1
|
Maraolo AE, Gatti M, Principe L, Marino A, Pipitone G, De Pascale G, Ceccarelli G. Management of methicillin-resistant Staphylococcus aureus bloodstream infections: a comprehensive narrative review of available evidence focusing on current controversies and the challenges ahead. Expert Rev Anti Infect Ther 2025:1-26. [PMID: 40165471 DOI: 10.1080/14787210.2025.2487163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Bloodstream infections (BSIs) caused by Staphylococcus aureus are common worldwide, representing one of the most relevant issues in clinical infectious diseases practice. In particular, BSIs by methicillin-resistant S. aureus (MRSA-BSI) are still today a challenge since mortality burden remains elevated although decades of research. AREAS COVERED The following topics regarding MRSA-BSI were reviewed and discussed by resorting to best available evidence retrieved from PubMed/MEDLINE up to October 2024: i) epidemiology; ii) microbiology; iii) classification, with a focus on complicated and not complicated forms; iv) the structured approach to the patient; v) pharmacokinetics and pharmacodynamics of the main antimicrobial options; vi) controversies regarding the best therapeutic approach. EXPERT OPINION Despite ongoing efforts to better stratify and manage MRSA-BSI, there is no universally accepted classification system accurately distinguishing between uncomplicated/low risk and complicated/high risk forms. Biomarkers such as interleukin(IL)-10 hold promise in order to enable a more precise stratification, premise for an appropriate treatment plan. There is a theoretical rationale for implementing a combination therapy including a beta-lactam agent upfront, especially for patients considered at higher risk of unfavorable outcomes, but further data are necessary, and the same applies to newer adjuvants. Novel microbiological techniques may help in guiding antimicrobial duration.
Collapse
Affiliation(s)
- Alberto Enrico Maraolo
- Section of Infectious Diseases, Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Luigi Principe
- Microbiology and Virology Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Andrea Marino
- Department of Clinical and Experimental Medicine, Infectious Diseases Unit, ARNAS Garibaldi Hospital, University of Catania, Catania, Italy
| | | | - Gennaro De Pascale
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze dell 'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, University Hospital Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Zhang Z, Wei M, Jia B, Yuan Y. Recent Advances in Antimicrobial Resistance: Insights from Escherichia coli as a Model Organism. Microorganisms 2024; 13:51. [PMID: 39858819 PMCID: PMC11767524 DOI: 10.3390/microorganisms13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
Antimicrobial resistance (AMR) represents a critical global health threat, and a thorough understanding of resistance mechanisms in Escherichia coli is needed to guide effective treatment interventions. This review explores recent advances for investigating AMR in E. coli, including machine learning for resistance pattern analysis, laboratory evolution to generate resistant mutants, mutant library construction, and genome sequencing for in-depth characterization. Key resistance mechanisms are discussed, including drug inactivation, target modification, altered transport, and metabolic adaptation. Additionally, we highlight strategies to mitigate the spread of AMR, such as dynamic resistance monitoring, innovative therapies like phage therapy and CRISPR-Cas technology, and tighter regulation of antibiotic use in animal production systems. This review provides actionable insights into E. coli resistance mechanisms and identifies promising directions for future antibiotic development and AMR management.
Collapse
Affiliation(s)
| | | | - Bin Jia
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Z.Z.); (M.W.); (Y.Y.)
| | | |
Collapse
|
3
|
Silva KPT, Khare A. Antibiotic resistance mediated by gene amplifications. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:35. [PMID: 39843582 PMCID: PMC11721125 DOI: 10.1038/s44259-024-00052-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/26/2024] [Indexed: 01/24/2025]
Abstract
Apart from horizontal gene transfer and sequence-altering mutational events, antibiotic resistance can emerge due to the formation of tandem repeats of genomic regions. This phenomenon, also known as gene amplification, has been implicated in antibiotic resistance in both laboratory and clinical scenarios, where the evolution of resistance via amplifications can affect treatment efficacy. Antibiotic resistance mediated by gene amplifications is unstable and consequently can be difficult to detect, due to amplification loss in the absence of the selective pressure of the antibiotic. Further, due to variable copy numbers in a population, amplifications result in heteroresistance, where only a subpopulation is resistant to an antibiotic. While gene amplifications typically lead to resistance by increasing the expression of resistance determinants due to the higher copy number, the underlying mechanisms of resistance are diverse. In this review article, we describe the various pathways by which gene amplifications cause antibiotic resistance, from efflux and modification of the antibiotic, to target modification and bypass. We also discuss how gene amplifications can engender resistance by alternate mutational outcomes such as altered regulation and protein structure, in addition to just an increase in copy number and expression. Understanding how amplifications contribute to bacterial survival following antibiotic exposure is critical to counter their role in the rise of antimicrobial resistance.
