1
|
Singh N, Dangi B, Johnson JJ, Louie A, Karunanidhi A, Curry BN, Mitarai S, Daley CL, Hobbie SN, Bulman ZP. Pharmacodynamic assessment of apramycin against Mycobacterium abscessus in a hollow fibre infection model. J Antimicrob Chemother 2025:dkaf073. [PMID: 40079270 DOI: 10.1093/jac/dkaf073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 02/11/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Mycobacterium abscessus is an important cause of pulmonary infections, particularly among people with cystic fibrosis. Current treatment options for M. abscessus are suboptimal. Apramycin is a promising alternative aminoglycoside for M. abscessus, in part due to its ability to avoid intrinsic aminoglycoside-modifying enzymes in this pathogen. OBJECTIVES Define the pharmacodynamic activity of apramycin doses against M. abscessus. METHODS Apramycin and amikacin pharmacodynamics were assessed against two amikacin-susceptible M. abscessus subsp. abscessus isolates (ATCC 19977 and NR-44261) using a 14-day hollow fibre infection model (HFIM). Viable bacterial counts were determined during exposure to amikacin (15-20 mg/kg q24h) and 3 fractionated doses of apramycin (15 mg/kg q12h, 30 mg/kg q24h, 60 mg/kg q48h) using pharmacokinetic profiles predicted in epithelial lining fluid. RESULTS Against ATCC 19977, apramycin activity exceeded that of amikacin, with maximum bacterial reductions between 1.51 and 2.18 log10 cfu/mL for the different doses. Apramycin 15 mg/kg q12h displayed slightly better killing compared with the other apramycin dosing regimens between 96 and 144h before regrowth occurred. NR-44261 was not inhibited by amikacin and the activity of apramycin against this isolate was similar between the three doses (∼0.5 log10 cfu/mL reductions). After 14 days of exposure to apramycin monotherapy, ATCC 19977 and NR-44261 became apramycin resistant with MICs of >32 mg/L. CONCLUSIONS Apramycin exhibited greater pharmacodynamic activity than amikacin against amikacin-susceptible M. abscessus isolates and may be a promising therapy for this pathogen. However, antibiotic combination strategies to minimize apramycin resistance from emerging may be necessary.
Collapse
Affiliation(s)
- Nidhi Singh
- Department of Pharmacy Practice, Retzky College of Pharmacy, University of Illinois Chicago, 833 South Wood Street, Room 164 (M/C 886), Chicago, IL 60612, USA
| | - Bikash Dangi
- Department of Pharmacy Practice, Retzky College of Pharmacy, University of Illinois Chicago, 833 South Wood Street, Room 164 (M/C 886), Chicago, IL 60612, USA
| | - Jeremy J Johnson
- Department of Pharmacy Practice, Retzky College of Pharmacy, University of Illinois Chicago, 833 South Wood Street, Room 164 (M/C 886), Chicago, IL 60612, USA
| | - Arnold Louie
- Institute for Therapeutic Innovation, University of Florida, Orlando, FL, USA
| | - Arunkumar Karunanidhi
- Department of Pharmacy Practice, Retzky College of Pharmacy, University of Illinois Chicago, 833 South Wood Street, Room 164 (M/C 886), Chicago, IL 60612, USA
| | - Brooke N Curry
- Department of Pharmacy Practice, Retzky College of Pharmacy, University of Illinois Chicago, 833 South Wood Street, Room 164 (M/C 886), Chicago, IL 60612, USA
| | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Tokyo, Japan
| | - Charles L Daley
- Division of Mycobacterial and Respiratory Infections, Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Sven N Hobbie
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | - Zackery P Bulman
- Department of Pharmacy Practice, Retzky College of Pharmacy, University of Illinois Chicago, 833 South Wood Street, Room 164 (M/C 886), Chicago, IL 60612, USA
| |
Collapse
|
2
|
Wang Y, Sholeh M, Yang L, Shakourzadeh MZ, Beig M, Azizian K. Global trends of ceftazidime-avibactam resistance in gram-negative bacteria: systematic review and meta-analysis. Antimicrob Resist Infect Control 2025; 14:10. [PMID: 39934901 DOI: 10.1186/s13756-025-01518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND The emergence of antimicrobial resistance in Gram-negative bacteria (GNB) is a major global concern. Ceftazidime-avibactam (CAZ-AVI) has been identified as a potential treatment option for complicated infections. OBJECTIVES This meta-analysis aimed to evaluate the global resistance proportions of GNB to CAZ-AVI comprehensively. METHODS Studies