1
|
Mei H, Cai H, Liu F, Venkatadri R, Miller HE, Mathison AJ, Wang HYL, Silva SC, O’Doherty GA, Arav-Boger R. Interspecies Differences in Cytomegalovirus Inhibition by Cardiac Glycosides-A Unique Role of the Alpha3 Isoform of the Na +/K +-ATPase Pump. Viruses 2025; 17:398. [PMID: 40143325 PMCID: PMC11946196 DOI: 10.3390/v17030398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Cardiac glycosides (CGs), historically used to treat heart failure and arrhythmias, bind to the α subunit of the Na+/K+-ATPase pump and inhibit its activity. Their anticancer and antiviral activities are of interest. The α subunit of the Na+/K+-ATPase pump has four isoforms (α1-4), each with unique tissue distribution and expression pattern; their contributions to antiviral activities have not been studied. We previously reported that CGs inhibit human CMV (HCMV) in vitro but not mouse CMV (MCMV). In addition to the low affinity of mouse α1 for CGs, we hypothesized that other isoforms contribute to the anti-CMV activities of CGs. We show here that infection with HCMV significantly induced α3 in human foreskin fibroblasts, while MCMV did not induce mouse α3. Infection with guinea pig CMV (GPCMV) in GP fibroblasts also induced α3, and CGs inhibited GPCMV replication. HCMV inhibition with digitoxin reduced α3 expression. The concentration-dependent inhibition of HCMV with digitoxin analogs also correlated with α3 expression. Intriguingly, α3 was localized to the nucleus, and changes in its expression during infection and digitoxin treatment were mostly limited to the nucleus. At 4 h post-infection, α3 colocalized with immediate early 1 (IE1) and the promyelocytic leukemia protein (PML). An interaction of α3-PML-IE1 at 24 h post-infection was disrupted by digitoxin. The mRNA levels of IE1, major immediate early promoter (MIEP)-derived IE, and antiviral cytokines were reduced in infected digitoxin-treated cells. Summarized, these findings suggest a new role for α3 in the anti-HCMV activities of CGs via nuclear antiviral signaling pathways.
Collapse
Affiliation(s)
- Hong Mei
- Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hongyi Cai
- Department of Pediatrics, Division of Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Fengjie Liu
- Department of Pediatrics, Division of Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Rajkumar Venkatadri
- Department of Pediatrics, Division of Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Halli E. Miller
- Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Angela J. Mathison
- Department of Surgery, Division of Research and Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hua-Yu Leo Wang
- Department of Chemistry, Northeastern University, Boston, MA 02115, USA
| | - Simone C. Silva
- Department of Chemistry, Northeastern University, Boston, MA 02115, USA
| | | | - Ravit Arav-Boger
- Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
2
|
Zhao L, Shen G, Luo J, Zhang Y, Yao Y, Cui L, Yang B. Effects of Steroidal Compounds on Viruses. Viral Immunol 2025; 38:44-52. [PMID: 39912855 DOI: 10.1089/vim.2024.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Viral infections are ubiquitous, and their prevention and treatment have become a great challenge. Steroids have different biological activities, including antiviral activity, which is related to steroid structural diversity. With the intensive study of steroids, it has been found that steroids can interfere with almost any step of the viral life cycle to exert antiviral activity. In this article, we review the antiviral activity and mechanism of action of steroids and their derivatives against a range of human viruses and conclude that natural steroids and their derivatives are very promising antiviral drug candidates that deserve further study to elucidate their pharmacological potential.
Collapse
Affiliation(s)
- Li Zhao
- College of Pharmacy, Harbin University of Commerce, Harbin, China
- Heilongjiang Provincial Key Laboratory of Drug Prevention and Treatment for Senile Diseases, Harbin, China
| | - Guanghuan Shen
- College of Pharmacy, Harbin University of Commerce, Harbin, China
- Heilongjiang Provincial Key Laboratory of Drug Prevention and Treatment for Senile Diseases, Harbin, China
| | - Jianghan Luo
- College of Pharmacy, Harbin University of Commerce, Harbin, China
- Heilongjiang Provincial Key Laboratory of Drug Prevention and Treatment for Senile Diseases, Harbin, China
| | - Yingyu Zhang
- College of Pharmacy, Harbin University of Commerce, Harbin, China
- Heilongjiang Provincial Key Laboratory of Drug Prevention and Treatment for Senile Diseases, Harbin, China
| | - Ying Yao
- College of Pharmacy, Harbin University of Commerce, Harbin, China
- Heilongjiang Provincial Key Laboratory of Drug Prevention and Treatment for Senile Diseases, Harbin, China
| | - Linlin Cui
- College of Pharmacy, Harbin University of Commerce, Harbin, China
- Heilongjiang Provincial Key Laboratory of Drug Prevention and Treatment for Senile Diseases, Harbin, China
| | - Bo Yang
- College of Pharmacy, Harbin University of Commerce, Harbin, China
- Heilongjiang Provincial Key Laboratory of Drug Prevention and Treatment for Senile Diseases, Harbin, China
| |
Collapse
|
3
|
Carvalho DCM, Dunn T, Campos RK, Tierney JA, Onyoni F, Cavalcante-Silva LHA, Pena LJ, Rodrigues-Mascarenhas S, Wu P, Weaver SC. Antiviral and immunomodulatory effects of ouabain against congenital Zika syndrome model. Mol Ther 2025; 33:465-470. [PMID: 39674887 PMCID: PMC11852665 DOI: 10.1016/j.ymthe.2024.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/23/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024] Open
Abstract
Zika virus (ZIKV) is an arbovirus associated with neurological disorders accompanying congenital infections. With no vaccine or antiviral approved, there is an urgent need for the development of effective antiviral agents against ZIKV infection. We evaluated the anti-ZIKV and immunomodulatory activity of ouabain, a Na+/K+-ATPase inhibitor known to have immunomodulatory and antiviral activities, using human neural stem and progenitor cells (hNS/PCs) and a murine model of congenital Zika syndrome (CZS). Our data demonstrated that ouabain reduces ZIKV infection in hNS/PCs, mouse placenta, yolk sac, and the fetal head. Ouabain mitigated neurogenesis impairment triggered by ZIKV in hNS/PCs and prevented ZIKV-mediated reduction of fetus and head sizes. In addition, ouabain decreased tumor necrosis factor and interleukin-1β levels in the placenta, highlighting its immunomodulatory activity in the murine model. Our findings indicate that ouabain possesses anti-ZIKV and immunomodulatory activities, suggesting that it should be investigated further as a promising treatment for CZS.
Collapse
Affiliation(s)
- Deyse Cristina Madruga Carvalho
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraiba (UFPB), João Pessoa 58051-900, Paraiba, Brazil; Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife 50740-465, Pernambuco, Brazil; Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA; Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Tiffany Dunn
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Rafael Kroon Campos
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Jessica A Tierney
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Florence Onyoni
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Luiz Henrique Agra Cavalcante-Silva
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraiba (UFPB), João Pessoa 58051-900, Paraiba, Brazil; Medical Sciences and Nursing Complex, Federal University of Alagoas, Arapiraca, 57309-005, Brazil
| | - Lindomar José Pena
- Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife 50740-465, Pernambuco, Brazil
| | - Sandra Rodrigues-Mascarenhas
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraiba (UFPB), João Pessoa 58051-900, Paraiba, Brazil
| | - Ping Wu
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA.
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA.
| |
Collapse
|
4
|
Samolej J, White IJ, Strang BL, Mercer J. Cardiac glycosides inhibit early and late vaccinia virus protein expression. J Gen Virol 2024; 105:001971. [PMID: 38546099 PMCID: PMC10995631 DOI: 10.1099/jgv.0.001971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Cardiac glycosides (CGs) are natural steroid glycosides, which act as inhibitors of the cellular sodium-potassium ATPase pump. Although traditionally considered toxic to human cells, CGs are widely used as drugs for the treatment of cardiovascular-related medical conditions. More recently, CGs have been explored as potential anti-viral drugs and inhibit replication of a range of RNA and DNA viruses. Previously, a compound screen identified CGs that inhibited vaccinia virus (VACV) infection. However, no further investigation of the inhibitory potential of these compounds was performed, nor was there investigation of the stage(s) of the poxvirus lifecycle they impacted. Here, we investigated the anti-poxvirus activity of a broad panel of CGs. We found that all CGs tested were potent inhibitors of VACV replication. Our virological experiments showed that CGs did not impact virus infectivity, binding, or entry. Rather, experiments using recombinant viruses expressing reporter proteins controlled by VACV promoters and arabinoside release assays demonstrated that CGs inhibited early and late VACV protein expression at different concentrations. Lack of virus assembly in the presence of CGs was confirmed using electron microscopy. Thus, we expand our understanding of compounds with anti-poxvirus activity and highlight a yet unrecognized mechanism by which poxvirus replication can be inhibited.
Collapse
Affiliation(s)
- Jerzy Samolej
- Insititute of Microbiology and Infection, University of Birmingham, Birmingham, UK
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Ian J. White
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Blair L. Strang
- Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Jason Mercer
- Insititute of Microbiology and Infection, University of Birmingham, Birmingham, UK
- Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
5
|
Mi Y, Guo Y, Luo X, Bai Y, Chen H, Wang M, Wang Y, Guo J. Natural products and derivatives as Japanese encephalitis virus antivirals. Pathog Dis 2024; 82:ftae022. [PMID: 39317665 PMCID: PMC11556344 DOI: 10.1093/femspd/ftae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/31/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024] Open
Abstract
Japanese encephalitis virus (JEV) causes acute Japanese encephalitis (JE) in humans and reproductive disorders in pigs. There are ~68 000 cases of JE worldwide each year, with ~13 600-20 400 deaths. JE infections have a fatality rate of one-third, and half of the survivors experience permanent neurological sequelae. The disease is prevalent throughout the Asia-Pacific region and has the potential to spread globally. JEV poses a serious threat to human life and health, and vaccination is currently the only strategy for long-term sustainable protection against JEV infection. However, licensed JEV vaccines are not effective against all strains of JEV. To date, there are no drugs approved for clinical use, and the development of anti-JEV drugs is urgently needed. Natural products are characterized by a wide range of sources, unique structures, and low prices, and this paper provides an overview of the research and development of anti-JEV bioactive natural products.