Collapse
Affiliation(s)
- Kalinga Pavan T Silva
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anupama Khare
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Kirkliauskienė A, Kriščiūnas J, Miciulevičienė J, Radzišauskienė D, Kačergius T, Bratchikov M, Kaplerienė L. Antimicrobial Resistance and the Prevalence of the Panton-Valentine Leukocidin Gene among Clinical Isolates of Staphylococcus aureus in Lithuania. Pol J Microbiol 2024; 73:21-28. [PMID: 38437463 PMCID: PMC10911699 DOI: 10.33073/pjm-2024-003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/18/2023] [Indexed: 03/06/2024] Open
Abstract
This study aimed to determine resistance to antimicrobials of Staphylococcus aureus strains isolated from clinical specimens in Lithuanian hospitals and to identify the genes conferring resistance and virulence. The study was carried out from June 2019 to September 2021. S. aureus strains were isolated from skin, soft tissues, blood, lower respiratory tract, urine and other specimens. Antibiotic susceptibility testing was performed using the disc diffusion method according to EUCAST guidelines. All isolates were analyzed for detection of the ermA, ermC, mecA, mecC, tetK, tetM, and lukF-PV genes by multiplex real-time PCR. The 16S rRNA coding sequence was applied as an internal PCR control. Altogether, 745 S. aureus strains were analyzed. Antimicrobial susceptibility testing revealed that all isolates were susceptible to rifampin and vancomycin. Of the 745 strains, 94.8% were susceptible to tetracycline, 94.5% to clindamycin, and 88.3% to erythromycin. The lowest susceptibility rate was found for penicillin (25.8%). Six percent of the tested strains were methicillin-resistant S. aureus (MRSA). The majority of methicillin-resistant strains were isolated from skin and soft tissues (73.3%), with a smaller portion isolated from blood (17.8%) and respiratory tract (8.9%). The ermC gene was detected in 41.1% of erythromycin-resistant S. aureus strains, whereas ermA was detected in 32.2% of erythromycin-resistant S. aureus strains. 69.2% of tetracycline-resistant S. aureus strains had tetK gene, and 28.2% had tetM gene. 7.3% of S. aureus isolates harbored lukF-PV gene. The frequency of the pvl gene detection was significantly higher in MRSA isolates than in methicillin-susceptible S. aureus isolates (p < 0.0001).
Collapse
Affiliation(s)
- Agnė Kirkliauskienė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | | | | | - Daiva Radzišauskienė
- Department of Infectious Diseases and Dermatovenerology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Tomas Kačergius
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Maksim Bratchikov
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Lina Kaplerienė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
5
|
Lade H, Kim JS. Molecular Determinants of β-Lactam Resistance in Methicillin-Resistant Staphylococcus aureus (MRSA): An Updated Review. Antibiotics (Basel) 2023; 12:1362. [PMID: 37760659 PMCID: PMC10525618 DOI: 10.3390/antibiotics12091362] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The development of antibiotic resistance in Staphylococcus aureus, particularly in methicillin-resistant S. aureus (MRSA), has become a significant health concern worldwide. The acquired mecA gene encodes penicillin-binding protein 2a (PBP2a), which takes over the activities of endogenous PBPs and, due to its low affinity for β-lactam antibiotics, is the main determinant of MRSA. In addition to PBP2a, other genetic factors that regulate cell wall synthesis, cell signaling pathways, and metabolism are required to develop high-level β-lactam resistance in MRSA. Although several genetic factors that modulate β-lactam resistance have been identified, it remains unclear how they alter PBP2a expression and affect antibiotic resistance. This review describes the molecular determinants of β-lactam resistance in MRSA, with a focus on recent developments in our understanding of the role of mecA-encoded PBP2a and on other genetic factors that modulate the level of β-lactam resistance. Understanding the molecular determinants of β-lactam resistance can aid in developing novel strategies to combat MRSA.