were searched in Scopus, PubMed, and EMBASE (until September 2024), and statistical analyses were conducted using STATA software (version 20.0). RESULTS CAZ-AVI resistance proportions were determined in 136 studies, with 25.8% (95% CI 22.2-29.7) for non-fermentative gram-negative bacilli and 6.1% (95% CI 4.9-7.4) for Enterobacterales. The CAZ-AVI resistance proportion significantly increased from 5.6% (95% CI 4.1-7.6) of 221,278 GNB isolates in 2015-2020 to 13.2% (95% CI 11.4-15.2) of 285,978 GNB isolates in 2021-2024. Regionally, CAZ-AVI resistance was highest in Asia 19.3% (95% CI 15.7-24.23.4), followed by Africa 13.6% (95% CI 5.6-29.2), Europe 11% (95% CI 7.8-15.2), South America 6.1% (95% CI 3.2-11.5) and North America 5.3% (95% CI 4.2-6.7). Among GNB resistance profiles, colistin-resistant isolates and XDR isolates exhibited the highest resistance proportions (37.1%, 95% CI 14-68 and 32.1%, 95% CI 18.5-49.6), respectively), followed by carbapenem-resistant isolates and MDR isolates [(25.8%, 95% CI 22.6-29.3) and (13%, 95% CI 9.6, 17.3)]. CONCLUSION A high proportion of GNB isolates from urinary tract infections remained susceptible to CAZ-AVI, indicating its potential as a suitable treatment option. However, the increasing resistance trends among GNB are concerning and warrant continuous monitoring to maintain CAZ-AVI's effectiveness against GNB infections.
Collapse
Affiliation(s)
- Yang Wang
- Nanchuan District Center for Disease Control and Prevention, Chongqing, 408400, China
| | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - LunDi Yang
- Nanchuan District Center for Disease Control and Prevention, Chongqing, 408400, China.
| | - Matin Zafar Shakourzadeh
- Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgān, Iran
| | - Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Khalil Azizian
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
- Zoonosis Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
3
|
Assefa GM, Roberts JA, Aslan AT, Mohammed SA, Sime FB. A systematic review and individual bacterial species level meta-analysis of in vitro studies on the efficacy of ceftazidime/avibactam combined with other antimicrobials against carbapenem-resistant Gram-negative bacteria. J Antimicrob Chemother 2025; 80:334-346. [PMID: 39691958 PMCID: PMC11787894 DOI: 10.1093/jac/dkae451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Carbapenem-resistant Gram-negative bacteria (CR-GNB) develop resistance to many antimicrobials. To effectively manage infections caused by these organisms, novel agents and/or combinations of antimicrobials are required. OBJECTIVES Evaluated the in vitro efficacy of ceftazidime/avibactam in combination with other antimicrobials against CR-GNB. METHODS PubMed, Web of Science, Embase and Scopus were searched. Study outcomes were quantified by counting the number of isolates exhibiting synergy, defined as a fractional inhibitory concentration index ≤ 0.5 for checkerboard and Etest, and a >2 log cfu/mL reduction for time-kill studies. The proportion of synergy was calculated as the ratio of isolates exhibiting synergy to the total number of isolates tested. These proportions were analysed using a random-effects model, following the Freeman-Tukey double-arcsine transformation. RESULTS Forty-five in vitro studies were included. A total of 734 isolates were tested, and 69.3% of them were resistant to ceftazidime/avibactam. The combination of ceftazidime/avibactam with aztreonam showed a high synergy rate against carbapenem-resistant Klebsiella pneumoniae (effect size, ES = 0.91-0.98) and Escherichia coli (ES = 0.75-1.00). Ceftazidime/avibactam also demonstrated a high synergy rate (ES = 1) in time-kill studies when combined with azithromycin, fosfomycin and gentamicin against K. pneumoniae. Compared to ceftazidime/avibactam alone, a higher bactericidal rate was reported when ceftazidime/avibactam was combined with other antimicrobials against carbapenem-resistant K. pneumoniae (57% versus 31%) and E. coli (93% versus 0%). CONCLUSIONS Ceftazidime/avibactam frequently demonstrates synergistic bactericidal activity when combined with various antimicrobials against CR-GNB in in vitro tests. Further pre-clinical and clinical studies are warranted to validate the utility of ceftazidime/avibactam-based combination regimens for CR-GNB infections.
