1
|
Li Y, Tian X, Zhang L, Lin J, Wang Q, Gu L, Li H, Yu B, Wang Z, Chi M, Zhao G, Cui Li. Rutin resists Aspergillus fumigatus keratitis by activating Nrf2/HO-1 pathway, inhibiting Dectin-1/p-Syk pathway and affecting fungal structures. Exp Eye Res 2025; 254:110323. [PMID: 40054830 DOI: 10.1016/j.exer.2025.110323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
Fungal keratitis (FK) is a severe vision-threatening eye disease. The fungal invasiveness and excessive inflammatory response contribute to corneal tissue damage. Rutin (RT) possesses anti-inflammatory, antimicrobial, antioxidant, and improved wound-healing characteristics. This study aimed to evaluate antifungal, anti-inflammatory, and therapeutic effects of RT in FK. The results showed that RT exerted antifungal effects by inhibiting fungal growth, altering hyphal morphology, destroying biofilm, and disrupting fungal cellular structures. RT exhibited anti-inflammatory benefits by suppressing the Dectin-1/p-Syk pathway, activating the Nrf2/HO-1 pathway, and decreasing the expression of inflammatory factors in vivo and in vitro. RT demonstrated therapeutic effects by reducing clinical scores, fungal load, macrophage recruitment, and neutrophil activity. In conclusion, RT exhibited anti-inflammatory, antifungal, and therapeutic effects in Aspergillus fumigatus keratitis, and has the potential to become a novel therapeutic strategy for FK.
Collapse
Affiliation(s)
- Yuqi Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xue Tian
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Lina Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Lingwen Gu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Hong Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Bing Yu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Ziyi Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Menghui Chi
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
2
|
Azad H, Shekaari H, Ghaffari F, Mokhtarpour M, Hokm Abad MB. Study of fluconazole drug behavior in deep eutectic solvents: thermodynamic properties, solubility measurement, and fluorescence spectroscopy. RSC Adv 2025; 15:11194-11214. [PMID: 40206360 PMCID: PMC11979694 DOI: 10.1039/d4ra09043h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/06/2025] [Indexed: 04/11/2025] Open
Abstract
Fluconazole is a crucial antifungal medication with a broad spectrum of activity against various fungal infections. This study thermodynamic properties, solubility measurements and spectrofluorometric method were used for investigating the interactions between fluconazole (FCZ) and deep eutectic solvents (DESs). Five choline chloride-based deep eutectic solvents (DESs) were synthesized. Each DES was prepared by combining choline chloride (a hydrogen bond acceptor, HBA) with a different hydrogen bond donor (HBD): oxalic acid (OX), malonic acid (MA), ethylene glycol (EG), glycerol (G), or urea (U). Subsequently, the interactions between fluconazole (FCZ) and these synthesized DESs were investigated using fluorescence spectroscopy at a temperature of 298.15 K. Fluorescence spectroscopy revealed a strong interaction between fluconazole (FCZ) and deep eutectic solvents (DESs). This was evident from the significant quenching of FCZ's intrinsic fluorescence upon DES addition. The association constant and binding sites were determined. Among the tested DESs, the choline chloride-oxalic acid mixture exhibited the strongest interaction with FCZ. Furthermore, the solubility of FCZ in DES-water mixtures studied at a temperature range of (298.15 to 313.15) K was found to increase with increasing DES concentration. The solubility data were accurately fitted using the e-NRTL and Wilson thermodynamic models. To gain deeper insights, conductor-like screening model (COSMO) calculations were performed on the studied systems. The obtained surface cavity volume and dielectric solvation energy provide valuable information about the intermolecular interactions. Finally, thermodynamic analysis using Gibbs and van't Hoff equations indicated that the dissolution of FCZ in these systems is an endothermic process.
