapse
|
20
|
Singh A, Singh P, Meis JF, Chowdhary A. In vitro activity of the novel antifungal olorofim against dermatophytes and opportunistic moulds including Penicillium and Talaromyces species. J Antimicrob Chemother 2021; 76:1229-1233. [PMID: 33421073 PMCID: PMC8050765 DOI: 10.1093/jac/dkaa562] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Objectives Olorofim is a novel antifungal agent with in vitro activity against Aspergillus and other opportunistic moulds. We investigated the in vitro activity of olorofim against a range of filamentous fungi comprising isolates of Aspergillus species, Scedosporium species, Alternaria alternata, dermatophytes, including terbinafine- and multidrug-resistant Trichophyton species, and Penicillium/Talaromyces species originating from patients in North India. Methods Antifungal susceptibility of olorofim was tested against 241 mould isolates of Penicillium/Talaromyces species, Trichophyton species, A. fumigatus and cryptic Aspergillus species, Scedosporium species, and Alternaria alternata using CLSI broth microdilution. The comparators were five systemic azoles, amphotericin B, terbinafine, and luliconazole. Results Overall, olorofim showed highly potent in vitro activity against dermatophytes and opportunistic moulds (MIC range of 0.004–0.125 mg/L) except for Alternaria alternata. Penicillium, and Talaromyces species and Trichophyton species exhibited a low geometric mean (GM) MIC (GM 0.027 mg/L and 0.015 mg/L, respectively) of olorofim. Importantly, a 2–12 dilution step decrease in in vitro activity of olorofim as compared with azoles was observed against Penicillium and Talaromyces. Notably, olorofim displayed potent in vitro activity against Trichophyton isolates including terbinafine-resistant and azole-resistant Trichophyton mentagrophytes/interdigitale with a modal MIC value of 0.008 mg/L. Further, azole-resistant A. fumigatus isolates harbouring mutations in azole target Cyp51A genes and several cryptic aspergilli displayed low MICs (range 0.004–0.03 mg/L) of olorofim. However, no in vitro activity of olorofim against Alternaria alternata was observed. Conclusions The potent in vitro activity of olorofim against drug-resistant dermatophytes and opportunistic moulds is promising, warranting evaluation of the clinical utility of olorofim.
Collapse
Affiliation(s)
- Ashutosh Singh
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Prerna Singh
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital (CWZ), Nijmegen, The Netherlands.,Centre of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | - Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| |
Collapse
|
21
|
Imbert S, Cassaing S, Bonnal C, Normand AC, Gabriel F, Costa D, Blaize M, Lachaud L, Hasseine L, Kristensen L, Guitard J, Schuttler C, Raberin H, Brun S, Hendrickx M, Piarroux R, Fekkar A. Invasive aspergillosis due to Aspergillus cryptic species: A prospective multicentre study. Mycoses 2021; 64:1346-1353. [PMID: 34181773 DOI: 10.1111/myc.13348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Aspergillus cryptic species are increasingly recognised causes of Aspergillus diseases, including life-threatening invasive aspergillosis (IA). However, as their accurate identification remains challenging in a routine practice, few is known from a clinical and epidemiological perspective. Recently, the MSI application has emerged as a powerful tool for the detection and identification of Aspergillus cryptic species. We aimed to use to the network of users of the MSI application to conduct a multicentre prospective screening of Aspergillus cryptic species-related IA and analyse their epidemiological, clinical and mycological characteristics. METHODS Over a 27-month period, the clinical involvement of 369 Aspergillus cryptic isolates, from 13 French and Danish MSI application users, was prospectively analysed. Species identification was confirmed by DNA-sequencing and antifungal susceptibility testing was performed using EUCAST reference method. Fifty-one A fumigatus sensu stricto invasive cases were also analysed. RESULTS Fifteen cryptic isolates were responsible of IA. Eight species were involved, including 5 cases related to the species A sublatus. These species showed high rate of in vitro low susceptibility to antifungal drugs. In comparison with A fumigatus sensu stricto invasive cases, pre-exposure to azole drugs was significantly associated with cryptic IA (P = .02). DISCUSSION This study brings new insights in cryptic species related IA and underlines the importance to identify accurately at the species level these Aspergillus isolates. The increasing use of antifungal drugs might lead in the future to an epidemiologic shift with an emergence of resistant isolates involved in IA.
Collapse
Affiliation(s)
- Sebastien Imbert
- Service de Parasitologie Mycologie, AP-HP, Groupe Hospitalier La Pitié-Salpêtrière, Paris, France.,Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Sophie Cassaing
- Service de Parasitologie Mycologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Christine Bonnal
- Service de Parasitologie Mycologie, AP-HP, Hôpital Bichat-Claude Bernard, Paris, France
| | - Anne-Cecile Normand
- Service de Parasitologie Mycologie, AP-HP, Groupe Hospitalier La Pitié-Salpêtrière, Paris, France
| | - Frederic Gabriel
- Service de Parasitologie Mycologie, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Damien Costa
- Service de Parasitologie Mycologie, Centre Hospitalier Universitaire de Rouen, Rouen, France
| | - Marion Blaize
- Service de Parasitologie Mycologie, AP-HP, Groupe Hospitalier La Pitié-Salpêtrière, Paris, France.,Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Laurence Lachaud
- Service de Parasitologie Mycologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Lilia Hasseine
- Service de Parasitologie Mycologie, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Lise Kristensen
- Department of Clinical Microbiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Juliette Guitard
- Service de Parasitologie Mycologie, AP-HP, Hôpital Saint-Antoine, Paris, France
| | | | - Helene Raberin
- Service de Parasitologie Mycologie, Centre Hospitalier Universitaire de Saint Etienne, Saint Etienne, France
| | - Sophie Brun
- Service de Parasitologie Mycologie, AP-HP, Hôpital Avicenne, Bobigny, France
| | - Marijke Hendrickx
- Service of Mycology and Aerobiology, BCCM/IHEM Fungal Collection, Scientific Institute of Public Health, Brussels, Belgium
| | - Renaud Piarroux
- Service de Parasitologie Mycologie, AP-HP, Groupe Hospitalier La Pitié-Salpêtrière, Paris, France.,Sorbonne Université, INSERM, Institut Pierre Louis d'Epidemiologie et de Santé Publique, Paris, France
| | - Arnaud Fekkar
- Service de Parasitologie Mycologie, AP-HP, Groupe Hospitalier La Pitié-Salpêtrière, Paris, France.,Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, INSERM, CNRS, Paris, France
| |
Collapse
|
22
|
Pasula S, Chandrasekar PH. Azole resistance in Aspergillus species: promising therapeutic options. Expert Opin Pharmacother 2021; 22:2071-2078. [PMID: 34129410 DOI: 10.1080/14656566.2021.1940134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Azoles are the first-line antifungal agents used for the treatment of Aspergillus infection. There is an increasing concern for azole resistance all over the world mainly from agricultural fungicide use. Choosing safe and effective antifungal regimens has become a challenge. AREAS COVERED Here, the authors review the epidemiology, mechanisms, and detection of azole resistance along with management options for azole-resistant Aspergillus infection, including new antifungal agents under development. EXPERT OPINION Routine global epidemiological surveillance is required to understand azole resistance prevalence. Azole-resistant Aspergillus infections are associated with high mortality. No good therapeutic options are currently available. High index of suspicion of resistance is required if a patient is not responding to 4-7 days of azole therapy, particularly in the areas of resistance. Susceptibility testing for Aspergillus is not routinely available in many parts of the world, which makes it difficult to diagnose azole resistance in Aspergillus infection. There are several new antifungal classes with novel mechanisms of action; clinical trials are ongoing.