Collapse
Affiliation(s)
- Getnet M Assefa
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Jason A Roberts
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Pharmacy Department, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
- Herston Infectious Disease Institute (HeIDI), Metro North Health, Brisbane, QLD, Australia
- Division of Anaesthesiology Critical Care Emerging and Pain Medicine, Nimes University Hospital, University of Montpellier, Nimes, France
| | - Abdullah T Aslan
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Solomon A Mohammed
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Fekade B Sime
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Aslan AT, Akova M. Recent updates in treating carbapenem-resistant infections in patients with hematological malignancies. Expert Rev Anti Infect Ther 2024; 22:1055-1071. [PMID: 39313753 DOI: 10.1080/14787210.2024.2408746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 09/25/2024]
Abstract
INTRODUCTION Patients with hematological malignancies (PHMs) are at increased risk for infections caused by carbapenem-resistant organisms (CROs) due to frequent exposure to broad-spectrum antibiotics and prolonged hospital stays. These infections result in high mortality and morbidity rates along with delays in chemotherapy, longer hospitalizations, and increased health care costs. AREAS COVERED Treatment alternatives for CRO infections in PHMs. EXPERT OPINION The best available treatment option for KPC and OXA-48 producers is ceftazidime/avibactam. Imipenem/cilastatin/relebactam and meropenem/vaborbactam remain as the alternative options. They can also be used as salvage therapy in KPC-positive Enterobacterales infections resistant to ceftazidime/avibactam, if in vitro susceptibility is shown. Treatment of metallo-β-lactamase producers is an unmet need. Ceftazidime/avibactam plus aztreonam or aztreonam/avibactam seems to be the most reliable option for metallo-β-lactamase producers. As a first-line option for carbapenem-resistant Pseudomonas aeruginosa infections, ceftolozane/tazobactam is preferable and ceftazidime/avibactam and imipenem/cilastatin/relebactam constitute alternative regimens. Although sulbactam/durlobactam is the most reliable option against carbapenem-resistant Acinetobacter baumannii infections, its utility as monotherapy and in PHMs is not yet known. Cefiderocol can be selected as a 'last-resort' option for CRO infections. New risk score models supported by artificial intelligence algorithms can be used to predict the exact risk of infections in previously colonized patients.
Collapse
Affiliation(s)
- Abdullah Tarık Aslan
- Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Murat Akova
- Faculty of Medicine, Infectious Diseases and Clinical Microbiology, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
5
|
Bulman ZP, Cao L, Curry BN, Biagi M, Vivo A, Suda KJ, Evans CT. Ceftazidime/avibactam alone or in combination with an aminoglycoside for treatment of carbapenem-resistant Enterobacterales infections: A retrospective cohort study. Int J Antimicrob Agents 2024; 64:107321. [PMID: 39242050 PMCID: PMC11540728 DOI: 10.1016/j.ijantimicag.2024.107321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Ceftazidime/avibactam is one of the preferred treatment options for carbapenem-resistant Enterobacterales (CRE). However, the benefit of combining ceftazidime/avibactam with another antibiotic remains unclear. OBJECTIVES To identify variables associated with treatment failure during the use of ceftazidime/avibactam for CRE infections and assess the effect of combining an aminoglycoside with ceftazidime/avibactam. METHODS This was a retrospective cohort study of patients with a positive CRE culture treated with ceftazidime/avibactam between 2015 and 2021 in 134 Veterans Affairs (VA) facilities. The primary outcome was 30-day mortality and the secondary outcome was in-hospital mortality. A subanalysis in patients who received an aminoglycoside was also performed. RESULTS A total of 303 patients were included. The overall 30-day and in-hospital mortality rates were 12.5% and 24.1%, respectively. Age (aOR 1.052, 95% CI 1.013-1.093), presence in the ICU (aOR 2.704, 95% CI 1.071-6.830), and receipt of an aminoglycoside prior to initiation of ceftazidime/avibactam (aOR 4.512, 95% CI 1.797-11.327) were independently associated with 30-day mortality. In the subgroup of patients that received an aminoglycoside (n = 77), their use in combination with ceftazidime/avibactam had a 30-day mortality aOR of 0.321 (95% CI, 0.089-1.155). CONCLUSION In veterans treated with ceftazidime/avibactam for CRE infections, increased age, receipt of an empiric aminoglycoside, and presence in the ICU at the time of index culture were associated with higher 30-day mortality. Among patients who received an aminoglycoside, their use in combination with ceftazidime/avibactam trended toward protectiveness of 30-day mortality, suggesting a potential role for this combination to treat CRE infections in patients who are more severely ill.