Collapse
Affiliation(s)
- Hadi Azad
- Department of Physical Chemistry, University of Tabriz Tabriz Iran +98-4133340191 +98-4133393094
| | - Hemayat Shekaari
- Department of Physical Chemistry, University of Tabriz Tabriz Iran +98-4133340191 +98-4133393094
| | - Fariba Ghaffari
- Department of Physical Chemistry, University of Tabriz Tabriz Iran +98-4133340191 +98-4133393094
| | - Masumeh Mokhtarpour
- Department of Physical Chemistry, University of Tabriz Tabriz Iran +98-4133340191 +98-4133393094
| | | |
Collapse
|
3
|
Zhao M, Lamping E, Niimi K, Niimi M, Cannon RD. Functional analysis of Candida albicans Cdr1 through homologous and heterologous expression studies. FEMS Yeast Res 2025; 25:foaf012. [PMID: 40101948 PMCID: PMC11974388 DOI: 10.1093/femsyr/foaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/17/2025] [Accepted: 03/16/2025] [Indexed: 03/20/2025] Open
Abstract
Candida albicans Cdr1 is a plasma membrane ATP-binding cassette transporter encoded by CDR1 that was first cloned 30 years ago in Saccharomyces cerevisiae. Increased expression of Cdr1 in C. albicans clinical isolates results in resistance to azole antifungals due to drug efflux from the cells. Knowledge of Cdr1 structure and function could enable the design of Cdr1 inhibitors that overcome efflux-mediated drug resistance. This article reviews the use of expression systems to study Cdr1. Since the discovery of CDR1 in 1995, 123 studies have investigated Cdr1 using either heterologous or homologous expression systems. The majority of studies have employed integrative transformation and expression in S. cerevisiae. We describe a suite of plasmids with a range of useful protein tags for integrative transformation that enable the creation of tandem-gene arrays stably integrated into the S. cerevisiae genome, and a model for Cdr1 transport function. While expression in S. cerevisiae generates a strong phenotype and high yields of Cdr1, it is a nonnative environment and may result in altered structure and function. Membrane lipid composition and architecture affects membrane protein function and a focus on homologous expression in C. albicans may permit a more accurate understanding of Cdr1 structure and function.
Collapse
Affiliation(s)
- Mengcun Zhao
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Erwin Lamping
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Kyoko Niimi
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Masakazu Niimi
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Richard D Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
4
|
Dharavath R, Meena R, Ranjan A, Thumma V. Microwave-Assisted Synthesis of Bis-1,2,3-Triazole-Based Benzophenones, In Vitro Antimicrobial Activity, and Molecular Docking Studies. Chem Biodivers 2025:e202402665. [PMID: 39780475 DOI: 10.1002/cbdv.202402665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/20/2024] [Accepted: 01/08/2025] [Indexed: 01/11/2025]
Abstract
In this work, we have adopted an easy route to synthesize bis-1,2,3-triazole-based benzophenone compounds via a 1,3-dipolar cycloaddition reaction (Click chemistry). All the target compounds achieved better yields through the microwave-assisted method than the conventional method. Target compound structures were confirmed on the basis of the IR, 1H NMR, 13C NMR, and HR mass analysis. Additionally, we have carried out in vitro antibacterial and antifungal activities with ciprofloxacin and fluconazole standard drugs, respectively. Compounds 5b, 5f, 5i, 5k, and 5n were antibacterial, whereas 5a, 5e, 5g, 5i, and 5k showed promising antifungal activity with respect to standard drugs. Further, a molecular docking study performed against DNA gyrase and lanosterol 14-alpha demethylase envisioned promising binding interactions with a good docking score.
