1
|
Gong T, Lu X, Zhang H, Su W, Jin Y, He H, Yao B, Jin M, Wang Y, Cheng Y. Intestinal microbiota-derived d-(+)-malic acid promotes pBD1 expression via p-p38/ATF1 signaling pathway to maintain porcine intestinal health. Int Immunopharmacol 2025; 154:114552. [PMID: 40186905 DOI: 10.1016/j.intimp.2025.114552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/07/2025]
Abstract
This study aims to identify nutrients that enhance the expression of host defense peptides (HDPs) and to evaluate their application effects and regulatory mechanisms, thereby advancing the exploring of nutritional regulation of HDPs. To achieve this, we constructed 16 stable fluorescent reporter porcine epithelial cell lines, driven by promoters targeting eight porcine intestinal HDPs genes, using IPEC-1 and IPEC-J2 cells. Through untargeted metabolomics sequencing and high-throughput screening, 15 metabolites were identified as potential enhancers of pBD1 expression, with d-(+)-malic acid (DMA) emerged as the most effective candidate. Transcriptomic and western blot analysis suggested that DMA enhances pBD1 expression primarily via the p-p38/ATF1 signaling pathways. Functional studies demonstrated that DMA significantly improved intestinal barrier integrity and alleviated intestinal damage. Overall, this work successfully established promoter-driven fluorescent reporter cell lines and identified microbiota-derived metabolites enhancing pBD1 expression, such as DMA, as promising alternatives to antibiotics for maintaining porcine intestinal health.
Collapse
Affiliation(s)
- Tao Gong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaoxi Lu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Hong Zhang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Weifa Su
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yuanli Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Huan He
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Bin Yao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yuanzhi Cheng
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
2
|
Verma SC, Enée E, Manasse K, Rebhi F, Penc A, Romeo-Guitart D, Bui Thi C, Titeux M, Oury F, Fillatreau S, Liblau R, Diana J. Cathelicidin antimicrobial peptide expression in neutrophils and neurons antagonistically modulates neuroinflammation. J Clin Invest 2024; 135:e184502. [PMID: 39656548 PMCID: PMC11785927 DOI: 10.1172/jci184502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/05/2024] [Indexed: 02/03/2025] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease that affects the CNS, the pathophysiology of which remains unclear and for which there is no definitive cure. Antimicrobial peptides (AMPs) are immunomodulatory molecules expressed in various tissues, including the CNS. Here, we investigated whether the cathelicidin-related AMP (CRAMP) modulated the development of experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. We showed that, at an early stage, CNS-recruited neutrophils produced neutrophil extracellular traps (NETs) rich in CRAMP that were required for EAE initiation. NET-associated CRAMP stimulated IL-6 production by dendritic cells via the cGAS/STING pathway, thereby promoting encephalitogenic Th17 response. However, at a later disease stage, neurons also expressed CRAMP that reduced EAE severity. Camp knockdown in neurons led to disease exacerbation, while local injection of CRAMP1-39 at the peak of EAE promoted disease remission. In vitro, CRAMP1-39 regulated the activation of microglia and astrocytes through the formyl peptide receptor (FPR) 2. Finally, administration of butyrate, a gut microbiota-derived metabolite, stimulated the expression of neural CRAMP via the free fatty acids receptors 2/3 (FFAR2/3), and prevented EAE. This study shows that CRAMP produced by different cell types has opposing effects on neuroinflammation, offering therapeutic opportunities for MS and other neuroinflammatory disorders.
Collapse
Affiliation(s)
- Subash Chand Verma
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| | - Emmanuelle Enée
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| | - Kanchanadevi Manasse
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| | - Feriel Rebhi
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| | - Axelle Penc
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| | - David Romeo-Guitart
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| | - Cuc Bui Thi
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| | - Matthias Titeux
- Université Paris Cité, Imagine Institute, INSERM U1163, Paris, France
| | - Franck Oury
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| | - Simon Fillatreau
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
- APHP, Hôpital Necker-Enfants Malades, Paris, France
| | - Roland Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS, INSERM, Université Paul-Sabatier de Toulouse (UPS), Toulouse, France
- Department of Immunology, Toulouse University Hospital, Toulouse, France
| | - Julien Diana
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| |
Collapse
|
3
|
Bhat MF, Srdanović S, Sundberg LR, Einarsdóttir HK, Marjomäki V, Dekker FJ. Impact of HDAC inhibitors on macrophage polarization to enhance innate immunity against infections. Drug Discov Today 2024; 29:104193. [PMID: 39332483 DOI: 10.1016/j.drudis.2024.104193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/26/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Innate immunity plays an important role in host defense against pathogenic infections. It involves macrophage polarization into either the pro-inflammatory M1 or the anti-inflammatory M2 phenotype, influencing immune stimulation or suppression, respectively. Epigenetic changes during immune reactions contribute to long-term innate immunity imprinting on macrophage polarization. It is becoming increasingly evident that epigenetic modulators, such as histone deacetylase (HDAC) inhibitors (HDACi), enable the enhancement of innate immunity by tailoring macrophage polarization in response to immune stressors. In this review, we summarize current literature on the impact of HDACi and other epigenetic modulators on the functioning of macrophages during diseases that have a strong immune component, such as infections. Depending on the disease context and the chosen therapeutic intervention, HDAC1, HDAC2, HDAC3, HDAC6, or HDAC8 are particularly important in influencing macrophage polarization towards either M1 or M2 phenotypes. We anticipate that therapeutic strategies based on HDAC epigenetic mechanisms will provide a unique approach to boost immunity against disease challenges, including resistant infections.
Collapse
Affiliation(s)
- Mohammad Faizan Bhat
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Sonja Srdanović
- Akthelia Pharmaceuticals, Grandagardi 16, 101 Reykjavik, Iceland
| | - Lotta-Riina Sundberg
- Department of Biological and Environmental Sciences and Nanoscience Center, 40014 University of Jyväskylä, Jyväskylä, Finland
| | | | - Varpu Marjomäki
- Department of Biological and Environmental Sciences and Nanoscience Center, 40014 University of Jyväskylä, Jyväskylä, Finland
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
4
|
Sun H, Knight JM, Li YD, Ashoori F, Citardi MJ, Yao WC, Corry DB, Luong AU. Allergic fungal rhinosinusitis linked to other hyper-IgE syndromes through defective T H17 responses. J Allergy Clin Immunol 2024; 154:1169-1179. [PMID: 39032670 DOI: 10.1016/j.jaci.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/15/2024] [Accepted: 06/07/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND In a gene expression analysis comparing sinus mucosa samples from allergic fungal rhinosinusitis (AFRS) patients with samples from non-AFRS chronic rhinosinusitis with nasal polyp (CRSwNP) patients, the antimicrobial peptide (AMP) histatin 1 (HTN1) was found to be the most differentially downregulated gene in AFRS. OBJECTIVE We sought to identify the molecular etiology of the downregulated expression of HTN1. METHODS We used RT-PCR to compare the expression of AMPs and a fungistasis assay to evaluate the antifungal activity of sinus secretions. Using flow cytometry, we characterized the presence of TH17/TH22 cells and signal transducer and activator of transcription (STAT) signaling from AFRS patients, non-AFRS CRSwNP patients, and healthy controls. RESULTS We confirmed decreased expression of AMPs in AFRS sinus mucosa with concordant decrease in antifungal activity in sinus secretions. IL-22 and IL-22-producing T cells were deficient within sinus mucosa of AFRS patients. In vitro studies demonstrated a defect in IL-6/STAT3 signaling critical for TH17/TH22 differentiation. Epithelial cells from AFRS patients could express AMPs when stimulated with exogenous IL-22/IL-17 and circulating TH17 cell abundance was normal. CONCLUSIONS Similar to other hyper-IgE syndromes, but distinct from CRSwNP, AFRS patients express a defect in STAT3 activation limited to IL-6-dependent STAT3 phosphorylation that is critical for TH17/TH22 differentiation. This defect leads to a local deficiency of IL-17/IL-22 cytokines and deficient AMP expression within diseased sinus mucosa of AFRS patients. Our findings support evaluation of therapeutic approaches that enhance airway AMP production in AFRS.
Collapse
Affiliation(s)
- Hua Sun
- Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School of The University of Texas Health Science Center at Houston, Houston, Tex; Department of Otorhinolaryngology-Head and Neck Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Tex
| | - J Morgan Knight
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Tex
| | - Yi-Dong Li
- Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School of The University of Texas Health Science Center at Houston, Houston, Tex; Department of Otorhinolaryngology-Head and Neck Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Tex
| | - Faramarz Ashoori
- Department of Otorhinolaryngology-Head and Neck Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Tex
| | - Martin J Citardi
- Department of Otorhinolaryngology-Head and Neck Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Tex
| | - William C Yao
- Department of Otorhinolaryngology-Head and Neck Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Tex
| | - David B Corry
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Tex; Department of Medicine, Baylor College of Medicine, Houston, Tex; Biology of Inflammation Center and Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Tex
| | - Amber U Luong
- Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School of The University of Texas Health Science Center at Houston, Houston, Tex; Department of Otorhinolaryngology-Head and Neck Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Tex.
| |
Collapse
|
5
|
Yoon G, Puentes R, Tran J, Multani A, Cobo ER. The role of cathelicidins in neutrophil biology. J Leukoc Biol 2024; 116:689-705. [PMID: 38758953 DOI: 10.1093/jleuko/qiae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024] Open
Abstract
Despite their relatively short lifespan, neutrophils are tasked with counteracting pathogens through various functions, including phagocytosis, production of reactive oxygen species, neutrophil extracellular traps (NETs), and host defense peptides. Regarding the latter, small cationic cathelicidins present a conundrum in neutrophil function. Although primarily recognized as microbicides with an ability to provoke pores in microbial cell walls, the ability of cathelicidin to modulate key neutrophil functions is also of great importance, including the release of chemoattractants, cytokines, and reactive oxygen species, plus prolonging neutrophil lifespan. Cumulative evidence indicates a less recognized role of cathelicidin as an "immunomodulator"; however, this term is not always explicit, and its relevance in neutrophil responses during infection and inflammation is seldom discussed. This review compiles and discusses studies of how neutrophils use cathelicidin to respond to infections, while also acknowledging immunomodulatory aspects of cathelicidin through potential crosstalk between sources of the peptide.
Collapse
Affiliation(s)
- Grace Yoon
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Rodrigo Puentes
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Jacquelyn Tran
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Anmol Multani
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Eduardo R Cobo
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
6
|
Whitmore M, Tobin I, Burkardt A, Zhang G. Nutritional Modulation of Host Defense Peptide Synthesis: A Novel Host-Directed Antimicrobial Therapeutic Strategy? Adv Nutr 2024; 15:100277. [PMID: 39053604 PMCID: PMC11381887 DOI: 10.1016/j.advnut.2024.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
The escalating threat of antimicrobial resistance underscores the imperative for innovative therapeutic strategies. Host defense peptides (HDPs), integral components of innate immunity, exhibit profound antimicrobial and immunomodulatory properties. Various dietary compounds, such as short-chain fatty acids, vitamins, minerals, sugars, amino acids, phytochemicals, bile acids, probiotics, and prebiotics have been identified to enhance the synthesis of endogenous HDPs without provoking inflammatory response or compromising barrier integrity. Additionally, different classes of these compounds synergize in augmenting HDP synthesis and disease resistance. Moreover, dietary supplementation of several HDP-inducing compounds or their combinations have demonstrated robust protection in rodents, rabbits, pigs, cattle, and chickens from experimental infections. However, the efficacy of these compounds in inducing HDP synthesis varies considerably among distinct compounds. Additionally, the regulation of HDP genes occurs in a gene-specific, cell type-specific, and species-specific manner. In this comprehensive review, we systematically summarized the modulation of HDP synthesis and the mechanism of action attributed to each major class of dietary compounds, including their synergistic combinations, across a spectrum of animal species including humans. We argue that the ability to enhance innate immunity and barrier function without triggering inflammation or microbial resistance positions the nutritional modulation of endogenous HDP synthesis as a promising host-directed approach for mitigating infectious diseases and antimicrobial resistance. These HDP-inducing compounds, particularly in combinations, harbor substantial clinical potential for further exploration in antimicrobial therapies for both human and other animals.