Collapse
Affiliation(s)
- Shirisha Pasula
- Department of Internal medicine, Division of Infectious diseases, Detroit Medical Center/Wayne State University, Detroit, MI, USA
| | | |
Collapse
|
23
|
García-Vidal C, Vázquez L, Jarque I. [Relevance of liposomal amphotericin B in the treatment of invasive fungal infections in patients with hematologic malignancies]. Rev Iberoam Micol 2021; 38:61-67. [PMID: 33994104 DOI: 10.1016/j.riam.2021.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
Liposomal amphotericin B (L-AmB) has been a key cornerstone for the management of invasive fungal infections (IFI) caused by a wide array of molds and yeasts during the last three decades. Multiple studies performed over this period have generated a large body of evidence on its efficacy and safety, becoming the main antifungal agent in the management of IFI in patients with hematologic malignancies in several not mutually exclusive clinical settings. First, L-AmB is the most commonly used antifungal agent in patients undergoing intensive chemotherapy for acute leukemia and high-risk myelodysplastic syndrome, as well as in hematopoietic stem cell transplant recipients. Additionally, due to the administration of newer targeted therapies (such as monoclonal antibodies or small molecule inhibitors), opportunistic mold infections are increasingly being reported in patients with hematologic malignancies usually considered low-risk for IFI. These agents usually have a high drug-drug interaction potential, being triazoles, commonly used for antifungal prophylaxis, included. Finally, patients developing breakthrough IFI because of either subtherapeutic concentrations of antifungal prophylactic drugs in blood or selection of resistant strains, require broad spectrum antifungal therapy, usually with an antifungal of a different class. In both situations, L-AmB remains as the best option for early antifungal therapy.
Collapse
Affiliation(s)
| | - Lourdes Vázquez
- Servicio de Hematología, Hospital Universitario, Salamanca, España
| | - Isidro Jarque
- Servicio de Hematología, Hospital Universitario y Politécnico La Fe, Valencia, España.
| |
Collapse
|
24
|
Chen SCA, Halliday CL, Hoenigl M, Cornely OA, Meyer W. Scedosporium and Lomentospora Infections: Contemporary Microbiological Tools for the Diagnosis of Invasive Disease. J Fungi (Basel) 2021; 7:23. [PMID: 33406673 PMCID: PMC7823285 DOI: 10.3390/jof7010023] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
Scedosporium/Lomentospora fungi are increasingly recognized pathogens. As these fungi are resistant to many antifungal agents, early diagnosis is essential for initiating targeted drug therapy. Here, we review the microbiological tools for the detection and diagnosis of invasive scedosporiosis and lomentosporiosis. Of over 10 species, Lomentospora prolificans, Scedosporium apiospermum, S. boydii and S. aurantiacum cause the majority of infections. Definitive diagnosis relies on one or more of visualization, isolation or detection of the fungus from clinical specimens by microscopy techniques, culture and molecular methods such as panfungal PCR or genus-/species-specific multiplex PCR. For isolation from respiratory tract specimens, selective media have shown improved isolation rates. Species identification is achieved by macroscopic and microscopic examination of colonies, but species should be confirmed by ITS with or without β-tubulin gene sequencing or other molecular methods. Matrix-assisted laser desorption ionization-time of flight mass spectrometry databases are improving but may need supplementation by in-house spectra for species identification. Reference broth microdilution methods is preferred for antifungal susceptibility testing. Next-generation sequencing technologies have good potential for characterization of these pathogens. Diagnosis of Scedosporium/Lomentospora infections relies on multiple approaches encompassing both phenotypic- and molecular-based methods.
Collapse
Affiliation(s)
- Sharon C.-A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, Sydney, NSW 2145, Australia;
- Marie Bashir Institute for Infectious Diseases & Biosecurity, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, Sydney, NSW 2145, Australia;
- Marie Bashir Institute for Infectious Diseases & Biosecurity, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Martin Hoenigl
- Division of Infectious Diseases and Global Health, University of California San Diego, San Diego, CA 92103, USA;
- Clinical and Translational Fungal-Working Group, University of California San Diego, San Diego, CA 92103, USA
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Oliver A. Cornely
- Department of Internal Medicine, Excellence Centre for Medical Mycology (ECMM), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50923 Cologne, Germany;
- Translational Research Cologne Excellence Cluster on Cellular Responses in Aging-associated Diseases (CECAD), 50923 Cologne, Germany
- Clinical Trials Centre Cologne (ZKS Koln), 50923 Cologne, Germany
| | - Wieland Meyer
- Marie Bashir Institute for Infectious Diseases & Biosecurity, The University of Sydney, Sydney, NSW 2006, Australia;
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Sydney, NSW 2006, Australia
- Westmead Hospital (Research and Education Network), Westmead, NSW 2145, Australia
- Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| |
Collapse
|
25
|
Pérez-Nadales E, Alastruey-Izquierdo A, Linares-Sicilia MJ, Soto-Debrán JC, Abdala E, García-Rodríguez J, Montejo M, Muñoz P, Lletí MS, Rezusta A, de Pipaón MRP, Yáñez L, Merino E, Campos-Herrero MI, Costa-Mateo JM, Fortún J, García-Lozano T, Garcia-Vidal C, Fernández-Ruiz M, Sánchez-Reus F, Castro-Méndez C, Guerrero-Lozano I, Soler-Palacín P, Aguado JM, Martínez-Martínez L, Torre-Cisneros J, Nucci M. Invasive Fusariosis in Nonneutropenic Patients, Spain, 2000-2015. Emerg Infect Dis 2021; 27:24-36. [PMID: 33352085 PMCID: PMC7774531 DOI: 10.3201/eid2701.190782] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Invasive fusariosis (IF) is associated with severe neutropenia in patients with concurrent hematologic conditions. We conducted a retrospective observational study to characterize the epidemiology of IF in 18 Spanish hospitals during 2000-2015. In that time, the frequency of IF in nonneutropenic patients increased from 0.08 cases per 100,000 admissions in 2000-2009 to 0.22 cases per 100,000 admissions in 2010-2015. Nonneutropenic IF patients often had nonhematologic conditions, such as chronic cardiac or lung disease, rheumatoid arthritis, history of solid organ transplantation, or localized fusariosis. The 90-day death rate among nonneutropenic patients (28.6%) and patients with resolved neutropenia (38.1%) was similar. However, the death rate among patients with persistent neutropenia (91.3%) was significantly higher. We used a multivariate Cox regression analysis to characterize risk factors for death: persistent neutropenia was the only risk factor for death, regardless of antifungal therapy.