Collapse
Affiliation(s)
- Yunqi Mi
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China
| | - Yan Guo
- School of Modern Post, Xi’an University of Posts and Telecommunications, Xi’an 710061, China
| | - Xuliang Luo
- College of Animal Science and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Bai
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China
| | - Haonan Chen
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China
| | - Meihua Wang
- Faculty of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yang Wang
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China
| | - Jiao Guo
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China
| |
Collapse
|
6
|
Jahanshahi S, Ouyang H, Ahmed C, Zahedi Amiri A, Dahal S, Mao YQ, Van Ommen DAJ, Malty R, Duan W, Been T, Hernandez J, Mangos M, Nurtanto J, Babu M, Attisano L, Houry WA, Moraes TJ, Cochrane A. Broad spectrum post-entry inhibitors of coronavirus replication: Cardiotonic steroids and monensin. Virology 2024; 589:109915. [PMID: 37931588 DOI: 10.1016/j.virol.2023.109915] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
A small molecule screen identified several cardiotonic steroids (digitoxin and ouabain) and the ionophore monensin as potent inhibitors of HCoV-229E, HCoV-OC43, and SARS-CoV-2 replication with EC50s in the low nM range. Subsequent tests confirmed antiviral activity in primary cell models including human nasal epithelial cells and lung organoids. Addition of digitoxin, ouabain, or monensin strongly reduced viral gene expression as measured by both viral protein and RNA accumulation. Furthermore, the compounds acted post virus entry. While the antiviral activity of digitoxin was dependent upon activation of the MEK and JNK signaling pathways but not signaling through GPCRs, the antiviral effect of monensin was reversed upon inhibition of several signaling pathways. Together, the data demonstrates the potent anti-coronavirus properties of two classes of FDA approved drugs that function by altering the properties of the infected cell, rendering it unable to support virus replication.
Collapse
Affiliation(s)
- Shahrzad Jahanshahi
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Dept. of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Hong Ouyang
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Choudhary Ahmed
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ali Zahedi Amiri
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Subha Dahal
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Yu-Qian Mao
- Dept. of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | - Ramy Malty
- Dept. of Biochemistry, University of Toronto, Toronto, ON, Canada; Research and Innovation Centre, Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Wenming Duan
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Terek Been
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Maria Mangos
- Donnelly Center, University of Toronto, Ontario, Canada
| | | | - Mohan Babu
- Research and Innovation Centre, Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Liliana Attisano
- Dept. of Biochemistry, University of Toronto, Toronto, ON, Canada; Donnelly Center, University of Toronto, Ontario, Canada
| | - Walid A Houry
- Dept. of Biochemistry, University of Toronto, Toronto, ON, Canada; Dept. of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Theo J Moraes
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Alan Cochrane
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Jensen GS, Yu L, Iloba I, Cruickshank D, Matos JR, Newman RA. Differential Activities of the Botanical Extract PBI-05204 and Oleandrin on Innate Immune Functions under Viral Challenge Versus Inflammatory Culture Conditions. Molecules 2023; 28:4799. [PMID: 37375354 DOI: 10.3390/molecules28124799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The Nerium oleander extract PBI 05204 (PBI) and its cardiac glycoside constituent oleandrin have direct anti-viral properties. Their effect on the immune system, however, is largely unknown. We used an in vitro model of human peripheral blood mononuclear cells to document effects under three different culture conditions: normal, challenged with the viral mimetic polyinosinic:polycytidylic acid Poly I:C, and inflamed by lipopolysaccharide (LPS). Cells were evaluated for immune activation marks CD69, CD25, and CD107a, and culture supernatants were tested for cytokines. Both PBI and oleandrin directly activated Natural Killer (NK) cells and monocytes and triggered increased production of cytokines. Under viral mimetic challenge, PBI and oleandrin enhanced the Poly I:C-mediated immune activation of monocytes and NK cells and enhanced production of IFN-γ. Under inflammatory conditions, many cytokines were controlled at similar levels as in cultures treated with PBI and oleandrin without inflammation. PBI triggered higher levels of some cytokines than oleandrin. Both products increased T cell cytotoxic attack on malignant target cells, strongest by PBI. The results show that PBI and oleandrin directly activate innate immune cells, enhance anti-viral immune responses through NK cell activation and IFN-γ levels, and modulate immune responses under inflamed conditions. The potential clinical impact of these activities is discussed.
Collapse
Affiliation(s)
| | - Liu Yu
- NIS Labs, 807 St. George St., Port Dover, ON N0A 1N0, Canada
| | - Ifeanyi Iloba
- NIS Labs, 1437 Esplanade, Klamath Falls, OR 97601, USA
| | | | - Jose R Matos
- Phoenix Biotechnology, 8626 Tesoro Drive, Suite 801, San Antonio, TX 78217, USA
| | - Robert A Newman
- Phoenix Biotechnology, 8626 Tesoro Drive, Suite 801, San Antonio, TX 78217, USA
| |
Collapse
|
8
|
Jamshed F, Dashti F, Ouyang X, Mehal WZ, Banini BA. New uses for an old remedy: Digoxin as a potential treatment for steatohepatitis and other disorders. World J Gastroenterol 2023; 29:1824-1837. [PMID: 37032732 PMCID: PMC10080697 DOI: 10.3748/wjg.v29.i12.1824] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/12/2023] [Accepted: 03/14/2023] [Indexed: 03/28/2023] Open
Abstract
Repurposing of the widely available and relatively cheap generic cardiac gly-coside digoxin for non-cardiac indications could have a wide-ranging impact on the global burden of several diseases. Over the past several years, there have been significant advances in the study of digoxin pharmacology and its potential non-cardiac clinical applications, including anti-inflammatory, antineoplastic, metabolic, and antimicrobial use. Digoxin holds promise in the treatment of gastrointestinal disease, including nonalcoholic steatohepatitis and alcohol-associated steatohepatitis as well as in obesity, cancer, and treatment of viral infections, among other conditions. In this review, we provide a summary of the clinical uses of digoxin to date and discuss recent research on its emerging applications.
Collapse
Affiliation(s)
- Fatima Jamshed
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT 06510, United States
- Griffin Hospital-Yale University, Derby, CT 06418, United States
| | - Farzaneh Dashti
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT 06510, United States
| | - Xinshou Ouyang
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT 06510, United States
| | - Wajahat Z Mehal
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT 06510, United States
- West Haven Veterans Medical Center, West Haven, CT 06516, United States
| | - Bubu A Banini
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT 06510, United States
| |
Collapse
|
9
|
Antiviral activity of ouabain against a Brazilian Zika virus strain. Sci Rep 2022; 12:12598. [PMID: 35871157 PMCID: PMC9308787 DOI: 10.1038/s41598-022-14243-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/14/2022] [Indexed: 11/20/2022] Open
Abstract
Zika virus (ZIKV) is an emerging arbovirus associated with neurological disorders. Currently, no specific vaccines or antivirals are available to treat the ZIKV infection. Ouabain, a cardiotonic steroid known as Na+/K+-ATPase inhibitor, has been previously described as an immunomodulatory substance by our group. Here, we evaluated for the first time the antiviral activity of this promising substance against a Brazilian ZIKV strain. Vero cells were treated with different concentrations of ouabain before and after the infection with ZIKV. The antiviral effect was evaluated by the TCID50 method and RT-qPCR. Ouabain presented a dose-dependent inhibitory effect against ZIKV, mainly when added post infection. The reduction of infectious virus was accompanied by a decrease in ZIKV RNA levels, suggesting that the mechanism of ZIKV inhibition by ouabain occurred at the replication step. In addition, our in silico data demonstrated a conformational stability and favorable binding free energy of ouabain in the biding sites of the NS5-RdRp and NS3-helicase proteins, which could be related to its mechanism of action. Taken together, these data demonstrate the antiviral activity of ouabain against a Brazilian ZIKV strain and evidence the potential of cardiotonic steroids as promising antiviral agents.
Collapse
|
10
|
Strang BL. Toward inhibition of human cytomegalovirus replication with compounds targeting cellular proteins. J Gen Virol 2022; 103. [PMID: 36215160 DOI: 10.1099/jgv.0.001795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antiviral therapy for human cytomegalovirus (HCMV) currently relies upon direct-acting antiviral drugs. However, it is now well known that these drugs have shortcomings, which limit their use. Here I review the identification and investigation of compounds targeting cellular proteins that have anti-HCMV activity and could supersede those anti-HCMV drugs currently in use. This includes discussion of drug repurposing, for example the use of artemisinin compounds, and discussion of new directions to identify compounds that target cellular factors in HCMV-infected cells, for example screening of kinase inhibitors. In addition, I highlight developing areas such as the use of machine learning and emphasize how interaction with fields outside virology will be critical for development of anti-HCMV compounds.
Collapse
Affiliation(s)
- Blair L Strang
- Institute for Infection & Immunity, St George's, University of London, London, UK
| |
Collapse
|
11
|
Cai J, Zhang BD, Li YQ, Zhu WF, Akihisa T, Kikuchi T, Xu J, Liu WY, Feng F, Zhang J. Cardiac glycosides from the roots of Streblus asper Lour. with activity against Epstein-Barr virus lytic replication. Bioorg Chem 2022; 127:106004. [PMID: 35843015 DOI: 10.1016/j.bioorg.2022.106004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/15/2022]
Abstract
Cardiac glycosides (CGs) show potential broad-spectrum antiviral activity by targeting cellular host proteins. Herein are reported the isolation of five new (1-5) and eight known (7-13) CGs from the roots of Streblus asper Lour. Of these compounds 1 and 7 exhibited inhibitory action against EBV early antigen (EA) expression, with half-maximal effective concentration values (EC50) being less than 60 nM, and they also showed selectivity, with selectivity index (SI) values being 56.80 and 103.17, respectively. Preliminary structure activity relationships indicated that the C-10 substituent, C-5 hydroxy groups, and C-3 sugar unit play essential roles in the mediation of the inhibitory activity of CGs against EBV. Further enzyme experiments demonstrated that these compounds might inhibit ion pump function and thereby change the intracellular signal transduction pathway by binding to Na+/K+-ATPase, as validated by simulated molecular docking. This study is the first report that CGs can effectively limit EBV lytic replication, and the observations made in this study may be of value for lead compound development.
Collapse
Affiliation(s)
- Jing Cai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Bo-Dou Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yu-Qi Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Wan-Fang Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Toshihiro Akihisa
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takashi Kikuchi
- Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan
| | - Jian Xu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Wen-Yuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China.
| |
Collapse
|
12
|
Hua Y, Dai X, Xu Y, Xing G, Liu H, Lu T, Chen Y, Zhang Y. Drug repositioning: Progress and challenges in drug discovery for various diseases. Eur J Med Chem 2022; 234:114239. [PMID: 35290843 PMCID: PMC8883737 DOI: 10.1016/j.ejmech.2022.114239] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 02/20/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022]
Abstract
Compared with traditional de novo drug discovery, drug repurposing has become an attractive drug discovery strategy due to its low-cost and high efficiency. Through a comprehensive analysis of the candidates that have been identified with drug repositioning potentials, it is found that although some drugs do not show obvious advantages in the original indications, they may exert more obvious effects in other diseases. In addition, some drugs have a synergistic effect to exert better clinical efficacy if used in combination. Particularly, it has been confirmed that drug repositioning has benefits and values on the current public health emergency such as the COVID-19 pandemic, which proved the great potential of drug repositioning. In this review, we systematically reviewed a series of representative drugs that have been repositioned for different diseases and illustrated successful cases in each disease. Especially, the mechanism of action for the representative drugs in new indications were explicitly explored for each disease, we hope this review can provide important insights for follow-up research.
