1
|
Kuehnast T, Kumpitsch C, Mohammadzadeh R, Weichhart T, Moissl‐Eichinger C, Heine H. Exploring the human archaeome: its relevance for health and disease, and its complex interplay with the human immune system. FEBS J 2025; 292:1316-1329. [PMID: 38555566 PMCID: PMC11927051 DOI: 10.1111/febs.17123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
This Review aims to coalesce existing knowledge on the human archaeome, a less-studied yet critical non-bacterial component of the human microbiome, with a focus on its interaction with the immune system. Despite a largely bacteria-centric focus in microbiome research, archaea present unique challenges and opportunities for understanding human health. We examine the archaeal distribution across different human body sites, such as the lower gastrointestinal tract (LGT), upper aerodigestive tract (UAT), urogenital tract (UGT), and skin. Variability in archaeal composition exists between sites; methanogens dominate the LGT, while Nitrososphaeria are prevalent on the skin and UAT. Archaea have yet to be classified as pathogens but show associations with conditions such as refractory sinusitis and vaginosis. In the LGT, methanogenic archaea play critical metabolic roles by converting bacterial end-products into methane, correlating with various health conditions, including obesity and certain cancers. Finally, this work looks at the complex interactions between archaea and the human immune system at the molecular level. Recent research has illuminated the roles of specific archaeal molecules, such as RNA and glycerolipids, in stimulating immune responses via innate immune receptors like Toll-like receptor 8 (TLR8) and 'C-type lectin domain family 4 member E' (CLEC4E; also known as MINCLE). Additionally, metabolic by-products of archaea, specifically methane, have demonstrated immunomodulatory effects through anti-inflammatory and anti-oxidative pathways. Despite these advancements, the mechanistic underpinnings of how archaea influence immune activity remain a fertile area for further investigation.
Collapse
Affiliation(s)
- Torben Kuehnast
- D&R Institute for Hygiene, Microbiology and Environmental MedicineMedical University of GrazAustria
| | - Christina Kumpitsch
- D&R Institute for Hygiene, Microbiology and Environmental MedicineMedical University of GrazAustria
| | - Rokhsareh Mohammadzadeh
- D&R Institute for Hygiene, Microbiology and Environmental MedicineMedical University of GrazAustria
| | - Thomas Weichhart
- Institute of Medical GeneticsMedical University of ViennaAustria
| | - Christine Moissl‐Eichinger
- D&R Institute for Hygiene, Microbiology and Environmental MedicineMedical University of GrazAustria
- BioTechMed GrazAustria
| | - Holger Heine
- Research Center Borstel – Leibniz Lung CenterDivision of Innate Immunity, Airway Research Center North (ARCN), German Center for Lung Research (DZL)BorstelGermany
| |
Collapse
|
2
|
Yergaliyev T, Künzel S, Hanauska A, Rees A, Wild KJ, Pétursdóttir ÁH, Gunnlaugsdóttir H, Reynolds CK, Humphries DJ, Rodehutscord M, Camarinha-Silva A. The effect of Asparagopsis taxiformis, Ascophyllum nodosum, and Fucus vesiculosus on ruminal methanogenesis and metagenomic functional profiles in vitro. Microbiol Spectr 2024; 12:e0394223. [PMID: 39347544 PMCID: PMC11542596 DOI: 10.1128/spectrum.03942-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/08/2024] [Indexed: 10/01/2024] Open
Abstract
The ruminant-microorganism symbiosis is unique by providing high-quality food from fibrous materials but also contributes to the production of one of the most potent greenhouse gases-methane. Mitigating methanogenesis in ruminants has been a focus of interest in the past decades. One of the promising strategies to combat methane production is the use of feed supplements, such as seaweeds, that might mitigate methanogenesis via microbiome modulation and direct chemical inhibition. We conducted in vitro investigations of the effect of three seaweeds (Ascophyllum nodosum, Asparagopsis taxiformis, and Fucus vesiculosus) harvested at different locations (Iceland, Scotland, and Portugal) on methane production. We applied metataxonomics (16S rRNA gene amplicons) and metagenomics (shotgun) methods to uncover the interplay between the microbiome's taxonomical and functional states, methanogenesis rates, and seaweed supplementations. Methane concentration was reduced by A. nodosum and F. vesiculosus, both harvested in Scotland and A. taxiformis, with the greatest effect of the latter. A. taxiformis acted through the reduction of archaea-to-bacteria ratios but not eukaryotes-to-bacteria. Moreover, A. taxiformis application was accompanied by shifts in both taxonomic and functional profiles of the microbial communities, decreasing not only archaeal ratios but also abundances of methanogenesis-associated functions. Methanobrevibacter "SGMT" (M. smithii, M. gottschalkii, M. millerae or M. thaueri; high methane yield) to "RO" (M. ruminantium and M. olleyae; low methane yield) clades ratios were also decreased, indicating that A. taxiformis application favored Methanobrevibacter species that produce less methane. Most of the functions directly involved in methanogenesis were less abundant, while the abundances of the small subset of functions that participate in methane assimilation were increased. IMPORTANCE The application of A. taxiformis significantly reduced methane production in vitro. We showed that this reduction was linked to changes in microbial function profiles, the decline in the overall archaeal community counts, and shifts in ratios of Methanobrevibacter "SGMT" and "RO" clades. A. nodosum and F. vesiculosus, obtained from Scotland, also decreased methane concentration in the total gas, while the same seaweed species from Iceland did not.