Collapse
Affiliation(s)
- Melanie Whitmore
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Isabel Tobin
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Amanda Burkardt
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States.
| |
Collapse
|
7
|
Myszor IT, Lapka K, Hermannsson K, Rekha RS, Bergman P, Gudmundsson GH. Bile acid metabolites enhance expression of cathelicidin antimicrobial peptide in airway epithelium through activation of the TGR5-ERK1/2 pathway. Sci Rep 2024; 14:6750. [PMID: 38514730 PMCID: PMC10957955 DOI: 10.1038/s41598-024-57251-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
Signals for the maintenance of epithelial homeostasis are provided in part by commensal bacteria metabolites, that promote tissue homeostasis in the gut and remote organs as microbiota metabolites enter the bloodstream. In our study, we investigated the effects of bile acid metabolites, 3-oxolithocholic acid (3-oxoLCA), alloisolithocholic acid (AILCA) and isolithocholic acid (ILCA) produced from lithocholic acid (LCA) by microbiota, on the regulation of innate immune responses connected to the expression of host defense peptide cathelicidin in lung epithelial cells. The bile acid metabolites enhanced expression of cathelicidin at low concentrations in human bronchial epithelial cell line BCi-NS1.1 and primary bronchial/tracheal cells (HBEpC), indicating physiological relevance for modulation of innate immunity in airway epithelium by bile acid metabolites. Our study concentrated on deciphering signaling pathways regulating expression of human cathelicidin, revealing that LCA and 3-oxoLCA activate the surface G protein-coupled bile acid receptor 1 (TGR5, Takeda-G-protein-receptor-5)-extracellular signal-regulated kinase (ERK1/2) cascade, rather than the nuclear receptors, aryl hydrocarbon receptor, farnesoid X receptor and vitamin D3 receptor in bronchial epithelium. Overall, our study provides new insights into the modulation of innate immune responses by microbiota bile acid metabolites in the gut-lung axis, highlighting the differences in epithelial responses between different tissues.
Collapse
Affiliation(s)
- Iwona T Myszor
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Kornelia Lapka
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Kristjan Hermannsson
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Rokeya Sultana Rekha
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Bergman
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Gudmundur Hrafn Gudmundsson
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland.
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
8
|
Figgins EL, Arora P, Gao D, Porcelli E, Ahmed R, Daep CA, Keele G, Ryan LK, Diamond G. Enhancement of innate immunity in gingival epithelial cells by vitamin D and HDAC inhibitors. FRONTIERS IN ORAL HEALTH 2024; 5:1378566. [PMID: 38567313 PMCID: PMC10986367 DOI: 10.3389/froh.2024.1378566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction The human host defense peptide LL-37 is a component of the innate immune defense mechanisms of the oral cavity against colonization by microbes associated with periodontal disease. We have previously shown that the active form of vitamin D, 1,25(OH)2D3, can induce the expression of LL-37 in gingival epithelial cells (GEC), and prevent the invasion and growth of periopathogenic bacteria in these cells. Further, experimental vitamin D deficiency resulted in increased gingival inflammation and alveolar bone loss. Epidemiological studies have shown associations between vitamin D deficiency and periodontal disease in humans, suggesting application of vitamin D could be a useful therapeutic approach. Further, since we have shown the local activation of vitamin D by enzymes expressed in the GEC, we hypothesized that we could observe this enhancement with the stable, and inexpensive inactive form of vitamin D, which could be further increased with epigenetic regulators. Methods We treated 3-dimensional primary cultures of GEC topically with the inactive form of vitamin D, in the presence and absence of selected histone deacetylase (HDAC) inhibitors. LL-37 mRNA levels were quantified by quantitative RT-PCR, and inhibition of invasion of bacteria was measured by fluorescence microscopy. Results Vitamin D treatment led to an induction of LL-37 mRNA levels, as well as an inhibition of pro-inflammatory cytokine secretion. This effect was further enhanced by HDAC inhibitors, most strongly when the HDAC inhibitor, phenyl butyrate (PBA) was combined with Vitamin D3. This was observed both in solution and in a prototype gel formulation using sodium butyrate. Finally, this combination treatment led to an increase in the antimicrobial activity against infection by Porphyromonas gingivalis and Filifactor alocis, bacteria associated with periodontal lesions, as well as herpes simplex virus, which has also been shown to be associated with periodontal lesions. Conclusions Our results demonstrate that a combination of inactive vitamin D and sodium butyrate could be developed as a safe treatment for periodontal disease.
Collapse
Affiliation(s)
- Erika L. Figgins
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, United States
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Payal Arora
- Global Technology Center, Colgate Palmolive Company, Piscataway, NJ, United States
| | - Denny Gao
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Emily Porcelli
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, United States
| | - Rabab Ahmed
- Global Technology Center, Colgate Palmolive Company, Piscataway, NJ, United States
| | - Carlo Amorin Daep
- Global Technology Center, Colgate Palmolive Company, Piscataway, NJ, United States
| | - Garrett Keele
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Lisa K. Ryan
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
- Division of Infectious Disease and Global Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, FL, United States
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, United States
| | - Gill Diamond
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, United States
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, United States
| |
Collapse
|
9
|
Ma PF, Zhuo L, Yuan LP, Qi XH. Recent Advances in Vitamin D3 Intervention to Eradicate Helicobacter pylori Infection. J Multidiscip Healthc 2024; 17:825-832. [PMID: 38434485 PMCID: PMC10906669 DOI: 10.2147/jmdh.s454605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Helicobacter pylori (HP) infections affect approximately one-third of children worldwide. In China, the incidence of HP infection in children ranges from approximately 30% to 60%. In addition to damaging the gastrointestinal tract mucosa, HP infection in children can negatively affect their growth and development, hematology, respiratory and hepatobiliary system, skin, nutritional metabolism, and autoimmune system. However, the rate of HP eradication also fell considerably from the previous rate due to the presence of drug-resistant HP strains and the limited types of antibiotics that can be used in young patients. Vitamin D3 (VitD3) is a steroid hormone that can reduce inflammation in the stomach mucosa induced by HP and can alleviate and eradicate HP through a variety of pathways and mechanisms, including immune regulation and the stimulation of antimicrobial peptide (AMP) secretion and Ca2+ influx, to reestablish lysosomal acidification; thus, these results provide new strategies and ideas for the eradication of drug-resistant HP strains.
Collapse
Affiliation(s)
- Peng-Fei Ma
- Department of Gastroenterology, Children’s Hospital of Fudan University at Anhui (Anhui Provincial Children’s Hospital), Hefei, Anhui, People’s Republic of China
| | - Lin Zhuo
- Department of Gastroenterology, Children’s Hospital of Fudan University at Anhui (Anhui Provincial Children’s Hospital), Hefei, Anhui, People’s Republic of China
| | - Li-Ping Yuan
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Xiao-Hui Qi
- Department of Pediatrics, Children’s Hospital of Fudan University at Anhui (Anhui Provincial Children’s Hospital), Hefei, Anhui, People’s Republic of China
| |
Collapse
|
10
|
Liu T, Sun Z, Yang Z, Qiao X. Microbiota-derived short-chain fatty acids and modulation of host-derived peptides formation: Focused on host defense peptides. Biomed Pharmacother 2023; 162:114586. [PMID: 36989711 DOI: 10.1016/j.biopha.2023.114586] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The byproducts of bacterial fermentation known as short-chain fatty acids (SCFAs) are chemically comprised of a carboxylic acid component and a short hydrocarbon chain. Recent investigations have demonstrated that SCFAs can affect intestinal immunity by inducing endogenous host defense peptides (HDPs) and their beneficial effects on barrier integrity, gut health, energy supply, and inflammation. HDPs, which include defensins, cathelicidins, and C-type lectins, perform a significant function in innate immunity in gastrointestinal mucosal membranes. SCFAs have been demonstrated to stimulate HDP synthesis by intestinal epithelial cells via interactions with G protein-coupled receptor 43 (GPR43), activation of the Jun N-terminal kinase (JNK) and Mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways, and the cell growth pathways. Furthermore, SCFA butyrate has been demonstrated to enhance the number of HDPs released from macrophages. SCFAs promote monocyte-to-macrophage development and stimulate HDP synthesis in macrophages by inhibiting histone deacetylase (HDAC). Understanding the etiology of many common disorders might be facilitated by studies into the function of microbial metabolites, such as SCFAs, in the molecular regulatory processes of immune responses (e.g., HDP production). This review will focus on the current knowledge of the role and mechanism of microbiota-derived SCFAs in influencing the synthesis of host-derived peptides, particularly HDPs.
Collapse
|
11
|
Ayodele S, Kumar P, van Eyk A, Choonara YE. Advances in immunomodulatory strategies for host-directed therapies in combating tuberculosis. Biomed Pharmacother 2023; 162:114588. [PMID: 36989709 DOI: 10.1016/j.biopha.2023.114588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Tuberculosis (TB) maintains its infamous status regarding its detrimental effect on global health, causing the highest mortality by a single infectious agent. The presence of resistance and immune compromising disease favours the disease in maintaining its footing in the health care burden despite various anti-TB drugs used to fight it. Main factors contributing to resistance and difficulty in treating disease include prolonged treatment duration (at least 6 months) and severe toxicity, which further leads to patient non-compliance, and thus a ripple effect leading to therapeutic non-efficacy. The efficacy of new regimens demonstrates that targeting host factors concomitantly with the Mycobacterium tuberculosis (M.tb) strain is urgently required. Due to the huge expenses and time required of up to 20 years for new drug research and development, drug repurposing may be the most economical, circumspective, and conveniently faster journey to embark on. Host-directed therapy (HDT) will dampen the burden of the disease by acting as an immunomodulator, allowing it to defend the body against antibiotic-resistant pathogens whilst minimizing the possibility of developing new resistance to susceptible drugs. Repurposed drugs in TB act as host-directed therapies, acclimatizing the host immune cell to the presence of TB, improving its antimicrobial activity and time taken to get rid of the disease, whilst minimizing inflammation and tissue damage. In this review, we, therefore, explore possible immunomodulatory targets, HDT immunomodulatory agents, and their ability to improve clinical outcomes whilst minimizing the risk of drug resistance, through various pathway targeting and treatment duration reduction.
Collapse
|
12
|
Myszor IT, Gudmundsson GH. Modulation of innate immunity in airway epithelium for host-directed therapy. Front Immunol 2023; 14:1197908. [PMID: 37251385 PMCID: PMC10213533 DOI: 10.3389/fimmu.2023.1197908] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Innate immunity of the mucosal surfaces provides the first-line defense from invading pathogens and pollutants conferring protection from the external environment. Innate immune system of the airway epithelium consists of several components including the mucus layer, mucociliary clearance of beating cilia, production of host defense peptides, epithelial barrier integrity provided by tight and adherens junctions, pathogen recognition receptors, receptors for chemokines and cytokines, production of reactive oxygen species, and autophagy. Therefore, multiple components interplay with each other for efficient protection from pathogens that still can subvert host innate immune defenses. Hence, the modulation of innate immune responses with different inducers to boost host endogenous front-line defenses in the lung epithelium to fend off pathogens and to enhance epithelial innate immune responses in the immunocompromised individuals is of interest for host-directed therapy. Herein, we reviewed possibilities of modulation innate immune responses in the airway epithelium for host-directed therapy presenting an alternative approach to standard antibiotics.