Collapse
Affiliation(s)
- Yi Hua
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Xiaowen Dai
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Yuan Xu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Guomeng Xing
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Haichun Liu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Tao Lu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China.
| | - Yanmin Zhang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China.
| |
Collapse
|
13
|
Škubník J, Bejček J, Pavlíčková VS, Rimpelová S. Repurposing Cardiac Glycosides: Drugs for Heart Failure Surmounting Viruses. Molecules 2021; 26:molecules26185627. [PMID: 34577097 PMCID: PMC8469069 DOI: 10.3390/molecules26185627] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
Drug repositioning is a successful approach in medicinal research. It significantly simplifies the long-term process of clinical drug evaluation, since the drug being tested has already been approved for another condition. One example of drug repositioning involves cardiac glycosides (CGs), which have, for a long time, been used in heart medicine. Moreover, it has been known for decades that CGs also have great potential in cancer treatment and, thus, many clinical trials now evaluate their anticancer potential. Interestingly, heart failure and cancer are not the only conditions for which CGs could be effectively used. In recent years, the antiviral potential of CGs has been extensively studied, and with the ongoing SARS-CoV-2 pandemic, this interest in CGs has increased even more. Therefore, here, we present CGs as potent and promising antiviral compounds, which can interfere with almost any steps of the viral life cycle, except for the viral attachment to a host cell. In this review article, we summarize the reported data on this hot topic and discuss the mechanisms of antiviral action of CGs, with reference to the particular viral life cycle phase they interfere with.
Collapse
|
14
|
Zhang J, Zheng T, Zhou X, Wang H, Li Z, Huan C, Zheng B, Zhang W. ATP1B3 Restricts Hepatitis B Virus Replication Via Reducing the Expression of the Envelope Proteins. Virol Sin 2021; 36:678-691. [PMID: 33534085 PMCID: PMC7856454 DOI: 10.1007/s12250-021-00346-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/23/2020] [Indexed: 11/30/2022] Open
Abstract
Our recent study reported that ATP1B3 inhibits hepatitis B virus (HBV) replication via inducing NF-κB activation. However, ATP1B3 mutants which were defective in NF-κB activation still maintained the moderate degree of suppression on HBV replication, suggesting that another uncharacterized mechanism is also responsible for ATP1B3-mediated HBV suppression. Here, we demonstrated that ATP1B3 reduced the expression of HBV envelope proteins LHBs, MHBs and SHBs, but had no effect on intracellular HBV DNA, RNA levels as well as HBV promoter activities. Further investigation showed that proteasome inhibitor MG132 rescued ATP1B3-mediated envelope proteins degradation, demonstrating that proteasome-dependent pathway is involved in ATP1B3-induced degradation of envelope proteins. Co-IP showed that ATP1B3 interacts with LHBs and MHBs and induces LHBs and MHBs polyubiquitination. Immunofluorescence co-localization analysis confirmed LHBs and MHBs colocalized with ATP1B3 together. Our work provides important information for targeting ATP1B3 as a potential therapeutic molecule for HBV infection.
Collapse
Affiliation(s)
- Jun Zhang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, 130021, China
| | - Tianhang Zheng
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaolei Zhou
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, 130021, China
| | - Hong Wang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, 130021, China
| | - Zhaolong Li
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, 130021, China
| | - Chen Huan
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, 130021, China
| | - Baisong Zheng
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, 130021, China.
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
15
|
Quo vadis Cardiac Glycoside Research? Toxins (Basel) 2021; 13:toxins13050344. [PMID: 34064873 PMCID: PMC8151307 DOI: 10.3390/toxins13050344] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/16/2022] Open
Abstract
Cardiac glycosides (CGs), toxins well-known for numerous human and cattle poisoning, are natural compounds, the biosynthesis of which occurs in various plants and animals as a self-protective mechanism to prevent grazing and predation. Interestingly, some insect species can take advantage of the CG’s toxicity and by absorbing them, they are also protected from predation. The mechanism of action of CG’s toxicity is inhibition of Na+/K+-ATPase (the sodium-potassium pump, NKA), which disrupts the ionic homeostasis leading to elevated Ca2+ concentration resulting in cell death. Thus, NKA serves as a molecular target for CGs (although it is not the only one) and even though CGs are toxic for humans and some animals, they can also be used as remedies for various diseases, such as cardiovascular ones, and possibly cancer. Although the anticancer mechanism of CGs has not been fully elucidated, yet, it is thought to be connected with the second role of NKA being a receptor that can induce several cell signaling cascades and even serve as a growth factor and, thus, inhibit cancer cell proliferation at low nontoxic concentrations. These growth inhibitory effects are often observed only in cancer cells, thereby, offering a possibility for CGs to be repositioned for cancer treatment serving not only as chemotherapeutic agents but also as immunogenic cell death triggers. Therefore, here, we report on CG’s chemical structures, production optimization, and biological activity with possible use in cancer therapy, as well as, discuss their antiviral potential which was discovered quite recently. Special attention has been devoted to digitoxin, digoxin, and ouabain.
Collapse
|
16
|
Li X, Peng T. Strategy, Progress, and Challenges of Drug Repurposing for Efficient Antiviral Discovery. Front Pharmacol 2021; 12:660710. [PMID: 34017257 PMCID: PMC8129523 DOI: 10.3389/fphar.2021.660710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Emerging or re-emerging viruses are still major threats to public health. Prophylactic vaccines represent the most effective way to prevent virus infection; however, antivirals are more promising for those viruses against which vaccines are not effective enough or contemporarily unavailable. Because of the slow pace of novel antiviral discovery, the high disuse rates, and the substantial cost, repurposing of the well-characterized therapeutics, either approved or under investigation, is becoming an attractive strategy to identify the new directions to treat virus infections. In this review, we described recent progress in identifying broad-spectrum antivirals through drug repurposing. We defined the two major categories of the repurposed antivirals, direct-acting repurposed antivirals (DARA) and host-targeting repurposed antivirals (HTRA). Under each category, we summarized repurposed antivirals with potential broad-spectrum activity against a variety of viruses and discussed the possible mechanisms of action. Finally, we proposed the potential investigative directions of drug repurposing.
Collapse
Affiliation(s)
- Xinlei Li
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, College of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, College of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
17
|
Ko M, Chang SY, Byun SY, Ianevski A, Choi I, Pham Hung d’Alexandry d’Orengiani AL, Ravlo E, Wang W, Bjørås M, Kainov DE, Shum D, Min JY, Windisch MP. Screening of FDA-Approved Drugs Using a MERS-CoV Clinical Isolate from South Korea Identifies Potential Therapeutic Options for COVID-19. Viruses 2021; 13:v13040651. [PMID: 33918958 PMCID: PMC8069929 DOI: 10.3390/v13040651] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Therapeutic options for coronaviruses remain limited. To address this unmet medical need, we screened 5406 compounds, including United States Food and Drug Administration (FDA)-approved drugs and bioactives, for activity against a South Korean Middle East respiratory syndrome coronavirus (MERS-CoV) clinical isolate. Among 221 identified hits, 54 had therapeutic indexes (TI) greater than 6, representing effective drugs. The time-of-addition studies with selected drugs demonstrated eight and four FDA-approved drugs which acted on the early and late stages of the viral life cycle, respectively. Confirmed hits included several cardiotonic agents (TI > 100), atovaquone, an anti-malarial (TI > 34), and ciclesonide, an inhalable corticosteroid (TI > 6). Furthermore, utilizing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we tested combinations of remdesivir with selected drugs in Vero-E6 and Calu-3 cells, in lung organoids, and identified ciclesonide, nelfinavir, and camostat to be at least additive in vitro. Our results identify potential therapeutic options for MERS-CoV infections, and provide a basis to treat coronavirus disease 2019 (COVID-19) and other coronavirus-related illnesses.
Collapse
Affiliation(s)
- Meehyun Ko
- Respiratory Virus Laboratory, Emerging Virus Group, Discovery Biology Department, Institut Pasteur Korea, Seongnam 13488, Gyeonggi, Korea; (M.K.); (S.Y.C.); (A.-L.P.H.d.d.)
| | - So Young Chang
- Respiratory Virus Laboratory, Emerging Virus Group, Discovery Biology Department, Institut Pasteur Korea, Seongnam 13488, Gyeonggi, Korea; (M.K.); (S.Y.C.); (A.-L.P.H.d.d.)
| | - Soo Young Byun
- Screening Discovery Platform, Translation Research Division, Institut Pasteur Korea, Seongnam 13488, Gyeonggi, Korea; (S.Y.B.); (D.S.)
| | - Aleksandr Ianevski
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (A.I.); (E.R.); (W.W.); (M.B.); (D.E.K.)
| | - Inhee Choi
- Medicinal Chemistry, Medicinal Chemistry & Business Development Group, Translational Research Department, Institut Pasteur Korea, Seongnam 13488, Gyeonggi, Korea;
| | | | - Erlend Ravlo
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (A.I.); (E.R.); (W.W.); (M.B.); (D.E.K.)
| | - Wei Wang
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (A.I.); (E.R.); (W.W.); (M.B.); (D.E.K.)
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (A.I.); (E.R.); (W.W.); (M.B.); (D.E.K.)
| | - Denis E. Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (A.I.); (E.R.); (W.W.); (M.B.); (D.E.K.)
- Institute of Technology, University of Tartu, 50090 Tartu, Estonia
- Institute for Molecular Medicine Finland, University of Helsinki, 00100 Helsinki, Finland
| | - David Shum
- Screening Discovery Platform, Translation Research Division, Institut Pasteur Korea, Seongnam 13488, Gyeonggi, Korea; (S.Y.B.); (D.S.)
| | - Ji-Young Min
- Respiratory Virus Laboratory, Emerging Virus Group, Discovery Biology Department, Institut Pasteur Korea, Seongnam 13488, Gyeonggi, Korea; (M.K.); (S.Y.C.); (A.-L.P.H.d.d.)
- Correspondence: (J.-Y.M.); (M.P.W.)
| | - Marc P. Windisch
- Applied Molecular Virology Laboratory, Unmet Medical Needs Group, Discovery Biology Department, Institut Pasteur Korea, Seongnam 13488, Gyeonggi, Korea
- Division of Bio-Medical Science and Technology, University of Science and Technology, Yuseong-gu 305-350, Daejeon, Korea
- Correspondence: (J.-Y.M.); (M.P.W.)
| |
Collapse
|
18
|
Ünlü ES, Kaya Ö, Eker İ, Gürel E. Sequencing, de novo assembly and annotation of Digitalis ferruginea subsp. schischkinii transcriptome. Mol Biol Rep 2021; 48:127-137. [PMID: 33403559 DOI: 10.1007/s11033-020-05982-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/05/2020] [Indexed: 11/24/2022]
Abstract
There is an increasing demand for elucidating the biosynthetic pathway of medicinal plants, which are capable of producing several metabolites with great potentials for industrial drug production. Digitalis species are important medicinal plants for the production of cardenolide compounds. Advancement on culture techniques is strictly related to our understanding of the genomic background of species. There are a limited number of genomic studies on Digitalis species. The goal of this study is to contribute to the genomic data of Digitalis ferruginea subsp. schischkinii by presenting transcriptome annotation. Digitalis ferruginea subsp. schischkinii has a limited distribution in Turkey and Transcaucasia, and has a high level of lanatoside C, an important cardenolide. In the study, we sequenced the cDNA library prepared from RNA pools of D. ferruginea subsp. schischkinii tissues treated with various stress conditions. Comprehensive bioinformatics approaches were used for de novo assembly and functional annotation of D. ferruginea subsp. schischkinii transcriptome sequence data along with TF families predictions and phylogenetic analysis. In the study, 58,369 unigenes were predicted and unigenes were annotated by analyzing the sequence data in the non-redundant (NR) protein database, the non-redundant nucleotide (NT) database, Gene Orthology (GO), EuKaryotic Orthologous Groups (KOG), Kyoto Encyclopedia of Genes and Genomes (KEGG), SwissProt, and InterPro databases. This study is the first transcriptome data for D. ferruginea subsp. schischkinii.