Collapse
Affiliation(s)
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea;
| |
Collapse
|
6
|
Portela R, A. Faria N, Mwangi M, Miragaia M, de Lencastre H, Tomasz A, Gonçalves Sobral R. Analysis of a Cell Wall Mutant Highlights Rho-Dependent Genome Amplification Events in Staphylococcus aureus. Microbiol Spectr 2022; 10:e0248321. [PMID: 36094182 PMCID: PMC9603463 DOI: 10.1128/spectrum.02483-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/06/2022] [Indexed: 01/04/2023] Open
Abstract
In a study of antibiotic resistance in Staphylococcus aureus, specific cell wall mutants were previously generated for the peptidoglycan biosynthesis gene murF, by the insertion of an integrative plasmid. A collection of 30 independent mutants was obtained, and all harbored a variable number of copies of the inserted plasmid, arranged in tandem in the chromosome. Of the 30 mutants, only 3, F9, F20 and F26, with a lower number of plasmid copies, showed an altered peptidoglycan structure, lower resistance to β-lactams and a different loss-of-function mutation in rho gene, that encodes a transcription termination factor. The rho mutations were found to correlate with the level of oxacillin resistance, since genetic complementation with rho gene reestablished the resistance and cell wall parental profile in F9, F20 and F26 strains. Furthermore, complementation with rho resulted in the amplification of the number of plasmid tandem repeats, suggesting that Rho enabled events of recombination that favored a rearrangement in the chromosome in the region of the impaired murF gene. Although the full mechanism of reversion of the cell wall damage was not fully elucidated, we showed that Rho is involved in the recombination process that mediates the tandem amplification of exogeneous DNA fragments inserted into the chromosome. IMPORTANCE The cell wall of bacteria, namely, peptidoglycan, is the target of several antibiotic classes such as β-lactams. Staphylococcus aureus is well known for its capacity to adapt to antibiotic stress and develop resistance strategies, namely, to β-lactams. In this context, the construction of cell wall mutants provides useful models to study the development of such resistance mechanisms. Here, we characterized a collection of independent mutants, impaired in the same peptidoglycan biosynthetic step, obtained through the insertion of a plasmid in the coding region of murF gene. S. aureus demonstrated the capacity to overcome the cell wall damage by amplifying the copy number of the inserted plasmid, through an undescribed mechanism that involves the Rho transcription termination factor.
Collapse
Affiliation(s)
- Raquel Portela
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Laboratory of Molecular Microbiology of Bacterial Pathogens, UCIBIO – Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Nuno A. Faria
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Michael Mwangi
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Maria Miragaia
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Hermínia de Lencastre
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, New York, USA
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Alexander Tomasz
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Rita Gonçalves Sobral
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Laboratory of Molecular Microbiology of Bacterial Pathogens, UCIBIO – Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
7
|
Wang H, Wu D, Di L, Zhu F, Wang Z, Sun L, Chen Y, Jiang S, Zhuang H, Chen M, Ji S, Chen Y. Genetic Characteristics of Multiple Copies of Tn1546-Like Elements in ermB-Positive Methicillin-Resistant Staphylococcus aureus From Mainland China. Front Microbiol 2022; 13:814062. [PMID: 35295307 PMCID: PMC8919048 DOI: 10.3389/fmicb.2022.814062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To determine the genetic structure of ermB-positive Tn1546-like mobile elements in methicillin-resistant Staphylococcus aureus (MRSA) from mainland China. Methods A total of 271 erythromycin-resistant MRSA isolates were isolated from Sir Run Run Shaw Hospital (SRRSH) from 2013 to 2015. Whole-genome sequencing was performed for the ermB-positive strains, and the genetic environment of the ermB genes was analyzed. Southern hybridization analysis and transformation tests were performed to confirm the location of the ermB gene. Results A total of 64 isolates (64/271, 23.6%) were ermB-positive strains, with 62 strains (62/64, 96.9%) belonging to the CC59 clone. The other two strains, SR130 and SR231, belonging to CC5-ST965, both harbored 14,567 bp ermB-positive Tn1546-like elements and displayed multidrug-resistant profiles. PFGE followed by Southern blot demonstrated that the ermB genes were located on the plasmids of both SR130 and SR231, while two copies of ermB were located on the chromosome of SR231. Further sequencing demonstrated that SR231 carried one Tn1546-ermB elements in the plasmid and two identical copies integrated on the chromosome, which had 99.99% identity to the element in the plasmid of SR130. The Tn1546-ermB elements were highly similar (100% coverage, >99.9% identity) to the element Tn6636 reported in a previous study from Taiwan. The plasmids (pSR130 and pSR231) harboring ermB-positive Tn1546-like elements were also identical to the mosaic plasmid pNTUH_5066148. However, conjugation of ermB-carrying plasmids of SR130 and SR231 were failed after triple repeats. Conclusion Multiple copies of ermB-positive Tn1546-like mobile elements were found in CC5-ST965 MRSA from mainland China, showing the wide dissemination of these Enterococcus faecium-originated ermB-positive Tn1546-like elements. Molecular epidemiological study of Tn1546-like elements is essential to avoid the spreading of resistant determinants.