Collapse
|
26
|
Serrano-Lobo J, Gómez A, Sánchez-Yebra W, Fajardo M, Lorenzo B, Sánchez-Reus F, Vidal I, Fernández-Torres M, Sánchez-Romero I, Ruiz de Alegría-Puig C, Del Pozo JL, Muñoz P, Escribano P, Guinea J. Azole and Amphotericin B MIC Values against Aspergillus fumigatus: High Agreement between Spectrophotometric and Visual Readings Using the EUCAST EDef 9.3.2 Procedure. Antimicrob Agents Chemother 2020; 65:e01693-20. [PMID: 33020164 PMCID: PMC7927860 DOI: 10.1128/aac.01693-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/01/2020] [Indexed: 12/22/2022] Open
Abstract
The EUCAST EDef 9.3.2 procedure recommends visual readings of azole and amphotericin B MICs against Aspergillus spp. Visual determination of MICs may be challenging. In this work, we aim to obtain and compare visual and spectrophotometric MIC readings of azoles and amphotericin B against Aspergillus fumigatussensu lato isolates. A total of 847 A. fumigatussensu lato isolates (A. fumigatus sensu stricto [n = 828] and cryptic species [n = 19]) were tested against amphotericin B, itraconazole, voriconazole, posaconazole, and isavuconazole using the EUCAST EDef 9.3.2 procedure. Isolates were classified as susceptible or resistant/non-wild type according to the 2020 updated breakpoints. The area of technical uncertainty for the azoles was defined in the updated breakpoints. Visual and spectrophotometric (fungal growth reduction of >95% compared to the control, read at 540 nm) MICs were compared. Essential (±1 2-fold dilution) and categorical agreements were calculated. Overall, high essential (97.1%) and categorical (99.6%) agreements were found. We obtained 100% categorical agreements for amphotericin B, itraconazole, and posaconazole, and consequently, no errors were found. Categorical agreements were 98.7 and 99.3% for voriconazole and isavuconazole, respectively. Most of the misclassifications for voriconazole and isavuconazole were found to be associated with MIC results falling either in the area of technical uncertainty or within one 2-fold dilution above the breakpoint. The resistance rate was slightly lower when the MICs were obtained by spectrophotometric readings. However, all relevant cyp51A mutants were correctly classified as resistant. Spectrophotometric determination of azole and amphotericin B MICs against A. fumigatussensu lato isolates may be a convenient alternative to visual endpoint readings.
Collapse
Affiliation(s)
- Julia Serrano-Lobo
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Ana Gómez
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Waldo Sánchez-Yebra
- Unidad de Microbiología, UGC Biotecnología, Complejo Hospitalario Torrecárdenas, Almería, Spain
| | - Miguel Fajardo
- Clinical Microbiology Department, Hospital Universitario de Badajoz, Badajoz, Spain
| | - Belén Lorenzo
- Clinical Microbiology Department, Hospital Río Hortega, Valladolid, Spain
| | - Ferrán Sánchez-Reus
- Clinical Microbiology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Inmaculada Vidal
- Clinical Microbiology Department, Hospital General de Alicante, Alicante, Spain
| | | | - Isabel Sánchez-Romero
- Clinical Microbiology Department, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | | | - José Luis Del Pozo
- Clinical Microbiology and Infectious Diseases Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Patricia Muñoz
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
- Medicine Department, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Pilar Escribano
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Jesús Guinea
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
| |
Collapse
|
27
|
Arastehfar A, Gabaldón T, Garcia-Rubio R, Jenks JD, Hoenigl M, Salzer HJF, Ilkit M, Lass-Flörl C, Perlin DS. Drug-Resistant Fungi: An Emerging Challenge Threatening Our Limited Antifungal Armamentarium. Antibiotics (Basel) 2020; 9:antibiotics9120877. [PMID: 33302565 PMCID: PMC7764418 DOI: 10.3390/antibiotics9120877] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/02/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
The high clinical mortality and economic burden posed by invasive fungal infections (IFIs), along with significant agricultural crop loss caused by various fungal species, has resulted in the widespread use of antifungal agents. Selective drug pressure, fungal attributes, and host- and drug-related factors have counteracted the efficacy of the limited systemic antifungal drugs and changed the epidemiological landscape of IFIs. Species belonging to Candida, Aspergillus, Cryptococcus, and Pneumocystis are among the fungal pathogens showing notable rates of antifungal resistance. Drug-resistant fungi from the environment are increasingly identified in clinical settings. Furthermore, we have a limited understanding of drug class-specific resistance mechanisms in emerging Candida species. The establishment of antifungal stewardship programs in both clinical and agricultural fields and the inclusion of species identification, antifungal susceptibility testing, and therapeutic drug monitoring practices in the clinic can minimize the emergence of drug-resistant fungi. New antifungal drugs featuring promising therapeutic profiles have great promise to treat drug-resistant fungi in the clinical setting. Mitigating antifungal tolerance, a prelude to the emergence of resistance, also requires the development of effective and fungal-specific adjuvants to be used in combination with systemic antifungals.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (A.A.); (R.G.-R.)
| | - Toni Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Jordi Girona, 08034 Barcelona, Spain;
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), 08024 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies. Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Rocio Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (A.A.); (R.G.-R.)
| | - Jeffrey D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA 92103, USA;
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA 92093, USA;
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Martin Hoenigl
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA 92093, USA;
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | | | - Macit Ilkit
- Division of Mycology, University of Çukurova, 01330 Adana, Turkey
- Correspondence: (M.I.); (D.S.P.); Tel.: +90-532-286-0099 (M.I.); +1-201-880-3100 (D.S.P.)
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (A.A.); (R.G.-R.)