Collapse
Affiliation(s)
- Zackery P Bulman
- Department of Pharmacy Practice, University of Illinois Chicago College of Pharmacy, Chicago, IL, USA.
| | - Lishan Cao
- Center of Innovation for Complex Chronic Healthcare, Edward Hines Jr VA Hospital, Hines, IL, USA
| | - Brooke N Curry
- Department of Pharmacy Practice, University of Illinois Chicago College of Pharmacy, Chicago, IL, USA
| | - Mark Biagi
- Department of Pharmacy Practice, University of Illinois Chicago College of Pharmacy, Chicago, IL, USA
| | - Amanda Vivo
- Center of Innovation for Complex Chronic Healthcare, Edward Hines Jr VA Hospital, Hines, IL, USA
| | - Katie J Suda
- Center for Health Equity Research and Promotion, VA Pittsburgh Healthcare System, U.S. Department of Veterans Affairs, Pittsburgh, PA, USA; Division of General Internal Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Charlesnika T Evans
- Center of Innovation for Complex Chronic Healthcare, Edward Hines Jr VA Hospital, Hines, IL, USA; Center for Health Services and Outcomes Research and Department of Preventive Medicine, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
6
|
Parthasarathy A, Miranda RR, Bedore TJ, Watts LM, Mantravadi PK, Wong NH, Chu J, Adjei JA, Rana AP, Savka MA, Bulman ZP, Borrego EJ, Hudson AO. Interaction of Acinetobacter sp. RIT 592 induces the production of broad-spectrum antibiotics in Exiguobacterium sp. RIT 594. Front Pharmacol 2024; 15:1456027. [PMID: 39148551 PMCID: PMC11324575 DOI: 10.3389/fphar.2024.1456027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Antimicrobial resistance (AMR) is one of the most alarming global public health challenges of the 21st century. Over 3 million antimicrobial-resistant infections occur in the United States annually, with nearly 50,000 cases being fatal. Innovations in drug discovery methods and platforms are crucial to identify novel antibiotics to combat AMR. We present the isolation and characterization of potentially novel antibiotic lead compounds produced by the cross-feeding of two rhizosphere bacteria, Acinetobacter sp. RIT 592 and Exiguobacterium sp. RIT 594. We used solid-phase extraction (SPE) followed by liquid chromatography (LC) to enrich antibiotic extracts and subsequently mass spectrometry (MS) analysis of collected fractions for compound structure identification and characterization. The MS data were processed through the Global Natural Product Social Molecular Networking (GNPS) database. The supernatant from RIT 592 induced RIT 594 to produce a cocktail of antimicrobial compounds active against Gram-positive and negative bacteria. The GNPS analysis indicated compounds with known antimicrobial activity in the bioactive samples, including oligopeptides and their derivatives. This work emphasizes the utility of microbial community-based platforms to discover novel clinically relevant secondary metabolites. Future work includes further structural characterization and antibiotic activity evaluation of the individual compounds against pathogenic multidrug-resistant (MDR) bacteria.
Collapse
Affiliation(s)
| | - Renata Rezende Miranda
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY, United States
| | - T J Bedore
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Lizabeth M Watts
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | | | - Narayan H Wong
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Jonathan Chu
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Joseph A Adjei
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Amisha P Rana
- Department of Pharmacy Practice, University of Illinois at Chicago, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Michael A Savka
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Zackery P Bulman
- Department of Pharmacy Practice, University of Illinois at Chicago, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Eli J Borrego
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - André O Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
7
|
Tüzemen NÜ, Önal U, Merdan O, Akca B, Ener B, Özakın C, Akalın H. Synergistic antibacterial activity of ceftazidime-avibactam in combination with colistin, gentamicin, amikacin, and fosfomycin against carbapenem-resistant Klebsiella pneumoniae. Sci Rep 2024; 14:17567. [PMID: 39080317 PMCID: PMC11289488 DOI: 10.1038/s41598-024-67347-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CPKP) infections seriously threaten global public health. The main objective of this study was to assess the in-vitro synergistic activity of ceftazidime-avibactam (CZA) in combination with colistin (COL), amikacin (AK), gentamicin (GEN), and fosfomycin (FOS) against CPKP isolates. The secondary goal was to determine the antibiotic susceptibility performance of BD Phoenix. OXA-48 (49.1%) was the predominant carbapenemase, followed by KPC (29.1%). We used the broth microdilution (BMD) method to determine the minimum inhibitory concentrations (MICs) of CZA, COL, AK, and GEN. Meanwhile, the MICs of FOS were determined by the agar dilution (AD) method. To examine the antibacterial activity of CZA, we conducted a checkerboard assay (CBA) with COL, AK, GEN, and FOS against CRKP isolates. We randomly selected three strains and performed synergy testing via time-kill assay (TKA). CRKP isolates were 89.1% susceptible to CZA, 16.4% to COL, 21.8% to GEN, and 29.1% to AK using BMD, 47.3% to FOS by AD. The most synergistic effects were observed in the combination of CZA-COL (78.2%) and CZA-FOS (63.6%). Given the limited therapeutic options for treating severe CRKP infections, combining CZA with COL and FOS may enhance in-vitro activity against clinical CRKP isolates.