Collapse
Affiliation(s)
- Haiping Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dandan Wu
- Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingfang Di
- Department of Clinical Laboratory, Tongxiang First people’s hospital, Tongxiang, China
| | - Feiteng Zhu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengan Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lu Sun
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiyi Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengnan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hemu Zhuang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengzhen Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shujuan Ji
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Shujuan Ji,
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Hospital Epidemiology and Infection Control, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Yan Chen,
| |
Collapse
|
8
|
Comprehensive Genomic Investigation of Adaptive Mutations Driving the Low-Level Oxacillin Resistance Phenotype in Staphylococcus aureus. mBio 2020; 11:mBio.02882-20. [PMID: 33293382 PMCID: PMC7733948 DOI: 10.1128/mbio.02882-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Antistaphylococcal penicillins such as oxacillin are the key antibiotics in the treatment of invasive methicillin-susceptible Staphylococcus aureus (MSSA) infections; however, mec gene-independent resistance adaptation can cause treatment failure. Despite its clinical relevance, the basis of this phenomenon remains poorly understood. Here, we investigated the genomic adaptation to oxacillin at an unprecedented scale using a large collection of 503 clinical mec-negative isolates and 30 in vitro-adapted isolates from independent oxacillin exposures. By combining comparative genomics, evolutionary convergence, and genome-wide association analysis, we found 21 genetic loci associated with low-level oxacillin resistance, underscoring the polygenic nature of this phenotype. Evidence of adaptation was particularly strong for the c-di-AMP signal transduction pathways (gdpP and dacA) and in the clpXP chaperone-protease complex. The role of mutations in gdpP in conferring low-level oxacillin resistance was confirmed by allele-swapping experiments. We found that resistance to oxacillin emerges at high frequency in vitro (median, 2.9 × 10-6; interquartile range [IQR], 1.9 × 10-6 to 3.9 × 10-6), which is consistent with a recurrent minimum inhibitory concentration (MIC) increase across the global phylogeny of clinical isolates. Nevertheless, adaptation in clinical isolates appears sporadically, with no stably adapted lineages, suggesting a high fitness cost of resistance, confirmed by growth assessment of mutants in rich media. Our data provide a broader understanding of the emergence and dynamics of oxacillin resistance adaptation in S. aureus and a framework for future surveillance of this clinically important phenomenon.IMPORTANCE The majority of Staphylococcus aureus strains causing human disease are methicillin-susceptible (MSSA) and can be treated with antistaphylococcal penicillins (such as oxacillin). While acquisition of the mec gene represents the main resistance mechanism to oxacillin, S. aureus can acquire low-level resistance through adaptive mutations in other genes. In this study, we used genomic approaches to understand the basis of S. aureus adaption to oxacillin and its dynamic at the population level. By combining a genome analysis of clinical isolates from persistent MSSA infections, in vitro selection of oxacillin resistance, and genome-wide association analysis on a large collection of isolates, we identified 21 genes linked to secondary oxacillin resistance. Adaptive mutations in these genes were easy to select when S. aureus was exposed to oxacillin, but they also came at a substantial cost in terms of bacterial fitness, suggesting that this phenotype emerges preferentially in the setting of sustained antibiotic exposure.