- Correspondence: (M.I.); (D.S.P.); Tel.: +90-532-286-0099 (M.I.); +1-201-880-3100 (D.S.P.)
| |
Collapse
|
28
|
Guinea J. Updated EUCAST Clinical Breakpoints against Aspergillus, Implications for the Clinical Microbiology Laboratory. J Fungi (Basel) 2020; 6:E343. [PMID: 33291313 PMCID: PMC7762142 DOI: 10.3390/jof6040343] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Azole resistance poses a problem for the management of patients with invasive aspergillosis. Former species are in fact groups of closely related species (or complexes); cryptic species frequently show high antifungal resistance. The European Committee on Antimicrobial Susceptibility Testing (EUCAST) EUCAST Definitive Document (E.Def) 9.3.2 includes guidelines for antifungal susceptibility testing on Aspergillus spp. and clinical breakpoints for amphotericin B, itraconazole, voriconazole, posaconazole, and isavuconazole against A. flavus, A. fumigatus, A. nidulans, A. niger, and A. terreus. New clinical breakpoints were released in February 2020 and one of the most relevant modifications was the definition of the new "susceptible, increased exposure" (formerly "intermediate") category. Another relevant change was the adoption of the concept of area of technical uncertainty (ATU) that refers to problematic areas which involve uncertainty of susceptibility categorisation (e.g., when minimum inhibitory concentrations (MICs) for susceptible and resistant organisms overlap). To accommodate both the new "susceptible, increased exposure" category and the concept of ATU, MICs of azoles and amphotericin B that fall in the former "intermediate" category have been automatically categorized as either R (amphotericin B) or ATU (triazoles). Finally, EUCAST-AFST (Antifungal Susceptibility Testing) decided to adopt new breakpoints for less common species provided that the epidemiological cut-off value (ECOFF) is below or comparable to the breakpoint for the type species (A. fumigatus).
Collapse
Affiliation(s)
- Jesús Guinea
- Instituto de Investigación Sanitaria Gregorio Marañón, C/ Dr. Esquerdo, 46, 28007 Madrid, Spain; ; Tel.: +34-91-586-7163
- CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, C/ Dr. Esquerdo, 46, 28007 Madrid, Spain
| |
Collapse
|
29
|
Trujillo H, Fernández-Ruiz M, Gutiérrez E, Sevillano Á, Caravaca-Fontán F, Morales E, López-Medrano F, Aguado JM, Praga M, Andrés A. Invasive pulmonary aspergillosis associated with COVID-19 in a kidney transplant recipient. Transpl Infect Dis 2020; 23:e13501. [PMID: 33185971 DOI: 10.1111/tid.13501] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/21/2020] [Accepted: 10/25/2020] [Indexed: 12/24/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) might increase the risk of invasive pulmonary aspergillosis (IPA). Although several case reports and small series have been reported in the general population, scarce information is available regarding coronavirus disease 2019 (COVID-19)-associated IPA in the setting of solid organ transplantation. We describe a case of a kidney transplant recipient with severe COVID-19 that was subsequently diagnosed with probable IPA on the basis of the repeated isolation of Aspergillus fumigatus in sputum cultures, repeatedly increased serum (1 → 3)-β-d-glucan levels, and enlarging cavitary nodules in the CT scan. The evolution was favorable after initiation of isavuconazole and nebulized liposomal amphotericin B combination therapy and the withdrawal of immunosuppression.
Collapse
Affiliation(s)
- Hernando Trujillo
- Department of Nephrology, University Hospital "12 de Octubre", Madrid, Spain
| | - Mario Fernández-Ruiz
- Research Institute Hospital "12 de Octubre" (imas12), Madrid, Spain.,Unit of Infectious Diseases, University Hospital "12 de Octubre", Madrid, Spain
| | - Eduardo Gutiérrez
- Department of Nephrology, University Hospital "12 de Octubre", Madrid, Spain
| | - Ángel Sevillano
- Department of Nephrology, University Hospital "12 de Octubre", Madrid, Spain
| | - Fernando Caravaca-Fontán
- Department of Nephrology, University Hospital "12 de Octubre", Madrid, Spain.,Research Institute Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Enrique Morales
- Department of Nephrology, University Hospital "12 de Octubre", Madrid, Spain
| | - Francisco López-Medrano
- Research Institute Hospital "12 de Octubre" (imas12), Madrid, Spain.,Unit of Infectious Diseases, University Hospital "12 de Octubre", Madrid, Spain.,Department of Medicine, Complutense University, Madrid, Spain
| | - José María Aguado
- Research Institute Hospital "12 de Octubre" (imas12), Madrid, Spain.,Unit of Infectious Diseases, University Hospital "12 de Octubre", Madrid, Spain.,Department of Medicine, Complutense University, Madrid, Spain
| | - Manuel Praga
- Department of Nephrology, University Hospital "12 de Octubre", Madrid, Spain.,Research Institute Hospital "12 de Octubre" (imas12), Madrid, Spain.,Department of Medicine, Complutense University, Madrid, Spain
| | - Amado Andrés
- Department of Nephrology, University Hospital "12 de Octubre", Madrid, Spain.,Department of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
30
|
Imbert S, Normand AC, Cassaing S, Gabriel F, Kristensen L, Bonnal C, Lachaud L, Costa D, Guitard J, Hasseine L, Palous M, Piarroux M, Hendrickx M, Piarroux R, Fekkar A. Multicentric Analysis of the Species Distribution and Antifungal Susceptibility of Cryptic Isolates from Aspergillus Section Fumigati. Antimicrob Agents Chemother 2020; 64:e01374-20. [PMID: 32900686 PMCID: PMC7674026 DOI: 10.1128/aac.01374-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022] Open
Abstract
The antifungal susceptibility of Aspergillus cryptic species is poorly known. We assessed 51 isolates, belonging to seven Fumigati cryptic species, by the EUCAST reference method and the concentration gradient strip (CGS) method. Species-specific patterns were observed, with high MICs for azole drugs, except for Aspergillus hiratsukae and Aspergillus tsurutae, and high MICs for amphotericin B for Aspergillus lentulus and Aspergillus udagawae Essential and categorical agreements between EUCAST and CGS results were between 53.3 and 93.3%.