Collapse
Affiliation(s)
- Iwona T. Myszor
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Gudmundur Hrafn Gudmundsson
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Barrier ML, Myszor IT, Sahariah P, Sigurdsson S, Carmena-Bargueño M, Pérez-Sánchez H, Gudmundsson GH. Aroylated phenylenediamine HO53 modulates innate immunity, histone acetylation and metabolism. Mol Immunol 2023; 155:153-164. [PMID: 36812763 DOI: 10.1016/j.molimm.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/18/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023]
Abstract
In the current context of antibiotic resistance, the need to find alternative treatment strategies is urgent. Our research aimed to use synthetized aroylated phenylenediamines (APDs) to induce the expression of cathelicidin antimicrobial peptide gene (CAMP) to minimize the necessity of antibiotic use during infection. One of these compounds, HO53, showed promising results in inducing CAMP expression in bronchial epithelium cells (BCi-NS1.1 hereafter BCi). Thus, to decipher the cellular effects of HO53 on BCi cells, we performed RNA sequencing (RNAseq) analysis after 4, 8 and 24 h treatment of HO53. The number of differentially expressed transcripts pointed out an epigenetic modulation. Yet, the chemical structure and in silico modeling indicated HO53 as a histone deacetylase (HDAC) inhibitor. When exposed to a histone acetyl transferase (HAT) inhibitor, BCi cells showed a decreased expression of CAMP. Inversely, when treated with a specific HDAC3 inhibitor (RGFP996), BCi cells showed an increased expression of CAMP, indicating acetylation status in cells as determinant for the induction of the expression of the gene CAMP expression. Interestingly, a combination treatment with both HO53 and HDAC3 inhibitor RGFP966 leads to a further increase of CAMP expression. Moreover, HDAC3 inhibition by RGFP966 leads to increased expression of STAT3 and HIF1A, both previously demonstrated to be involved in pathways regulating CAMP expression. Importantly, HIF1α is considered as a master regulator in metabolism. A significant number of genes of metabolic enzymes were detected in our RNAseq data with enhanced expression conveying a shift toward enhanced glycolysis. Overall, we are demonstrating that HO53 might have a translational value against infections in the future through a mechanism leading to innate immunity strengthening involving HDAC inhibition and shifting the cells towards an immunometabolism, which further favors innate immunity activation.
Collapse
Affiliation(s)
- Marjorie Laurence Barrier
- Department of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Iwona Teresa Myszor
- Department of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Priyanka Sahariah
- Department of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Snaevar Sigurdsson
- Department of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Miguel Carmena-Bargueño
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), UCAM Universidad Católica de Murcia, Guadalupe, Spain
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), UCAM Universidad Católica de Murcia, Guadalupe, Spain
| | - Gudmundur Hrafn Gudmundsson
- Department of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
14
|
Morio KA, Sternowski RH, Brogden KA. Induction of Endogenous Antimicrobial Peptides to Prevent or Treat Oral Infection and Inflammation. Antibiotics (Basel) 2023; 12:antibiotics12020361. [PMID: 36830272 PMCID: PMC9952314 DOI: 10.3390/antibiotics12020361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Antibiotics are often used to treat oral infections. Unfortunately, excessive antibiotic use can adversely alter oral microbiomes and promote the development of antibiotic-resistant microorganisms, which can be difficult to treat. An alternate approach could be to induce the local transcription and expression of endogenous oral antimicrobial peptides (AMPs). To assess the feasibility and benefits of this approach, we conducted literature searches to identify (i) the AMPs expressed in the oral cavity; (ii) the methods used to induce endogenous AMP expression; and (iii) the roles that expressed AMPs may have in regulating oral inflammation, immunity, healing, and pain. Search results identified human neutrophil peptides (HNP), human beta defensins (HBD), and cathelicidin AMP (CAMP) gene product LL-37 as prominent AMPs expressed by oral cells and tissues. HNP, HBD, and LL-37 expression can be induced by micronutrients (trace elements, elements, and vitamins), nutrients, macronutrients (mono-, di-, and polysaccharides, amino acids, pyropeptides, proteins, and fatty acids), proinflammatory agonists, thyroid hormones, and exposure to ultraviolet (UV) irradiation, red light, or near infrared radiation (NIR). Localized AMP expression can help reduce infection, inflammation, and pain and help oral tissues heal. The use of a specific inducer depends upon the overall objective. Inducing the expression of AMPs through beneficial foods would be suitable for long-term health protection. Additionally, the specialized metabolites or concentrated extracts that are utilized as dosage forms would maintain the oral and intestinal microbiome composition and control oral and intestinal infections. Inducing AMP expression using irradiation methodologies would be applicable to a specific oral treatment area in addition to controlling local infections while regulating inflammatory and healing processes.
Collapse
Affiliation(s)
| | | | - Kim A. Brogden
- College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA
- Correspondence:
| |
Collapse
|
15
|
Baindara P, Ganguli S, Chakraborty R, Mandal SM. Preventing Respiratory Viral Diseases with Antimicrobial Peptide Master Regulators in the Lung Airway Habitat. Clin Pract 2023; 13:125-147. [PMID: 36648852 PMCID: PMC9844411 DOI: 10.3390/clinpract13010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
The vast surface area of the respiratory system acts as an initial site of contact for microbes and foreign particles. The whole respiratory epithelium is covered with a thin layer of the airway and alveolar secretions. Respiratory secretions contain host defense peptides (HDPs), such as defensins and cathelicidins, which are the best-studied antimicrobial components expressed in the respiratory tract. HDPs have an important role in the human body's initial line of defense against pathogenic microbes. Epithelial and immunological cells produce HDPs in the surface fluids of the lungs, which act as endogenous antibiotics in the respiratory tract. The production and action of these antimicrobial peptides (AMPs) are critical in the host's defense against respiratory infections. In this study, we have described all the HDPs secreted in the respiratory tract as well as how their expression is regulated during respiratory disorders. We focused on the transcriptional expression and regulation mechanisms of respiratory tract HDPs. Understanding how HDPs are controlled throughout infections might provide an alternative to relying on the host's innate immunity to combat respiratory viral infections.
Collapse
Affiliation(s)
- Piyush Baindara
- Department of Radiation Oncology, University of Missouri, Columbia, MO 65211, USA
| | - Sriradha Ganguli
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, P.O. NBU, Siliguri 734013, West Bengal, India
| | - Ranadhir Chakraborty
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, P.O. NBU, Siliguri 734013, West Bengal, India
| | - Santi M. Mandal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
16
|
Huang FC, Huang SC. The Pivotal Role of Aryl Hydrocarbon Receptor-Regulated Tight Junction Proteins and Innate Immunity on the Synergistic Effects of Postbiotic Butyrate and Active Vitamin D3 to Defense against Microbial Invasion in Salmonella Colitis. Nutrients 2023; 15:305. [PMID: 36678175 PMCID: PMC9860786 DOI: 10.3390/nu15020305] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Our recent report illustrated the unitedly advantageous effects of postbiotic butyrate on active vitamin D3 (VD3)-orchestrated innate immunity in Salmonella colitis. There is growing awareness that aryl hydrocarbon receptor (AhR) can regulate intestinal immunity and barrier function, through modulating cecal inflammation and junction proteins expression. Hence, we researched the participation of AhR-regulated tight junction functions on the united effects of butyrate and VD3 on intestinal defense to Salmonella infection. Salmonella colitis model were elicited by oral gavage with 1 × 108 CFU of a S. typhimurium wild-type strain SL1344 in C57BL/6 mice. Before and after the colitis generation, mice were fed with butyrate and/or VD3 by oral gavage in the absence or presence of intraperitoneal injection of AhR inhibitor for 4 and 7 days, respectively. We observed that butyrate and VD3 could concert together to reduce the invasion of Salmonella in colitis mice by enhancing cecal cytokines and antimicrobial peptides expression and reducing zonulin and claudin-2 protein expressions in mucosal stain, compared to single treatment, which were counteracted by AhR inhibitor. It implies that AhR is involved in the united effects of butyrate and VD3 on the intestinal defense to Salmonella infection in colitis mice. This study discloses the promising alternative therapy of combining postbiotic and VD3 for invasive Salmonellosis and the pivotal role of AhR pathway.
Collapse
Affiliation(s)
- Fu-Chen Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Shun-Chen Huang
- Department of Anatomic Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
17
|
Yu Z, Shen X, Wang A, Hu C, Chen J. The gut microbiome: A line of defense against tuberculosis development. Front Cell Infect Microbiol 2023; 13:1149679. [PMID: 37143744 PMCID: PMC10152471 DOI: 10.3389/fcimb.2023.1149679] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
The tuberculosis (TB) burden remains a significant global public health concern, especially in less developed countries. While pulmonary tuberculosis (PTB) is the most common form of the disease, extrapulmonary tuberculosis, particularly intestinal TB (ITB), which is mostly secondary to PTB, is also a significant issue. With the development of sequencing technologies, recent studies have investigated the potential role of the gut microbiome in TB development. In this review, we summarized studies investigating the gut microbiome in both PTB and ITB patients (secondary to PTB) compared with healthy controls. Both PTB and ITB patients show reduced gut microbiome diversity characterized by reduced Firmicutes and elevated opportunistic pathogens colonization; Bacteroides and Prevotella were reported with opposite alteration in PTB and ITB patients. The alteration reported in TB patients may lead to a disequilibrium in metabolites such as short-chain fatty acid (SCFA) production, which may recast the lung microbiome and immunity via the "gut-lung axis". These findings may also shed light on the colonization of Mycobacterium tuberculosis in the gastrointestinal tract and the development of ITB in PTB patients. The findings highlight the crucial role of the gut microbiome in TB, particularly in ITB development, and suggest that probiotics and postbiotics might be useful supplements in shaping a balanced gut microbiome during TB treatment.
Collapse
Affiliation(s)
- Ziqi Yu
- Munich Medical Research School, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Xiang Shen
- Munich Medical Research School, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Aiyao Wang
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Chong Hu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Jianyong Chen
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
- *Correspondence: Jianyong Chen,
| |
Collapse
|
18
|
Cai Y, Folkerts G, Braber S. Non-Digestible Oligosaccharides: A Novel Treatment for Respiratory Infections? Nutrients 2022; 14:nu14235033. [PMID: 36501062 PMCID: PMC9736878 DOI: 10.3390/nu14235033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Emerging antimicrobial resistance in respiratory infections requires novel intervention strategies. Non-digestible oligosaccharides (NDOs) are a diverse group of carbohydrates with broad protective effects. In addition to promoting the colonization of beneficial gut microbiota and maintaining the intestinal homeostasis, NDOs act as decoy receptors, effectively blocking the attachment of pathogens on host cells. NDOs also function as a bacteriostatic agent, inhibiting the growth of specific pathogenic bacteria. Based on this fact, NDOs potentiate the actions of antimicrobial drugs. Therefore, there is an increasing interest in characterizing the anti-infective properties of NDOs. This focused review provides insights into the mechanisms by which representative NDOs may suppress respiratory infections by targeting pathogens and host cells. We summarized the most interesting mechanisms of NDOs, including maintenance of gut microbiota homeostasis, interference with TLR-mediated signaling, anti-oxidative effects and bacterial toxin neutralization, bacteriostatic and bactericidal effects, and anti-adhesion or anti-invasive properties. A detailed understanding of anti-infective mechanisms of NDOs against respiratory pathogens may contribute to the development of add-on therapy or alternatives to antimicrobials.
Collapse
Affiliation(s)
- Yang Cai
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
- Correspondence: (Y.C.); (S.B.)
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
- Correspondence: (Y.C.); (S.B.)
| |
Collapse
|
19
|
Andrographolide and 4-Phenylbutyric Acid Administration Increase the Expression of Antimicrobial Peptides Beta-Defensin-1 and Cathelicidin and Reduce Mortality in Murine Sepsis. Antibiotics (Basel) 2022; 11:antibiotics11111629. [DOI: 10.3390/antibiotics11111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
Antibiotic resistance is a global threat and requires the search for new treatment strategies. Natural antimicrobial peptides (AMPs) have pronounced antibacterial, antiviral, antifungal, and antitumor activity. AMPs’ clinical use is complicated by the high synthesis costs and rapid proteolytic degradation. The search for small molecules, inducers of endogenous AMP expression, could become a new approach. Here, we investigated for the first time the effect of seven small molecules (andrographolide, levofloxacin, azithromycin, montelukast, 4-phenylbutyric acid, rosuvastatin and valsartan) on AMP (beta-defensin-1, hBD-1 and cathelicidin, LL-37) serum levels in rats. In control groups, the level of hBD-1 was 295.0 (292.9–315.4) pg/mL, and for LL-37, it was 223.8 (213.3–233.6) pg/mL. Andrographolide (ANDR) and 4-phenylbutyric acid (4-PHBA) administration significantly enhanced the level of both AMPs. The hBD-1 level was 581.5 (476.3–607.7) pg/mL for ANDR and 436.9 (399.0–531.6) pg/mL for 4-PHBA. The LL-37 level was 415.4 (376.2–453.8) pg/mL for ANDR and 398.9 (355.7–410.1) pg/mL for 4-PHBA. Moreover, we have shown that these compounds reduce mortality in a murine model of sepsis caused by a carbapenem-resistant Klebsiella aerogenes isolate. From our point of view, these small molecules are promising candidates for further study as potent AMP inducers. The data obtained allow the development of new strategies to combat antibiotic resistance and infectious diseases.