Collapse
|
9
|
Lin KH, Lin CY, Huang CC, Ho YL, Yang SF, Ho CM. Differentiation of qacA and qacB using high-resolution melt curve analysis, and both qacA and qacB but not qacC or norA types increase chlorhexidine minimal inhibitory concentrations in Staphylococcus aureus isolates. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 53:900-908. [PMID: 33097426 DOI: 10.1016/j.jmii.2020.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/15/2020] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Chlorhexidine is one of the most essential ingredients in infection control applications. Except qacA, the effects of other various efflux-medicated biocide genes (including qacB, qacC, qacEΔ1, qacH or norA) on biguanides resistance are still controversial. In addition, most of the studies have discussed the effect of qacA/B on clinical S. aureus isolates but not that qacA or qacB individually. METHODS In total, 254 methicillin-resistant Staphylococcus aureus (MRSA), selected 30 methicillin-susceptible S. aureus (MSSA) clinical isolates from different patients during 2014-2015 and 15 S. aureus quality control strains (including Mu3 and Mu50) were included in the study. Various biocide genes, including qacA/B, qacC, qacH, qacEΔ1, and different types of norA, were determined through conventional PCR. S. aureus isolates with qacA/B (+) were analyzed using high-resolution melting curve (HRM) to differentiate qacA from qacB. The chlorhexidine MIC was determined using the agar dilution method. Univariate and multivariate statistics were analyzed to see which biocide resistant genes had effects on chlorhexidine MIC. RESULTS Results of all HRM analyses (n = 22) were consistent with those of Sanger sequencing for differentiation of qacA from qacB. None of the isolates harbored qacH and only one MRSA harbored qacEΔ1. The harboring rate of qacA, qacB, and qacC among MRSA/MSSA isolates was 7.1% (n = 18)/0%, 38.2% (n = 97)/0%, and 7.5% (n = 19)/3.3% (n = 1), respectively. The most type of norA was norAI (n = 158), followed by norAIII (n = 87) and norAII (n = 9) among MRSA isolates. Based on the results of multivariate logistic regression analyses, only qacA and qacB would increase chlorhexidine MIC from ≤ 1 ug/ml to ≥ 2 ug/ml in MRSA isolates (P < 0.001) but not qacC or norA types (P=0.976 and 0.633 or 0.933, respectively). In addition, only qacA but not qacB was contributed to elevate chlorhexidine from ≤ 1 ug/ml to 4 ug/ml in MRSA isolates (P < 0.001 and 0.017, respectively). CONCLUSION HRM analysis can be a great method to differentiate qacA from qacB. The biocide gene with the most effect on chlorhexidine MIC in S. aureus isolates was qacA, followed by qacB, but qacC and different types of norA did not have any effect on chlorhexidine susceptibility. Further investigation on the influence of qacB, qacC and types of norA on chlorhexidine susceptibility is necessary.
Collapse
Affiliation(s)
- Kai-Hsiang Lin
- Department of Laboratory Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan; Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan; Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chien-Yu Lin
- Department of Laboratory Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan; Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chieh-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yu-Ling Ho
- Department of Nursing, Hungkuang University, Taichung, Taiwan
| | - Shu-Fen Yang
- Department of Laboratory Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan; Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Cheng-Mao Ho
- Department of Laboratory Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan; Department of Nursing, Hungkuang University, Taichung, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan; Department of Clinical Pathology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan; Department of Laboratory Medicine and Diagnosis, School of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
10
|
Bebel A, Walsh MA, Mir-Sanchis I, Rice PA. A novel DNA primase-helicase pair encoded by SCC mec elements. eLife 2020; 9:55478. [PMID: 32945259 PMCID: PMC7581432 DOI: 10.7554/elife.55478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 09/17/2020] [Indexed: 01/18/2023] Open
Abstract
Mobile genetic elements (MGEs) are a rich source of new enzymes, and conversely, understanding the activities of MGE-encoded proteins can elucidate MGE function. Here, we biochemically characterize three proteins encoded by a conserved operon carried by the Staphylococcal Cassette Chromosome (SCCmec), an MGE that confers methicillin resistance to Staphylococcus aureus, creating MRSA strains. The first of these proteins, CCPol, is an active A-family DNA polymerase. The middle protein, MP, binds tightly to CCPol and confers upon it the ability to synthesize DNA primers de novo. The CCPol-MP complex is therefore a unique primase-polymerase enzyme unrelated to either known primase family. The third protein, Cch2, is a 3’-to-5’ helicase. Cch2 additionally binds specifically to a dsDNA sequence downstream of its gene that is also a preferred initiation site for priming by CCPol-MP. Taken together, our results suggest that this is a functional replication module for SCCmec.