Collapse
Affiliation(s)
- Nazmiye Ülkü Tüzemen
- Faculty of Medicine, Department of Medical Microbiology, Bursa Uludag University, 16059 Görükle, Bursa, Turkey.
| | - Uğur Önal
- Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Bursa Uludag University, Bursa, Turkey
| | - Osman Merdan
- Faculty of Medicine, Department of Medical Microbiology, Bursa Uludag University, 16059 Görükle, Bursa, Turkey
- Institute of Virology, Technical University of Munich, Munich, Germany
| | - Bekir Akca
- Faculty of Medicine, Department of Medical Microbiology, Bursa Uludag University, 16059 Görükle, Bursa, Turkey
| | - Beyza Ener
- Faculty of Medicine, Department of Medical Microbiology, Bursa Uludag University, 16059 Görükle, Bursa, Turkey
| | - Cüneyt Özakın
- Faculty of Medicine, Department of Medical Microbiology, Bursa Uludag University, 16059 Görükle, Bursa, Turkey
| | - Halis Akalın
- Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
8
|
Davis KP, Morales Y, Ende RJ, Peters R, McCabe AL, Mecsas J, Aldridge BB. Critical role of growth medium for detecting drug interactions in Gram-negative bacteria that model in vivo responses. mBio 2024; 15:e0015924. [PMID: 38364199 PMCID: PMC10936441 DOI: 10.1128/mbio.00159-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024] Open
Abstract
The rise in infections caused by multidrug-resistant (MDR) bacteria has necessitated a variety of clinical approaches, including the use of antibiotic combinations. Here, we tested the hypothesis that drug-drug interactions vary in different media, and determined which in vitro models best predict drug interactions in the lungs. We systematically studied pair-wise antibiotic interactions in three different media, CAMHB, (a rich lab medium standard for antibiotic susceptibility testing), a urine mimetic medium (UMM), and a minimal medium of M9 salts supplemented with glucose and iron (M9Glu) with three Gram-negative ESKAPE pathogens, Acinetobacter baumannii (Ab), Klebsiella pneumoniae (Kp), and Pseudomonas aeruginosa (Pa). There were pronounced differences in responses to antibiotic combinations between the three bacterial species grown in the same medium. However, within species, PaO1 responded to drug combinations similarly when grown in all three different media, whereas Ab17978 and other Ab clinical isolates responded similarly when grown in CAMHB and M9Glu medium. By contrast, drug interactions in Kp43816, and other Kp clinical isolates poorly correlated across different media. To assess whether any of these media were predictive of antibiotic interactions against Kp in the lungs of mice, we tested three antibiotic combination pairs. In vitro measurements in M9Glu, but not rich medium or UMM, predicted in vivo outcomes. This work demonstrates that antibiotic interactions are highly variable across three Gram-negative pathogens and highlights the importance of growth medium by showing a superior correlation between in vitro interactions in a minimal growth medium and in vivo outcomes. IMPORTANCE Drug-resistant bacterial infections are a growing concern and have only continued to increase during the SARS-CoV-2 pandemic. Though not routinely used for Gram-negative bacteria, drug combinations are sometimes used for serious infections and may become more widely used as the prevalence of extremely drug-resistant organisms increases. To date, reliable methods are not available for identifying beneficial drug combinations for a particular infection. Our study shows variability across strains in how drug interactions are impacted by growth conditions. It also demonstrates that testing drug combinations in tissue-relevant growth conditions for some strains better models what happens during infection and may better inform combination therapy selection.