Collapse
|
20
|
Siednamohammeddeen N, Badi R, Mohammeddeen T, Enan K, AmalSaeed. The effect of gum Arabic supplementation on cathelicidin expression in monocyte derived macrophages in mice. BMC Complement Med Ther 2022; 22:149. [PMID: 35650596 PMCID: PMC9158159 DOI: 10.1186/s12906-022-03627-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background Antimicrobial peptides (AMPs) are important effectors of the innate defense system. Cathelicidins, (CRAMP in mouse/rat, LL-37 in human) is one of the two major classes of AMPs in humans. The upregulation of LL-37 synthesis is a novel non-antibiotic approach to prevent or treat infectious diseases. Butyrate was found to induce Cathelicidin expression. Gum Arabic (GA), an exudate from Acacia senegaltree, is known for its prebiotic effects. Fermentation of GA by colonic bacteria increases serum butyrate concentrations. This study was conducted to investigate if GA supplementation can increase Cathelicidin expression in macrophages. Methods The study was an in-vivo experiment in mice. Thirty mice were randomly divided into three groups, ten mice per group. The two intervention groups received GA dissolved in drinking water in two different concentrations (15% w/v and 30% w/v) for 28 days. The third group served as a control. Blood was collected on Day 29 to isolate peripheral blood mononuclear cells (PBMC) which were cultured to obtain monocyte derived macrophages (MDMs). The transcription level of CRAMP was determined in MDMsby qPCR. Results We detected a significant increase (p = 0.023) in CRAMP expression in MDMs following 28 days of 15% GA supplementation, compared to the control group, but there was no significant change in the group on 30% GA supplementation (p = 0.055). Conclusion GAsupplementation can induce Cathelicidin expression in MDMs and the effect is dose dependent. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03627-9.
Collapse
Affiliation(s)
| | - Rehab Badi
- Physiology Department, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Tahane Mohammeddeen
- Department of Microbiology, Faculty of Medicine, Red Sea University, Portsudan, Sudan
| | - Khalid Enan
- Department of Virology, Central Laboratory, Ministry of Higher Education and Scientific Reaserch, Khartoum, Sudan
| | - AmalSaeed
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
21
|
Aloul KM, Nielsen JE, Defensor EB, Lin JS, Fortkort JA, Shamloo M, Cirillo JD, Gombart AF, Barron AE. Upregulating Human Cathelicidin Antimicrobial Peptide LL-37 Expression May Prevent Severe COVID-19 Inflammatory Responses and Reduce Microthrombosis. Front Immunol 2022; 13:880961. [PMID: 35634307 PMCID: PMC9134243 DOI: 10.3389/fimmu.2022.880961] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/11/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is characterized by hyperactivation by inflammatory cytokines and recruitment of macrophages, neutrophils, and other immune cells, all hallmarks of a strong inflammatory response that can lead to severe complications and multi-organ damage. Mortality in COVID-19 patients is associated with a high prevalence of neutrophil extracellular trap (NET) formation and microthrombosis that are exacerbated by hyperglycemia, diabetes, and old age. SARS-CoV-2 infection in humans and non-human primates have revealed long-term neurological consequences of COVID-19, possibly concomitant with the formation of Lewy bodies in the brain and invasion of the nervous system via the olfactory bulb. In this paper, we review the relevance of the human cathelicidin LL-37 in SARS-CoV-2 infections. LL-37 is an immunomodulatory, host defense peptide with direct anti-SARS-CoV-2 activity, and pleiotropic effects on the inflammatory response, neovascularization, Lewy body formation, and pancreatic islet cell function. The bioactive form of vitamin D and a number of other compounds induce LL-37 expression and one might predict its upregulation, could reduce the prevalence of severe COVID-19. We hypothesize upregulation of LL-37 will act therapeutically, facilitating efficient NET clearance by macrophages, speeding endothelial repair after inflammatory tissue damage, preventing α-synuclein aggregation, and supporting blood-glucose level stabilization by facilitating insulin release and islet β-cell neogenesis. In addition, it has been postulated that LL-37 can directly bind the S1 domain of SARS-CoV-2, mask angiotensin converting enzyme 2 (ACE2) receptors, and limit SARS-CoV-2 infection. Purposeful upregulation of LL-37 could also serve as a preventative and therapeutic strategy for SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Karim M. Aloul
- Department of Bioengineering, Schools of Medicine and of Engineering, Stanford University, Stanford, CA, United States
| | - Josefine Eilsø Nielsen
- Department of Bioengineering, Schools of Medicine and of Engineering, Stanford University, Stanford, CA, United States
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Erwin B. Defensor
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Jennifer S. Lin
- Department of Bioengineering, Schools of Medicine and of Engineering, Stanford University, Stanford, CA, United States
| | - John A. Fortkort
- Department of Bioengineering, Schools of Medicine and of Engineering, Stanford University, Stanford, CA, United States
| | - Mehrdad Shamloo
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Jeffrey D. Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M College of Medicine, Bryan, TX, United States
| | - Adrian F. Gombart
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, United States
- The Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Annelise E. Barron
- Department of Bioengineering, Schools of Medicine and of Engineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
22
|
Barone S, Cassese E, Alfano AI, Brindisi M, Summa V. Chasing a Breath of Fresh Air in Cystic Fibrosis (CF): Therapeutic Potential of Selective HDAC6 Inhibitors to Tackle Multiple Pathways in CF Pathophysiology. J Med Chem 2022; 65:3080-3097. [PMID: 35148101 PMCID: PMC8883472 DOI: 10.1021/acs.jmedchem.1c02067] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
Compelling new support
has been provided for histone deacetylase
isoform 6 (HDAC6) as a common thread in the generation of the dysregulated
proinflammatory and fibrotic phenotype in cystic fibrosis (CF). HDAC6
also plays a crucial role in bacterial clearance or killing as a direct
consequence of its effects on CF immune responses. Inhibiting HDAC6
functions thus eventually represents an innovative and effective strategy
to tackle multiple aspects of CF-associated lung disease. In this
Perspective, we not only showcase the latest evidence linking HDAC(6)
activity and expression with CF phenotype but also track the new dawn
of HDAC(6) modulators in CF and explore potentialities and future
perspectives in the field.
Collapse
Affiliation(s)
- Simona Barone
- Department of Pharmacy, Department of Excellence 2018-2022, School of Medicine and Surgery, University of Naples "Federico II", Via D. Montesano 49, I-80131 Naples, Italy
| | - Emilia Cassese
- Department of Pharmacy, Department of Excellence 2018-2022, School of Medicine and Surgery, University of Naples "Federico II", Via D. Montesano 49, I-80131 Naples, Italy
| | - Antonella Ilenia Alfano
- Department of Pharmacy, Department of Excellence 2018-2022, School of Medicine and Surgery, University of Naples "Federico II", Via D. Montesano 49, I-80131 Naples, Italy
| | - Margherita Brindisi
- Department of Pharmacy, Department of Excellence 2018-2022, School of Medicine and Surgery, University of Naples "Federico II", Via D. Montesano 49, I-80131 Naples, Italy
| | - Vincenzo Summa
- Department of Pharmacy, Department of Excellence 2018-2022, School of Medicine and Surgery, University of Naples "Federico II", Via D. Montesano 49, I-80131 Naples, Italy
| |
Collapse
|
23
|
Machado MG, Sencio V, Trottein F. Short-Chain Fatty Acids as a Potential Treatment for Infections: a Closer Look at the Lungs. Infect Immun 2021; 89:e0018821. [PMID: 34097474 PMCID: PMC8370681 DOI: 10.1128/iai.00188-21] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are the main metabolites produced by the gut microbiota via the fermentation of complex carbohydrates and fibers. Evidence suggests that SCFAs play a role in the control of infections through direct action both on microorganisms and on host signaling. This review summarizes the main microbicidal effects of SCFAs and discusses studies highlighting the effect of SCFAs in the virulence and viability of microorganisms. We also describe the diverse and complex modes of action of the SCFAs on the immune system in the face of infections with a specific focus on bacterial and viral respiratory infections. A growing body of evidence suggests that SCFAs protect against lung infections. Finally, we present potential strategies that may be leveraged to exploit the biological properties of SCFAs for increasing effectiveness and optimizing patient benefits.
Collapse
Affiliation(s)
- Marina Gomes Machado
- Centre d’Infection et d’Immunité de Lille, INSERM U1019, CNRS UMR 9017, University of Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, ICB, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Valentin Sencio
- Centre d’Infection et d’Immunité de Lille, INSERM U1019, CNRS UMR 9017, University of Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - François Trottein
- Centre d’Infection et d’Immunité de Lille, INSERM U1019, CNRS UMR 9017, University of Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
24
|
Rodríguez-Carlos A, Jacobo-Delgado YM, Santos-Mena AO, Rivas-Santiago B. Modulation of cathelicidin and defensins by histone deacetylase inhibitors: A potential treatment for multi-drug resistant infectious diseases. Peptides 2021; 140:170527. [PMID: 33744370 DOI: 10.1016/j.peptides.2021.170527] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022]
Abstract
Infectious diseases are an important growing public health problem, which perspective has worsened due to the increasing number of drug-resistant strains in the last few years. Although diverse solutions have been proposed, one viable solution could be the use of immune system modulators. The induction of the immune response can be increased by histone deacetylase inhibitors (iHDAC), which in turn modulate the chromatin and increase the activation of different cellular pathways and nuclear factors such as STAT3, HIF-1α NF-kB, C/EBPα and, AP-1. These pathways are capable to promote several immune response-related molecules including those with antimicrobial properties such as antimicrobial peptides (AMPs) that lead to the elimination of pathogens including multi drug-resistant strains.
Collapse
Affiliation(s)
- Adrián Rodríguez-Carlos
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | | | - Alan O Santos-Mena
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - Bruno Rivas-Santiago
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico.
| |
Collapse
|
25
|
Rao Muvva J, Ahmed S, Rekha RS, Kalsum S, Groenheit R, Schön T, Agerberth B, Bergman P, Brighenti S. Immunomodulatory Agents Combat Multidrug-Resistant Tuberculosis by Improving Antimicrobial Immunity. J Infect Dis 2021; 224:332-344. [PMID: 33606878 PMCID: PMC8280489 DOI: 10.1093/infdis/jiab100] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/13/2021] [Indexed: 12/15/2022] Open
Abstract
Background Multidrug-resistant (MDR) tuberculosis has low treatment success rates, and new treatment strategies are needed. We explored whether treatment with active vitamin D3 (vitD) and phenylbutyrate (PBA) could improve conventional chemotherapy by enhancing immune-mediated eradication of Mycobacterium tuberculosis. Methods A clinically relevant model was used consisting of human macrophages infected with M. tuberculosis isolates (n = 15) with different antibiotic resistance profiles. The antimicrobial effect of vitD+PBA, was tested together with rifampicin or isoniazid. Methods included colony-forming units (intracellular bacterial growth), messenger RNA expression analyses (LL-37, β-defensin, nitric oxide synthase, and dual oxidase 2), RNA interference (LL-37-silencing in primary macrophages), and Western blot analysis and confocal microscopy (LL-37 and LC3 protein expression). Results VitD+PBA inhibited growth of clinical MDR tuberculosis strains in human macrophages and strengthened intracellular growth inhibition of rifampicin and isoniazid via induction of the antimicrobial peptide LL-37 and LC3-dependent autophagy. Gene silencing of LL-37 expression enhanced MDR tuberculosis growth in vitD+PBA–treated macrophages. The combination of vitD+PBA and isoniazid were as effective in reducing intracellular MDR tuberculosis growth as a >125-fold higher dose of isoniazid alone, suggesting potent additive effects of vitD+PBA with isoniazid. Conclusions Immunomodulatory agents that trigger multiple immune pathways can strengthen standard MDR tuberculosis treatment and contribute to next-generation individualized treatment options for patients with difficult-to-treat pulmonary tuberculosis.