Collapse
Affiliation(s)
- Ercan Selçuk Ünlü
- Department of Chemistry, Faculty of Arts and Science, Bolu Abant Izzet Baysal University, 14030, Bolu, Turkey.
| | - Özge Kaya
- Department of Biology, Faculty of Arts and Science, Bolu Abant Izzet Baysal University, 14030, Bolu, Turkey
| | - İsmail Eker
- Department of Biology, Faculty of Arts and Science, Bolu Abant Izzet Baysal University, 14030, Bolu, Turkey
| | - Ekrem Gürel
- Department of Biology, Faculty of Arts and Science, Bolu Abant Izzet Baysal University, 14030, Bolu, Turkey
| |
Collapse
|
19
|
Abd-Alla HI, Soltan MM, Hassan AZ, Taie HAA, Abo-Salem HM, Karam EA, El-Safty MM, Hanna AG. Cardenolides and pentacyclic triterpenes isolated from Acokanthera oblongifolia leaves: their biological activities with molecular docking study. ACTA ACUST UNITED AC 2020; 76:301-315. [PMID: 34218548 DOI: 10.1515/znc-2020-0198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/01/2020] [Indexed: 01/09/2023]
Abstract
Pentacyclic triterpenes and cardenolides were isolated from Acokanthera oblongifolia leaves. Their chemical structures were determined based on comprehensive 1D and 2D NMR spectroscopy. Their MIC was determined against 12 microorganisms. Their exerted cytotoxicity on the immortalized normal cells, hTERT-RPE1 was assessed by the sulforhodamine-B assay. The viral inhibitory effects of compounds against Newcastle disease virus (NDV) and H5N1 influenza virus IV were evaluated. Four in vitro antioxidant assays were performed in comparison with BHT and trolox and a weak activity was exhibited. Acovenoside A was with potent against H5N1-IV and NDV with IC50 ≤ 3.2 and ≤ 2.1 μg/ml and SI values of 93.75 and 95.23%, respectively, in comparison to ribavirin. Its CC50 record on Vero cells was > 400 and 200 μg/ml, respectively. Acobioside A was the most active compound against a broad range of microbes while Pseudomonas aeruginosa was the most sensitive. Its MIC (0.07 μg/ml) was 1/100-fold of the recorded CC50 (7.1 μg/ml/72 h) against hTERT-RPE1. The molecular docking of compounds on human DNA topoisomerase I (Top1-DNA) and IV glycoprotein hemagglutinin were studied using MOE program. This study has introduced the cardenolides rather than triterpenoids with the best docking score and binding interaction with the active site of the studied proteins.
Collapse
Affiliation(s)
- Howaida I Abd-Alla
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki-Giza, 12622, Egypt
| | - Maha M Soltan
- Chemistry of Medicinal Plants Department, Biology Unit, Central Laboratory for Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki-Giza, 12622, Egypt
| | - Amal Z Hassan
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki-Giza, 12622, Egypt
| | - Hanan A A Taie
- Plant Biochemistry Department, National Research Centre, Dokki-Giza, 12622, Egypt
| | - Heba M Abo-Salem
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki-Giza, 12622, Egypt
| | - Eman A Karam
- Microbial Chemistry Department, National Research Centre, Dokki-Giza, 12622, Egypt
| | - Mounir M El-Safty
- Central Laboratory for Evaluation of Veterinary Biologics, Abbassia-Cairo, 13181, Egypt
| | - Atef G Hanna
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki-Giza, 12622, Egypt
| |
Collapse
|
20
|
Seoane R, Vidal S, Bouzaher YH, El Motiam A, Rivas C. The Interaction of Viruses with the Cellular Senescence Response. BIOLOGY 2020; 9:E455. [PMID: 33317104 PMCID: PMC7764305 DOI: 10.3390/biology9120455] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 01/10/2023]
Abstract
Cellular senescence is viewed as a mechanism to prevent malignant transformation, but when it is chronic, as occurs in age-related diseases, it may have adverse effects on cancer. Therefore, targeting senescent cells is a novel therapeutic strategy against senescence-associated diseases. In addition to its role in cancer protection, cellular senescence is also considered a mechanism to control virus replication. Both interferon treatment and some viral infections can trigger cellular senescence as a way to restrict virus replication. However, activation of the cellular senescence program is linked to the alteration of different pathways, which can be exploited by some viruses to improve their replication. It is, therefore, important to understand the potential impact of senolytic agents on viral propagation. Here we focus on the relationship between virus and cellular senescence and the reported effects of senolytic compounds on virus replication.
Collapse
Affiliation(s)
- Rocío Seoane
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (R.S.); (S.V.); (Y.H.B.); (A.E.M.)
| | - Santiago Vidal
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (R.S.); (S.V.); (Y.H.B.); (A.E.M.)
| | - Yanis Hichem Bouzaher
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (R.S.); (S.V.); (Y.H.B.); (A.E.M.)
| | - Ahmed El Motiam
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (R.S.); (S.V.); (Y.H.B.); (A.E.M.)
| | - Carmen Rivas
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (R.S.); (S.V.); (Y.H.B.); (A.E.M.)
- Centro Nacional de Biotecnología (CNB), CSIC, 28049 Madrid, Spain
| |
Collapse
|
21
|
Newman RA, Sastry KJ, Arav-Boger R, Cai H, Matos R, Harrod R. Antiviral Effects of Oleandrin. J Exp Pharmacol 2020; 12:503-515. [PMID: 33262663 PMCID: PMC7686471 DOI: 10.2147/jep.s273120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past 15 years, investigators have reported on the utility and safety of cardiac glycosides for numerous health benefits including those as treatments for malignant disease, stroke-mediated ischemic injury and certain neurodegenerative diseases. In addition to those, there is a growing body of evidence for novel antiviral effects of selected cardiac glycoside molecules. One unique cardiac glycoside, oleandrin derived from Nerium oleander, has been reported to have antiviral activity specifically against 'enveloped' viruses including HIV and HTLV-1. Importantly, a recent publication has presented in vitro evidence for oleandrin's ability to inhibit production of infectious virus particles when used for treatment prior to, as well as after infection by SARS-CoV-2/COVID-19. This review will highlight the known in vitro antiviral effects of oleandrin as well as present previously unpublished effects of this novel cardiac glycoside against Ebola virus, Cytomegalovirus, and Herpes simplex viruses.
Collapse
Affiliation(s)
- Robert A Newman
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77054, USA.,Phoenix Biotechnology, Inc, San Antonio, TX 78217, USA
| | - K Jagannadha Sastry
- Departments of Thoracic, Head and Neck Medical Oncology and Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ravit Arav-Boger
- Division of Infectious Diseases, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hongyi Cai
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Robert Harrod
- Department of Biological Sciences, the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX 75275, USA
| |
Collapse
|
22
|
Cho J, Lee YJ, Kim JH, Kim SI, Kim SS, Choi BS, Choi JH. Antiviral activity of digoxin and ouabain against SARS-CoV-2 infection and its implication for COVID-19. Sci Rep 2020; 10:16200. [PMID: 33004837 PMCID: PMC7530981 DOI: 10.1038/s41598-020-72879-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
The current coronavirus (COVID-19) pandemic is exacerbated by the absence of effective therapeutic agents. Notably, patients with COVID-19 and comorbidities such as hypertension and cardiac diseases have a higher mortality rate. An efficient strategy in response to this issue is repurposing drugs with antiviral activity for therapeutic effect. Digoxin (DIG) and ouabain (OUA) are FDA drugs for heart diseases that have antiviral activity against several coronaviruses. Thus, we aimed to assess antiviral activity of DIG and OUA against SARS-CoV-2 infection. The half-maximal inhibitory concentrations (IC50) of DIG and OUA were determined at a nanomolar concentration. Progeny virus titers of single-dose treatment of DIG, OUA and remdesivir were approximately 103-, 104- and 103-fold lower (> 99% inhibition), respectively, than that of non-treated control or chloroquine at 48 h post-infection (hpi). Furthermore, therapeutic treatment with DIG and OUA inhibited over 99% of SARS-CoV-2 replication, leading to viral inhibition at the post entry stage of the viral life cycle. Collectively, these results suggest that DIG and OUA may be an alternative treatment for COVID-19, with potential additional therapeutic effects for patients with cardiovascular disease.
Collapse
Affiliation(s)
- Junhyung Cho
- Division of Viral Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, 28159, Chungcheongbuk-do, Republic of Korea
| | - Young Jae Lee
- Division of Viral Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, 28159, Chungcheongbuk-do, Republic of Korea
| | - Je Hyoung Kim
- Division of Viral Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, 28159, Chungcheongbuk-do, Republic of Korea
| | - Sang Il Kim
- Division of Infectious Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University, Seoul, Republic of Korea
| | - Sung Soon Kim
- Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Republic of Korea
| | - Byeong-Sun Choi
- Division of Viral Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, 28159, Chungcheongbuk-do, Republic of Korea.
| | - Jang-Hoon Choi
- Division of Viral Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, 28159, Chungcheongbuk-do, Republic of Korea.
| |
Collapse
|
23
|
Reddy D, Kumavath R, Barh D, Azevedo V, Ghosh P. Anticancer and Antiviral Properties of Cardiac Glycosides: A Review to Explore the Mechanism of Actions. Molecules 2020; 25:E3596. [PMID: 32784680 PMCID: PMC7465415 DOI: 10.3390/molecules25163596] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/19/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiac glycosides (CGs) have a long history of treating cardiac diseases. However, recent reports have suggested that CGs also possess anticancer and antiviral activities. The primary mechanism of action of these anticancer agents is by suppressing the Na+/k+-ATPase by decreasing the intracellular K+ and increasing the Na+ and Ca2+. Additionally, CGs were known to act as inhibitors of IL8 production, DNA topoisomerase I and II, anoikis prevention and suppression of several target genes responsible for the inhibition of cancer cell proliferation. Moreover, CGs were reported to be effective against several DNA and RNA viral species such as influenza, human cytomegalovirus, herpes simplex virus, coronavirus, tick-borne encephalitis (TBE) virus and Ebola virus. CGs were reported to suppress the HIV-1 gene expression, viral protein translation and alters viral pre-mRNA splicing to inhibit the viral replication. To date, four CGs (Anvirzel, UNBS1450, PBI05204 and digoxin) were in clinical trials for their anticancer activity. This review encapsulates the current knowledge about CGs as anticancer and antiviral drugs in isolation and in combination with some other drugs to enhance their efficiency. Further studies of this class of biomolecules are necessary to determine their possible inhibitory role in cancer and viral diseases.