Collapse
Affiliation(s)
- Kathleen P. Davis
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
| | - Yoelkys Morales
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Rachel J. Ende
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
| | - Ryan Peters
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
| | - Anne L. McCabe
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Joan Mecsas
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Bree B. Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, Massachusetts, USA
| |
Collapse
|
9
|
Aslan AT, Ezure Y, Horcajada JP, Harris PNA, Paterson DL. In vitro, in vivo and clinical studies comparing the efficacy of ceftazidime-avibactam monotherapy with ceftazidime-avibactam-containing combination regimens against carbapenem-resistant Enterobacterales and multidrug-resistant Pseudomonas aeruginosa isolates or infections: a scoping review. Front Med (Lausanne) 2023; 10:1249030. [PMID: 37727767 PMCID: PMC10506411 DOI: 10.3389/fmed.2023.1249030] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Introduction Carbapenem-resistant Enterobacterales (CRE) and multidrug-resistant Pseudomonas aeruginosa (MDR-PA) infections are associated with a high risk of morbidity, mortality, and treatment costs. We aimed to evaluate in vitro, in vivo and clinical studies comparing the efficacy of ceftazidime-avibactam (CZA) combination regimens with CZA alone against CRE and/or MDR-PA isolates or infections. Methods We systematically reviewed the relevant literature in CINAHL/MEDLINE, Pubmed, Cochrane, Web of Science, Embase, and Scopus until December 1, 2022. Review articles, grey literature, abstracts, comments, editorials, non-peer reviewed articles, non-English articles, and in vitro synergy studies conducted on single isolates were excluded. Results 22 in vitro, 7 in vivo and 20 clinical studies were evaluated. In vitro studies showed reliable synergy between CZA and aztreonam against metallo-β-lactamase (MBL)-producing isolates. Some studies indicated good in vitro synergy between CZA and amikacin, meropenem, fosfomycin and polymyxins against CRE isolates. For MDR-PA isolates, there are comparatively fewer in vitro or in vivo studies. In observational clinical studies, mortality, clinical cure, adverse events, and development of CZA resistance after exposure were generally similar in monotherapy and combination therapy groups. However, antibiotic-related nephrotoxicity and infection relapses were higher in patients receiving CZA combination therapies. Discussion The benefit, if any, of CZA combination regimens in MDR-PA infections is elusive, as very few clinical studies have included these infections. There is no currently documented clinical benefit for the use of CZA combination regimens rather than CZA monotherapy. CZA combined with aztreonam for serious infections due to MBL producers should be evaluated by randomized controlled trials. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=278552, CRD42021278552.
Collapse
Affiliation(s)
- Abdullah Tarık Aslan
- Faculty of Medicine, UQ Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
| | - Yukiko Ezure
- Faculty of Medicine, UQ Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
| | - Juan Pablo Horcajada
- Faculty of Medicine, UQ Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
- Infectious Diseases Department, Hospital del Mar, Institut Hospital Del Mar d’Investigacions Mèdiques (IMIM), Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBERINFEC, ISCIII – CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Patrick N. A. Harris
- Faculty of Medicine, UQ Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
| | - David L. Paterson
- ADVANCE-ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
Xiao C, Li X, Huang L, Cao H, Han L, Ni Y, Xia H, Yang Z. Prevalence and molecular characteristics of polymyxin-resistant Enterobacterales in a Chinese tertiary teaching hospital. Front Cell Infect Microbiol 2023; 13:1118122. [PMID: 37143741 PMCID: PMC10151768 DOI: 10.3389/fcimb.2023.1118122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Polymyxin-resistant Enterobacterales poses a significant threat to public health globally, but its prevalence and genomic diversity within a sole hospital is less well known. In this study, the prevalence of polymyxin-resistant Enterobacterales in a Chinese teaching hospital was investigated with deciphering of their genetic determinants of drug resistance. Methods Polymyxin-resistant Enterobacterales isolates identified by matrix-assisted laser desorption were collected in Ruijin Hospital from May to December in 2021. Both the VITEK 2 Compact and broth dilution methods were used to determine polymyxin B (PMB) susceptibility. Polymyxin-resistant isolates were further characterized by molecular typing using PCR, multi-locus sequence typing, and sequencing of the whole genome. Results Of the 1,216 isolates collected, 32 (2.6%) across 12 wards were polymyxin-resistant (minimum inhibitory concentration (MIC) range, PMB 4-256 mg/ml, and colistin 4 ≥ 16 mg/ ml). A total of 28 (87.5%) of the polymyxin-resistant isolates had reduced susceptibility to imipenem and meropenem (MIC ≥ 16 mg/ml). Of the 32 patients, 15 patients received PMB treatment and 20 survived before discharge. The phylogenetic tree of these isolates showed they belonged to different clones and had multiple origins. The polymyxin-resistant Klebsiella pneumoniae isolates belonged to ST-11 (85.72%), ST-15 (10.71%), and ST-65 (3.57%), and the polymyxin-resistant Escherichia coli belonged to four different sequence types, namely, ST-69 (25.00%), ST-38 (25.00%), ST-648 (25.00%), and ST-1193 (25.00%). In addition, six mgrB specific mutations (snp_ALT c.323T>C and amino acid change p.Val8Ala) were identified in 15.6% (5/32) of the isolates. mcr-1, a plasmid-mediated polymyxin-resistant gene, was found in three isolates, and non-synonymous mutations including T157P, A246T, G53V, and I44L were also observed. Discussion In our study, a low prevalence of polymyxin-resistant Enterobacterales was observed, but these isolates were also identified as multidrug resistant. Therefore, efficient infection control measures should be implemented to prevent the further spread of resistance to last-line polymyxin therapy.