Collapse
Affiliation(s)
- Aleksandra Bebel
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Melissa A Walsh
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Ignacio Mir-Sanchis
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Phoebe A Rice
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| |
Collapse
|
11
|
Papkou A, Hedge J, Kapel N, Young B, MacLean RC. Efflux pump activity potentiates the evolution of antibiotic resistance across S. aureus isolates. Nat Commun 2020; 11:3970. [PMID: 32769975 PMCID: PMC7414891 DOI: 10.1038/s41467-020-17735-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/14/2020] [Indexed: 11/23/2022] Open
Abstract
The rise of antibiotic resistance in many bacterial pathogens has been driven by the spread of a few successful strains, suggesting that some bacteria are genetically pre-disposed to evolving resistance. Here, we test this hypothesis by challenging a diverse set of 222 isolates of Staphylococcus aureus with the antibiotic ciprofloxacin in a large-scale evolution experiment. We find that a single efflux pump, norA, causes widespread variation in evolvability across isolates. Elevated norA expression potentiates evolution by increasing the fitness benefit provided by DNA topoisomerase mutations under ciprofloxacin treatment. Amplification of norA provides a further mechanism of rapid evolution in isolates from the CC398 lineage. Crucially, chemical inhibition of NorA effectively prevents the evolution of resistance in all isolates. Our study shows that pre-existing genetic diversity plays a key role in shaping resistance evolution, and it may be possible to predict which strains are likely to evolve resistance and to optimize inhibitor use to prevent this outcome.
Collapse
Affiliation(s)
- Andrei Papkou
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3PS, UK.
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland.
| | - Jessica Hedge
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3PS, UK
| | - Natalia Kapel
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3PS, UK
| | - Bernadette Young
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - R Craig MacLean
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3PS, UK.
| |
Collapse
|
12
|
Sun L, Chen Y, Hua X, Chen Y, Hong J, Wu X, Jiang Y, van Schaik W, Qu T, Yu Y. Tandem amplification of the vanM gene cluster drives vancomycin resistance in vancomycin-variable enterococci. J Antimicrob Chemother 2020; 75:283-291. [PMID: 31742612 DOI: 10.1093/jac/dkz461] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/21/2019] [Accepted: 10/10/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Vancomycin-variable enterococci (VVE) are a potential risk factor for vancomycin resistance gene dissemination and clinical treatment failure. vanM has emerged as a new prevalent resistance determinant among clinical enterococci in China. A total of 54 vancomycin-susceptible enterococci (VSE) isolates carrying incomplete vanM gene clusters were isolated in our previous study. OBJECTIVES To determine the potential of vanM-carrying VSE to develop vancomycin resistance and investigate the mechanism of alteration of the resistance phenotype. METHODS Fifty-four vanM-positive VSE strains were induced in vitro by culturing in increasing concentrations of vancomycin. Genetic changes between three parent VVE strains and their resistant variants were analysed using Illumina and long-read sequencing technologies, quantitative PCR and Southern blot hybridization. Changes in expression level were determined by quantitative RT-PCR. RESULTS Twenty-five of the 54 VSE strains carrying vanM became resistant upon vancomycin exposure. A significant increase in vanM copy number was observed ranging from 5.28 to 127.64 copies per cell in induced resistant VVE strains. The vanM transposon was identified as tandem repeats with IS1216E between them, and occurred in either the plasmid or the chromosome of resistant VVE cells. In addition, an increase in vanM expression was observed after resistance conversion in VVE. CONCLUSIONS This study identified tandem amplification of the vanM gene cluster as a new mechanism for vancomycin resistance in VVE strains, offering a competitive advantage for VVE under antibiotic pressure.
Collapse
Affiliation(s)
- Lingyan Sun
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Yiyi Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Jinjing Hong
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xueqing Wu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Willem van Schaik
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Tingting Qu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Hangzhou, Zhejiang Province, China
| |
Collapse
|
13
|
Gostev V, Sopova J, Kalinogorskaya O, Tsvetkova I, Lobzin Y, Klotchenko S, Sidorenko S. In Vitro Ceftaroline Resistance Selection of Methicillin-Resistant Staphylococcus aureus Involves Different Genetic Pathways. Microb Drug Resist 2019; 25:1401-1409. [PMID: 31329022 DOI: 10.1089/mdr.2019.0130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pathways in the development of ceftaroline resistance of methicillin-resistant Staphylococcus aureus (MRSA) isolates belonging to the ST8, ST239, and ST228 were evaluated. Ceftaroline-resistant derivatives were isolated through selection during 40 passages. Ceftaroline MIC measurements and whole-genome sequencing were performed after 5, 20, and 40 passages. In two ST8 derivative isolates, ceftaroline MIC increased up to 128 mg/L. Mutations were acquired in gdpP and graS in one isolate after 20 passages and in gdpP in another after 40 passages. MIC for two ST239 derivatives increased to 128 mg/L. Substitutions in Pbp4 and polymorphisms in the upstream region of pbp4 were identified in both derivatives after 40 passages. In one isolate, additional mutation in gdpP and deletion in graR were detected. In an ST228 derivative, MIC increased to 32 mg/L with one mutation in penicillin-binding protein 2a (Y446N) detected after five passages and a second (E447K) after 20 passages. Three pathways in the development of ceftaroline resistance were identified. For ST8 and ST239 derivatives mutations were detected in gdpP and pbp4, respectively, whereas in ST228 - in mecA. Most derivatives harbored additional mutations whose potential role in the development of resistance has not been determined.