Collapse
Affiliation(s)
- Jagadeeswara Rao Muvva
- Center for Infectious Medicine (CIM), Department of Medicine, ANA Futura, Karolinska Institutet, Huddinge, Sweden
| | - Sultan Ahmed
- Clinical Microbiology, Department of Laboratory Medicine (Labmed), ANA Futura, Karolinska Institutet, Huddinge, Sweden
| | - Rokeya Sultana Rekha
- Clinical Microbiology, Department of Laboratory Medicine (Labmed), ANA Futura, Karolinska Institutet, Huddinge, Sweden
| | - Sadaf Kalsum
- Center for Infectious Medicine (CIM), Department of Medicine, ANA Futura, Karolinska Institutet, Huddinge, Sweden
| | - Ramona Groenheit
- Department of Microbiology, Public Health Agency of Sweden , Solna, Sweden
| | - Thomas Schön
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, and Department of Clinical Microbiology and Infectious Diseases, Kalmar County Hospital, Kalmar, Sweden
| | - Birgitta Agerberth
- Clinical Microbiology, Department of Laboratory Medicine (Labmed), ANA Futura, Karolinska Institutet, Huddinge, Sweden
| | - Peter Bergman
- Clinical Microbiology, Department of Laboratory Medicine (Labmed), ANA Futura, Karolinska Institutet, Huddinge, Sweden
| | - Susanna Brighenti
- Center for Infectious Medicine (CIM), Department of Medicine, ANA Futura, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
26
|
Role of 4-hydroxybutyrate in increased resistance to surgical site infections associated with surgical meshes. Biomaterials 2020; 267:120493. [PMID: 33202331 DOI: 10.1016/j.biomaterials.2020.120493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/26/2022]
Abstract
An increased resistance to surgical site infections has been associated with surgical meshes composed of naturally occurring materials, including poly-4-hydroxybutrate (4HB). 4HB is a naturally occurring short-chain fatty acid that has been shown to promote endogenous expression of the Cramp gene coding for the antimicrobial peptide (AMP) cathelicidin LL-37 in murine bone marrow-derived macrophages. The molecular pathways involved in the 4HB-induced cathelicidin LL-37 expression have not yet been identified. The present study showed that transcriptional activation of the Cramp gene by 4HB is independent of inhibition of histone deacetylase (HDAC) activity, and that upregulation of Cramp is modulated by the G-protein coupled receptor GPR109A. Furthermore, an intracellular signaling cascade that promotes the activation of the MAP kinases, p38 and JNK, and a subsequent NF-κB phosphorylation downstream from p38 is essential for the AMP transcriptional response in 4HB-stimulated macrophages. The findings provide a solid scientific basis and rationale for the decreased incidence of surgical site infections with the use of this type of surgical meshes. Further clinical significance is found in the fact that the 4HB activated molecular pathway includes common targets of frequently used nonsteroidal anti-inflammatory drugs (NSAIDs) and other FDA approved drugs recognizing G-protein coupled receptors.
Collapse
|
27
|
Zhou A, Li L, Zhao G, Min L, Liu S, Zhu S, Guo Q, Liu C, Zhang S, Li P. Vitamin D3 Inhibits Helicobacter pylori Infection by Activating the VitD3/VDR-CAMP Pathway in Mice. Front Cell Infect Microbiol 2020; 10:566730. [PMID: 33194806 PMCID: PMC7646218 DOI: 10.3389/fcimb.2020.566730] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/27/2020] [Indexed: 01/10/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is closely associated with the occurrence and development of gastric diseases. Therefore, eliminating H. pylori infection should help to prevent gastric diseases. Vitamin D3 (VitD3, 1,25(OH)2D3) was previously observed to exhibit anti-H. pylori infection activity in clinic, but these results were reported in heterogeneous in vivo studies without elucidation of the underlying mechanisms. In the present study, we established H. pylori infection models in both wild-type and VDR knockdown (VDR-KD) mice, which were used to demonstrate that VitD3 inhibits H. pylori infection by enhancing the expression of VitD receptor (VDR) and cathelicidin antimicrobial peptide (CAMP). Furthermore, VDR-KD mice that exhibited lower VDR expression were more susceptible to H. pylori infection. In cultured mouse primary gastric epithelial cells, we further demonstrated that the VitD3/VDR complex binds to the CAMP promoter region to increase its expression. These data provide a mechanistic explanation of the anti-H. pylori infection activity of VitD3 at the molecular level in mice and suggest a new avenue for the clinical management of H. pylori eradication therapy.
Collapse
Affiliation(s)
- Anni Zhou
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lei Li
- Department of Digestive Diseases, Affiliated Hospital for Wei Fang Medical University, Weifang, China
| | - Guiping Zhao
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Li Min
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Si Liu
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shengtao Zhu
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qingdong Guo
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chunjie Liu
- Institute of Biomedical Engineering, Academy of Military Medical Sciences of the Chinese PLA, Beijing, China
| | - Shutian Zhang
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Peng Li
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
A Small Molecule, 4-Phenylbutyric Acid, Suppresses HCV Replication via Epigenetically Induced Hepatic Hepcidin. Int J Mol Sci 2020; 21:ijms21155516. [PMID: 32752233 PMCID: PMC7432483 DOI: 10.3390/ijms21155516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 01/02/2023] Open
Abstract
Hepatic hepcidin is a well-known major iron regulator and has been reported to be closely related to hepatitis C virus (HCV) replication. However, pharmacological targeting of the hepcidin in HCV replication has not been reported. A short-chain fatty acid, 4-Phenyl butyrate (4-PBA), is an acid chemical chaperone that acts as a histone deacetylase inhibitor (HDACi) to promote chromosomal histone acetylation. Here, we investigated the therapeutic effect of 4-PBA on hepcidin expression and HCV replication. We used HCV genotype 1b Huh 7.5-Con1 replicon cells and engraftment of NOD/SCID mice as in vitro and in vivo models to test the effect of 4-PBA. It was found that 4-PBA inhibited HCV replication in Huh7.5-Con1 replicon cells in a concentration- and time-dependent manner through the induction of hepcidin expression by epigenetic modification and subsequent upregulation of interferon-α signaling. HCV formed a membranous web composed of double-membrane vesicles and was utilized for RNA replication. Moreover, 4-PBA also disrupted the integrity of the membranous web and interfered with the molecular interactions critical for the assembly of the HCV replication complex. These findings suggest that 4-PBA is a key epigenetic inducer of anti-HCV hepatic hepcidin and might at least in part play a role in targeting host factors related to HCV infection as an attractive complement to current HCV therapies.
Collapse
|
29
|
Innate Effector Systems in Primary Human Macrophages Sensitize Multidrug-Resistant Klebsiella pneumoniae to Antibiotics. Infect Immun 2020; 88:IAI.00186-20. [PMID: 32513857 DOI: 10.1128/iai.00186-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/26/2022] Open
Abstract
Infections caused by multidrug-resistant (MDR) Klebsiella pneumoniae are difficult to treat with conventional antibiotics. Thus, alternative strategies to control the growth of MDR Klebsiella are warranted. We hypothesized that activation of innate effector systems could sensitize MDR K. pneumoniae to conventional antibiotics. Thus, human primary macrophages were stimulated with compounds known to activate innate immunity (vitamin D3, phenylbutyrate [PBA], and the aroylated phenylenediamine HO53) and then infected with MDR Klebsiella in the presence or absence of antibiotics. Antibiotics alone were ineffective against MDR Klebsiella in the cellular model, whereas vitamin D3, PBA, and HO53 reduced intracellular growth by up to 70%. The effect was further improved when the innate activators were combined with antibiotics. Vitamin D3- and PBA-induced bacterial killing was dependent on CAMP gene expression, whereas HO53 needed the production of reactive oxygen species (ROS), as shown in cells where the CYBB gene was silenced and in cells from a patient with reduced ROS production due to a deletion in the CYBB gene and skewed lyonization. The combination of innate effector activation by vitamin D3, PBA, and HO53 was effective in sensitizing MDR Klebsiella to conventional antibiotics in a primary human macrophage model. This study provides new evidence for future treatment options for K. pneumoniae.
Collapse
|
30
|
Puccetti M, Xiroudaki S, Ricci M, Giovagnoli S. Postbiotic-Enabled Targeting of the Host-Microbiota-Pathogen Interface: Hints of Antibiotic Decline? Pharmaceutics 2020; 12:E624. [PMID: 32635461 PMCID: PMC7408102 DOI: 10.3390/pharmaceutics12070624] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Mismanagement of bacterial infection therapies has undermined the reliability and efficacy of antibiotic treatments, producing a profound crisis of the antibiotic drug market. It is by now clear that tackling deadly infections demands novel strategies not only based on the mere toxicity of anti-infective compounds. Host-directed therapies have been the first example as novel treatments with alternate success. Nevertheless, recent advances in the human microbiome research have provided evidence that compounds produced by the microbial metabolism, namely postbiotics, can have significant impact on human health. Such compounds target the host-microbe-pathogen interface rescuing biotic and immune unbalances as well as inflammation, thus providing novel therapeutic opportunities. This work discusses critically, through literature review and personal contributions, these novel nonantibiotic treatment strategies for infectious disease management and resistance prevention, which could represent a paradigm change rocking the foundation of current antibiotic therapy tenets.
Collapse
Affiliation(s)
| | | | | | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, via del Liceo 1, University of Perugia, 06123 Perugia, Italy; (M.P.); (S.X.); (M.R.)
| |
Collapse
|
31
|
Ching C, Schwartz L, Spencer JD, Becknell B. Innate immunity and urinary tract infection. Pediatr Nephrol 2020; 35:1183-1192. [PMID: 31197473 PMCID: PMC6908784 DOI: 10.1007/s00467-019-04269-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/17/2019] [Accepted: 04/25/2019] [Indexed: 01/31/2023]
Abstract
Urinary tract infections are a severe public health problem. The emergence and spread of antimicrobial resistance among uropathogens threaten to further compromise the quality of life and health of people who develop acute and recurrent upper and lower urinary tract infections. The host defense mechanisms that prevent invasive bacterial infection are not entirely delineated. However, recent evidence suggests that versatile innate immune defenses play a key role in shielding the urinary tract from invading uropathogens. Over the last decade, considerable advances have been made in defining the innate mechanisms that maintain immune homeostasis in the kidney and urinary tract. When these innate defenses are compromised or dysregulated, pathogen susceptibility increases. The objective of this review is to provide an overview of how basic science discoveries are elucidating essential innate host defenses in the kidney and urinary tract. In doing so, we highlight how these findings may ultimately translate into the clinic as new biomarkers or therapies for urinary tract infection.
Collapse
Affiliation(s)
- Christina Ching
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, OH, USA
- Center of Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Division of Urology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Laura Schwartz
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, OH, USA
- Center of Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - John David Spencer
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, OH, USA
- Center of Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Division of Pediatric Nephrology, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Brian Becknell
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, OH, USA.
- Center of Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Division of Pediatric Nephrology, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
| |
Collapse
|
32
|
Bergman P, Raqib R, Rekha RS, Agerberth B, Gudmundsson GH. Host Directed Therapy Against Infection by Boosting Innate Immunity. Front Immunol 2020; 11:1209. [PMID: 32595649 PMCID: PMC7304486 DOI: 10.3389/fimmu.2020.01209] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022] Open
Abstract
The innate immune system constitutes the first line of defense against invading pathogens, regulating the normal microbiota and contributes to homeostasis. Today we have obtained detailed knowledge on receptors, signaling pathways, and effector molecules of innate immunity. Our research constellation has focused on ways to induce the expression of antimicrobial peptides (AMPs), the production of oxygen species (ROS and NO), and to activate autophagy, during the last two decades. These innate effectors, with different mechanisms of action, constitute a powerful defense armament in phagocytes and in epithelial cells. Innate immunity does not only protect the host from invading pathogens, but also regulates the composition of the microbiota, which is an area of intense research. Notably, some virulent bacteria have the capacity to downregulate innate defenses and can thereby cause invasive disease. Understanding the detailed mechanisms behind pathogen-mediated suppression of innate effectors are currently in progress. This information can be of importance for the development of novel treatments based on counteraction of the downregulation; we have designated this type of treatment as host directed therapy (HDT). The concept to boost innate immunity may be particularly relevant as many pathogens are developing resistance against classical antibiotics. Many pathogens that are resistant to antibiotics are sensitive to the endogenous effectors included in early host defenses, which contain multiple effectors working in cooperation to control infections. Here, we review recent data related to downregulation of AMPs by pathogenic bacteria, induction of innate effector mechanisms, including cytokine-mediated effects, repurposed drugs and the role of antibiotics as direct modulators of host responses. These findings can form a platform for the development of novel treatment strategies against infection and/or inflammation.