Collapse
Affiliation(s)
- Timur Yergaliyev
- Institute of Animal
Science, University of Hohenheim,
Stuttgart, Germany
- HoLMiR - Hohenheim
Center for Livestock Microbiome Research, University of
Hohenheim, Stuttgart,
Germany
| | - Susanne Künzel
- Institute of Animal
Science, University of Hohenheim,
Stuttgart, Germany
- HoLMiR - Hohenheim
Center for Livestock Microbiome Research, University of
Hohenheim, Stuttgart,
Germany
| | - Anna Hanauska
- Institute of Animal
Science, University of Hohenheim,
Stuttgart, Germany
| | - Antonia Rees
- Institute of Animal
Science, University of Hohenheim,
Stuttgart, Germany
| | - Katharina J. Wild
- Institute of Animal
Science, University of Hohenheim,
Stuttgart, Germany
| | | | | | - Christopher K. Reynolds
- School of Agriculture,
Policy and Development, University of
Reading, Reading,
United Kingdom
| | - David J. Humphries
- School of Agriculture,
Policy and Development, University of
Reading, Reading,
United Kingdom
| | - Markus Rodehutscord
- Institute of Animal
Science, University of Hohenheim,
Stuttgart, Germany
- HoLMiR - Hohenheim
Center for Livestock Microbiome Research, University of
Hohenheim, Stuttgart,
Germany
| | - Amélia Camarinha-Silva
- Institute of Animal
Science, University of Hohenheim,
Stuttgart, Germany
- HoLMiR - Hohenheim
Center for Livestock Microbiome Research, University of
Hohenheim, Stuttgart,
Germany
| |
Collapse
|
3
|
Malat I, Drancourt M, Grine G. Methanobrevibacter smithii cell variants in human physiology and pathology: A review. Heliyon 2024; 10:e36742. [PMID: 39347381 PMCID: PMC11437934 DOI: 10.1016/j.heliyon.2024.e36742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
Methanobrevibacter smithii (M. smithii), initially isolated from human feces, has been recognised as a distinct taxon within the Archaea domain following comprehensive phenotypic, genetic, and genomic analyses confirming its uniqueness among methanogens. Its diversity, encompassing 15 genotypes, mirrors that of biotic and host-associated ecosystems in which M. smithii plays a crucial role in detoxifying hydrogen from bacterial fermentations, converting it into mechanically expelled gaseous methane. In microbiota in contact with host epithelial mucosae, M. smithii centres metabolism-driven microbial networks with Bacteroides, Prevotella, Ruminococcus, Veillonella, Enterococcus, Escherichia, Enterobacter, Klebsiella, whereas symbiotic association with the nanoarchaea Candidatus Nanopusillus phoceensis determines small and large cell variants of M. smithii. The former translocate with bacteria to induce detectable inflammatory and serological responses and are co-cultured from blood, urine, and tissular abscesses with bacteria, prototyping M. smithii as a model organism for pathogenicity by association. The sources, mechanisms and dynamics of in utero and lifespan M. smithii acquisition, its diversity, and its susceptibility to molecules of environmental, veterinary, and medical interest still have to be deeply investigated, as only four strains of M. smithii are available in microbial collections, despite the pivotal role this neglected microorganism plays in microbiota physiology and pathologies.
Collapse
Affiliation(s)
- Ihab Malat
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Université, MEPHI, IHU Méditerranée Infection, France
| | - Michel Drancourt
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Université, MEPHI, IHU Méditerranée Infection, France
| | - Ghiles Grine
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Université, MEPHI, IHU Méditerranée Infection, France
| |
Collapse
|
4
|
Volmer JG, McRae H, Morrison M. The evolving role of methanogenic archaea in mammalian microbiomes. Front Microbiol 2023; 14:1268451. [PMID: 37727289 PMCID: PMC10506414 DOI: 10.3389/fmicb.2023.1268451] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
Methanogenic archaea (methanogens) represent a diverse group of microorganisms that inhabit various environmental and host-associated microbiomes. These organisms play an essential role in global carbon cycling given their ability to produce methane, a potent greenhouse gas, as a by-product of their energy production. Recent advances in culture-independent and -dependent studies have highlighted an increased prevalence of methanogens in the host-associated microbiome of diverse animal species. Moreover, there is increasing evidence that methanogens, and/or the methane they produce, may play a substantial role in human health and disease. This review addresses the expanding host-range and the emerging view of host-specific adaptations in methanogen biology and ecology, and the implications for host health and disease.
Collapse
Affiliation(s)
- James G. Volmer
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia
| | - Harley McRae
- Faculty of Medicine, University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Mark Morrison
- Faculty of Medicine, University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
5
|
Bosch S, Acharjee A, Quraishi MN, Bijnsdorp IV, Rojas P, Bakkali A, Jansen EEW, Stokkers P, Kuijvenhoven J, Pham TV, Beggs AD, Jimenez CR, Struys EA, Gkoutos GV, de Meij TGJ, de Boer NKH. Integration of stool microbiota, proteome and amino acid profiles to discriminate patients with adenomas and colorectal cancer. Gut Microbes 2022; 14:2139979. [PMID: 36369736 PMCID: PMC9662191 DOI: 10.1080/19490976.2022.2139979] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Screening for colorectal cancer (CRC) reduces its mortality but has limited sensitivity and specificity. Aims We aimed to explore potential biomarker panels for CRC and adenoma detection and to gain insight into the interaction between gut microbiota and human metabolism in the presence of these lesions. METHODS This multicenter case-control cohort was performed between February 2016 and November 2019. Consecutive patients ≥18 years with a scheduled colonoscopy were asked to participate and divided into three age, gender, body-mass index and smoking status-matched subgroups: CRC (n = 12), adenomas (n = 21) and controls (n = 20). Participants collected fecal samples prior to bowel preparation on which proteome (LC-MS/MS), microbiota (16S rRNA profiling) and amino acid (HPLC) composition were assessed. Best predictive markers were combined to create diagnostic biomarker panels. Pearson correlation-based analysis on selected markers was performed to create networks of all platforms. RESULTS Combining omics platforms provided new panels which outperformed hemoglobin in this cohort, currently used for screening (AUC 0.98, 0.95 and 0.87 for CRC vs controls, adenoma vs controls and CRC vs adenoma, respectively). Integration of data sets revealed markers associated with increased blood excretion, stress- and inflammatory responses and pointed toward downregulation of epithelial integrity. CONCLUSIONS Integrating fecal microbiota, proteome and amino acids platforms provides for new biomarker panels that may improve noninvasive screening for adenomas and CRC, and may subsequently lead to lower incidence and mortality of colon cancer.