Collapse
Affiliation(s)
- Vladimir Gostev
- Department of Medical Microbiology and Molecular Epidemiology, Pediatric Research and Clinical Center for Infectious Diseases, Saint Petersburg, Russia
- Department of Medical Microbiology, North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia
| | - Julia Sopova
- Laboratory of Genetic Models of Human Diseases, Saint Petersburg Branch of Vavilov Institute of General Genetics, Saint Petersburg, Russia
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Olga Kalinogorskaya
- Department of Medical Microbiology and Molecular Epidemiology, Pediatric Research and Clinical Center for Infectious Diseases, Saint Petersburg, Russia
| | - Irina Tsvetkova
- Department of Medical Microbiology and Molecular Epidemiology, Pediatric Research and Clinical Center for Infectious Diseases, Saint Petersburg, Russia
| | - Yuri Lobzin
- Department of Medical Microbiology and Molecular Epidemiology, Pediatric Research and Clinical Center for Infectious Diseases, Saint Petersburg, Russia
- Department of Medical Microbiology, North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia
| | - Sergey Klotchenko
- Division of Viral Molecular Biology, Smorodintsev Research Institute of Influenza, Saint Petersburg, Russia
| | - Sergey Sidorenko
- Department of Medical Microbiology and Molecular Epidemiology, Pediatric Research and Clinical Center for Infectious Diseases, Saint Petersburg, Russia
- Department of Medical Microbiology, North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia
| |
Collapse
|
14
|
Vestergaard M, Frees D, Ingmer H. Antibiotic Resistance and the MRSA Problem. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0057-2018. [PMID: 30900543 PMCID: PMC11590431 DOI: 10.1128/microbiolspec.gpp3-0057-2018] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Indexed: 12/29/2022] Open
Abstract
Staphylococcus aureus is capable of becoming resistant to all classes of antibiotics clinically available and resistance can develop through de novo mutations in chromosomal genes or through acquisition of horizontally transferred resistance determinants. This review covers the most important antibiotics available for treatment of S. aureus infections and a special emphasis is dedicated to the current knowledge of the wide variety of resistance mechanisms that S. aureus employ to withstand antibiotics. Since resistance development has been inevitable for all currently available antibiotics, new therapies are continuously under development. Besides development of new small molecules affecting cell viability, alternative approaches including anti-virulence and bacteriophage therapeutics are being investigated and may become important tools to combat staphylococcal infections in the future.
Collapse
Affiliation(s)
- Martin Vestergaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Dorte Frees
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
15
|
Miragaia M. Factors Contributing to the Evolution of mecA-Mediated β-lactam Resistance in Staphylococci: Update and New Insights From Whole Genome Sequencing (WGS). Front Microbiol 2018; 9:2723. [PMID: 30483235 PMCID: PMC6243372 DOI: 10.3389/fmicb.2018.02723] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022] Open
Abstract
The understanding of the mechanisms of antibiotic resistance development are fundamental to alert and preview beforehand, the large scale dissemination of resistance to antibiotics, enabling the design of strategies to prevent its spread. The mecA-mediated methicillin resistance conferring resistance to broad-spectrum β-lactams is globally spread in staphylococci including hospitals, farms and community environments, turning ineffective the most widely used and efficient class of antibiotics to treat staphylococcal infections. The use of whole genome sequencing (WGS) technologies at a bacterial population level has provided a considerable progress in the identification of key steps that led to mecA-mediated β-lactam resistance development and dissemination. Data obtained from multiple studies indicated that mecA developed from a harmless core gene (mecA1) encoding the penicillin-binding protein D (PbpD) from staphylococcal species of animal origin (S. sciuri group) due to extensive β-lactams use in human created environments. Emergence of the resistance determinant involved distortion of PbpD active site, increase in mecA1 expression, addition of regulators (mecR1, mecI) and integration into a mobile genetic element (SCCmec). SCCmec was then transferred into species of coagulase-negative staphylococci (CoNS) that are able to colonize both animals and humans and subsequently transferred to S. aureus of human origin. Adaptation of S. aureus to the exogenously acquired SCCmec involved, deletion and mutation of genes implicated in general metabolism (auxiliary genes) and general stress response and the adjustment of metabolic networks, what was accompanied by an increase in β-lactams minimal inhibitory concentration and the transition from a heterogeneous to homogeneous resistance profile. Nowadays, methicillin-resistant S. aureus (MRSA) carrying SCCmec constitutes one of the most important worldwide pandemics. The stages of development of mecA-mediated β-lactam resistance described here may serve as a model for previewing and preventing the emergence of resistance to other classes of antibiotics.