Collapse
Affiliation(s)
- Chenlu Xiao
- Department of Laboratory Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Microbiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuming Li
- Department of Scientific Affairs, Hugobiotech Co., Ltd., Beijing, China
| | - Lianjiang Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Huiluo Cao
- Department of Microbiology, The University of Hongkong, Hong Kong, Hong Kong SAR, China
| | - Lizhong Han
- Department of Laboratory Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Microbiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxing Ni
- Department of Infection Control, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Xia
- Department of Scientific Affairs, Hugobiotech Co., Ltd., Beijing, China
| | - Zhitao Yang
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhitao Yang,
| |
Collapse
|
11
|
Karami-Zarandi M, Rahdar HA, Esmaeili H, Ranjbar R. Klebsiella pneumoniae: an update on antibiotic resistance mechanisms. Future Microbiol 2023; 18:65-81. [PMID: 36632990 DOI: 10.2217/fmb-2022-0097] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Klebsiella pneumoniae colonizes mucosal surfaces of healthy humans and is responsible for one third of all Gram-negative infections in hospitalized patients. K. pneumoniae is compatible with acquiring antibiotic resistance elements such as plasmids and transposons encoding various β-lactamases and efflux pumps. Mutations in different proteins such as β-lactamases, efflux proteins, outer membrane proteins, gene replication enzymes, protein synthesis complexes and transcription enzymes also generate resistance to antibiotics. Biofilm formation is another strategy that facilitates antibiotic resistance. Resistant strains can be treated by combination therapy using available antibiotics, though proper management of antibiotic consumption in hospitals is important to reduce the emergence and proliferation of resistance to current antibiotics.
Collapse
Affiliation(s)
- Morteza Karami-Zarandi
- Department of Microbiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, 4513956111, Iran
| | - Hossein Ali Rahdar
- Department of Microbiology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, 7618815676, Iran
| | - Hadi Esmaeili
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, 1435916471, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology & Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, 1435916471, Iran
| |
Collapse
|
12
|
Bulman ZP, Wicha SG, Nielsen EI, Lenhard JR, Nation RL, Theuretzbacher U, Derendorf H, Tängdén T, Zeitlinger M, Landersdorfer CB, Bulitta JB, Friberg LE, Li J, Tsuji BT. Research priorities towards precision antibiotic therapy to improve patient care. THE LANCET. MICROBE 2022; 3:e795-e802. [PMID: 35777386 DOI: 10.1016/s2666-5247(22)00121-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 04/04/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022]
Abstract
Antibiotic resistance presents an incessant threat to our drug armamentarium that necessitates novel approaches to therapy. Over the past several decades, investigation of pharmacokinetic and pharmacodynamic (PKPD) principles has substantially improved our understanding of the relationships between the antibiotic, pathogen, and infected patient. However, crucial gaps in our understanding of the pharmacology of antibacterials and their optimal use in the care of patients continue to exist; simply attaining antibiotic exposures that are considered adequate based on traditional targets can still result in treatment being unsuccessful and resistance proliferation for some infections. It is this salient paradox that points to key future directions for research in antibiotic therapeutics. This Personal View discusses six priority areas for antibiotic pharmacology research: (1) antibiotic-pathogen interactions, (2) antibiotic targets for combination therapy, (3) mechanistic models that describe the time-course of treatment response, (4) understanding and modelling of host response to infection, (5) personalised medicine through therapeutic drug management, and (6) application of these principles to support development of novel therapies. Innovative approaches that enhance our understanding of antibiotic pharmacology and facilitate more accurate predictions of treatment success, coupled with traditional pharmacology research, can be applied at the population level and to individual patients to improve outcomes.
Collapse
Affiliation(s)
- Zackery P Bulman
- Department of Pharmacy Practice, University of Illinois Chicago, Chicago, IL, USA.