Collapse
Affiliation(s)
- S Imbert
- AP-HP, Groupe Hospitalier La Pitié-Salpêtrière, Service de Parasitologie-Mycologie, Paris, France
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - A C Normand
- AP-HP, Groupe Hospitalier La Pitié-Salpêtrière, Service de Parasitologie-Mycologie, Paris, France
| | - S Cassaing
- Centre Hospitalier Universitaire de Toulouse, Service de Parasitologie-Mycologie, Toulouse, France
| | - F Gabriel
- Centre Hospitalier Universitaire de Bordeaux, Service de Parasitologie-Mycologie, Bordeaux, France
| | - L Kristensen
- Aarhus University Hospital, Department of Clinical Microbiology, Aarhus, Denmark
| | - C Bonnal
- AP-HP, Hôpital Bichat-Claude Bernard, Service de Parasitologie-Mycologie, Paris, France
| | - L Lachaud
- Centre Hospitalier Universitaire de Montpellier, Service de Parasitologie-Mycologie, Montpellier, France
| | - D Costa
- Centre Hospitalier Universitaire de Rouen, Service de Parasitologie-Mycologie, Rouen, France
| | - J Guitard
- AP-HP, Hôpital Saint-Antoine, Service de Parasitologie-Mycologie, Paris, France
| | - L Hasseine
- Centre Hospitalier Universitaire de Nice, Service de Parasitologie-Mycologie, Nice, France
| | - M Palous
- AP-HP, Groupe Hospitalier La Pitié-Salpêtrière, Service de Parasitologie-Mycologie, Paris, France
| | - M Piarroux
- AP-HP, Groupe Hospitalier La Pitié-Salpêtrière, Service de Parasitologie-Mycologie, Paris, France
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidemiologie et de Santé Publique, Paris, France
| | - M Hendrickx
- Service of Mycology and Aerobiology, BCCM/IHEM Fungal Collection, Scientific Institute of Public Health, Brussels, Belgium
| | - R Piarroux
- AP-HP, Groupe Hospitalier La Pitié-Salpêtrière, Service de Parasitologie-Mycologie, Paris, France
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidemiologie et de Santé Publique, Paris, France
| | - A Fekkar
- AP-HP, Groupe Hospitalier La Pitié-Salpêtrière, Service de Parasitologie-Mycologie, Paris, France
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| |
Collapse
|
31
|
Lucio J, Gonzalez-Jimenez I, Rivero-Menendez O, Alastruey-Izquierdo A, Pelaez T, Alcazar-Fuoli L, Mellado E. Point Mutations in the 14-α Sterol Demethylase Cyp51A or Cyp51C Could Contribute to Azole Resistance in Aspergillus flavus. Genes (Basel) 2020; 11:genes11101217. [PMID: 33080784 PMCID: PMC7602989 DOI: 10.3390/genes11101217] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/26/2022] Open
Abstract
Infections caused by Aspergillus species are being increasingly reported. Aspergillus flavus is the second most common species within this genus causing invasive infections in humans, and isolates showing azole resistance have been recently described. A. flavus has three cyp51-related genes (cyp51A, cyp51B, and cyp51C) encoding 14-α sterol demethylase-like enzymes which are the target of azole drugs. In order to study triazole drug resistance in A. flavus, three strains showing reduced azole susceptibility and 17 azole susceptible isolates were compared. The three cyp51-related genes were amplified and sequenced. A comparison of the deduced Cyp51A, Cyp51B, and Cyp51C protein sequences with other protein sequences from orthologous genes in different filamentous fungi led to a protein identity that ranged from 50% to 80%. Cyp51A and Cyp51C presented several synonymous and non-synonymous point mutations among both susceptible and non-susceptible strains. However, two amino acid mutations were present only in two resistant isolates: one strain harbored a P214L substitution in Cyp51A, and another a H349R in Cyp51C that also showed an increase of cyp51A and cyp51C gene expression compared to the susceptible strain ATCC2004304. Isolates that showed reduced in vitro susceptibility to clinical azoles exhibited a different susceptibility profile to demethylation inhibitors (DMIs). Although P214L substitution might contribute to azole resistance, the role of H349R substitution together with changes in gene expression remains unclear.
Collapse
Affiliation(s)
- Jose Lucio
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain; (J.L.); (I.G.-J.); (O.R.-M.); (A.A.-I.); (L.A.-F.)
| | - Irene Gonzalez-Jimenez
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain; (J.L.); (I.G.-J.); (O.R.-M.); (A.A.-I.); (L.A.-F.)
| | - Olga Rivero-Menendez
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain; (J.L.); (I.G.-J.); (O.R.-M.); (A.A.-I.); (L.A.-F.)
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain; (J.L.); (I.G.-J.); (O.R.-M.); (A.A.-I.); (L.A.-F.)
- Spanish Network for Research in Infectious Diseases (REIPI RD16/CIII/0004/0003), ISCIII, Majadahonda, 28220 Madrid, Spain
| | - Teresa Pelaez
- Hospital Universitario Central de Asturias, Fundación para la Investigación Biosanitaria del Principado de Asturias (FINBA), Oviedo, 33011 Asturias, Spain;
| | - Laura Alcazar-Fuoli
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain; (J.L.); (I.G.-J.); (O.R.-M.); (A.A.-I.); (L.A.-F.)
- Spanish Network for Research in Infectious Diseases (REIPI RD16/CIII/0004/0003), ISCIII, Majadahonda, 28220 Madrid, Spain
| | - Emilia Mellado
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain; (J.L.); (I.G.-J.); (O.R.-M.); (A.A.-I.); (L.A.-F.)
- Spanish Network for Research in Infectious Diseases (REIPI RD16/CIII/0004/0003), ISCIII, Majadahonda, 28220 Madrid, Spain
- Correspondence:
| |
Collapse
|
32
|
Escribano P, Rodríguez-Sánchez B, Díaz-García J, Martín-Gómez MT, Ibáñez-Martínez E, Rodríguez-Mayo M, Peláez T, García-Gómez de la Pedrosa E, Tejero-García R, Marimón JM, Reigadas E, Rezusta A, Labayru-Echeverría C, Pérez-Ayala A, Ayats J, Cobo F, Pazos C, López-Soria L, Alastruey-Izquierdo A, Muñoz P, Guinea J. Azole resistance survey on clinical Aspergillus fumigatus isolates in Spain. Clin Microbiol Infect 2020; 27:1170.e1-1170.e7. [PMID: 33010446 DOI: 10.1016/j.cmi.2020.09.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/11/2020] [Accepted: 09/22/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES We aimed to assess the percentage of azole resistance in Aspergillus fumigatus in Spain. METHODS Thirty participating Spanish hospitals stored all morphologically identified A. fumigatus sensu lato clinical isolates-regardless their clinical significance-from 15 February to 14 May 2019. Isolates showing azole resistance according to the EUCAST 9.3.2 methodology were molecularly identified and the cyp51A gene was studied in A. fumigatus sensu stricto isolates. RESULTS Eight hundred and forty-seven isolates from 725 patients were collected in 29 hospitals (A. fumigatus sensu stricto (n = 828) and cryptic species (n = 19)). Isolates were mostly from the lower respiratory tract (94.0%; 797/847). Only cryptic species were amphotericin B resistant. Sixty-three (7.4%) out of the 847 isolates were resistant to ≥1 azole(s). Azole resistance was higher in cryptic species than in A. fumigatus sensu stricto (95%, 18/19 vs. 5.5%, 45/828); isavuconazole was associated to the lowest number of non-wild type isolates. The dominant mechanism of resistance was the presence of TR34-L98H substitutions (n = 24 out of 63). Out of the 725 patients, 48 (6.6%) carried either cryptic species (n = 14) or A. fumigatus sensu stricto (n = 34; 4.7%) resistant isolates. Aspergillus fumigatus sensu stricto harbouring either the TR34-L98H (n = 19) or TR46/Y121F/T289A (n = 1) mutations were detected in patients in hospitals located at 7/24 studied cities. DISCUSSION Of the patients, 6.6% carry azole-resistant A. fumigatus sensu lato isolates in Spain. TR34-L98H is the dominant cyp51A gene substitutions, although its presence is not widespread.