Collapse
Affiliation(s)
- Peter Bergman
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,The Immunodeficiency Unit, Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Rubhana Raqib
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Rokeya Sultana Rekha
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Agerberth
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gudmundur H Gudmundsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Biomedical Center, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
33
|
Host-Directed Therapies and Anti-Virulence Compounds to Address Anti-Microbial Resistant Tuberculosis Infection. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite global efforts to contain tuberculosis (TB), the disease remains a leading cause of morbidity and mortality worldwide, further exacerbated by the increased resistance to antibiotics displayed by the tubercle bacillus Mycobacterium tuberculosis. In order to treat drug-resistant TB, alternative or complementary approaches to standard anti-TB regimens are being explored. An area of active research is represented by host-directed therapies which aim to modulate the host immune response by mitigating inflammation and by promoting the antimicrobial activity of immune cells. Additionally, compounds that reduce the virulence of M. tuberculosis, for instance by targeting the major virulence factor ESX-1, are being given increased attention by the TB research community. This review article summarizes the current state of the art in the development of these emerging therapies against TB.
Collapse
|
34
|
Host-Directed Therapy as a Novel Treatment Strategy to Overcome Tuberculosis: Targeting Immune Modulation. Antibiotics (Basel) 2020; 9:antibiotics9010021. [PMID: 31936156 PMCID: PMC7168302 DOI: 10.3390/antibiotics9010021] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/25/2019] [Accepted: 01/04/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is one of the leading causes of mortality and morbidity, particularly in developing countries, presenting a major threat to the public health. The currently recommended long term treatment regimen with multiple antibiotics is associated with poor patient compliance, which in turn, may contribute to the emergence of multi-drug resistant TB (MDR-TB). The low global treatment efficacy of MDR-TB has highlighted the necessity to develop novel treatment options. Host-directed therapy (HDT) together with current standard anti-TB treatments, has gained considerable interest, as HDT targets novel host immune mechanisms. These immune mechanisms would otherwise bypass the antibiotic bactericidal targets to kill Mycobacterium tuberculosis (Mtb), which may be mutated to cause antibiotic resistance. Additionally, host-directed therapies against TB have been shown to be associated with reduced lung pathology and improved disease outcome, most likely via the modulation of host immune responses. This review will provide an update of host-directed therapies and their mechanism(s) of action against Mycobacterium tuberculosis.
Collapse
|
35
|
Chen J, Zhai Z, Long H, Yang G, Deng B, Deng J. Inducible expression of defensins and cathelicidins by nutrients and associated regulatory mechanisms. Peptides 2020; 123:170177. [PMID: 31704211 DOI: 10.1016/j.peptides.2019.170177] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
Host defense peptides (HDPs) are crucial components of the body's first line of defense that protect organisms from infections and mediate immune responses. Defensins and cathelicidins are the two most important families of HDPs in mammals. In this review, we summarize the nutrients that are involved in inducible expression of endogenous defensins and cathelicidins. In addition, the mitogen-activated protein kinases (MAPK), nuclear factor kappa B (NF-κB) and histone deacetylase (HDAC) signaling pathways that play vital roles in the induction of defensin and cathelicidin expression are highlighted. Endogenous defensins and cathelicidins induced by nutrients may be potential alternatives to antibiotic treatments against infection and diseases. This review mainly focuses on the inducible expression and regulatory mechanisms of defensins and cathelicidins in multiple species by different nutrients and the potential applications of defensin- and cathelicidin-inducing nutrients.
Collapse
Affiliation(s)
- Jialuo Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhenya Zhai
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hongrong Long
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guangming Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Baichuan Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
36
|
Malaguarnera L. Vitamin D and microbiota: Two sides of the same coin in the immunomodulatory aspects. Int Immunopharmacol 2019; 79:106112. [PMID: 31877495 DOI: 10.1016/j.intimp.2019.106112] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
Abstract
The gut microbiota is crucial for host immune response, vitamin synthesis, short chain fatty acids (SCFAs) production, intestinal permeability, nutrient digestion energy metabolism and protection from pathogens. Therefore, gut microbiota guarantees the host's predisposition to gastrointestinal diseases. Intestinal microbiota may be damaged by environmental components with negative health conditions. Dysbiosis consisting in alteration in the gut microbiota has been involved in several disorders including inflammation, allergic reactions, autoimmune diseases, heart diseases, obesity, and metabolic syndrome and even in the state of malignant carcinogenesis existing in humans. Several epidemiological studies have shown that inadequate solar exposure results in vitamin D insufficiency/deficiency which has a strong impact on different immune responses and the occurrence of a wide range of pathological conditions. Additionally, new evidence indicates that the vitamin D pathway plays a key role in gut homeostasis. Due to the strong connection between vitamin D and microbiota, herein we focus on the new findings about intestinal bacteria-immune crosstalk and the impact of vitamin D in gut microbiota regulation, in order to offer new clarifications on their interaction. Understanding the mechanism by which vitamin D can affect the gut microbiota composition and its dynamic activities, as well as the innate and adaptive state of the immune system, is not only a fundamental research but also an opportunity to improve health status.
Collapse
Affiliation(s)
- Lucia Malaguarnera
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia, 97, Catania, Italy.
| |
Collapse
|
37
|
Golpour A, Bereswill S, Heimesaat MM. Antimicrobial and Immune-Modulatory Effects of Vitamin D Provide Promising Antibiotics-Independent Approaches to Tackle Bacterial Infections - Lessons Learnt from a Literature Survey. Eur J Microbiol Immunol (Bp) 2019; 9:80-87. [PMID: 31662886 PMCID: PMC6798578 DOI: 10.1556/1886.2019.00014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/24/2019] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial multidrug-resistance (MDR) constitutes an emerging threat to global health and makes the effective prevention and treatment of many, particularly severe infections challenging, if not impossible. Many antibiotic classes have lost antimicrobial efficacy against a plethora of infectious agents including bacterial species due to microbial acquisition of distinct resistance genes. Hence, the development of novel anti-infectious intervention strategies including antibiotic-independent approaches is urgently needed. Vitamins such as vitamin D and vitamin D derivates might be such promising molecular candidates to combat infections caused by bacteria including MDR strains. Using the Pubmed database, we therefore performed an in-depth literature survey, searching for publications on the antimicrobial effect of vitamin D directed against bacteria including MDR strains. In vitro and clinical studies between 2009 and 2019 revealed that vitamin D does, in fact, possess antimicrobial properties against both Gram-positive and Gram-negative bacterial species, whereas conflicting results could be obtained from in vivo studies. Taken together, the potential anti-infectious effects for the antibiotic-independent application of vitamin D and/or an adjunct therapy in combination with antibiotic compounds directed against infectious diseases such as tuberculosis, H. pylori infections, or skin diseases, for instance, should be considered and further investigated in more detail.
Collapse
Affiliation(s)
- Ainoosh Golpour
- Institute of Microbiology, Infectious Diseases and Immunology Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
38
|
Missailidis C, Sørensen N, Ashenafi S, Amogne W, Kassa E, Bekele A, Getachew M, Gebreselassie N, Aseffa A, Aderaye G, Andersson J, Brighenti S, Bergman P. Vitamin D and Phenylbutyrate Supplementation Does Not Modulate Gut Derived Immune Activation in HIV-1. Nutrients 2019; 11:nu11071675. [PMID: 31330899 PMCID: PMC6682943 DOI: 10.3390/nu11071675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Dysbiosis and a dysregulated gut immune barrier function contributes to chronic immune activation in HIV-1 infection. We investigated if nutritional supplementation with vitamin D and phenylbutyrate could improve gut-derived inflammation, selected microbial metabolites, and composition of the gut microbiota. Treatment-naïve HIV-1-infected individuals (n = 167) were included from a double-blind, randomized, and placebo-controlled trial of daily 5000 IU vitamin D and 500 mg phenylbutyrate for 16 weeks (Clinicaltrials.gov NCT01702974). Baseline and per-protocol plasma samples at week 16 were analysed for soluble CD14, the antimicrobial peptide LL-37, kynurenine/tryptophan-ratio, TMAO, choline, and betaine. Assessment of the gut microbiota involved 16S rRNA gene sequencing of colonic biopsies. Vitamin D + phenylbutyrate treatment significantly increased 25-hydroxyvitamin D levels (p < 0.001) but had no effects on sCD14, the kynurenine/tryptophan-ratio, TMAO, or choline levels. Subgroup-analyses of vitamin D insufficient subjects demonstrated a significant increase of LL-37 in the treatment group (p = 0.02), whereas treatment failed to significantly impact LL-37-levels in multiple regression analysis. Further, no effects on the microbiota was found in number of operational taxonomic units (p = 0.71), Shannon microbial diversity index (p = 0.82), or in principal component analyses (p = 0.83). Nutritional supplementation with vitamin D + phenylbutyrate did not modulate gut-derived inflammatory markers or microbial composition in treatment-naïve HIV-1 individuals with active viral replication.
Collapse
Affiliation(s)
- Catharina Missailidis
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, 14152 Stockholm, Sweden.
| | | | - Senait Ashenafi
- Center for Infectious Medicine (CIM), F59, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, 14152 Stockholm, Sweden
| | - Wondwossen Amogne
- Department of Internal Medicine, Faculty of Medicine, Black Lion University Hospital and Addis Ababa University, 1176 Addis Ababa, Ethiopia
| | - Endale Kassa
- Department of Internal Medicine, Faculty of Medicine, Black Lion University Hospital and Addis Ababa University, 1176 Addis Ababa, Ethiopia
| | - Amsalu Bekele
- Department of Internal Medicine, Faculty of Medicine, Black Lion University Hospital and Addis Ababa University, 1176 Addis Ababa, Ethiopia
| | - Meron Getachew
- Department of Internal Medicine, Faculty of Medicine, Black Lion University Hospital and Addis Ababa University, 1176 Addis Ababa, Ethiopia
| | | | - Abraham Aseffa
- Armauer Hansen Research Institute (AHRI), 1005 Addis Ababa, Ethiopia
| | - Getachew Aderaye
- Department of Internal Medicine, Faculty of Medicine, Black Lion University Hospital and Addis Ababa University, 1176 Addis Ababa, Ethiopia
| | - Jan Andersson
- Center for Infectious Medicine (CIM), F59, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, 14152 Stockholm, Sweden
- Department of Medicine, Division of Infectious Diseases, Karolinska University Hospital Huddinge, 14152 Stockholm, Sweden
| | - Susanna Brighenti
- Center for Infectious Medicine (CIM), F59, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, 14152 Stockholm, Sweden
| | - Peter Bergman
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, 14152 Stockholm, Sweden
| |
Collapse
|
39
|
Rodríguez-Carlos A, Martinez-Gutierrez F, Torres-Juarez F, Rivas-Santiago B. Antimicrobial Peptides-based Nanostructured Delivery Systems: An Approach for Leishmaniasis Treatment. Curr Pharm Des 2019; 25:1593-1603. [PMID: 31264542 DOI: 10.2174/1381612825666190628152842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 06/19/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Leishmaniasis is a major health problem mainly in tropical and subtropical areas worldwide, although in the last decades it has been treated with the use of conventional drugs such as amphotericin, the emergence of multidrug-resistant strains has raised a warning signal to the public health systems thus a new call for the creation of new leishmanicidal drugs is needed. METHODS The goal of this review was to explore the potential use of antimicrobial peptides-based nanostructured delivery systems as an approach for leishmaniasis treatment. RESULTS Within these new potential drugs, human host defense peptides (HDP) can be included given their remarkable antimicrobial activity and their outstanding immunomodulatory functions for the therapy of leishmaniasis. CONCLUSION Though several approaches have been done using these peptides, new ways for delivering HDPs need to be analyzed, such is the case for nanotechnology.