Collapse
Affiliation(s)
- Ravinder Dharavath
- Department of Chemistry, SRT Campus, Badshahi Thaul, Hemvati Nandan Bahuguna Garhwal University, Tehri Garhwal, Uttarakhand, India
- Green & Medicinal Chemistry Lab, Department of Chemistry, Osmania University, Hyderabad, Telangana, India
| | - Ravila Meena
- Department of Chemistry, SRT Campus, Badshahi Thaul, Hemvati Nandan Bahuguna Garhwal University, Tehri Garhwal, Uttarakhand, India
| | - Amit Ranjan
- Department of Applied Sciences and Humanities, Purnea College of Engineering (PCE), Bihar Engineering University, Patna, Bihar, India
| | - Vishnu Thumma
- Department of Sciences and Humanities, Matrusri Engineering College, Hyderabad, Telangana, India
| |
Collapse
|
5
|
Sargsyan T, Stepanyan L, Panosyan H, Hakobyan H, Israyelyan M, Tsaturyan A, Hovhannisyan N, Vicidomini C, Mkrtchyan A, Saghyan A, Roviello GN. Synthesis and Antifungal Activity of Fmoc-Protected 1,2,4-Triazolyl-α-Amino Acids and Their Dipeptides Against Aspergillus Species. Biomolecules 2025; 15:61. [PMID: 39858455 PMCID: PMC11762334 DOI: 10.3390/biom15010061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/15/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
In recent years, fungal infections have emerged as a significant health concern across veterinary species, especially in livestock such as cattle, where fungal diseases can result in considerable economic losses, as well as in humans. In particular, Aspergillus species, notably Aspergillus flavus and Aspergillus versicolor, are opportunistic pathogens that pose a threat to both animals and humans. This study focuses on the synthesis and antifungal evaluation of novel 9-fluorenylmethoxycarbonyl (Fmoc)-protected 1,2,4-triazolyl-α-amino acids and their dipeptides, designed to combat fungal pathogens. More in detail, we evaluated their antifungal activity against various species, including Aspergillus versicolor (ATCC 12134) and Aspergillus flavus (ATCC 10567). The results indicated that dipeptide 7a exhibited promising antifungal activity against Aspergillus versicolor with an IC50 value of 169.94 µM, demonstrating greater potency than fluconazole, a standard treatment for fungal infections, which showed an IC50 of 254.01 µM. Notably, dipeptide 7a showed slightly enhanced antifungal efficacy compared to fluconazole also in Aspergillus flavus (IC50 176.69 µM vs. 184.64 µM), suggesting that this dipeptide might be more potent even against this strain. Remarkably, 3a and 7a are also more potent than fluconazole against A. candidus 10711. On the other hand, the protected amino acid 3a demonstrated consistent inhibition across all tested Aspergillus strains, but with an IC50 value of 267.86 µM for Aspergillus flavus, it was less potent than fluconazole (IC50 184.64 µM), still showing some potential as a good antifungal molecule. Overall, our findings indicate that the synthesized 1,2,4-triazolyl derivatives 3a and 7a hold significant promise as potential antifungal agents in treating Aspergillus-induced diseases in cattle, as well as for broader applications in human health. Our mechanistic studies based on molecular docking revealed that compounds 3a and 7a bind to the same region of the sterol 14-α demethylase as fluconazole. Given the rising concerns about antifungal resistance, these amino acid derivatives, with their unique bioactive structures, could serve as a novel class of therapeutic agents. Further research into their in vivo efficacy and safety profiles is warranted to fully realize their potential as antifungal drugs in clinical and agricultural settings.