Collapse
Affiliation(s)
- Sofie Bosch
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Endocrinology Metabolism Institute, Amsterdam University Medical Centre, VU University Amsterdam, Amsterdam, The Netherlands,CONTACT Sofie Bosch Department of Gastroenterology and Hepatology, Amsterdam UMC, VU University Medical Center, De Boelelaan 1118, Amsterdam1081HZ, The Netherlands
| | - Animesh Acharjee
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Center for Computational Biology, University of Birmingham, Birmingham, UK,Institute of Translational Medicine, University Hospitals Birmingham NHS, Foundation Trust, UK,NIHR Surgical Reconstruction and Microbiology Research Center, University Hospital Birmingham, Birmingham, UK
| | - Mohammed Nabil Quraishi
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK,Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK,Microbiome Treatment Center, University of Birmingham Microbiome Treatment Center, University of Birmingham, UK,Center for Liver and Gastroenterology Research, NIHR Birmingham Biomedical Research Center, University of Birmingham, Birmingham, UK
| | - Irene V Bijnsdorp
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands,Department of Urology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Patricia Rojas
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Abdellatif Bakkali
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Erwin EW Jansen
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Pieter Stokkers
- Department of Gastroenterology and Hepatology, OLVG West, Amsterdam, The Netherlands
| | - Johan Kuijvenhoven
- Spaarne Gasthuis, Department of Gastroenterology and Hepatology, Hoofddorp and Haarlem, The Netherlands
| | - Thang V Pham
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Andrew D Beggs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Connie R Jimenez
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Eduard A Struys
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Georgios V Gkoutos
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Center for Computational Biology, University of Birmingham, Birmingham, UK,Institute of Translational Medicine, University Hospitals Birmingham NHS, Foundation Trust, UK,NIHR Surgical Reconstruction and Microbiology Research Center, University Hospital Birmingham, Birmingham, UK,Microbiome Treatment Center, MRC Health Data Research UK (HDR UK), Birmingham, UK,Microbiome Treatment Center, NIHR Experimental Cancer Medicine Center, Birmingham, UK,Microbiome Treatment Center, NIHR Biomedical Research Center, University Hospital Birmingham, Birmingham, UK
| | - Tim GJ de Meij
- Department of Paediatric Gastroenterology, AG&M Research Institute, Amsterdam UMC, VU University Amsterdam, Amsterdam, The Netherlands
| | - Nanne KH de Boer
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Endocrinology Metabolism Institute, Amsterdam University Medical Centre, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Rodrigues G, Souza Santos L, Franco OL. Antimicrobial Peptides Controlling Resistant Bacteria in Animal Production. Front Microbiol 2022; 13:874153. [PMID: 35663853 PMCID: PMC9161144 DOI: 10.3389/fmicb.2022.874153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
In the last few decades, antimicrobial resistance (AMR) has been a worldwide concern. The excessive use of antibiotics affects animal and human health. In the last few years, livestock production has used antibiotics as food supplementation. This massive use can be considered a principal factor in the accelerated development of genetic modifications in bacteria. These modifications are responsible for AMR and can be widespread to pathogenic and commensal bacteria. In addition, these antibiotic residues can be dispersed by water and sewer water systems, the contamination of soil and, water and plants, in addition, can be stocked in tissues such as muscle, milk, eggs, fat, and others. These residues can be spread to humans by the consumption of water or contaminated food. In addition, studies have demonstrated that antimicrobial resistance may be developed by vertical and horizontal gene transfer, producing a risk to public health. Hence, the World Health Organization in 2000 forbid the use of antibiotics for feed supplementation in livestock. In this context, to obtain safe food production, one of the potential substitutes for traditional antibiotics is the use of antimicrobial peptides (AMPs). In general, AMPs present anti-infective activity, and in some cases immune response. A limited number of AMP-based drugs are now available for use in animals and humans. This use is still not widespread due to a few problems like in-vivo effectiveness, stability, and high cost of production. This review will elucidate the different AMPs applications in animal diets, in an effort to generate safe food and control AMR.
Collapse
Affiliation(s)
- Gisele Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Lucas Souza Santos
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
- *Correspondence: Octávio Luiz Franco
| |
Collapse
|
7
|
Hanišáková N, Vítězová M, Rittmann SKMR. The Historical Development of Cultivation Techniques for Methanogens and Other Strict Anaerobes and Their Application in Modern Microbiology. Microorganisms 2022; 10:412. [PMID: 35208865 PMCID: PMC8879435 DOI: 10.3390/microorganisms10020412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
The cultivation and investigation of strictly anaerobic microorganisms belong to the fields of anaerobic microbial physiology, microbiology, and biotechnology. Anaerobic cultivation methods differ from classic microbiological techniques in several aspects. The requirement for special instruments, which are designed to prevent the contact of the specimen with air/molecular oxygen by different means of manipulation, makes this field more challenging for general research compared to working with aerobic microorganisms. Anaerobic microbiological methods are required for many purposes, such as for the isolation and characterization of new species and their physiological examination, as well as for anaerobic biotechnological applications or medical indications. This review presents the historical development of methods for the cultivation of strictly anaerobic microorganisms focusing on methanogenic archaea, anaerobic cultivation methods that are still widely used today, novel methods for anaerobic cultivation, and almost forgotten, but still relevant, techniques.
Collapse
Affiliation(s)
- Nikola Hanišáková
- Laboratory of Anaerobic Microorganisms, Section of Microbiology, Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | - Monika Vítězová
- Laboratory of Anaerobic Microorganisms, Section of Microbiology, Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | - Simon K. -M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1030 Wien, Austria
| |
Collapse
|
8
|
Stevens KM, Swadling JB, Hocher A, Bang C, Gribaldo S, Schmitz RA, Warnecke T. Histone variants in archaea and the evolution of combinatorial chromatin complexity. Proc Natl Acad Sci U S A 2020; 117:33384-33395. [PMID: 33288720 PMCID: PMC7776873 DOI: 10.1073/pnas.2007056117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nucleosomes in eukaryotes act as platforms for the dynamic integration of epigenetic information. Posttranslational modifications are reversibly added or removed and core histones exchanged for paralogous variants, in concert with changing demands on transcription and genome accessibility. Histones are also common in archaea. Their role in genome regulation, however, and the capacity of individual paralogs to assemble into histone-DNA complexes with distinct properties remain poorly understood. Here, we combine structural modeling with phylogenetic analysis to shed light on archaeal histone paralogs, their evolutionary history, and capacity to generate combinatorial chromatin states through hetero-oligomeric assembly. Focusing on the human commensal Methanosphaera stadtmanae as a model archaeal system, we show that the heteromeric complexes that can be assembled from its seven histone paralogs vary substantially in DNA binding affinity and tetramer stability. Using molecular dynamics simulations, we go on to identify unique paralogs in M. stadtmanae and Methanobrevibacter smithii that are characterized by unstable interfaces between dimers. We propose that these paralogs act as capstones that prevent stable tetramer formation and extension into longer oligomers characteristic of model archaeal histones. Importantly, we provide evidence from phylogeny and genome architecture that these capstones, as well as other paralogs in the Methanobacteriales, have been maintained for hundreds of millions of years following ancient duplication events. Taken together, our findings indicate that at least some archaeal histone paralogs have evolved to play distinct and conserved functional roles, reminiscent of eukaryotic histone variants. We conclude that combinatorially complex histone-based chromatin is not restricted to eukaryotes and likely predates their emergence.
Collapse
Affiliation(s)
- Kathryn M Stevens
- Molecular Systems Group, Quantitative Biology Section, Medical Research Council London Institute of Medical Sciences, London W12 0NN, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Jacob B Swadling
- Molecular Systems Group, Quantitative Biology Section, Medical Research Council London Institute of Medical Sciences, London W12 0NN, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Antoine Hocher
- Molecular Systems Group, Quantitative Biology Section, Medical Research Council London Institute of Medical Sciences, London W12 0NN, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Corinna Bang
- Institute for General Microbiology, University of Kiel, 24118 Kiel, Germany
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Simonetta Gribaldo
- Department of Microbiology, Unit "Evolutionary Biology of the Microbial Cell," Institut Pasteur, 75015 Paris, France
| | - Ruth A Schmitz
- Institute for General Microbiology, University of Kiel, 24118 Kiel, Germany
| | - Tobias Warnecke
- Molecular Systems Group, Quantitative Biology Section, Medical Research Council London Institute of Medical Sciences, London W12 0NN, United Kingdom;
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|
9
|
Abbott DW, Aasen IM, Beauchemin KA, Grondahl F, Gruninger R, Hayes M, Huws S, Kenny DA, Krizsan SJ, Kirwan SF, Lind V, Meyer U, Ramin M, Theodoridou K, von Soosten D, Walsh PJ, Waters S, Xing X. Seaweed and Seaweed Bioactives for Mitigation of Enteric Methane: Challenges and Opportunities. Animals (Basel) 2020; 10:E2432. [PMID: 33353097 PMCID: PMC7766277 DOI: 10.3390/ani10122432] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 12/27/2022] Open
Abstract
Seaweeds contain a myriad of nutrients and bioactives including proteins, carbohydrates and to a lesser extent lipids as well as small molecules including peptides, saponins, alkaloids and pigments. The bioactive bromoform found in the red seaweed Asparagopsis taxiformis has been identified as an agent that can reduce enteric CH4 production from livestock significantly. However, sustainable supply of this seaweed is a problem and there are some concerns over its sustainable production and potential negative environmental impacts on the ozone layer and the health impacts of bromoform. This review collates information on seaweeds and seaweed bioactives and the documented impact on CH4 emissions in vitro and in vivo as well as associated environmental, economic and health impacts.