Collapse
Affiliation(s)
- Dhanasekhar Reddy
- Department of Genomic Science, School of Biological Sciences, University of Kerala, Tejaswini Hills, Periya (P.O), Kasaragod, Kerala 671320, India;
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, University of Kerala, Tejaswini Hills, Periya (P.O), Kasaragod, Kerala 671320, India;
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur WB-721172, India;
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal deMinas Gerais (UFMG), Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA;
| |
Collapse
|
24
|
Patil VM, Singhal S, Masand N. A systematic review on use of aminoquinolines for the therapeutic management of COVID-19: Efficacy, safety and clinical trials. Life Sci 2020; 254:117775. [PMID: 32418894 PMCID: PMC7211740 DOI: 10.1016/j.lfs.2020.117775] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 01/08/2023]
Abstract
Recent global outbreak of the pandemic caused by coronavirus (COVID-19) emphasizes the urgent need for novel antiviral therapeutics. It can be supplemented by utilization of efficient and validated drug discovery approaches such as drug repurposing/repositioning. The well reported and clinically used anti-malarial aminoquinoline drugs (chloroquine and hydroxychloroquine) have shown potential to be repurposed to control the present pandemic by inhibition of COVID-19. The review elaborates the mechanism of action, safety (side effects, adverse effects, toxicity) and details of clinical trials for chloroquine and hydroxychloroquine to benefit the clinicians, medicinal chemist, pharmacologist actively involved in controlling the pandemic and to provide therapeutics for the treatment of COVID-19 infection.
Collapse
Affiliation(s)
- Vaishali M Patil
- Computer Aided Drug Design Lab, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India.
| | - Shipra Singhal
- Computer Aided Drug Design Lab, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | - Neeraj Masand
- Department of Pharmacy, Lala Lajpat Rai Memorial Medical College, Meerut, Uttar Pradesh, India
| |
Collapse
|
25
|
Guo J, Jia X, Liu Y, Wang S, Cao J, Zhang B, Xiao G, Wang W. Inhibition of Na +/K + ATPase blocks Zika virus infection in mice. Commun Biol 2020; 3:380. [PMID: 32669655 PMCID: PMC7363852 DOI: 10.1038/s42003-020-1109-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/18/2020] [Indexed: 11/09/2022] Open
Abstract
Zika virus (ZIKV) is an infectious disease that has become an important concern worldwide, it associates with neurological disorders and congenital malformations in adults, also leading to fetal intrauterine growth restriction and microcephaly during pregnancy. However, there are currently no approved vaccines or specific antiviral drugs for preventing or treating ZIKV infection. Here, we show that two FDA-approved Na+/K+-ATPase inhibitors, ouabain and digoxin, can block ZIKV infection at the replication stage by targeting Na+/K+-ATPase. Furthermore, ouabain reduced the viral burden of ZIKV in adult mice, penetrated the placental barrier to enter fetal tissues, and protected fetal mice from ZIKV infection-induced microcephaly in a pregnant mouse model. Thus, ouabain has therapeutic potential for ZIKV. Guo, Jia et al. show that an FDA-approved Na + /K + - ATPase inhibitor ouabain reduces the burden of Zika virus infection in adult mice while protecting fetal mice from Zika virus infection-induced microcephaly. This study suggests ouabain’s therapeutic potential for Zika virus.
Collapse
Affiliation(s)
- Jiao Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071, Wuhan, China.,University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaoying Jia
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071, Wuhan, China.,University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Yang Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Shaobo Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071, Wuhan, China.,University of the Chinese Academy of Sciences, 100049, Beijing, China.,Shaobo Wang, Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Junyuan Cao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071, Wuhan, China.,University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Bo Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071, Wuhan, China.,University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071, Wuhan, China.,University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Wei Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071, Wuhan, China. .,University of the Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
26
|
Elucidation of the mechanism of anti-herpes action of two novel semisynthetic cardenolide derivatives. Arch Virol 2020; 165:1385-1396. [PMID: 32346764 PMCID: PMC7188521 DOI: 10.1007/s00705-020-04562-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022]
Abstract
Human herpesviruses are among the most prevalent pathogens worldwide and have become an important public health issue. Recurrent infections and the emergence of resistant viral strains reinforce the need of searching new drugs to treat herpes virus infections. Cardiac glycosides are used clinically to treat cardiovascular disturbances, such as congestive heart failure and atrial arrhythmias. In recent years, they have sparked new interest in their potential anti-herpes action. It has been previously reported by our research group that two new semisynthetic cardenolides, namely C10 (3β-[(N-(2-hydroxyethyl)aminoacetyl]amino-3-deoxydigitoxigenin) and C11 (3β-(hydroxyacetyl)amino-3-deoxydigitoxigenin), exhibited potential anti-HSV-1 and anti-HSV-2 with selectivity index values > 1,000, comparable with those of acyclovir. This work reports the mechanism investigation of anti-herpes action of these derivatives. The results demonstrated that C10 and C11 interfere with the intermediate and final steps of HSV replication, but not with the early stages, since they completely abolished the expression of the UL42 (β) and gD (γ) proteins and partially reduced that of ICP27 (α). Additionally, they were not virucidal and had no prophylactic effects. Both compounds inhibited HSV replication at nanomolar concentrations, but cardenolide C10 was more active than C11 and can be considered as an anti-herpes drug candidate including against acyclovir-resistant HSV-1 strains.
Collapse
|
27
|
Kapoor A, Ghosh AK, Forman M, Hu X, Ye W, Southall N, Marugan J, Keyes RF, Smith BC, Meyers DJ, Ferrer M, Arav-Boger R. Validation and Characterization of Five Distinct Novel Inhibitors of Human Cytomegalovirus. J Med Chem 2020; 63:3896-3907. [PMID: 32191456 PMCID: PMC7386824 DOI: 10.1021/acs.jmedchem.9b01501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The critical consequences of human cytomegalovirus (HCMV) infection in the transplant population and in congenitally infected infants, the limited treatment options for HCMV, and the rise of resistant mutants toward existing therapies has fueled the search for new anti-HCMV agents. A pp28-luciferase recombinant HCMV was used as a reporter system for high-throughput screening of HCMV inhibitors. Approximately 400 000 compounds from existing libraries were screened. Subsequent validation assays using resynthesized compounds, several virus strains, and detailed virology assays resulted in the identification of five structurally unique and selective HCMV inhibitors, active at sub to low micromolar concentrations. Further characterization revealed that each compound inhibited a specific stage of HCMV replication. One compound was also active against herpes simplex virus (HSV1 and HSV2), and another compound was active against Epstein-Barr virus (EBV). Drug combination studies revealed that all five compounds were additive with ganciclovir or letermovir. Future studies will focus on optimization of these new anti-HCMV compounds along with mechanistic studies.
Collapse
Affiliation(s)
- Arun Kapoor
- Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ayan K. Ghosh
- Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael Forman
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences (NCATS), National Institute of Health, Bethesda, MD 20850, USA
| | - Wenjuan Ye
- National Center for Advancing Translational Sciences (NCATS), National Institute of Health, Bethesda, MD 20850, USA
| | - Noel Southall
- National Center for Advancing Translational Sciences (NCATS), National Institute of Health, Bethesda, MD 20850, USA
| | - Juan Marugan
- National Center for Advancing Translational Sciences (NCATS), National Institute of Health, Bethesda, MD 20850, USA
| | - Robert F. Keyes
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian C. Smith
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - David J. Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences (NCATS), National Institute of Health, Bethesda, MD 20850, USA
| | - Ravit Arav-Boger
- Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
28
|
Screening of Natural Extracts for Inhibitors against Japanese Encephalitis Virus Infection. Antimicrob Agents Chemother 2020; 64:AAC.02373-19. [PMID: 31871089 PMCID: PMC7038234 DOI: 10.1128/aac.02373-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
Abstract
The mosquito-borne Japanese encephalitis virus (JEV) causes serious illness worldwide that is associated with high morbidity and mortality. Currently, there are no effective drugs approved for the treatment of JEV infection. Drug-repurposing screening is an alternative approach to discover potential antiviral agents. In this study, high-content screening (HCS) of a natural extracts library was performed, and two hit FDA-approved Na+/K+-ATPase inhibitors, ouabain and digoxin, were identified as having robust efficiency against JEV infection with the selectivity indexes over 1,000. The results indicated that ouabain and digoxin blocked the JEV infection at the replication stage by targeting the Na+/K+-ATPase. Furthermore, it was proven that ouabain significantly reduced the morbidity and mortality caused by JEV in a BALB/c mouse model. This work demonstrated that Na+/K+-ATPase could serve as the target of treatment of JEV infection, and ouabain has the potential to be developed as an effective anti-JEV drug.
Collapse
|
29
|
Adamson CS, Nevels MM. Bright and Early: Inhibiting Human Cytomegalovirus by Targeting Major Immediate-Early Gene Expression or Protein Function. Viruses 2020; 12:v12010110. [PMID: 31963209 PMCID: PMC7019229 DOI: 10.3390/v12010110] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
The human cytomegalovirus (HCMV), one of eight human herpesviruses, establishes lifelong latent infections in most people worldwide. Primary or reactivated HCMV infections cause severe disease in immunosuppressed patients and congenital defects in children. There is no vaccine for HCMV, and the currently approved antivirals come with major limitations. Most approved HCMV antivirals target late molecular processes in the viral replication cycle including DNA replication and packaging. “Bright and early” events in HCMV infection have not been exploited for systemic prevention or treatment of disease. Initiation of HCMV replication depends on transcription from the viral major immediate-early (IE) gene. Alternative transcripts produced from this gene give rise to the IE1 and IE2 families of viral proteins, which localize to the host cell nucleus. The IE1 and IE2 proteins are believed to control all subsequent early and late events in HCMV replication, including reactivation from latency, in part by antagonizing intrinsic and innate immune responses. Here we provide an update on the regulation of major IE gene expression and the functions of IE1 and IE2 proteins. We will relate this insight to experimental approaches that target IE gene expression or protein function via molecular gene silencing and editing or small chemical inhibitors.
Collapse
|
30
|
Norris MJ, Malhi M, Duan W, Ouyang H, Granados A, Cen Y, Tseng YC, Gubbay J, Maynes J, Moraes TJ. Targeting Intracellular Ion Homeostasis for the Control of Respiratory Syncytial Virus. Am J Respir Cell Mol Biol 2019; 59:733-744. [PMID: 30095982 DOI: 10.1165/rcmb.2017-0345oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of mortality in infants and young children. Despite the RSV disease burden, no vaccine is available, and treatment remains nonspecific. New drug candidates are needed to combat RSV. Toward this goal, we screened over 2,000 compounds to identify approved drugs with novel anti-RSV activity. Cardiac glycosides, inhibitors of the membrane-bound Na+/K+-ATPase, were identified to have anti-RSV activity. Cardiac glycosides diminished RSV infection in human epithelial type 2 cells and in primary human airway epithelial cells grown at an air-liquid interface. Digoxin, a U.S. Food and Drug Administration-approved cardiac glycoside, was also able to inhibit infection of primary nasal epithelial cells with community isolates of RSV. Our results suggest that the antiviral effects of cardiac glycosides may be dependent on changes in the intracellular Na+ and K+ composition. Consistent with this mechanism, we demonstrated that the ionophoric antibiotics salinomycin, valinomycin, and monensin inhibited RSV in human epithelial type 2 cells and primary nasal epithelial cells. Our data indicate that the K+/Na+-sensitive steps in the RSV life cycle occur within the initial 4 hours of viral infection but do not include virus binding/entry. Rather, our findings demonstrated a negative effect on the RSV transcription and/or replication process. Overall, this work suggests that targeting intracellular ion concentrations offers a novel antiviral strategy.