Collapse
Affiliation(s)
- Tatevik Sargsyan
- Scientific and Production Center “Armbiotechnology” NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Lala Stepanyan
- Scientific and Production Center “Armbiotechnology” NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia
| | - Henrik Panosyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry, 26, Azatutian Ave., Yerevan 0014, Armenia
| | - Heghine Hakobyan
- Scientific and Production Center “Armbiotechnology” NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia
| | - Monika Israyelyan
- Scientific and Production Center “Armbiotechnology” NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia
| | - Avetis Tsaturyan
- Scientific and Production Center “Armbiotechnology” NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Nelli Hovhannisyan
- Scientific and Production Center “Armbiotechnology” NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Anna Mkrtchyan
- Scientific and Production Center “Armbiotechnology” NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Ashot Saghyan
- Scientific and Production Center “Armbiotechnology” NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
6
|
Conway TP, Vu BG, Beattie SR, Krysan DJ, Moye-Rowley WS. Similarities and distinctions in the activation of the Candida glabrata Pdr1 regulatory pathway by azole and non-azole drugs. mSphere 2024; 9:e0079224. [PMID: 39555934 DOI: 10.1128/msphere.00792-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
Incidences of fluconazole (FLC) resistance among Candida glabrata clinical isolates are a growing issue in clinics. The pleiotropic drug response network in C. glabrata confers azole resistance and is defined primarily by the Zn2Cys6 zinc cluster-containing transcription factor Pdr1 and target genes such as CDR1, which encodes an ATP-binding cassette transporter protein thought to act as an FLC efflux pump. Mutations in the PDR1 gene that render the transcription factor hyperactive are the most common cause of fluconazole resistance among clinical isolates. The phenothiazine class drug fluphenazine and a molecular derivative, CWHM-974, which both exhibit antifungal properties, have been shown to induce the expression of Cdr1 in Candida spp. We have used a firefly luciferase reporter gene driven by the CDR1 promoter to demonstrate two distinct patterns of CDR1 promoter activation kinetics: gradual promoter activation kinetics that occur in response to ergosterol limitations imposed by exposure to azole and polyene class antifungals and a robust and rapid CDR1 induction occurring in response to the stress imposed by fluphenazines. We can attribute these different patterns of CDR1 induction as proceeding through the promoter region of this gene since this is the only segment of the gene included in the luciferase reporter construct. Genetic analysis indicates that the signaling pathways responsible for phenothiazine and azole induction of CDR1 overlap but are not identical. The short time course of phenothiazine induction suggests that these compounds may act more directly on the Pdr1 protein to stimulate its activity. IMPORTANCE Candida glabrata has emerged as the second-leading cause of candidiasis due, in part, to its ability to acquire high-level resistance to azole drugs, a major class of antifungal that acts to block the biosynthesis of the fungal sterol ergosterol. The presence of azole drugs causes the induction of a variety of genes involved in controlling susceptibility to this drug class, including drug transporters and ergosterol biosynthetic genes such as ERG11. We found that the presence of azole drugs leads to an induction of genes encoding drug transporters and ERG11, while exposure of C. glabrata cells to antifungals of the phenothiazine class of drugs caused a much faster and larger induction of drug transporters but not ERG11. Coupled with further genetic analyses of the effects of azole and phenothiazine drugs, our data indicate that these compounds are sensed and responded to differentially in the yeast cell.
Collapse
Affiliation(s)
- Thomas P Conway
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Bao Gia Vu
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Sarah R Beattie
- Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Damian J Krysan
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - W Scott Moye-Rowley
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
7
|
Hosseini P, Keniya MV, Sagatova AA, Toepfer S, Müller C, Tyndall JDA, Klinger A, Fleischer E, Monk BC. The Molecular Basis of the Intrinsic and Acquired Resistance to Azole Antifungals in Aspergillus fumigatus. J Fungi (Basel) 2024; 10:820. [PMID: 39728316 DOI: 10.3390/jof10120820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/17/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
Aspergillus fumigatus is intrinsically resistant to the widely used antifungal fluconazole, and therapeutic failure can result from acquired resistance to voriconazole, the primary treatment for invasive aspergillosis. The molecular basis of substrate specificity and innate and acquired resistance of A. fumigatus to azole drugs were addressed using crystal structures, molecular models, and expression in Saccharomyces cerevisiae of the sterol 14α-demethylase isoforms AfCYP51A and AfCYP51B targeted by azole drugs, together with their cognate reductase AfCPRA2 and AfERG6 (sterol 24-C-methyltransferase). As predicted by molecular modelling, functional expression of CYP51A and B required eburicol and not lanosterol. A crowded conformationally sensitive region involving the BC-loop, helix I, and the heme makes AfCYP51A T289 primarily responsible for resistance to fluconazole, VT-1161, and the agrochemical difenoconazole. The Y121F T289A combination was required for higher level acquired resistance to fluconazole, VT-1161, difenoconazole, and voriconazole, and confirms posaconazole, isavuconazole and possibly ravuconazole as preferred treatments for target-based azole-resistant aspergillosis due to such a combination of mutations.