Collapse
Affiliation(s)
- Pilar Escribano
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Belén Rodríguez-Sánchez
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
| | - Judith Díaz-García
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | | | | | - María Rodríguez-Mayo
- Servicio de Microbiología Clínica, Complejo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Teresa Peláez
- Servicio de Microbiología, Hospital Universitario Central de Asturias, Oviedo, Spain; Fundacion para la Investigación y la Innovación Biosanitaria del Principado de Asturias, Oviedo, Spain
| | - Elia García-Gómez de la Pedrosa
- Servicio de Microbiología, Hospital Ramón y Cajal, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain; Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Rocío Tejero-García
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Microbiología Clínica del Hospital Universitario Reina Sofía, Córdoba, Spain; Instituto Maimónides de Investigación Biomédica, Córdoba, Spain
| | - José María Marimón
- Biodonostia, Infectious Diseases Area, Respiratory Infection and Antimicrobial Resistance Group; Donostialdea Integrated Health Organisation, Microbiology Department, Donostia, Spain
| | - Elena Reigadas
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Antonio Rezusta
- Servicio de Microbiología, Hospital Universitario Miguel Servet, Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | | | - Ana Pérez-Ayala
- Servicio de Microbiología, Hospital 12 de Octubre, Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Josefina Ayats
- CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain; Microbiology Department, Hospital Universitari de Bellvitge-Universitat de Barcelona-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Fernando Cobo
- Instituto de Investigación Biosanitaria IBS, Granada, Spain; Department of Microbiology, University Hospital Virgen de las Nieves, Granada, Spain
| | - Carmen Pazos
- Servicio de Microbiología Clínica, Complejo Hospitalario Universitario de Cáceres, Cáceres, Spain
| | - Leyre López-Soria
- Servicio de Microbiología, Hospital Universitario Cruces, Barakaldo, Spain; Instituto de Investigación Sanitaria Biocruces Bizkaia, Barakaldo, Spain
| | - Ana Alastruey-Izquierdo
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain; Mycology Reference Laboratory, National Centre for Microbiology (ISCIII), Madrid, Spain
| | - Patricia Muñoz
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, Faculty of Medicine, Universidad Complutense de Madrid, Spain
| | - Jesús Guinea
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain.
| | | |
Collapse
|
33
|
Arastehfar A, Lass-Flörl C, Garcia-Rubio R, Daneshnia F, Ilkit M, Boekhout T, Gabaldon T, Perlin DS. The Quiet and Underappreciated Rise of Drug-Resistant Invasive Fungal Pathogens. J Fungi (Basel) 2020; 6:E138. [PMID: 32824785 PMCID: PMC7557958 DOI: 10.3390/jof6030138] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/22/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Human fungal pathogens are attributable to a significant economic burden and mortality worldwide. Antifungal treatments, although limited in number, play a pivotal role in decreasing mortality and morbidities posed by invasive fungal infections (IFIs). However, the recent emergence of multidrug-resistant Candida auris and Candida glabrata and acquiring invasive infections due to azole-resistant C. parapsilosis, C. tropicalis, and Aspergillus spp. in azole-naïve patients pose a serious health threat considering the limited number of systemic antifungals available to treat IFIs. Although advancing for major fungal pathogens, the understanding of fungal attributes contributing to antifungal resistance is just emerging for several clinically important MDR fungal pathogens. Further complicating the matter are the distinct differences in antifungal resistance mechanisms among various fungal species in which one or more mechanisms may contribute to the resistance phenotype. In this review, we attempt to summarize the burden of antifungal resistance for selected non-albicansCandida and clinically important Aspergillus species together with their phylogenetic placement on the tree of life. Moreover, we highlight the different molecular mechanisms between antifungal tolerance and resistance, and comprehensively discuss the molecular mechanisms of antifungal resistance in a species level.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Rocio Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| | - Farnaz Daneshnia
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands; (F.D.); (T.B.)
| | - Macit Ilkit
- Division of Mycology, University of Çukurova, 01330 Adana, Turkey;
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands; (F.D.); (T.B.)
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1012 WX Amsterdam, The Netherlands
| | - Toni Gabaldon
- Life Sciences Programme, Barcelona, Supercomputing Center (BSC-CNS), Jordi Girona, 08034 Barcelona, Spain;
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), 08024 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| |
Collapse
|
34
|
Jenks JD, Seidel D, Cornely OA, Chen S, van Hal S, Kauffman C, Miceli MH, Heinemann M, Christner M, Jover Sáenz A, Burchardt A, Kemmerling B, Herbrecht R, Steinmann J, Shoham S, Gräber S, Pagano L, Deeren D, Slavin MA, Hoenigl M. Clinical characteristics and outcomes of invasive Lomentospora prolificans infections: Analysis of patients in the FungiScope ® registry. Mycoses 2020; 63:437-442. [PMID: 32080902 DOI: 10.1111/myc.13067] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Invasive fungal infections caused by Lomentospora prolificans are associated with very high mortality rates and can be challenging to treat given pan-drug resistance to available antifungal agents. The objective of this study was to describe the clinical presentation and outcomes in a cohort of patients with invasive L prolificans infections. METHODS We performed a retrospective review of medical records of patients with invasive L prolificans infection in the FungiScope® registry of rare invasive fungal infections. Patients diagnosed between 01 January 2008 and 09 September 2019 were included in for analysis. RESULTS The analysis included 41 patients with invasive L prolificans infection from eight different countries. Haematological/oncological malignancies were the most frequent underlying disease (66%), disseminated infection was frequent (61%), and the lung was the most commonly involved organ (44%). Most infections (59%) were breakthrough infections. Progression/deterioration/treatment failure was observed in 23/40 (58%) of patients receiving antifungal therapy. In total, 21/41 (51%) patients, and 77% of patients with underlying haematological/oncological malignancy, had a fatal outcome attributed to invasive fungal infection. Combination antifungal therapy was frequent (24/40) and associated with improved survival. In particular, treatment regimens including terbinafine were significantly associated with higher treatment success at final assessment (P = .012), with a positive trend observed for treatment regimens that included voriconazole (P = .054). CONCLUSIONS Lomentospora prolificans infections were associated with mortality rates of 77% and above in patients with underlying haematological/oncological malignancies and those with disseminated infections. While combination therapy is the preferred option for now, the hope lies with novel antifungals currently under development.