Collapse
Affiliation(s)
- D. Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1 Avenue South, Lethbridge, AB T1J 4B1, Canada; (D.W.A.); (K.A.B.); (R.G.); (X.X.)
| | - Inga Marie Aasen
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7465 Trondheim, Norway;
| | - Karen A. Beauchemin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1 Avenue South, Lethbridge, AB T1J 4B1, Canada; (D.W.A.); (K.A.B.); (R.G.); (X.X.)
| | - Fredrik Grondahl
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden;
| | - Robert Gruninger
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1 Avenue South, Lethbridge, AB T1J 4B1, Canada; (D.W.A.); (K.A.B.); (R.G.); (X.X.)
| | - Maria Hayes
- Food BioSciences Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin 15, Ireland
| | - Sharon Huws
- Queens University Belfast (QUB), Belfast, BT7 1NN Co., Antrim, Ireland; (S.H.); (K.T.); (P.J.W.)
| | - David A. Kenny
- Animal Bioscience Research Centre, Grange, Dunsany, C15 PW93 Co., Meath, Ireland; (D.A.K.); (S.F.K.); (S.W.)
| | - Sophie J. Krizsan
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden; (S.J.K.); (M.R.)
| | - Stuart F. Kirwan
- Animal Bioscience Research Centre, Grange, Dunsany, C15 PW93 Co., Meath, Ireland; (D.A.K.); (S.F.K.); (S.W.)
| | - Vibeke Lind
- Norwegian Institute of Bioeconomy Research (NIBIO), Post Box 115, 1431 Ås, Norway;
| | - Ulrich Meyer
- Friedrich-Loeffler-Institut (FLI), Bundesforschungsinstitut für Tiergesundheit, Federal Research Institute for Animal Health, 38116 Braunschweig, Germany; (U.M.); (D.v.S.)
| | - Mohammad Ramin
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden; (S.J.K.); (M.R.)
| | - Katerina Theodoridou
- Queens University Belfast (QUB), Belfast, BT7 1NN Co., Antrim, Ireland; (S.H.); (K.T.); (P.J.W.)
| | - Dirk von Soosten
- Friedrich-Loeffler-Institut (FLI), Bundesforschungsinstitut für Tiergesundheit, Federal Research Institute for Animal Health, 38116 Braunschweig, Germany; (U.M.); (D.v.S.)
| | - Pamela J. Walsh
- Queens University Belfast (QUB), Belfast, BT7 1NN Co., Antrim, Ireland; (S.H.); (K.T.); (P.J.W.)
| | - Sinéad Waters
- Animal Bioscience Research Centre, Grange, Dunsany, C15 PW93 Co., Meath, Ireland; (D.A.K.); (S.F.K.); (S.W.)
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1 Avenue South, Lethbridge, AB T1J 4B1, Canada; (D.W.A.); (K.A.B.); (R.G.); (X.X.)
| |
Collapse
|
10
|
Abstract
Host-associated microbial communities have an important role in shaping the health and fitness of plants and animals. Most studies have focused on the bacterial, fungal or viral communities, but often the archaeal component has been neglected. The archaeal community, the so-called archaeome, is now increasingly recognized as an important component of host-associated microbiomes. It is composed of various lineages, including mainly Methanobacteriales and Methanomassiliicoccales (Euryarchaeota), as well as representatives of the Thaumarchaeota. Host-archaeome interactions have mostly been delineated from methanogenic archaea in the gastrointestinal tract, where they contribute to substantial methane production and are potentially also involved in disease-relevant processes. In this Review, we discuss the diversity and potential roles of the archaea associated with protists, plants and animals. We also present the current understanding of the archaeome in humans, the specific adaptations involved in interaction with the resident microbial community as well as with the host, and the roles of the archaeome in both health and disease.
Collapse
|
11
|
Archaeosine Modification of Archaeal tRNA: Role in Structural Stabilization. J Bacteriol 2020; 202:JB.00748-19. [PMID: 32041795 DOI: 10.1128/jb.00748-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/29/2020] [Indexed: 12/20/2022] Open
Abstract
Archaeosine (G+) is a structurally complex modified nucleoside found quasi-universally in the tRNA of Archaea and located at position 15 in the dihydrouridine loop, a site not modified in any tRNA outside the Archaea G+ is characterized by an unusual 7-deazaguanosine core structure with a formamidine group at the 7-position. The location of G+ at position 15, coupled with its novel molecular structure, led to a hypothesis that G+ stabilizes tRNA tertiary structure through several distinct mechanisms. To test whether G+ contributes to tRNA stability and define the biological role of G+, we investigated the consequences of introducing targeted mutations that disrupt the biosynthesis of G+ into the genome of the hyperthermophilic archaeon Thermococcus kodakarensis and the mesophilic archaeon Methanosarcina mazei, resulting in modification of the tRNA with the G+ precursor 7-cyano-7-deazaguansine (preQ0) (deletion of arcS) or no modification at position 15 (deletion of tgtA). Assays of tRNA stability from in vitro-prepared and enzymatically modified tRNA transcripts, as well as tRNA isolated from the T. kodakarensis mutant strains, demonstrate that G+ at position 15 imparts stability to tRNAs that varies depending on the overall modification state of the tRNA and the concentration of magnesium chloride and that when absent results in profound deficiencies in the thermophily of T. kodakarensis IMPORTANCE Archaeosine is ubiquitous in archaeal tRNA, where it is located at position 15. Based on its molecular structure, it was proposed to stabilize tRNA, and we show that loss of archaeosine in Thermococcus kodakarensis results in a strong temperature-sensitive phenotype, while there is no detectable phenotype when it is lost in Methanosarcina mazei Measurements of tRNA stability show that archaeosine stabilizes the tRNA structure but that this effect is much greater when it is present in otherwise unmodified tRNA transcripts than in the context of fully modified tRNA, suggesting that it may be especially important during the early stages of tRNA processing and maturation in thermophiles. Our results demonstrate how small changes in the stability of structural RNAs can be manifested in significant biological-fitness changes.