Collapse
Affiliation(s)
- Adrian Rodríguez-Carlos
- Medical Research Unit- Zacatecas-IMSS, Zacatecas, Mexico.,División de Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí. Mexico
| | - Fidel Martinez-Gutierrez
- Microbiology Laboratory, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, Centro 78300, San Luis, S.L.P, Mexico
| | | | | |
Collapse
|
40
|
Lawlor L, Yang XB. Harnessing the HDAC-histone deacetylase enzymes, inhibitors and how these can be utilised in tissue engineering. Int J Oral Sci 2019; 11:20. [PMID: 31201303 PMCID: PMC6572769 DOI: 10.1038/s41368-019-0053-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 02/07/2023] Open
Abstract
There are large knowledge gaps regarding how to control stem cells growth and differentiation. The limitations of currently available technologies, such as growth factors and/or gene therapies has led to the search of alternatives. We explore here how a cell's epigenome influences determination of cell type, and potential applications in tissue engineering. A prevalent epigenetic modification is the acetylation of DNA core histone proteins. Acetylation levels heavily influence gene transcription. Histone deacetylase (HDAC) enzymes can remove these acetyl groups, leading to the formation of a condensed and more transcriptionally silenced chromatin. Histone deacetylase inhibitors (HDACis) can inhibit these enzymes, resulting in the increased acetylation of histones, thereby affecting gene expression. There is strong evidence to suggest that HDACis can be utilised in stem cell therapies and tissue engineering, potentially providing novel tools to control stem cell fate. This review introduces the structure/function of HDAC enzymes and their links to different tissue types (specifically bone, cardiac, neural tissues), including the history, current status and future perspectives of using HDACis for stem cell research and tissue engineering, with particular attention paid to how different HDAC isoforms may be integral to this field.
Collapse
Affiliation(s)
- Liam Lawlor
- Department of Oral Biology, University of Leeds, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK
- Doctoral Training Centre in Tissue Engineering and Regenerative Medicine, Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Xuebin B Yang
- Department of Oral Biology, University of Leeds, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK.
- Doctoral Training Centre in Tissue Engineering and Regenerative Medicine, Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK.
| |
Collapse
|
41
|
Myszor IT, Parveen Z, Ottosson H, Bergman P, Agerberth B, Strömberg R, Gudmundsson GH. Novel aroylated phenylenediamine compounds enhance antimicrobial defense and maintain airway epithelial barrier integrity. Sci Rep 2019; 9:7114. [PMID: 31068616 PMCID: PMC6506505 DOI: 10.1038/s41598-019-43350-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/18/2019] [Indexed: 01/19/2023] Open
Abstract
Aroylated phenylenediamines (APDs) are novel inducers of innate immunity enhancing cathelicidin gene expression in human bronchial epithelial cell lines. Here we present two newly developed APDs and aimed at defining the response and signaling pathways for these compounds with reference to innate immunity and antimicrobial peptide (AMP) expression. Induction was initially defined with respect to dose and time and compared with the APD Entinostat (MS-275). The induction applies to several innate immunity effectors, indicating that APDs trigger a broad spectrum of antimicrobial responses. The bactericidal effect was shown in an infection model against Pseudomonas aeruginosa by estimating bacteria entering cells. Treatment with a selected APD counteracted Pseudomonas mediated disruption of epithelial integrity. This double action by inducing AMPs and enhancing epithelial integrity for one APD compound is unique and taken as a positive indication for host directed therapy (HDT). The APD effects are mediated through Signal transducer and activator of transcription 3 (STAT3) activation. Utilization of induced innate immunity to fight infections can reduce antibiotic usage, might be effective against multidrug resistant bacteria and is in line with improved stewardship in healthcare.
Collapse
Affiliation(s)
- Iwona T Myszor
- Biomedical Center, University of Iceland, Reykjavik, 101, Iceland
| | - Zahida Parveen
- Biomedical Center, University of Iceland, Reykjavik, 101, Iceland
| | - Håkan Ottosson
- Department of Biosciences and Nutrition, Karolinska Institutet, S-14183, Huddinge, Sweden
| | - Peter Bergman
- Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet, S-14186, Huddinge, Sweden
| | - Birgitta Agerberth
- Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet, S-14186, Huddinge, Sweden
| | - Roger Strömberg
- Department of Biosciences and Nutrition, Karolinska Institutet, S-14183, Huddinge, Sweden
| | | |
Collapse
|
42
|
Pineda Molina C, Hussey GS, Eriksson J, Shulock MA, Cárdenas Bonilla LL, Giglio RM, Gandhi RM, Sicari BM, Wang D, Londono R, Faulk DM, Turner NJ, Badylak SF. 4-Hydroxybutyrate Promotes Endogenous Antimicrobial Peptide Expression in Macrophages. Tissue Eng Part A 2019; 25:693-706. [DOI: 10.1089/ten.tea.2018.0377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Catalina Pineda Molina
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - George S. Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jonas Eriksson
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael A. Shulock
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Ross M. Giglio
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Riddhi M. Gandhi
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian M. Sicari
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Derek Wang
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ricardo Londono
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Denver M. Faulk
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Neill J. Turner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
43
|
Antimicrobial Host Defence Peptides: Immunomodulatory Functions and Translational Prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1117:149-171. [DOI: 10.1007/978-981-13-3588-4_10] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Dou X, Han J, Ma Q, Cheng B, Shan A, Gao N, Yang Y. TLR2/4-mediated NF-κB pathway combined with the histone modification regulates β-defensins and interleukins expression by sodium phenyl butyrate in porcine intestinal epithelial cells. Food Nutr Res 2018; 62:1493. [PMID: 30574051 PMCID: PMC6294838 DOI: 10.29219/fnr.v62.1493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022] Open
Abstract
Background Host defense peptides (HDPs) possess direct antibacterial, antineoplastic, and immunomodulatory abilities, playing a vital role in innate immunity. Dietary-regulated HDP holds immense potential as a novel pathway for preventing infection. Objective In this study, we examined the regulation mechanism of HDPs (pEP2C, pBD-1, and pBD-3) and cytokines (IL-8 and IL-18) expression by sodium phenylbutyrate (PBA). Design The effects of PBA on HDP induction and the mechanism involved were studied in porcine intestinal epithelial cell lines (IPEC J2). Results In this study, the results showed that HDPs (pEP2C, pBD-1, and pBD-3) and cytokines (IL-8 and IL-18) expression was increased significantly upon stimulation with PBA in IPEC J2 cells. Furthermore, toll-like receptor 2 (TLR2) and TLR4 were required for the PBA-mediated upregulation of the HDPs. This process occurred and further activated the NF-κB pathway via the phosphorylation of p65 and an IκB α synthesis delay. Meanwhile, histone deacetylase (HDAC) inhibition and an increased phosphorylation of histone H3 on serine S10 also occurred in PBA-induced HDP expression independently with TLR2 and TLR4. Furthermore, p38-MAPK suppressed PBA-induced pEP2C, pBD-1 pBD-3, IL-8, and IL-18 expression, but ERK1/2 failed to abolish the regulation of pBD-3, IL-8, and IL-18. Moreover, epidermal growth factor receptor (EGFR) is involved in PBA-mediated HDP regulation. Conclusions We concluded that PBA induced HDP and cytokine increases but did not cause an excessive pro-inflammatory response, which proceeded through the TLR2 and TLR4-NF-κB pathway and histone modification in IPEC J2 cells.
Collapse
Affiliation(s)
- Xiujing Dou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Junlan Han
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Qiuyuan Ma
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Baojing Cheng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Nan Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Yu Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
45
|
Sonoda A, Kamiyama N, Ozaka S, Gendo Y, Ozaki T, Hirose H, Noguchi K, Saechue B, Sachi N, Sakai K, Mizukami K, Hidano S, Murakami K, Kobayashi T. Oral administration of antibiotics results in fecal occult bleeding due to metabolic disorders and defective proliferation of the gut epithelial cell in mice. Genes Cells 2018; 23:1043-1055. [PMID: 30353943 DOI: 10.1111/gtc.12649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 12/29/2022]
Abstract
Antibiotics sometimes exert adverse effects on the pathogenesis of colitis due to the dysbiosis resulting from the disruption of gut homeostasis. However, the precise mechanisms underlying colitogenic effects of antibiotic-induced colitis are largely unknown. Here, we show a novel murine fecal occult bleeding model induced by the combinatorial treatment of ampicillin and vancomycin, which is accompanied by an enlarged cecum, upregulation of pro-inflammatory cytokines IL-6 and IL-12, a reduction in Ki-67-positive epithelial cell number and an increase in the apoptotic cell number in the colon. Moreover, gas chromatography-tandem mass analysis showed that various kinds of metabolites, including glutamic acid and butyric acid, were significantly decreased in the cecal contents. In addition, abundance of butyric acid producer Clostridiales was dramatically reduced in the enlarged cecum. Interestingly, supplementation of monosodium glutamate or its precursor glutamine suppressed colonic IL-6 and IL-12, protected from cell apoptosis and prevented fecal occult blood indicating that the reduced level of glutamic acid is a possible mechanism of antibiotic-induced fecal occult bleeding. Our data showed a novel mechanism of antibiotic-induced fecal occult bleeding providing a new insight into the clinical application of glutamic acid for the treatment of antibiotic-induced colitis.
Collapse
Affiliation(s)
- Akira Sonoda
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan.,Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Naganori Kamiyama
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Sotaro Ozaka
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan.,Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yoshiko Gendo
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Takashi Ozaki
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Haruna Hirose
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kaori Noguchi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Benjawan Saechue
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Nozomi Sachi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kumiko Sakai
- Department of Division of Life Science Research, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kazuhiro Mizukami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan.,Clinical Training Institute for Interns, Faculty of Medicine, Oita University, Yufu, Japan
| | - Shinya Hidano
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| |
Collapse
|
46
|
Wei R, Dhawan P, Baiocchi RA, Kim KY, Christakos S. PU.1 and epigenetic signals modulate 1,25-dihydroxyvitamin D 3 and C/EBPα regulation of the human cathelicidin antimicrobial peptide gene in lung epithelial cells. J Cell Physiol 2018; 234:10345-10359. [PMID: 30387140 DOI: 10.1002/jcp.27702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/15/2018] [Indexed: 12/22/2022]
Abstract
LL-37, the only known human cathelicidin which is encoded by the human antimicrobial peptide (CAMP) gene, plays a critical role in protection against bacterial infection. We previously demonstrated that cathelicidin is induced by 1,25-dihydroxyvitamin D3 (1,25(OH) 2 D 3 ) in human airway epithelial cells with a resultant increase in bactericidal activity. In this study we identify key factors that co-operate with 1,25(OH) 2 D 3 in the regulation of CAMP. Our results show for the first time that PU.1, the myeloid transcription factor (which has also been identified in lung epithelial cells), co-operates with the vitamin D receptor and CCAAT/enhancer binding protein α (CEBPα) to enhance the induction of CAMP in lung epithelial cells. Our findings also indicate that enhancement of 1,25(OH) 2 D 3 regulation of CAMP by histone deacetylase inhibitors involves co-operation between acetylation and chromatin remodeling through Brahma-related gene 1 (BRG1; a component of the SWItch/sucrose nonfermentable [SWI/SNF] complex). BRG1 can be an activator or repressor depending on BRG1-associated factors. Protein arginine methyltransferase 5 (PRMT5), a methlytransferase which interacts with BRG1, represses 1,25(OH) 2 D 3 induced CAMP in part through dimethylation of H4R3. Our findings identify key mediators involved in the regulation of the CAMP gene in lung epithelial cells and suggest new approaches for therapeutic manipulation of gene expression to increase the antibacterial capability of the airway.