Collapse
Affiliation(s)
- Parham Hosseini
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Mikhail V Keniya
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Alia A Sagatova
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Stephanie Toepfer
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Christoph Müller
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilian University Munich, 81377 Munich, Germany
| | - Joel D A Tyndall
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Anette Klinger
- MicroCombiChem GmbH, iNovaParc, 56283 Halsenbach, Germany
| | | | - Brian C Monk
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
8
|
Toepfer S, Keniya MV, Lackner M, Monk BC. Azole Combinations and Multi-Targeting Drugs That Synergistically Inhibit Candidozyma auris. J Fungi (Basel) 2024; 10:698. [PMID: 39452650 PMCID: PMC11508803 DOI: 10.3390/jof10100698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024] Open
Abstract
Limited antifungal treatment options and drug resistance require innovative approaches to effectively combat fungal infections. Combination therapy is a promising strategy that addresses these pressing issues by concurrently targeting multiple cellular sites. The drug targets usually selected for combination therapy are from different cellular pathways with the goals of increasing treatment options and reducing development of resistance. However, some circumstances can prevent the implementation of combination therapy in clinical practice. These could include the increased risk of adverse effects, drug interactions, and even the promotion of drug resistance. Furthermore, robust clinical evidence supporting the superiority of combination therapy over monotherapy is limited and underscores the need for further research. Despite these challenges, synergies detected with different antifungal classes, such as the azoles and echinocandins, suggest that treatment strategies can be optimized by better understanding the underlying mechanisms. This review provides an overview of multi-targeting combination strategies with a primary focus on Candidozyma auris infections.
Collapse
Affiliation(s)
- Stephanie Toepfer
- Sir John Walsh Research Institute, University of Otago, Dunedin 9016, New Zealand;
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, 6020 Innsbruck, Austria;
| | - Mikhail V. Keniya
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| | - Michaela Lackner
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, 6020 Innsbruck, Austria;
| | - Brian C. Monk
- Sir John Walsh Research Institute, University of Otago, Dunedin 9016, New Zealand;
| |
Collapse
|
9
|
Doan NQH, Tran HN, Nguyen NTM, Pham TM, Nguyen QDK, Vu TT. Synthesis, Antimicrobial - Cytotoxic Evaluation, and Molecular Docking Studies of Quinolin-2-one Hydrazones Containing Nitrophenyl or Isonicotinoyl/Nicotinoyl Moiety. Chem Biodivers 2024; 21:e202401142. [PMID: 39032128 DOI: 10.1002/cbdv.202401142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 07/22/2024]
Abstract
By applying the hybrid molecular strategy, in this study, we reported the synthesis of fifteen quinolin-2-one hydrazones containing nitrophenyl or nicotinonyl/isonicotinoyl moiety, followed by in vitro and in silico evaluations of their potential antimicrobial and anticancer activities. In vitro antimicrobial evaluation of the target compounds on seven pathogenic strains, applying the broth microdilution method, revealed that compound 4a demonstrated the most potential antifungal activity against C. albicans (MIC 512 μg mL-1) and C. krusei (MIC 128 μg mL-1). In vitro cytotoxic evaluation of the target compounds on three human cancer cell lines, employing the MTT method, suggested that compound 5c exhibited the most potential cytotoxicities against HepG2 (IC50 10.19 μM), A549 (IC50 20.43 μM), and MDA-MB-231 (IC50 16.82 μM) cells. Additionally, molecular docking studies were performed to investigate the binding characteristics of compounds 4a and 5c with fungal lanosterol 14α-demethylase and human topoisomerase I-II, respectively, thereby contributing to the elucidation of their in vitro antifungal and cytotoxic properties. Furthermore, compounds 4a and 5c, via SwissADME prediction, could exhibit favorable physicochemical and pharmacokinetic properties. In conclusion, this study provides valuable insights into the potential of quinolin-2-one hydrazones as promising candidates for the development of novel antimicrobial and anticancer agents in the future.