Collapse
|
12
|
Taubner RS, Baumann LMF, Bauersachs T, Clifford EL, Mähnert B, Reischl B, Seifert R, Peckmann J, Rittmann SKMR, Birgel D. Membrane Lipid Composition and Amino Acid Excretion Patterns of Methanothermococcus okinawensis Grown in the Presence of Inhibitors Detected in the Enceladian Plume. Life (Basel) 2019; 9:E85. [PMID: 31739502 PMCID: PMC6958431 DOI: 10.3390/life9040085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 01/05/2023] Open
Abstract
Lipids and amino acids are regarded as important biomarkers for the search for extraterrestrial life in the Solar System. Such biomarkers may be used to trace methanogenic life on other planets or moons in the Solar System, such as Saturn's icy moon Enceladus. However, little is known about the environmental conditions shaping the synthesis of lipids and amino acids. Here, we present the lipid production and amino acid excretion patterns of the methanogenic archaeon Methanothermococcus okinawensis after exposing it to different multivariate concentrations of the inhibitors ammonium, formaldehyde, and methanol present in the Enceladian plume. M. okinawensis shows different patterns of lipid and amino acids excretion, depending on the amount of these inhibitors in the growth medium. While methanol did not show a significant impact on growth, lipid or amino acid production rates, ammonium and formaldehyde strongly affected these parameters. These findings are important for understanding the eco-physiology of methanogens on Earth and have implications for the use of biomarkers as possible signs of extraterrestrial life for future space missions in the Solar System.
Collapse
Affiliation(s)
- Ruth-Sophie Taubner
- Archaea Physiology & Biotechnology Group, Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, 1010 Vienna, Austria; (R.-S.T.); (B.R.); (S.K.-M.R.R.)
| | - Lydia M. F. Baumann
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, 20146 Hamburg, Germany; (L.M.F.B.); (R.S.); (J.P.)
| | - Thorsten Bauersachs
- Institute of Geosciences, Department of Organic Geochemistry, Christian-Albrechts-Universität, 24118 Kiel, Germany;
| | - Elisabeth L. Clifford
- Department of Limnology and Bio-Oceanography, Universität Wien, 1010 Vienna, Austria; (E.L.C.); (B.M.)
| | - Barbara Mähnert
- Department of Limnology and Bio-Oceanography, Universität Wien, 1010 Vienna, Austria; (E.L.C.); (B.M.)
| | - Barbara Reischl
- Archaea Physiology & Biotechnology Group, Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, 1010 Vienna, Austria; (R.-S.T.); (B.R.); (S.K.-M.R.R.)
| | - Richard Seifert
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, 20146 Hamburg, Germany; (L.M.F.B.); (R.S.); (J.P.)
| | - Jörn Peckmann
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, 20146 Hamburg, Germany; (L.M.F.B.); (R.S.); (J.P.)
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, 1010 Vienna, Austria; (R.-S.T.); (B.R.); (S.K.-M.R.R.)
| | - Daniel Birgel
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, 20146 Hamburg, Germany; (L.M.F.B.); (R.S.); (J.P.)
| |
Collapse
|
13
|
Doyle N, Mbandlwa P, Kelly WJ, Attwood G, Li Y, Ross RP, Stanton C, Leahy S. Use of Lactic Acid Bacteria to Reduce Methane Production in Ruminants, a Critical Review. Front Microbiol 2019; 10:2207. [PMID: 31632365 PMCID: PMC6781651 DOI: 10.3389/fmicb.2019.02207] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022] Open
Abstract
Enteric fermentation in ruminants is the single largest anthropogenic source of agricultural methane and has a significant role in global warming. Consequently, innovative solutions to reduce methane emissions from livestock farming are required to ensure future sustainable food production. One possible approach is the use of lactic acid bacteria (LAB), Gram positive bacteria that produce lactic acid as a major end product of carbohydrate fermentation. LAB are natural inhabitants of the intestinal tract of mammals and are among the most important groups of microorganisms used in food fermentations. LAB can be readily isolated from ruminant animals and are currently used on-farm as direct-fed microbials (DFMs) and as silage inoculants. While it has been proposed that LAB can be used to reduce methane production in ruminant livestock, so far research has been limited, and convincing animal data to support the concept are lacking. This review has critically evaluated the current literature and provided a comprehensive analysis and summary of the potential use and mechanisms of LAB as a methane mitigation strategy. It is clear that although there are some promising results, more research is needed to identify whether the use of LAB can be an effective methane mitigation option for ruminant livestock.
Collapse
Affiliation(s)
- Natasha Doyle
- Teagasc Moorepark Food Research Centre, Fermoy, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | | | | | - Graeme Attwood
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Yang Li
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - R. Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- Teagasc Moorepark Food Research Centre, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Sinead Leahy
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| |
Collapse
|
14
|
Archaea: forgotten players in the microbiome. Emerg Top Life Sci 2018; 2:459-468. [PMID: 33525830 DOI: 10.1042/etls20180035] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/22/2022]
Abstract
Archaea, the third domain of life containing unique membrane composition and highly diverse cell wall structures, were only recognized 40 years ago. Initially identified in extreme environments, they are currently recognized as organisms ubiquitously present in most, if not all, microbiomes associated with eukaryotic hosts. However, they have been mostly overseen in microbiome studies due to the lack of standardized detection protocols and to the fact that no archaeal pathogen is currently known. Recent years clearly showed that (i) archaea are part of the microbiomes associated with plants, animals and humans, (ii) form biofilms and (iii) interact and activate the human immune system. Future studies will not only define the host-associated diversity of archaea (referred to as 'archaeome') but also contribute to our understanding of the comprehensive metabolic interplay between archaea and bacteria and the long-term gain insights into their role in human health and their potential role(s) during disease development.
Collapse
|
15
|
Henderson G, Cook GM, Ronimus RS. Enzyme- and gene-based approaches for developing methanogen-specific compounds to control ruminant methane emissions: a review. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an15757] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Methane emissions from ruminants are of worldwide concern due to their potential to adversely affect climate patterns. Methane emissions can be mitigated in several ways, including dietary manipulation, the use of alternative hydrogen sinks, and by the direct inhibition of methanogens. In the present review, we summarise and emphasise studies where defined chemically synthesised compounds have been used to mitigate ruminant methane emissions by direct targeting of methanogens and discuss the future potential of such inhibitors. We also discuss experiments, where methanogen-specific enzymes and pure cultures of methanobacterial species have been used to aid development of inhibitors. Application of certain compounds can result in dramatic reductions of methane emissions from ruminant livestock, demonstrating ‘proof of principle’ of chemical inhibitors of methanogenesis. More recently, genome sequencing of rumen methanogens has enabled an in-depth analysis of the enzymatic pathways required for methane formation. Chemogenomic methods, similar to those used in the fight against cancer and infectious diseases, can now be used to specifically target a pathway or enzyme in rumen methanogens. However, few rumen methanogen enzymes have been structurally or biochemically characterised. Any compound, whether natural or man-made, that is used as a mitigation strategy will need to be non-toxic to the host animal (and humans), cost-effective, environmentally friendly, and not accumulate in host tissues or milk products. Chemically synthesised inhibitors offer potentially significant advantages, including high levels of sustained inhibition, the ability to be easily and rapidly produced for global markets, and have the potential to be incorporated into slow-release vehicles for grazing animals.