Collapse
Affiliation(s)
- Ran Wei
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, New Jersey
| | - Puneet Dhawan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, New Jersey
| | - Robert A Baiocchi
- Department of Internal Medicine, Ohio State University, Columbus, Ohio
| | - Ki-Yoon Kim
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, New Jersey
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, New Jersey
| |
Collapse
|
47
|
Fülöp T, Itzhaki RF, Balin BJ, Miklossy J, Barron AE. Role of Microbes in the Development of Alzheimer's Disease: State of the Art - An International Symposium Presented at the 2017 IAGG Congress in San Francisco. Front Genet 2018; 9:362. [PMID: 30250480 PMCID: PMC6139345 DOI: 10.3389/fgene.2018.00362] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022] Open
Abstract
This article reviews research results and ideas presented at a special symposium at the International Association of Gerontology and Geriatrics (IAGG) Congress held in July 2017 in San Francisco. Five researchers presented their results related to infection and Alzheimer's disease (AD). Prof. Itzhaki presented her work on the role of viruses, specifically HSV-1, in the pathogenesis of AD. She maintains that although it is true that most people harbor HSV-1 infection, either latent or active, nonetheless aspects of herpes infection can play a role in the pathogenesis of AD, based on extensive experimental evidence from AD brains and infected cell cultures. Dr. Miklossy presented research on the high prevalence of bacterial infections that correlate with AD, specifically spirochete infections, which have been known for a century to be a significant cause of dementia (e.g., in syphilis). She demonstrated how spirochetes drive senile plaque formation, which are in fact biofilms. Prof. Balin then described the involvement of brain tissue infection by the Chlamydia pneumoniae bacterium, with its potential to use the innate immune system in its spread, and its initiation of tissue damage characteristic of AD. Prof. Fülöp described the role of AD-associated amyloid beta (Aβ) peptide as an antibacterial, antifungal and antiviral innate immune effector produced in reaction to microorganisms that attack the brain. Prof. Barron put forward the novel hypothesis that, according to her experiments, there is strong sequence-specific binding between the AD-associated Aβ and another ubiquitous and important human innate immune effector, the cathelicidin peptide LL-37. Given this binding, LL-37 expression in the brain will decrease Aβ deposition via formation of non-toxic, soluble Aβ/LL-37 complexes. Therefore, a chronic underexpression of LL-37 could be the factor that simultaneously permits chronic infections in brain tissue and allows for pathological accumulation of Aβ. This first-of-its-kind symposium opened the way for a paradigm shift in studying the pathogenesis of AD, from the "amyloid cascade hypothesis," which so far has been quite unsuccessful, to a new "infection hypothesis," or perhaps more broadly, "innate immune system dysregulation hypothesis," which may well permit and lead to the discovery of new treatments for AD patients.
Collapse
Affiliation(s)
- Tamàs Fülöp
- Department of Medicine, Division of Geriatrics, Research Center on Aging, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ruth F. Itzhaki
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Brian J. Balin
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Judith Miklossy
- International Alzheimer Research Centre, Prevention Alzheimer International Foundation, Martigny-Croix, Switzerland
| | - Annelise E. Barron
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
48
|
Bekele A, Gebreselassie N, Ashenafi S, Kassa E, Aseffa G, Amogne W, Getachew M, Aseffa A, Worku A, Raqib R, Agerberth B, Hammar U, Bergman P, Aderaye G, Andersson J, Brighenti S. Daily adjunctive therapy with vitamin D 3 and phenylbutyrate supports clinical recovery from pulmonary tuberculosis: a randomized controlled trial in Ethiopia. J Intern Med 2018; 284:292-306. [PMID: 29696707 PMCID: PMC6202271 DOI: 10.1111/joim.12767] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Immunotherapy using vitamin D (vitD3 ) and phenylbutyrate (PBA) may support standard drug regimens used to treat infectious diseases. We investigated if vitD3 + PBA enhanced clinical recovery from pulmonary tuberculosis (TB). METHODS A randomized controlled trial was conducted in Addis Ababa, Ethiopia. Patients with smear-positive or smear-negative TB received daily oral supplementation with 5000 IU vitD3 and 2 × 500 mg PBA or placebo for 16 weeks, together with 6-month chemotherapy. Primary end-point: reduction of a clinical composite TB score at week 8 compared with baseline using modified intention-to-treat (mITT, n = 348) and per-protocol (n = 296) analyses. Secondary end-points: primary and modified TB scores (week 0, 4, 8, 16, 24), sputum conversion, radiological findings and plasma 25(OH)D3 concentrations. RESULTS Most subjects had low baseline plasma 25(OH)D3 levels that increased gradually in the vitD3 + PBA group compared with placebo (P < 0.0001) from week 0 to 16 (mean 34.7 vs. 127.4 nmol L-1 ). In the adjusted mITT analysis, the primary TB score was significantly reduced in the intervention group at week 8 (-0.52, 95% CI -0.93, -0.10; P = 0.015) while the modified TB score was reduced at week 8 (-0.58, 95% CI -1.02, -0.14; P = 0.01) and 16 (-0.34, 95% CI -0.64, -0.03; P = 0.03). VitD3 + PBA had no effect on longitudinal sputum-smear conversion (P = 0.98). Clinical adverse events were more common in the placebo group (24.3%) compared with the vitD3 + PBA group (12.6%). CONCLUSION Daily supplementation with vitD3 + PBA may ameliorate clinical TB symptoms and disease-specific complications, while the intervention had no effect on bacterial clearance in sputum.
Collapse
Affiliation(s)
- A Bekele
- Department of Internal Medicine, Faculty of Medicine, Black Lion University Hospital, Addis Ababa University, Addis Ababa, Ethiopia
| | - N Gebreselassie
- Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden.,Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - S Ashenafi
- Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - E Kassa
- Department of Internal Medicine, Faculty of Medicine, Black Lion University Hospital, Addis Ababa University, Addis Ababa, Ethiopia
| | - G Aseffa
- Department of Radiology, Faculty of Medicine, Black Lion University Hospital, Addis Ababa University, Addis Ababa, Ethiopia
| | - W Amogne
- Department of Internal Medicine, Faculty of Medicine, Black Lion University Hospital, Addis Ababa University, Addis Ababa, Ethiopia
| | - M Getachew
- Department of Internal Medicine, Faculty of Medicine, Black Lion University Hospital, Addis Ababa University, Addis Ababa, Ethiopia
| | - A Aseffa
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - A Worku
- Department of Public Health, Faculty of Medicine, Black Lion University Hospital, Addis Ababa University, Addis Ababa, Ethiopia
| | - R Raqib
- Infectious Diseases Division (IDD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - B Agerberth
- Clinical Microbiology, Department of Laboratory Medicine (Labmed), Karolinska Institutet, Stockholm, Sweden
| | - U Hammar
- Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
| | - P Bergman
- Clinical Microbiology, Department of Laboratory Medicine (Labmed), Karolinska Institutet, Stockholm, Sweden
| | - G Aderaye
- Department of Internal Medicine, Faculty of Medicine, Black Lion University Hospital, Addis Ababa University, Addis Ababa, Ethiopia
| | - J Andersson
- Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden.,Division of Infectious Diseases, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - S Brighenti
- Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
49
|
Yu LT, Xiao YP, Li JJ, Ran JS, Yin LQ, Liu YP, Zhang L. Molecular characterization of a novel ovodefensin gene in chickens. Gene 2018; 678:233-240. [PMID: 30098427 DOI: 10.1016/j.gene.2018.08.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/28/2018] [Accepted: 08/06/2018] [Indexed: 01/05/2023]
Abstract
Host defense peptides (HDPs) represent a large group of diverse small peptides that play important roles in host defense and disease resistance. In vertebrates, one of the main types of HDPs belong to defensins, which are less than 100 amino acid residues and characterized by a highly conserved motif of cysteine residues. Recently, a subfamily of defensins, namely ovodefensins (OvoDs), has been identified in birds and reptiles. However, both their family members and evolutionary relationships remain unclear. In the present study, we cloned and characterized a novel gene namely OvoDBβ in chickens. Our results showed that the full length of chicken OvoDBβ mRNA contains 344 bp nucleotides and encodes a 61-amino acid protein. We further revealed that the mRNA of OvoDBβ is abundant in the oviduct of laying hens but absent in many other tissues. Additionally, sequences comparison and analyses suggested that OvoDBβ is orthologous to the gene previously known as zebra finch OvoDB1, albeit it might exhibit specific structures. Furthermore, both OvoDBα and OvoDBβ were existent in the genome of each bird, implying that two types of OvoDBs sharing same cysteine motif have already emerged before the species divergence. More importantly, recombinant OvoDBβ mature peptide exerted antibacterial activity against Escherischia coli (CICC23657 strain) in vitro. These results collectively indicated that the putative sequence, namely chicken OvoDBβ, is a function gene with potential antimicrobial property. Discovery and function characterization of novel HDP genes may help us develop novel antimicrobial agents in the future.
Collapse
Affiliation(s)
- Lin-Tian Yu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130, Sichuan, China; Guangxi Agricultural Vocational College, Nanning 530007, Guangxi, China
| | - Ying-Ping Xiao
- Institute of Quality and Standards for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Jing-Jing Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130, Sichuan, China
| | - Jin-Shan Ran
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130, Sichuan, China
| | - Ling-Qian Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130, Sichuan, China
| | - Yi-Ping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130, Sichuan, China.
| | - Long Zhang
- Institute of Ecology, China West Normal University, Nanchong 637009, Sichuan, China.
| |
Collapse
|
50
|
Rekha RS, Mily A, Sultana T, Haq A, Ahmed S, Mostafa Kamal SM, van Schadewijk A, Hiemstra PS, Gudmundsson GH, Agerberth B, Raqib R. Immune responses in the treatment of drug-sensitive pulmonary tuberculosis with phenylbutyrate and vitamin D 3 as host directed therapy. BMC Infect Dis 2018; 18:303. [PMID: 29973153 PMCID: PMC6033279 DOI: 10.1186/s12879-018-3203-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 06/22/2018] [Indexed: 12/11/2022] Open
Abstract
Background We have previously shown that 8 weeks’ treatment with phenylbutyrate (PBA) (500mgx2/day) with or without vitamin D3 (vitD3) (5000 IU/day) as host-directed therapy (HDT) accelerated clinical recovery, sputum culture conversion and increased expression of cathelicidin LL-37 by immune cells in a randomized, placebo-controlled trial in adults with pulmonary tuberculosis (TB). In this study we further aimed to examine whether HDT with PBA and vitD3 promoted clinically beneficial immunomodulation to improve treatment outcomes in TB patients. Methods Cytokine concentration was measured in supernatants of peripheral blood mononuclear cells (PBMC) from patients (n = 31/group). Endoplasmic reticulum stress-related genes (GADD34 and XBP1spl) and human beta-defensin-1 (HBD1) gene expression were studied in monocyte-derived-macrophages (MDM) (n = 18/group) from PBMC of patients. Autophagy in MDM (n = 6/group) was evaluated using LC3 expression by confocal microscopy. Results A significant decline in the concentration of cytokines/chemokines was noted from week 0 to 8 in the PBA-group [TNF-α (β = − 0.34, 95% CI = − 0.68, − 0.003; p = 0.04), CCL11 (β = − 0.19, 95% CI = − 0.36, − 0.03; p = 0.02) and CCL5 (β = − 0.08, 95% CI = − 0.16, 0.002; p = 0.05)] and vitD3-group [(CCL11 (β = − 0.17, 95% CI = − 0.34, − 0.001; p = 0.04), CXCL10 (β = − 0.38, 95% CI = − 0.77, 0.003; p = 0.05) and PDGF-β (β = − 0.16, 95% CI = − 0.31, 0.002; p = 0.05)] compared to placebo. Both PBA- and vitD3-groups showed a decline in XBP1spl mRNA on week 8 (p < 0.03). All treatment groups demonstrated increased LC3 expression in MDM compared to placebo over time (p < 0.037). Conclusion The use of PBA and vitD3 as adjunct therapy to standard TB treatment promoted favorable immunomodulation to improve treatment outcomes. Trials registration This trial was retrospectively registered in clinicaltrials.gov, under identifier NCT01580007. Electronic supplementary material The online version of this article (10.1186/s12879-018-3203-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rokeya Sultana Rekha
- Infectious Diseases Division, icddr,b, 68 Shaheed Tajuddin Ahmed Sarani, Dhaka, 1212, Bangladesh.,Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Akhirunnesa Mily
- Infectious Diseases Division, icddr,b, 68 Shaheed Tajuddin Ahmed Sarani, Dhaka, 1212, Bangladesh.,Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tajnin Sultana
- Infectious Diseases Division, icddr,b, 68 Shaheed Tajuddin Ahmed Sarani, Dhaka, 1212, Bangladesh
| | - Ahsanul Haq
- Infectious Diseases Division, icddr,b, 68 Shaheed Tajuddin Ahmed Sarani, Dhaka, 1212, Bangladesh
| | - Sultan Ahmed
- Infectious Diseases Division, icddr,b, 68 Shaheed Tajuddin Ahmed Sarani, Dhaka, 1212, Bangladesh.,Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - S M Mostafa Kamal
- National Institute of the Diseases of the Chest and Hospital, Mohakhali, Dhaka, Bangladesh
| | | | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Birgitta Agerberth
- Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Rubhana Raqib
- Infectious Diseases Division, icddr,b, 68 Shaheed Tajuddin Ahmed Sarani, Dhaka, 1212, Bangladesh.
| |
Collapse
|