Collapse
Affiliation(s)
- Jeffrey D Jenks
- Department of Medicine, University of California San Diego, San Diego, CA, USA.,Clinical and Translational Fungal Research Group, University of California San Diego, San Diego, CA, USA
| | - Danila Seidel
- Department I of Internal Medicine, ECMM Excellence Centre of Medical Mycology, CECAD-Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University Hospital Cologne, Cologne, Germany
| | - Oliver A Cornely
- Department I of Internal Medicine, ECMM Excellence Centre of Medical Mycology, CECAD-Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University Hospital Cologne, Cologne, Germany
| | - Sharon Chen
- Sydney Medical School, Centre for Infectious Diseases and Microbiology, Westmead Hospital, The University of Sydney, Camperdown, New South Wales, Australia
| | - Sebastiaan van Hal
- Department of Microbiology and Infectious Diseases, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Carol Kauffman
- Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Marisa H Miceli
- Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Melina Heinemann
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Christner
- Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alfredo Jover Sáenz
- Territorial Unit of Nosocomial Infection and antibiotic policy (TUNI), University Hospital Arnau de Vilanova, Lleida, Spain
| | - Alexander Burchardt
- Department of Hematology, Hospital of Justus Liebig University, Giessen, Germany
| | - Björn Kemmerling
- Department of Hematology, Hospital of Justus Liebig University, Giessen, Germany
| | - Raoul Herbrecht
- Department of Oncology and Hematology, Strasbourg University Hospital, Strasbourg, France
| | - Joerg Steinmann
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Klinikum Nürnberg, Paracelsus Medical University, Nuremberg, Germany.,Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Shmuel Shoham
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sandra Gräber
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, University Hospital Leipzig, Leipzig, Germany
| | - Livio Pagano
- Department of Hematology, Fondazione Policlinico A. Gemelli - IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Dries Deeren
- Department of Hematology, AZ Delta, Roeselare, Belgium
| | - Monica A Slavin
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, National Centre for Infections in Cancer, Melbourne, Vic., Australia
| | - Martin Hoenigl
- Department of Medicine, University of California San Diego, San Diego, CA, USA.,Clinical and Translational Fungal Research Group, University of California San Diego, San Diego, CA, USA.,Department of Medicine, ECMM Excellence Centre of Medical Mycology, Medical University of Graz, Graz, Austria
| |
Collapse
|
35
|
Tsuchido Y, Tanaka M, Nakano S, Yamamoto M, Matsumura Y, Nagao M. Prospective multicenter surveillance of clinically isolated Aspergillus species revealed azole-resistant Aspergillus fumigatus isolates with TR34/L98H mutation in the Kyoto and Shiga regions of Japan. Med Mycol 2020; 57:997-1003. [PMID: 30690480 DOI: 10.1093/mmy/myz003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/28/2018] [Accepted: 01/10/2019] [Indexed: 11/14/2022] Open
Abstract
The prevalence of azole-resistant Aspergillus fumigatus (ARAF) in Japan is unclear. We aimed to investigate the epidemiology of clinically isolated Aspergillus species and the frequency of azole resistance in Aspergillus species, particularly Aspergillus fumigatus, in the Kyoto and Shiga regions of Japan. Strains of clinically isolated Aspergillus species were prospectively collected from nine acute care hospitals. Species identification was performed by DNA sequence analysis, and all strains were subjected to antifungal susceptibility testing. Sequencing of the Aspergillus cyp51A gene and promoter region and genotyping by short tandem repeats were performed for ARAF isolates. A total of 149 strains were collected, and 130 strains were included for the subsequent analysis after the exclusion of duplicate isolates. The most commonly isolated species was Aspergillus fumigatus, accounting for 43.1% (56 isolates) overall, and seven (12.7%) of 55 strains of A. fumigatus were azole-resistant. Azole-resistance of other Aspergillus species were also found that two (22.2%) of nine strains of A. tubingensis and two (28.6%) of seven strains of A. flavus were azole-resistant. DNA sequence analysis of the ARAF strains revealed that two carried the cyp51A TR34/L98H mutation, one carried G448S, one carried M220I, and three had no relevant mutations (wild type). Genotyping and phylogenetic analyses showed that the TR34/L98H strains were clustered with the strains from the Netherlands and France. These data suggest the emergence of ARAF with TR34/L98H in Japan, and continuous surveillance will be important to identify trends in resistance.
Collapse
Affiliation(s)
- Yasuhiro Tsuchido
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Michio Tanaka
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoshi Nakano
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masaki Yamamoto
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasufumi Matsumura
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Miki Nagao
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
36
|
Toyotome T, Saito S, Koshizaki Y, Komatsu R, Matsuzawa T, Yaguchi T. Prospective survey of Aspergillus species isolated from clinical specimens and their antifungal susceptibility: A five-year single-center study in Japan. J Infect Chemother 2019; 26:321-323. [PMID: 31564504 DOI: 10.1016/j.jiac.2019.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/09/2019] [Accepted: 09/02/2019] [Indexed: 10/25/2022]
Abstract
Aspergillus fumigatus is the most prevalent species that causes aspergillosis. A. fumigatus strains with tandem repeats in the cyp51A promoter have emerged in the environment. Aspergillus species other than A. fumigatus have also been recognized as causative agents of aspergillosis; however, they show lower susceptibility to antifungals compared with A. fumigatus. Therefore, it is important to precisely identify Aspergillus species and determine their antifungal susceptibility. Herein, we collected 119 mold strains isolated from clinical specimens collected at a hospital between November 2013 and December 2018. The collected strains were identified by sequencing several regions, including internal transcribed spacers, and determined their susceptibility to the antifungals itraconazole, voriconazole, and amphotericin B. Of 119 strains, 107 were Aspergillus species, which were identified as A. fumigatus (67), Aspergillus section Nigri (21), A. flavus (7), A. terreus (6), and A. nidulans (6). In Aspergillus section Nigri, the number of A. niger was less than the number of A. welwitschiae and A. tubingensis. Two azole-resistant A. fumigatus samples were included among the isolates. Four of the eight A. tubingensis isolates showed less susceptibility to voriconazole; however, all isolates of A. niger and A. welwitschiae were susceptible to itraconazole and voriconazole. Because of lack of susceptibility data for non-fumigatus Aspergillus and an increasing frequency of antifungal resistance among A. fumigatus, our data along with further surveillance may contribute to determining the frequency and susceptibility of Aspergillus spp. clinical isolates in Japan.