Collapse
|
16
|
Vierbuchen T, Bang C, Rosigkeit H, Schmitz RA, Heine H. The Human-Associated Archaeon Methanosphaera stadtmanae Is Recognized through Its RNA and Induces TLR8-Dependent NLRP3 Inflammasome Activation. Front Immunol 2017; 8:1535. [PMID: 29181003 PMCID: PMC5694038 DOI: 10.3389/fimmu.2017.01535] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/27/2017] [Indexed: 01/04/2023] Open
Abstract
The archaeon Methanosphaera stadtmanae is a member of the gut microbiota; yet, the molecular cross-talk between archaea and the human immune system and its potential contribution to inflammatory diseases has not been evaluated. Although archaea are as bacteria prokaryotes, they form a distinct domain having unique features such as different cell wall structures and membrane lipids. So far, no microbe-associated molecular patterns of archaea which activate innate immune receptors have been identified. By stimulating human myeloid cells with M. stadtmanae and purified archaeal nucleic acids, we identified both the microorganism and its RNA as potent stimuli for the innate immune system. To dissect the recognition and activation pathways induced by M. stadtmanae, human monocytic BLaER1 knockout cells were generated using the CRISPR/Cas9 system targeting components of TLR and inflammasome signaling. While the recognition of M. stadtmanae is mediated by TLR7 and TLR8, activation of the NLRP3 inflammasome depends solely on TLR8 engagement. Notably, this process resembles hallmarks of both the canonical and the recently described alternative inflammasome activation. Thus, we have demonstrated for the first time the specific recognition of and response to an archaeon by human cells at the molecular level.
Collapse
Affiliation(s)
- Tim Vierbuchen
- Division of Innate Immunity, Research Center Borstel, Borstel, Germany
| | - Corinna Bang
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Hanna Rosigkeit
- Division of Innate Immunity, Research Center Borstel, Borstel, Germany
| | - Ruth A Schmitz
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Holger Heine
- Division of Innate Immunity, Research Center Borstel, Borstel, Germany.,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| |
Collapse
|
17
|
Immunogenic properties of the human gut-associated archaeon Methanomassiliicoccus luminyensis and its susceptibility to antimicrobial peptides. PLoS One 2017; 12:e0185919. [PMID: 28982164 PMCID: PMC5628862 DOI: 10.1371/journal.pone.0185919] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/21/2017] [Indexed: 01/20/2023] Open
Abstract
The methanogenic archaeon Methanomassiliicoccus luminyensis strain B10T was isolated from human feces just a few years ago. Due to its remarkable metabolic properties, particularly the degradation of trimethylamines, this strain was supposed to be used as "Archaebiotic" during metabolic disorders of the human intestine. However, there is still no data published regarding adaptations to the natural habitat of M. luminyensis as it has been shown for the other two reported mucosa-associated methanoarchaea. This study aimed at unraveling susceptibility of M. luminyensis to antimicrobial peptides as well as its immunogenicity. By using the established microtiter plate assay adapted to the anaerobic growth requirements of methanogenic archaea, we demonstrated that M. luminyensis is highly sensitive against LL32, a derivative of human cathelicidin (MIC = 2 μM). However, the strain was highly resistant against the porcine lysin NK-2 (MIC = 10 μM) and the synthetic antilipopolysaccharide peptide (Lpep) (MIC>10 μM) and overall differed from the two other methanoarchaea, Methanobrevibacter smithii and Methanosphaera stadtmanae in respect to AMP sensitivity. Moreover, only weak immunogenic potential of M. luminyensis was demonstrated using peripheral blood mononuclear cells (PBMCs) and monocyte-derived dendritic cells (moDCs) by determining release of pro-inflammatory cytokines. Overall, our findings clearly demonstrate that the archaeal gut inhabitant M. luminyensis is susceptible to the release of human-derived antimicrobial peptides and exhibits low immunogenicity towards human immune cells in vitro-revealing characteristics of a typical commensal gut microbe.
Collapse
|
18
|
Varnava KG, Ronimus RS, Sarojini V. A review on comparative mechanistic studies of antimicrobial peptides against archaea. Biotechnol Bioeng 2017; 114:2457-2473. [PMID: 28734066 DOI: 10.1002/bit.26387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/18/2017] [Indexed: 12/22/2022]
Abstract
Archaea was until recently considered as a third domain of life in addition to bacteria and eukarya but recent studies support the existence of only two superphyla (bacteria and archaea). The fundamental differences between archaeal, bacterial, and eukaryal cells are probably the main reasons for the comparatively lower susceptibility of archaeal strains to current antimicrobial agents. The possible emerging pathogenicity of archaea and the role of archaeal methanogens in methane emissions, a potent greenhouse gas, has led many researchers to examine the sensitivity patterns of archaea and make attempts to find agents that have significant anti-archaeal activity. Even though antimicrobial peptides (AMPs) are well known with several published reviews concerning their mode of action against bacteria and eukarya, to our knowledge, to date no reviews are available that focus on the action of these peptides against archaea. Herein, we present a review on all the peptides that have been tested against archaea. In addition, in an attempt to shed more light on possible future work that needs to be performed we have included a brief overview of the chemical characteristics, spectrum of activity, and the known mechanism of action of each of these peptides against bacteria and/or fungi. We also discuss the nature of and key physiological differences between Archaea, Bacteria, and Eukarya that are relevant to the development of anti-archaeal peptides. Despite our relatively limited knowledge about archaea, available data suggest that AMPs have an even broader spectrum of activity than currently recognized.