| | - Sebastian G Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| | | | - Justin R Lenhard
- Department of Clinical and Administrative Sciences, California Northstate University College of Pharmacy, Elk Grove, CA, USA
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | | | - Hartmut Derendorf
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Thomas Tängdén
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Cornelia B Landersdorfer
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Jürgen B Bulitta
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Lena E Friberg
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Jian Li
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Brian T Tsuji
- Department of Pharmacy Practice, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
13
|
Bulman ZP, Tan X, Chu TY, Huang Y, Rana AP, Singh N, Flowers SA, Kyono Y, Kreiswirth BN, Chen L. Ceftazidime-avibactam based combinations against carbapenemase producing Klebsiella pneumoniae harboring hypervirulence plasmids. Comput Struct Biotechnol J 2022; 20:3946-3954. [PMID: 35950190 PMCID: PMC9352398 DOI: 10.1016/j.csbj.2022.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/02/2022] Open
Abstract
The combination of carbapenem resistance and hypervirulence in Klebsiella pneumoniae is an emerging and urgent threat due to its potential to resist common antibiotics and cause life-threatening infections in healthy hosts. This study aimed to evaluate the activity of clinically relevant antibiotic regimens against carbapenem-resistant K. pneumoniae with hypervirulence plasmids and to identify pathways associated with antibiotic tolerance using transcriptomics. We studied two carbapenem-resistant K. pneumoniae isolates, CDI694 and CDI231, both harboring hypervirulence plasmids. Time-kill and dynamic one-compartment pharmacokinetic/pharmacodynamic assays were used to assess ceftazidime/avibactam-based therapies. RNAseq was performed following 48 h of antibiotic exposure. Closed genomes of CDI694 and CDI231 were obtained; each isolate harbored carbapenem-resistance and hypervirulence (containing rmpA/rmpA2 and iut genes) plasmids. Ceftazidime/avibactam-based regimens were bactericidal, though both isolates continued to grow in the presence of antibiotics despite no shifts in MIC. Transcriptomic analyses suggested that perturbations to cell respiration, carbohydrate transport, and stress-response pathways contributed to the antibiotic tolerance in CDI231. Genes associated with hypervirulence and antibiotic resistance were not strongly impacted by drug exposure except for ompW, which was significantly downregulated. Treatment of carbapenem-resistant K. pneumoniae harboring hypervirulence plasmids with ceftazidime/avibactam-based regimens may yield a tolerant population due to altered transcription of multiple key pathways.
Collapse
Affiliation(s)
- Zackery P. Bulman
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Xing Tan
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Ting-Yu Chu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Yanqin Huang
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Amisha P. Rana
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Nidhi Singh
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Stephanie A. Flowers
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Yasuhiro Kyono
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Barry N. Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| |
Collapse
|
14
|
Huang Y, Rana AP, Wenzler E, Ozer EA, Krapp F, Bulitta JB, Hauser AR, Bulman ZP. Aminoglycoside-resistance gene signatures are predictive of aminoglycoside MICs for carbapenem-resistant Klebsiella pneumoniae. J Antimicrob Chemother 2021; 77:356-363. [PMID: 34668007 DOI: 10.1093/jac/dkab381] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/27/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Aminoglycoside-containing regimens may be an effective treatment option for infections caused by carbapenem-resistant Klebsiella pneumoniae (CR-Kp), but aminoglycoside-resistance genes are common in these strains. The relationship between the aminoglycoside-resistance genes and aminoglycoside MICs remains poorly defined. OBJECTIVES To identify genotypic signatures capable of predicting aminoglycoside MICs for CR-Kp. METHODS Clinical CR-Kp isolates (n = 158) underwent WGS to detect aminoglycoside-resistance genes. MICs of amikacin, gentamicin, plazomicin and tobramycin were determined by broth microdilution (BMD). Principal component analysis was used to initially separate isolates based on genotype. Multiple linear regression was then used to generate models that predict aminoglycoside MICs based on the aminoglycoside-resistance genes. Last, the performance of the predictive models was tested against a validation cohort of 29 CR-Kp isolates. RESULTS Among the original 158 CR-Kp isolates, 91.77% (145/158) had at least one clinically relevant aminoglycoside-resistance gene. As a group, 99.37%, 84.81%, 82.28% and 10.76% of the CR-Kp isolates were susceptible to plazomicin, amikacin, gentamicin and tobramycin, respectively. The first two principal components explained 72.23% of the total variance in aminoglycoside MICs and separated isolates into four groups with aac(6')-Ib, aac(6')-Ib', aac(6')-Ib+aac(6')-Ib' or no clinically relevant aminoglycoside-resistance genes. Regression models predicted aminoglycoside MICs with adjusted R2 values of 56%-99%. Within the validation cohort, the categorical agreement when comparing the observed BMD MICs with the predicated MICs was 96.55%, 89.66%, 86.21% and 82.76% for plazomicin, gentamicin, amikacin and tobramycin, respectively. CONCLUSIONS Susceptibility to each aminoglycoside varies in CR-Kp. Detection of aminoglycoside-resistance genes may be useful to predict aminoglycoside MICs for CR-Kp.
Collapse
Affiliation(s)
- Yanqin Huang
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Amisha P Rana
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Eric Wenzler
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Egon A Ozer
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Fiorella Krapp
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jürgen B Bulitta
- Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Alan R Hauser
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zackery P Bulman
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| |
Collapse
|