Collapse
Affiliation(s)
- Michael J Norris
- 1 Department of Laboratory Medicine and Pathobiology and.,2 Program in Translational Medicine
| | - Manpreet Malhi
- 3 Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.,4 Program in Molecular Medicine
| | | | | | - Andrea Granados
- 1 Department of Laboratory Medicine and Pathobiology and.,5 Public Health Ontario, Toronto, Ontario, Canada
| | | | | | | | - Jason Maynes
- 4 Program in Molecular Medicine.,6 Department of Anesthesia and Pain Medicine, and
| | - Theo J Moraes
- 1 Department of Laboratory Medicine and Pathobiology and.,2 Program in Translational Medicine.,7 Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada; and
| |
Collapse
|
31
|
García-Serradilla M, Risco C, Pacheco B. Drug repurposing for new, efficient, broad spectrum antivirals. Virus Res 2019; 264:22-31. [PMID: 30794895 PMCID: PMC7114681 DOI: 10.1016/j.virusres.2019.02.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 12/26/2022]
Abstract
Emerging viruses are a major threat to human health. Recent outbreaks have emphasized the urgent need for new antiviral treatments. For several pathogenic viruses, considerable efforts have focused on vaccine development. However, during epidemics infected individuals need to be treated urgently. High-throughput screening of clinically tested compounds provides a rapid means to identify undiscovered, antiviral functions for well-characterized therapeutics. Repurposed drugs can bypass part of the early cost and time needed for validation and authorization. In this review we describe recent efforts to find broad spectrum antivirals through drug repurposing. We have chosen several candidates and propose strategies to understand their mechanism of action and to determine how resistance to antivirals develops in infected cells.
Collapse
Affiliation(s)
- Moisés García-Serradilla
- Cell Structure Laboratory, National Center for Biotechnology, National Research Council, CNB-CSIC, Darwin 3, UAM, campus de Cantoblanco, 28049 Madrid, Spain
| | - Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology, National Research Council, CNB-CSIC, Darwin 3, UAM, campus de Cantoblanco, 28049 Madrid, Spain.
| | - Beatriz Pacheco
- Cell Structure Laboratory, National Center for Biotechnology, National Research Council, CNB-CSIC, Darwin 3, UAM, campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
32
|
Amarelle L, Katzen J, Shigemura M, Welch LC, Cajigas H, Peteranderl C, Celli D, Herold S, Lecuona E, Sznajder JI. Cardiac glycosides decrease influenza virus replication by inhibiting cell protein translational machinery. Am J Physiol Lung Cell Mol Physiol 2019; 316:L1094-L1106. [PMID: 30892074 DOI: 10.1152/ajplung.00173.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiac glycosides (CGs) are used primarily for cardiac failure and have been reported to have other effects, including inhibition of viral replication. Here we set out to study mechanisms by which CGs as inhibitors of the Na-K-ATPase decrease influenza A virus (IAV) replication in the lungs. We found that CGs inhibit influenza virus replication in alveolar epithelial cells by decreasing intracellular potassium, which in turn inhibits protein translation, independently of viral entry, mRNA transcription, and protein degradation. These effects were independent of the Src signaling pathway and intracellular calcium concentration changes. We found that short-term treatment with ouabain prevented IAV replication without cytotoxicity. Rodents express a Na-K-ATPase-α1 resistant to CGs. Thus we utilized Na-K-ATPase-α1-sensitive mice, infected them with high doses of influenza virus, and observed a modest survival benefit when treated with ouabain. In summary, we provide evidence that the inhibition of the Na-K-ATPase by CGs decreases influenza A viral replication by modulating the cell protein translational machinery and results in a modest survival benefit in mice.
Collapse
Affiliation(s)
- Luciano Amarelle
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois.,Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República , Montevideo , Uruguay
| | - Jeremy Katzen
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois.,Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Masahiko Shigemura
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Lynn C Welch
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Héctor Cajigas
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Christin Peteranderl
- Department of Internal Medicine II, University of Giessen and Marburg Lung Center , Giessen , Germany
| | - Diego Celli
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Susanne Herold
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois.,Department of Internal Medicine II, University of Giessen and Marburg Lung Center , Giessen , Germany
| | - Emilia Lecuona
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| |
Collapse
|
33
|
Mercorelli B, Palù G, Loregian A. Drug Repurposing for Viral Infectious Diseases: How Far Are We? Trends Microbiol 2018; 26:865-876. [PMID: 29759926 PMCID: PMC7126639 DOI: 10.1016/j.tim.2018.04.004] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/06/2018] [Accepted: 04/19/2018] [Indexed: 12/21/2022]
Abstract
Despite the recent advances in controlling some viral pathogens, most viral infections still lack specific treatment. Indeed, the need for effective therapeutic strategies to combat 'old', emergent, and re-emergent viruses is not paralleled by the approval of new antivirals. In the past years, drug repurposing combined with innovative approaches for drug validation, and with appropriate animal models, significantly contributed to the identification of new antiviral molecules and targets for therapeutic intervention. In this review, we describe the main strategies of drug repurposing in antiviral discovery, discuss the most promising candidates that could be repurposed to treat viral infections, and analyze the possible caveats of this trendy strategy of drug discovery.
Collapse
Affiliation(s)
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy.
| |
Collapse
|
34
|
Amarelle L, Lecuona E. The Antiviral Effects of Na,K-ATPase Inhibition: A Minireview. Int J Mol Sci 2018; 19:ijms19082154. [PMID: 30042322 PMCID: PMC6121263 DOI: 10.3390/ijms19082154] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/11/2022] Open
Abstract
Since being first described more than 60 years ago, Na,K-ATPase has been extensively studied, while novel concepts about its structure, physiology, and biological roles continue to be elucidated. Cardiac glycosides not only inhibit the pump function of Na,K-ATPase but also activate intracellular signal transduction pathways, which are important in many biological processes. Recently, antiviral effects have been described as a novel feature of Na,K-ATPase inhibition with the use of cardiac glycosides. Cardiac glycosides have been reported to be effective against both DNA viruses such as cytomegalovirus and herpes simplex and RNA viruses such as influenza, chikungunya, coronavirus, and respiratory syncytial virus, among others. Consequently, cardiac glycosides have emerged as potential broad-spectrum antiviral drugs, with the great advantage of targeting cell host proteins, which help to minimize resistance to antiviral treatments, making them a very promising strategy against human viral infections. Here, we review the effect of cardiac glycosides on viral biology and the mechanisms by which these drugs impair the replication of this array of different viruses.
Collapse
Affiliation(s)
- Luciano Amarelle
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
- Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay.
| | - Emilia Lecuona
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
35
|
Digitoxin Suppresses Human Cytomegalovirus Replication via Na +, K +/ATPase α1 Subunit-Dependent AMP-Activated Protein Kinase and Autophagy Activation. J Virol 2018; 92:JVI.01861-17. [PMID: 29321306 DOI: 10.1128/jvi.01861-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/21/2017] [Indexed: 12/28/2022] Open
Abstract
Host-directed therapeutics for human cytomegalovirus (HCMV) requires elucidation of cellular mechanisms that inhibit HCMV. We report a novel pathway used by cardiac glycosides to inhibit HCMV replication: induction of AMP-activated protein kinase (AMPK) activity and autophagy flux through the Na+,K+/ATPase α1 subunit. Our data illustrate an intricate balance between the autophagy regulators AMPK, mammalian target of rapamycin (mTOR), and ULK1 during infection and treatment with the cardiac glycoside digitoxin. Both infection and digitoxin induced AMPK phosphorylation, but ULK1 was differentially phosphorylated at unique sites leading to opposing effects on autophagy. Suppression of autophagy during infection occurred via ULK1 phosphorylation at Ser757 by enhanced mTOR activity. Digitoxin continuously phosphorylated AMPK, leading to ULK1 phosphorylation at Ser317, and suppressed mTOR, resulting in increased autophagy flux and HCMV inhibition. In ATG5-deficient human fibroblasts, digitoxin did not inhibit HCMV, supporting autophagy induction as a mechanism for virus inhibition. Drug combination studies with digitoxin and 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) further confirmed the role of autophagy activation in HCMV inhibition. Individually, each compound phosphorylated AMPK, but their combination reduced autophagy rather than inducing it and was antagonistic against HCMV, resulting in virus replication. The initial ULK1 activation by digitoxin was counteracted by AICAR, which prevented the downstream interaction of Beclin1 and phosphatidylinositol 3-kinase class III (PI3K-CIII), further supporting digitoxin-mediated HCMV inhibition through autophagy. Finally, the α1 subunit was required for autophagy induction, since in α1-deficient cells neither AMPK nor autophagy was activated and HCMV was not inhibited by digitoxin. In summary, induction of a novel pathway (α1-AMPK-ULK1) induces autophagy as a host-directed strategy for HCMV inhibition.IMPORTANCE Infection with human cytomegalovirus (HCMV) creates therapeutic challenges in congenitally infected children and transplant recipients. Side effects and selection of resistant mutants with the limited drugs available prompted evaluation of host-directed therapeutics. We report a novel mechanism of HCMV inhibition by the cardiac glycoside digitoxin. At low concentrations that inhibit HCMV, digitoxin induced signaling through the α1 subunit of the Na+,K+/ATPase pump and the cellular kinase AMPK, resulting in binding and phosphorylation of ULK1 (Ser317) and autophagy activation. HCMV suppressed autophagy through ULK1 phosphorylation (Ser757) by activating the mTOR kinase. The pump-autophagy pathway was required for HCMV inhibition, since in α1- or ATG5-deficient cells the virus was not inhibited. Furthermore, the AMPK activator AICAR antagonized digitoxin activity against HCMV, a phenomenon resulting from opposing effects downstream in the autophagy pathway, at the Beclin1 stage. In summary, autophagy may provide a strategy for harnessing HCMV replication.