Collapse
Affiliation(s)
- Kyriakos G Varnava
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Ron S Ronimus
- Rumen Microbiology, AgResearch Ltd., Palmerston North, New Zealand
| | | |
Collapse
|
19
|
Development of Multiwell-Plate Methods Using Pure Cultures of Methanogens To Identify New Inhibitors for Suppressing Ruminant Methane Emissions. Appl Environ Microbiol 2017; 83:AEM.00396-17. [PMID: 28526787 DOI: 10.1128/aem.00396-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/09/2017] [Indexed: 12/30/2022] Open
Abstract
Hydrogenotrophic methanogens typically require strictly anaerobic culturing conditions in glass tubes with overpressures of H2 and CO2 that are both time-consuming and costly. To increase the throughput for screening chemical compound libraries, 96-well microtiter plate methods for the growth of a marine (environmental) methanogen Methanococcus maripaludis strain S2 and the rumen methanogen Methanobrevibacter species AbM4 were developed. A number of key parameters (inoculum size, reducing agents for medium preparation, assay duration, inhibitor solvents, and culture volume) were optimized to achieve robust and reproducible growth in a high-throughput microtiter plate format. The method was validated using published methanogen inhibitors and statistically assessed for sensitivity and reproducibility. The Sigma-Aldrich LOPAC library containing 1,280 pharmacologically active compounds and an in-house natural product library (120 compounds) were screened against M. maripaludis as a proof of utility. This screen identified a number of bioactive compounds, and MIC values were confirmed for some of them against M. maripaludis and M. AbM4. The developed method provides a significant increase in throughput for screening compound libraries and can now be used to screen larger compound libraries to discover novel methanogen-specific inhibitors for the mitigation of ruminant methane emissions.IMPORTANCE Methane emissions from ruminants are a significant contributor to global greenhouse gas emissions, and new technologies are required to control emissions in the agriculture technology (agritech) sector. The discovery of small-molecule inhibitors of methanogens using high-throughput phenotypic (growth) screening against compound libraries (synthetic and natural products) is an attractive avenue. However, phenotypic inhibitor screening is currently hindered by our inability to grow methanogens in a high-throughput format. We have developed, optimized, and validated a high-throughput 96-well microtiter plate assay for growing environmental and rumen methanogens. Using this platform, we identified several new inhibitors of methanogen growth, demonstrating the utility of this approach to fast track the development of methanogen-specific inhibitors for controlling ruminant methane emissions.
Collapse
|
20
|
Marsh PD, Do T, Beighton D, Devine DA. Influence of saliva on the oral microbiota. Periodontol 2000 2017; 70:80-92. [PMID: 26662484 DOI: 10.1111/prd.12098] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2015] [Indexed: 11/28/2022]
Abstract
Saliva plays a major role in determining the composition and activity of the oral microbiota, via a variety of mechanisms. Molecules, mainly from saliva, form a conditioning film on oral surfaces, thus providing receptors for bacterial attachment. The attached cells use saliva components, such as glycoproteins, as their main source of nutrients for growth. Oral bacteria work sequentially and in a concerted manner to catabolize these structurally complex molecules. Saliva also buffers the pH in the biofilm to around neutrality, creating an environment which is conducive to the growth of many oral bacteria that provide important benefits to the host. Components of the adaptive and innate host defences are delivered by saliva, and these often function synergistically, and at sublethal concentrations, so a complex relationship develops between the host and the resident microbiota. Dysbiosis can occur rapidly if the flow of saliva is perturbed.
Collapse
|
21
|
Heise J, Nega M, Alawi M, Wagner D. Propidium monoazide treatment to distinguish between live and dead methanogens in pure cultures and environmental samples. J Microbiol Methods 2015; 121:11-23. [PMID: 26656002 DOI: 10.1016/j.mimet.2015.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/02/2015] [Accepted: 12/02/2015] [Indexed: 11/16/2022]
Abstract
In clinical trials investigating human health and in the analysis of microbial communities in cultures and natural environments, it is a substantial challenge to differentiate between living, potentially active communities and dead cells. The DNA-intercalating dye propidium monoazide (PMA) enables the selective masking of DNA from dead, membrane-compromised cells immediately before DNA extraction. In the present study, we evaluated for the first time a PMA treatment for methanogenic archaea in cultures and particle-rich environmental samples. Using microscopic analyses, we confirmed the applicability of the LIVE/DEAD(®) BacLight™ kit to methanogenic archaea and demonstrated the maintenance of intact cell membranes of methanogens in the presence of PMA. Although strain-specific differences in the efficiency of PMA treatment to methanogenic archaea were observed, we developed an optimal procedure using 130 μM PMA and 5min of photo-activation with blue LED light. The results showed that the effectiveness of the PMA treatment strongly depends on the texture of the sediment/soil: silt and clay-rich sediments represent a challenge at all concentrations, whereas successful suppression of DNA from dead cells with compromised membranes was possible for low particle loads of sandy soil (total suspended solids (TSS)≤200 mg mL(-1)). Conclusively, we present two strategies to overcome the problem of insufficient light activation of PMA caused by the turbidity effect (shielding) in particle-rich environmental samples by (i) dilution of the particle-rich sample and (ii) detachment of the cells and the free DNA from the sediment prior to a PMA treatment. Both strategies promise to be usable options for distinguishing living cells and free DNA in complex environmental samples.
Collapse
Affiliation(s)
- Janine Heise
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Marcella Nega
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Mashal Alawi
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany.
| |
Collapse
|
22
|
Bang C, Schmitz RA. Archaea associated with human surfaces: not to be underestimated. FEMS Microbiol Rev 2015; 39:631-48. [DOI: 10.1093/femsre/fuv010] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2015] [Indexed: 12/18/2022] Open
|
23
|
Bang C, Ehlers C, Orell A, Prasse D, Spinner M, Gorb SN, Albers SV, Schmitz RA. Biofilm formation of mucosa-associated methanoarchaeal strains. Front Microbiol 2014; 5:353. [PMID: 25071757 PMCID: PMC4086402 DOI: 10.3389/fmicb.2014.00353] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/24/2014] [Indexed: 01/02/2023] Open
Abstract
Although in nature most microorganisms are known to occur predominantly in consortia or biofilms, data on archaeal biofilm formation are in general scarce. Here, the ability of three methanoarchaeal strains, Methanobrevibacter smithii and Methanosphaera stadtmanae, which form part of the human gut microbiota, and the Methanosarcina mazei strain Gö1 to grow on different surfaces and form biofilms was investigated. All three strains adhered to the substrate mica and grew predominantly as bilayers on its surface as demonstrated by confocal laser scanning microscopy analyses, though the formation of multi-layered biofilms of Methanosphaera stadtmanae and Methanobrevibacter smithii was observed as well. Stable biofilm formation was further confirmed by scanning electron microscopy analysis. Methanosarcina mazei and Methanobrevibacter smithii also formed multi-layered biofilms in uncoated plastic μ-dishesTM, which were very similar in morphology and reached a height of up to 40 μm. In contrast, biofilms formed by Methanosphaera stadtmanae reached only a height of 2 μm. Staining with the two lectins ConA and IB4 indicated that all three strains produced relatively low amounts of extracellular polysaccharides most likely containing glucose, mannose, and galactose. Taken together, this study provides the first evidence that methanoarchaea can develop and form biofilms on different substrates and thus, will contribute to our knowledge on the appearance and physiological role of Methanobrevibacter smithii and Methanosphaera stadtmanae in the human intestine.