Collapse
Affiliation(s)
- Maria Miragaia
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
16
|
Mir-Sanchis I, Pigli YZ, Rice PA. Crystal Structure of an Unusual Single-Stranded DNA-Binding Protein Encoded by Staphylococcal Cassette Chromosome Elements. Structure 2018; 26:1144-1150.e3. [PMID: 30017563 PMCID: PMC6084467 DOI: 10.1016/j.str.2018.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/19/2018] [Accepted: 05/24/2018] [Indexed: 01/07/2023]
Abstract
Methicillin-resistant Staphylococcus aureus is a global public health threat. Methicillin resistance is carried on mobile genetic elements belonging to the staphylococcal cassette chromosome (SCC) family. The molecular mechanisms that SCC elements exploit for stable maintenance and for horizontal transfer are poorly understood. Previously, we identified several conserved SCC genes with putative functions in DNA replication, including lp1413, which we found encodes a single-stranded DNA (ssDNA)-binding protein. We report here the 2.18 Å crystal structure of LP1413, which shows that it adopts a winged helix-turn-helix fold rather than the OB-fold normally seen in replication-related ssDNA-binding proteins. However, conserved residues form a hydrophobic pocket not normally found in winged helix-turn-helix domains. LP1413 also has a conserved but disordered C-terminal tail. As deletion of the tail does not significantly affect cooperative binding to ssDNA, we propose that it mediates interactions with other proteins. LP1413 could play several different roles in vivo.
Collapse
|
17
|
Extensive Gene Amplification as a Mechanism for Piperacillin-Tazobactam Resistance in Escherichia coli. mBio 2018; 9:mBio.00583-18. [PMID: 29691340 PMCID: PMC5915731 DOI: 10.1128/mbio.00583-18] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Although the TEM-1 β-lactamase (BlaTEM-1) hydrolyzes penicillins and narrow-spectrum cephalosporins, organisms expressing this enzyme are typically susceptible to β-lactam/β-lactamase inhibitor combinations such as piperacillin-tazobactam (TZP). However, our previous work led to the discovery of 28 clinical isolates of Escherichia coli resistant to TZP that contained only blaTEM-1 One of these isolates, E. coli 907355, was investigated further in this study. E. coli 907355 exhibited significantly higher β-lactamase activity and BlaTEM-1 protein levels when grown in the presence of subinhibitory concentrations of TZP. A corresponding TZP-dependent increase in blaTEM-1 copy number was also observed, with as many as 113 copies of the gene detected per cell. These results suggest that TZP treatment promotes an increase in blaTEM-1 gene dosage, allowing BlaTEM-1 to reach high enough levels to overcome inactivation by the available tazobactam in the culture. To better understand the nature of the blaTEM-1 copy number proliferation, whole-genome sequence (WGS) analysis was performed on E. coli 907355 in the absence and presence of TZP. The WGS data revealed that the blaTEM-1 gene is located in a 10-kb genomic resistance module (GRM) that contains multiple resistance genes and mobile genetic elements. The GRM was found to be tandemly repeated at least 5 times within a p1ESCUM/p1ECUMN-like plasmid when bacteria were grown in the presence of TZP.IMPORTANCE Understanding how bacteria acquire resistance to antibiotics is essential for treating infected patients effectively, as well as preventing the spread of resistant organisms. In this study, a clinical isolate of E. coli was identified that dedicated more than 15% of its genome toward tandem amplification of a ~10-kb resistance module, allowing it to escape antibiotic-mediated killing. Our research is significant in that it provides one possible explanation for clinical isolates that exhibit discordant behavior when tested for antibiotic resistance by different phenotypic methods. Our research also shows that GRM amplification is difficult to detect by short-read WGS technologies. Analysis of raw long-read sequence data was required to confirm GRM amplification as a mechanism of antibiotic resistance.
Collapse
|