Collapse
|
36
|
Wong RW, Lingwood CA, Ostrowski MA, Cabral T, Cochrane A. Cardiac glycoside/aglycones inhibit HIV-1 gene expression by a mechanism requiring MEK1/2-ERK1/2 signaling. Sci Rep 2018; 8:850. [PMID: 29339801 PMCID: PMC5770468 DOI: 10.1038/s41598-018-19298-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
The capacity of HIV-1 to develop resistance to current drugs calls for innovative strategies to control this infection. We aimed at developing novel inhibitors of HIV-1 replication by targeting viral RNA processing—a stage dependent on conserved host processes. We previously reported that digoxin is a potent inhibitor of this stage. Herein, we identify 12 other cardiac glycoside/aglycones or cardiotonic steroids (CSs) that impede HIV growth in HIV-infected T cells from clinical patients at IC50s (1.1–1.3 nM) that are 2–26 times below concentrations used in patients with heart conditions. We subsequently demonstrate that CSs inhibit HIV-1 gene expression in part through modulation of MEK1/2-ERK1/2 signaling via interaction with the Na+/K+-ATPase, independent of alterations in intracellular Ca2+. Supporting this hypothesis, depletion of the Na+/K+-ATPase or addition of a MEK1/2-ERK1/2 activator also impairs HIV-1 gene expression. Similar to digoxin, all CSs tested induce oversplicing of HIV-1 RNAs, reducing unspliced (Gag) and singly spliced RNAs (Env/p14-Tat) encoding essential HIV-1 structural/regulatory proteins. Furthermore, all CSs cause nuclear retention of genomic/unspliced RNAs, supporting viral RNA processing as the underlying mechanism for their disruption of HIV-1 replication. These findings call for further in vivo validation and supports the targeting of cellular processes to control HIV-1 infection.
Collapse
Affiliation(s)
- Raymond W Wong
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Clifford A Lingwood
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S1A8, Canada.,Division of Molecular Structure and Function, Hospital for Sick Children, Toronto, ON, M5G1X8, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S1A8, Canada
| | - Mario A Ostrowski
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital Toronto, Toronto, ON, M5B1W8, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, M5S1A8, Canada.,Department of Immunology, University of Toronto, Toronto, ON, M5S1A8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Tyler Cabral
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Alan Cochrane
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S1A8, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada.
| |
Collapse
|
37
|
Arav-Boger R. Is drug repurposing the answer for cytomegalovirus treatment or prevention? Future Virol 2017. [DOI: 10.2217/fvl-2016-0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Medical progress has placed cytomegalovirus (CMV) as one of the most important viral pathogens for which treatment is limited and a vaccine is not yet available. The limited treatment options for CMV triggered efforts to discover new antivirals. Drug screening raised hope but also uncertainties as to whether drug repurposing may be a practical approach for infectious diseases in general and CMV in particular. I summarize here several of such agents as well as an approach to advance repurposing for CMV therapy.
Collapse
Affiliation(s)
- Ravit Arav-Boger
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
38
|
Amarelle L, Lecuona E, Sznajder JI. Anti-Influenza Treatment: Drugs Currently Used and Under Development. ACTA ACUST UNITED AC 2017. [PMID: 27519544 DOI: 10.1016/j.arbr.2016.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Convallatoxin-Induced Reduction of Methionine Import Effectively Inhibits Human Cytomegalovirus Infection and Replication. J Virol 2016; 90:10715-10727. [PMID: 27654292 DOI: 10.1128/jvi.01050-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022] Open
Abstract
Cytomegalovirus (CMV) is a ubiquitous human pathogen that increases the morbidity and mortality of immunocompromised individuals. The current FDA-approved treatments for CMV infection are intended to be virus specific, yet they have significant adverse side effects, including nephrotoxicity and hematological toxicity. Thus, there is a medical need for safer and more effective CMV therapeutics. Using a high-content screen, we identified the cardiac glycoside convallatoxin as an effective compound that inhibits CMV infection. Using a panel of cardiac glycoside variants, we assessed the structural elements critical for anti-CMV activity by both experimental and in silico methods. Analysis of the antiviral effects, toxicities, and pharmacodynamics of different variants of cardiac glycosides identified the mechanism of inhibition as reduction of methionine import, leading to decreased immediate-early gene translation without significant toxicity. Also, convallatoxin was found to dramatically reduce the proliferation of clinical CMV strains, implying that its mechanism of action is an effective strategy to block CMV dissemination. Our study has uncovered the mechanism and structural elements of convallatoxin, which are important for effectively inhibiting CMV infection by targeting the expression of immediate-early genes. IMPORTANCE Cytomegalovirus is a highly prevalent virus capable of causing severe disease in certain populations. The current FDA-approved therapeutics all target the same stage of the viral life cycle and induce toxicity and viral resistance. We identified convallatoxin, a novel cell-targeting antiviral that inhibits CMV infection by decreasing the synthesis of viral proteins. At doses low enough for cells to tolerate, convallatoxin was able to inhibit primary isolates of CMV, including those resistant to the anti-CMV drug ganciclovir. In addition to identifying convallatoxin as a novel antiviral, limiting mRNA translation has a dramatic impact on CMV infection and proliferation.
Collapse
|
40
|
Amarelle L, Lecuona E, Sznajder JI. Anti-Influenza Treatment: Drugs Currently Used and Under Development. Arch Bronconeumol 2016; 53:19-26. [PMID: 27519544 PMCID: PMC6889083 DOI: 10.1016/j.arbres.2016.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/24/2016] [Accepted: 07/10/2016] [Indexed: 02/06/2023]
Abstract
La gripe es una enfermedad contagiosa altamente prevalente y con significativa morbimortalidad. El tratamiento disponible con fármacos antivirales, de ser administrado de forma precoz, puede reducir el riesgo de complicaciones severas; sin embargo, muchos tipos de virus desarrollan resistencia a estos fármacos, reduciendo notablemente su efectividad. Ha habido un gran interés en el desarrollo de nuevas opciones terapéuticas para combatir la enfermedad. Una gran variedad de fármacos han demostrado tener actividad antiinfluenza, pero aún no están disponibles para su uso en la clínica. Muchos de ellos tienen como objetivo componentes del virus, mientras que otros son dirigidos a elementos de la célula huésped que participan en el ciclo viral. Modular los componentes del huésped es una estrategia que minimiza el desarrollo de cepas resistentes, dado que estos no están sujetos a la variabilidad genética que tiene el virus. Por otro lado, la principal desventaja es que existe un mayor riesgo de efectos secundarios asociados al tratamiento. El objetivo de la presente revisión es describir los principales agentes farmacológicos disponibles en la actualidad, así como los nuevos fármacos en estudio con potencial beneficio en el tratamiento de la gripe.
Collapse
Affiliation(s)
- Luciano Amarelle
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, Estados Unidos de América; Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Emilia Lecuona
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, Estados Unidos de América
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, Estados Unidos de América.
| |
Collapse
|
41
|
Milutinovic S, Heynen-Genel S, Chao E, Dewing A, Solano R, Milan L, Barron N, He M, Diaz PW, Matsuzawa SI, Reed JC, Hassig CA. Cardiac Glycosides Activate the Tumor Suppressor and Viral Restriction Factor Promyelocytic Leukemia Protein (PML). PLoS One 2016; 11:e0152692. [PMID: 27031987 PMCID: PMC4816303 DOI: 10.1371/journal.pone.0152692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/17/2016] [Indexed: 02/05/2023] Open
Abstract
Cardiac glycosides (CGs), inhibitors of Na+/K+-ATPase (NKA), used clinically to treat heart failure, have garnered recent attention as potential anti-cancer and anti-viral agents. A high-throughput phenotypic screen designed to identify modulators of promyelocytic leukemia protein (PML) nuclear body (NB) formation revealed the CG gitoxigenin as a potent activator of PML. We demonstrate that multiple structurally distinct CGs activate the formation of PML NBs and induce PML protein SUMOylation in an NKA-dependent fashion. CG effects on PML occur at the post-transcriptional level, mechanistically distinct from previously described PML activators and are mediated through signaling events downstream of NKA. Curiously, genomic deletion of PML in human cancer cells failed to abrogate the cytotoxic effects of CGs and other apoptotic stimuli such as ceramide and arsenic trioxide that were previously shown to function through PML in mice. These findings suggest that alternative pathways can compensate for PML loss to mediate apoptosis in response to CGs and other apoptotic stimuli.
Collapse
Affiliation(s)
- Snezana Milutinovic
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Susanne Heynen-Genel
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Elizabeth Chao
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Antimone Dewing
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Ricardo Solano
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Loribelle Milan
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Nikki Barron
- Bemer USA, LLC, Carlsbad, CA, United States of America
| | - Min He
- National Cancer Institute (NCI), Bethesda, MD, United States of America
| | - Paul W. Diaz
- P.William Diaz, Pharmaceutical Consulting, Riverside, CA, United States of America
| | - Shu-ichi Matsuzawa
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - John C. Reed
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Christian A. Hassig
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, United States of America
| |
Collapse
|
42
|
Kim S, Seo D, Kim D, Hong Y, Chang H, Baek D, Kim VN, Lee S, Ahn K. Temporal Landscape of MicroRNA-Mediated Host-Virus Crosstalk during Productive Human Cytomegalovirus Infection. Cell Host Microbe 2016; 17:838-51. [PMID: 26067606 DOI: 10.1016/j.chom.2015.05.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/16/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
Abstract
Temporal profiles of miRNA activity during productive virus infection can provide fundamental insights into host-virus interactions. Most reported miRNA targetome analyses in the context of virus infection have been performed in latently infected cells and lack reliable models for quantifying the suppression efficacy at specific miRNA target sites. Here, we identified highly competent temporal miRNA targetomes during lytic HCMV infection by using AGO-CLIP-seq together with a bioinformatic method that quantifies miRNA functionality at a specific target site, called ACE-scoring. The repression efficiency at target sites correlates with the magnitude of the ACE-score, and temporal HCMV-encoded miRNA targetomes identified by ACE-scoring were significantly enriched in functional categories involved in pathways central for HCMV biology. Furthermore, comparative analysis between human and viral miRNA targetomes supports the existence of intimate cooperation and co-targeting between them. Our holistic survey provides a valuable resource for understanding host-virus interactions during lytic HCMV infection.