Collapse
Affiliation(s)
- Corinna Bang
- Institute for General Microbiology, University of Kiel Kiel, Germany
| | - Claudia Ehlers
- Institute for General Microbiology, University of Kiel Kiel, Germany
| | - Alvaro Orell
- Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology Marburg, Germany ; Molecular Microbiology of Extremophiles Research Group, Centre for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor Santiago, Chile
| | - Daniela Prasse
- Institute for General Microbiology, University of Kiel Kiel, Germany
| | - Marlene Spinner
- Functional Morphology and Biomechanics, Zoological Institute, University of Kiel Kiel, Germany
| | - Stanislav N Gorb
- Functional Morphology and Biomechanics, Zoological Institute, University of Kiel Kiel, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology Marburg, Germany
| | - Ruth A Schmitz
- Institute for General Microbiology, University of Kiel Kiel, Germany
| |
Collapse
|
24
|
Bang C, Weidenbach K, Gutsmann T, Heine H, Schmitz RA. The intestinal archaea Methanosphaera stadtmanae and Methanobrevibacter smithii activate human dendritic cells. PLoS One 2014; 9:e99411. [PMID: 24915454 PMCID: PMC4051749 DOI: 10.1371/journal.pone.0099411] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/14/2014] [Indexed: 12/22/2022] Open
Abstract
The methanoarchaea Methanosphaera stadtmanae and Methanobrevibacter smithii are known to be part of the indigenous human gut microbiota. Although the immunomodulatory effects of bacterial gut commensals have been studied extensively in the last decade, the impact of methanoarchaea in human's health and disease was rarely examined. Consequently, we studied and report here on the effects of M. stadtmanae and M. smithii on human immune cells. Whereas exposure to M. stadtmanae leads to substantial release of proinflammatory cytokines in monocyte-derived dendritic cells (moDCs), only weak activation was detected after incubation with M. smithii. Phagocytosis of M. stadtmanae by moDCs was demonstrated by confocal microscopy as well as transmission electronic microscopy (TEM) and shown to be crucial for cellular activation by using specific inhibitors. Both strains, albeit to different extents, initiate a maturation program in moDCs as revealed by up-regulation of the cell-surface receptors CD86 and CD197 suggesting additional activation of adaptive immune responses. Furthermore, M. stadtmanae and M. smithii were capable to alter the gene expression of antimicrobial peptides in moDCs to different extents. Taken together, our findings strongly argue that the archaeal gut inhabitants M. stadtmanae and M. smithii are specifically recognized by the human innate immune system. Moreover, both strains are capable of inducing an inflammatory cytokine response to different extents arguing that they might have diverse immunomodulatory functions. In conclusion, we propose that the impact of intestinal methanoarchaea on pathological conditions involving the gut microbiota has been underestimated until now.
Collapse
Affiliation(s)
- Corinna Bang
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Katrin Weidenbach
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Thomas Gutsmann
- Division of Biophysics, Research Center Borstel, Borstel, Germany
| | - Holger Heine
- Division of Innate Immunity, Research Center Borstel, Airway Research Center North, Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Ruth A. Schmitz
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
- * E-mail:
| |
Collapse
|
25
|
The effect of saturated fatty acids on methanogenesis and cell viability of Methanobrevibacter ruminantium. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2013; 2013:106916. [PMID: 23710130 PMCID: PMC3655487 DOI: 10.1155/2013/106916] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 03/21/2013] [Indexed: 11/20/2022]
Abstract
Saturated fatty acids (SFAs) are known to suppress ruminal methanogenesis, but the underlying mechanisms are not well known. In the present study, inhibition of methane formation, cell membrane permeability (potassium efflux), and survival rate (LIVE/DEAD staining) of pure ruminal Methanobrevibacter ruminantium (DSM 1093) cell suspensions were tested for a number of SFAs. Methane production rate was not influenced by low concentrations of lauric (C12; 1 μg/mL), myristic (C14; 1 and 5 μg/mL), or palmitic (C16; 3 and 5 μg/mL) acids, while higher concentrations were inhibitory. C12 and C14 were most inhibitory. Stearic acid (C18), tested at 10–80 μg/mL and ineffective at 37°C, decreased methane production rate by half or more at 50°C and ≥50 μg/mL. Potassium efflux was triggered by SFAs (C12 = C14 > C16 > C18 = control), corroborating data on methane inhibition. Moreover, the exposure to C12 and C14 decreased cell viability to close to zero, while 40% of control cells remained alive after 24 h. Generally, tested SFAs inhibited methanogenesis, increased cell membrane permeability, and decreased survival of M. ruminantium in a dose- and time-dependent way. These results give new insights into how the methane suppressing effect of SFAs could be mediated in methanogens.
Collapse
|
26
|
Horne AJ, Lessner DJ. Assessment of the oxidant tolerance of Methanosarcina acetivorans. FEMS Microbiol Lett 2013; 343:13-9. [PMID: 23448147 DOI: 10.1111/1574-6968.12115] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/18/2012] [Accepted: 02/22/2013] [Indexed: 11/29/2022] Open
Abstract
All methane-producing Archaea (methanogens) are strict anaerobes, but the majority of species are tolerant to oxidants. Methanosarcina species are important environmental and industrial methanogens as they are one of only two genera capable of producing methane with acetate. Importantly, Methanosarcina species appear to be the most oxidant-tolerant; however, the mechanisms underlying this tolerance are poorly understood. We report herein two similar methods (spot-plating and microtiter plate) developed to examine the oxidant tolerance of Methanosarcina acetivorans by viability assessment. Both methods revealed that M. acetivorans can tolerate exposure to millimolar levels of hydrogen peroxide (H2O2 ) without a complete loss of viability. The exogenous addition of catalase was also shown to protect M. acetivorans from H2O2 toxicity, indicating catalase can serve as an antioxidant enzyme in methanogens even though oxygen is a byproduct. Of the two methods, the microtiter plate method provided a simple, reliable, and inexpensive method to assess viability of M. acetivorans. Combined with recent advances in the genetic manipulation of methanogens, methods in assessment of methanogen oxidant tolerance will aid in the identification of components of the antioxidant defense systems.
Collapse
Affiliation(s)
- Alexandra J Horne
- Department of Biological Sciences, University of Arkansas-Fayetteville, Fayetteville, AR, USA
| | | |
Collapse
|
27
|
Ramírez-Puebla ST, Servín-Garcidueñas LE, Jiménez-Marín B, Bolaños LM, Rosenblueth M, Martínez J, Rogel MA, Ormeño-Orrillo E, Martínez-Romero E. Gut and root microbiota commonalities. Appl Environ Microbiol 2013; 79:2-9. [PMID: 23104406 PMCID: PMC3536091 DOI: 10.1128/aem.02553-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Animal guts and plant roots have absorption roles for nutrient uptake and converge in harboring large, complex, and dynamic groups of microbes that participate in degradation or modification of nutrients and other substances. Gut and root bacteria regulate host gene expression, provide metabolic capabilities, essential nutrients, and protection against pathogens, and seem to share evolutionary trends.
Collapse
|