Collapse
Affiliation(s)
- Takahito Toyotome
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan; Diagnostic Center for Animal Health and Food Safety, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan; Division of Clinical Research, Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8673, Japan.
| | - Shunpei Saito
- Department of Medical Technologist, Obihiro-Kosei General Hospital, West 14 South 10-1, Obihiro, Hokkaido, 080-0016, Japan
| | - Yusuke Koshizaki
- Department of Medical Technologist, Obihiro-Kosei General Hospital, West 14 South 10-1, Obihiro, Hokkaido, 080-0016, Japan
| | - Ryoichi Komatsu
- Department of Medical Technologist, Obihiro-Kosei General Hospital, West 14 South 10-1, Obihiro, Hokkaido, 080-0016, Japan
| | | | - Takashi Yaguchi
- Division of Bio-resources, Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8673, Japan
| |
Collapse
|
37
|
Rivero-Menendez O, Soto-Debran JC, Medina N, Lucio J, Mellado E, Alastruey-Izquierdo A. Molecular Identification, Antifungal Susceptibility Testing, and Mechanisms of Azole Resistance in Aspergillus Species Received within a Surveillance Program on Antifungal Resistance in Spain. Antimicrob Agents Chemother 2019; 63:e00865-19. [PMID: 31285229 PMCID: PMC6709457 DOI: 10.1128/aac.00865-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/30/2019] [Indexed: 12/24/2022] Open
Abstract
Antifungal resistance is one of the major causes of the increasing mortality rates for fungal infections, especially for those caused by Aspergillus spp. A surveillance program was established in 2014 in the Spanish National Center for Microbiology for tracking resistance in the most prevalent Aspergillus species. A total of 273 samples were included in the study and were initially classified as susceptible or resistant according to EUCAST breakpoints. Several Aspergillus cryptic species were found within the molecularly identified isolates. Cyp51 mutations were characterized for Aspergillus fumigatus, Aspergillus terreus, and Aspergillus flavussensu stricto strains that were classified as resistant. Three A. fumigatus sensu stricto strains carried the TR34/L98H resistance mechanism, while two harbored G54R substitution and one harbored the TR46/Y121F/T289A mechanism. Seventeen strains had no mutations in cyp51A, with ten of them resistant only to isavuconazole. Three A. terreussensu stricto strains harbored D344N substitution in cyp51A, one of them combined with M217I, and another carried an A249G novel mutation. Itraconazole-resistant A. flavussensu stricto strains harbored P220L and H349R alterations in cyp51A and cyp51C, respectively, that need further investigation on their implication in azole resistance.
Collapse
Affiliation(s)
- Olga Rivero-Menendez
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Juan Carlos Soto-Debran
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Narda Medina
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Jose Lucio
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Emilia Mellado
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Spanish Network for the Research in Infectious Diseases (REIPI RD16/CIII/0004/0003), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Spanish Network for the Research in Infectious Diseases (REIPI RD16/CIII/0004/0003), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
38
|
Emerging Fungal Infections: New Patients, New Patterns, and New Pathogens. J Fungi (Basel) 2019; 5:jof5030067. [PMID: 31330862 PMCID: PMC6787706 DOI: 10.3390/jof5030067] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 01/13/2023] Open
Abstract
The landscape of clinical mycology is constantly changing. New therapies for malignant and autoimmune diseases have led to new risk factors for unusual mycoses. Invasive candidiasis is increasingly caused by non-albicans Candida spp., including C. auris, a multidrug-resistant yeast with the potential for nosocomial transmission that has rapidly spread globally. The use of mould-active antifungal prophylaxis in patients with cancer or transplantation has decreased the incidence of invasive fungal disease, but shifted the balance of mould disease in these patients to those from non-fumigatus Aspergillus species, Mucorales, and Scedosporium/Lomentospora spp. The agricultural application of triazole pesticides has driven an emergence of azole-resistant A. fumigatus in environmental and clinical isolates. The widespread use of topical antifungals with corticosteroids in India has resulted in Trichophyton mentagrophytes causing recalcitrant dermatophytosis. New dimorphic fungal pathogens have emerged, including Emergomyces, which cause disseminated mycoses globally, primarily in HIV infected patients, and Blastomyceshelicus and B. percursus, causes of atypical blastomycosis in western parts of North America and in Africa, respectively. In North America, regions of geographic risk for coccidioidomycosis, histoplasmosis, and blastomycosis have expanded, possibly related to climate change. In Brazil, zoonotic sporotrichosis caused by Sporothrix brasiliensis has emerged as an important disease of felines and people.
Collapse
|
39
|
Vallejo C, Fortún J. Strategies for the management of invasive fungal infections due to filamentous fungi in high-risk hemato-oncological patients. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2019; 32:31-39. [PMID: 30547501 PMCID: PMC6372970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
Abstract
OBJECTIVE In recent years, the introduction of new antifungals for the prevention of invasive fungal infections (IFIs) in hemato- oncological patients, particularly extended-spectrum azoles, has led to a change in the diagnostic and therapeutic strategies for established or suspected breakthrough IFI. The aim of the study was to identify the diagnostic and therapeutic strategies used in the management of IFIs in hemato-oncological patients in Spain, and to assess compliance with the recommendations of the consensus documents and clinical practice guidelines. METHODS An online, anonymous, cross-sectional survey was conducted between January and September 2016 involving 137 specialists from third-level hospitals in Spain with Departments of Hematology that regularly deal with IFIs. RESULTS Galactomannan test was available to 95.6% of specialists, and was used in 61.7% of the cases for diagnostic confirmation and early treatment. The (1 → 3) β-D-glucan test was only available to 10.2%. A total of 75.3% of the participants estimated the incidence of breakthrough IFI due to filamentous fungus as being 1-10%. In turn, 83.3% of the participants decided a change in antifungal class after failure of prophylaxis, in concordance with the recommendations of the national and international consensus documents. CONCLUSIONS The present study, the first of its kind conducted in Spain, shows that a high percentage of the medical professionals implicated in the management of hemato-oncological patients at high risk of suffering IFIs follow the recommendations of the national and international consensus documents and guidelines.
Collapse
Affiliation(s)
- C Vallejo
- Carlos Vallejo, Hospital Donostia, Begiristain Doktorea Pasealekua, 109, 20014 Donostia, Gipuzkoa, Spain.
| | | |
Collapse
|