Collapse
Affiliation(s)
- Sungchul Kim
- Center for RNA Research, Institute for Basic Science (IBS), Seoul 151-742, Korea; School for Biological Sciences, Seoul National University (SNU), Seoul 151-742, Korea
| | - Daekwan Seo
- Center for RNA Research, Institute for Basic Science (IBS), Seoul 151-742, Korea; School for Biological Sciences, Seoul National University (SNU), Seoul 151-742, Korea
| | - Dongwoo Kim
- School for Biological Sciences, Seoul National University (SNU), Seoul 151-742, Korea
| | - Yujin Hong
- Center for RNA Research, Institute for Basic Science (IBS), Seoul 151-742, Korea; School for Biological Sciences, Seoul National University (SNU), Seoul 151-742, Korea
| | - Hyeshik Chang
- Center for RNA Research, Institute for Basic Science (IBS), Seoul 151-742, Korea; School for Biological Sciences, Seoul National University (SNU), Seoul 151-742, Korea
| | - Daehyun Baek
- Center for RNA Research, Institute for Basic Science (IBS), Seoul 151-742, Korea; School for Biological Sciences, Seoul National University (SNU), Seoul 151-742, Korea; Bioinformatics Institute, Seoul National University, Seoul 151-747, Republic of Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science (IBS), Seoul 151-742, Korea; School for Biological Sciences, Seoul National University (SNU), Seoul 151-742, Korea
| | - Sungwook Lee
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Kwangseog Ahn
- Center for RNA Research, Institute for Basic Science (IBS), Seoul 151-742, Korea; School for Biological Sciences, Seoul National University (SNU), Seoul 151-742, Korea.
| |
Collapse
|
43
|
Johansen LM, DeWald LE, Shoemaker CJ, Hoffstrom BG, Lear-Rooney CM, Stossel A, Nelson E, Delos SE, Simmons JA, Grenier JM, Pierce LT, Pajouhesh H, Lehár J, Hensley LE, Glass PJ, White JM, Olinger GG. A screen of approved drugs and molecular probes identifies therapeutics with anti-Ebola virus activity. Sci Transl Med 2016; 7:290ra89. [PMID: 26041706 DOI: 10.1126/scitranslmed.aaa5597] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Currently, no approved therapeutics exist to treat or prevent infections induced by Ebola viruses, and recent events have demonstrated an urgent need for rapid discovery of new treatments. Repurposing approved drugs for emerging infections remains a critical resource for potential antiviral therapies. We tested ~2600 approved drugs and molecular probes in an in vitro infection assay using the type species, Zaire ebolavirus. Selective antiviral activity was found for 80 U.S. Food and Drug Administration-approved drugs spanning multiple mechanistic classes, including selective estrogen receptor modulators, antihistamines, calcium channel blockers, and antidepressants. Results using an in vivo murine Ebola virus infection model confirmed the protective ability of several drugs, such as bepridil and sertraline. Viral entry assays indicated that most of these antiviral drugs block a late stage of viral entry. By nature of their approved status, these drugs have the potential to be rapidly advanced to clinical settings and used as therapeutic countermeasures for Ebola virus infections.
Collapse
Affiliation(s)
- Lisa M Johansen
- Horizon Discovery Inc., 245 First Street, Cambridge, MA 02142, USA
| | - Lisa Evans DeWald
- U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA
| | - Charles J Shoemaker
- University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | | | - Calli M Lear-Rooney
- U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA
| | - Andrea Stossel
- U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA
| | - Elizabeth Nelson
- University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - Sue E Delos
- University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - James A Simmons
- University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - Jill M Grenier
- Horizon Discovery Inc., 245 First Street, Cambridge, MA 02142, USA
| | - Laura T Pierce
- Horizon Discovery Inc., 245 First Street, Cambridge, MA 02142, USA
| | - Hassan Pajouhesh
- Horizon Discovery Inc., 245 First Street, Cambridge, MA 02142, USA
| | - Joseph Lehár
- Horizon Discovery Inc., 245 First Street, Cambridge, MA 02142, USA. Bioinformatics Program, Boston University, 20 Cummington Street, Boston, MA 02215, USA
| | - Lisa E Hensley
- U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA
| | - Pamela J Glass
- U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA
| | - Judith M White
- University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - Gene G Olinger
- U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA.
| |
Collapse
|
44
|
Abstract
UNLABELLED In addition to transporting ions, the multisubunit Na(+),K(+)-ATPase also functions by relaying cardiotonic steroid (CTS)-binding-induced signals into cells. In this study, we analyzed the role of Na(+),K(+)-ATPase and, in particular, of its ATP1A1 α subunit during coronavirus (CoV) infection. As controls, the vesicular stomatitis virus (VSV) and influenza A virus (IAV) were included. Using gene silencing, the ATP1A1 protein was shown to be critical for infection of cells with murine hepatitis virus (MHV), feline infectious peritonitis virus (FIPV), and VSV but not with IAV. Lack of ATP1A1 did not affect virus binding to host cells but resulted in inhibited entry of MHV and VSV. Consistently, nanomolar concentrations of the cardiotonic steroids ouabain and bufalin, which are known not to affect the transport function of Na(+),K(+)-ATPase, inhibited infection of cells with MHV, FIPV, Middle East respiratory syndrome (MERS)-CoV, and VSV, but not IAV, when the compounds were present during virus inoculation. Cardiotonic steroids were shown to inhibit entry of MHV at an early stage, resulting in accumulation of virions close to the cell surface and, as a consequence, in reduced fusion. In agreement with an early block in infection, the inhibition of VSV by CTSs could be bypassed by low-pH shock. Viral RNA replication was not affected when these compounds were added after virus entry. The antiviral effect of ouabain could be relieved by the addition of different Src kinase inhibitors, indicating that Src signaling mediated via ATP1A1 plays a crucial role in the inhibition of CoV and VSV infections. IMPORTANCE Coronaviruses (CoVs) are important pathogens of animals and humans, as demonstrated by the recent emergence of new human CoVs of zoonotic origin. Antiviral drugs targeting CoV infections are lacking. In the present study, we show that the ATP1A1 subunit of Na(+),K(+)-ATPase, an ion transporter and signaling transducer, supports CoV infection. Targeting ATP1A1 either by gene silencing or by low concentrations of the ATP1A1-binding cardiotonic steroids ouabain and bufalin resulted in inhibition of infection with murine, feline, and MERS-CoVs at an early entry stage. Infection with the control virus VSV was also inhibited. Src signaling mediated by ATP1A1 was shown to play a crucial role in the inhibition of virus entry by ouabain and bufalin. These results suggest that targeting the Na(+),K(+)-ATPase using cardiotonic steroids, several of which are FDA-approved compounds, may be an attractive therapeutic approach against CoV and VSV infections.
Collapse
|
45
|
Gardner TJ, Cohen T, Redmann V, Lau Z, Felsenfeld D, Tortorella D. Development of a high-content screen for the identification of inhibitors directed against the early steps of the cytomegalovirus infectious cycle. Antiviral Res 2014; 113:49-61. [PMID: 25446405 DOI: 10.1016/j.antiviral.2014.10.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 01/06/2023]
Abstract
Human cytomegalovirus (CMV) is a latent and persistent virus whose proliferation increases morbidity and mortality of immune-compromised individuals. The current anti-CMV therapeutics targeting the viral DNA polymerase or the major immediate-early (MIE) gene locus are somewhat effective at limiting CMV-associated disease. However, due to low bioavailability, severe toxicity, and the development of drug resistant CMV strains following prolonged treatment, current anti-CMV therapeutics are insufficient. To help address this shortfall, we established a high-content assay to identify inhibitors targeting CMV entry and the early steps of infection. The infection of primary human fibroblasts with a variant of the CMV laboratory strain AD169 expressing a chimeric IE2-yellow fluorescence protein (YFP) (AD169IE2-YFP) provided the basis for the high-content assay. The localization of IE2-YFP to the nucleus shortly following an AD169IE2-YFP infection induced a robust fluorescent signal that was quantified using confocal microscopy. The assay was optimized to achieve outstanding assay fitness and high Z' scores. We then screened a bioactive chemical library consisting of 2080 compounds and identified hit compounds based on the decrease of fluorescence signal from IE2-YFP nuclear expression. The hit compounds likely target various cellular processes involved in the early steps of infection including capsid transport, chromatin remodeling, and viral gene expression. Extensive secondary assays confirmed the ability of a hit compound, convallatoxin, to inhibit infection of both laboratory and clinical CMV strains and limit virus proliferation. Collectively, the data demonstrate that we have established a robust high-content screen to identify compounds that limit the early steps of the CMV life cycle, and that novel inhibitors of early infection events may serve as viable CMV therapeutics.
Collapse
Affiliation(s)
- Thomas J Gardner
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, New York, NY 10029, USA
| | - Tobias Cohen
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, New York, NY 10029, USA
| | - Veronika Redmann
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, New York, NY 10029, USA
| | - Zerlina Lau
- Icahn School of Medicine at Mount Sinai, Integrated Screening Core, Experimental Therapeutics Institute, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Dan Felsenfeld
- Icahn School of Medicine at Mount Sinai, Integrated Screening Core, Experimental Therapeutics Institute, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Domenico Tortorella
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, New York, NY 10029, USA
| |
Collapse
|
46
|
Cai H, Wang HYL, Venkatadri R, Fu DX, Forman M, Bajaj SO, Li H, O’Doherty GA, Arav-Boger R. Digitoxin analogues with improved anticytomegalovirus activity. ACS Med Chem Lett 2014; 5:395-9. [PMID: 24900847 DOI: 10.1021/ml400529q] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 01/25/2014] [Indexed: 12/21/2022] Open
Abstract
Cardiac glycosides are potent inhibitors of cancer cell growth and possess antiviral activities at nanomolar concentrations. In this study we evaluated the anticytomegalovirus (CMV) activity of digitoxin and several of its analogues. We show that sugar type and sugar length attached to the steroid core structure affects its anticytomegalovirus activity. Structure-activity relationship (SAR) studies identified the l-sugar containing cardiac glycosides as having improved anti-CMV activity and may lead to better understanding of how these compounds inhibit CMV replication.
Collapse
Affiliation(s)
- Hongyi Cai
- Department
of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Hua-Yu L. Wang
- Department
of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Rajkumar Venkatadri
- Department
of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - De-Xue Fu
- Department
of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Michael Forman
- Department
of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, United States
| | - Sumit O. Bajaj
- Department
of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Hongyan Li
- Department
of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - George A. O’Doherty
- Department
of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ravit Arav-Boger
- Department
of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| |
Collapse
|
47
|
In vitro combination of anti-cytomegalovirus compounds acting through different targets: role of the slope parameter and insights into mechanisms of Action. Antimicrob Agents Chemother 2013; 58:986-94. [PMID: 24277030 DOI: 10.1128/aac.01972-13] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Conventional therapy for human cytomegalovirus (CMV) relies on inhibition of the viral DNA polymerase. Ganciclovir (GCV) is the first-line therapy, but when GCV-resistant strains emerge, alternative therapies are extremely limited and are associated with significant toxicities. Combination of anti-CMV agents that act on different targets or stages of virus replication has not been well studied, mostly because of the limited number of anti-CMV agents. We report our investigation of combinations of agents that inhibit CMV by targeting the viral DNA polymerase, cellular kinases, or other cell/virus mechanisms yet to be discovered. The selected compounds differed by the slopes of their dose-response curve: compounds with a slope of 1 (GCV) representing one target or noncooperativity and compounds with high slopes indicating positive cooperativity. Analysis of anti-CMV drug combinations using the Bliss model (which accounts for the slope parameter) distinguished between combinations with synergistic, antagonistic, and additive activities. The combination of GCV and foscarnet was slightly synergistic; strong synergism was found when GCV was used with artemisinin-derived monomers or dimers or the MEK inhibitor U0126. The combination of GCV and cardiac glycosides (digoxin, digitoxin, and ouabain) was additive. The monomeric artemisinin artesunate was synergistic when combined with U0126 or the multikinase inhibitor sunitinib. However, the combination of artemisinin-derived dimers (molecular weights, 606 and 838) and U0126 or sunitinib was antagonistic. These results demonstrate that members of a specific drug class show similar patterns of combination with GCV and that the slope parameter plays an important role in the evaluation of drug combinations. Lastly, antagonism between different classes of CMV inhibitors may assist in target identification and improve the understanding of CMV inhibition by novel compounds.
Collapse
|