Collapse
Affiliation(s)
- Nam Q H Doan
- Faculty of Pharmacy, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City, 70000, Vietnam
| | - Hoan N Tran
- Faculty of Pharmacy, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City, 70000, Vietnam
| | - Nhu T M Nguyen
- Faculty of Pharmacy, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City, 70000, Vietnam
| | - Thu M Pham
- Faculty of Pharmacy, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City, 70000, Vietnam
| | - Quyen D K Nguyen
- Faculty of Pharmacy, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City, 70000, Vietnam
| | - Thanh-Thao Vu
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41-43 Dinh Tien Hoang Street, Ben Nghe Ward, District 1, Ho Chi Minh City, 70000, Vietnam
| |
Collapse
|
10
|
Conway TP, Vu BG, Beattie SR, Krysan DJ, Moye-Rowley WS. Similarities and distinctions in the activation of the Candida glabrata Pdr1 regulatory pathway by azole and non-azole drugs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613905. [PMID: 39345512 PMCID: PMC11429959 DOI: 10.1101/2024.09.19.613905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Incidences of fluconazole (FLC) resistance among Candida glabrata clinical isolates is a growing issue in clinics. The pleiotropic drug response (PDR) network in C. glabrata confers azole resistance and is defined primarily by the Zn2Cys6 zinc cluster-containing transcription factor Pdr1 and target genes such as CDR1, that encodes an ATP-binding cassette transporter protein thought to act as a FLC efflux pump. Mutations in the PDR1 gene that render the transcription factor hyperactive are the most common cause of fluconazole resistance among clinical isolates. The phenothiazine class drug fluphenazine and a molecular derivative, CWHM-974, which both exhibit antifungal properties, have been shown to induce the expression of Cdr1 in Candida spp. We have used a firefly luciferase reporter gene driven by the CDR1 promoter to demonstrate two distinct patterns of CDR1 promoter activation kinetics: gradual promoter activation kinetics that occur in response to ergosterol limitations imposed by exposure to azole and polyene class antifungals and a robust and rapid CDR1 induction occurring in response to the stress imposed by fluphenazines. We can attribute these different patterns of CDR1 induction as proceeding through the promoter region of this gene since this is the only segment of the gene included in the luciferase reporter construct. Genetic analysis indicates that the signaling pathways responsible for phenothiazine and azole induction of CDR1 overlap but are not identical. The short time course of phenothiazine induction suggests that these compounds may act more directly on the Pdr1 protein to stimulate its activity.
Collapse
Affiliation(s)
| | - Bao Gia Vu
- Present address: Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Sarah R. Beattie
- Departments of Molecular Physiology and Biophysics and Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Damian J. Krysan
- Departments of Molecular Physiology and Biophysics and Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
11
|
Basotra SD, Kumari Y, Vij M, Tyagi A, Sharma D, Bhattacharyya MS. ASLdC3: A Derivative of Acidic Sophorolipid Disrupts Mitochondrial Function, Induces ROS Generation, and Inhibits Biofilm Formation in Candida albicans. ACS Infect Dis 2024; 10:3185-3201. [PMID: 39093050 DOI: 10.1021/acsinfecdis.4c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Fungal infections account for more than 140 million cases of severe and life-threatening conditions each year, causing approximately 1.7 million deaths annually. Candida albicans and related species are the most common human fungal pathogens, causing both superficial (mucosal and cutaneous) and life-threatening invasive infections (candidemia) with a 40-75% mortality rate. Among many virulence factors of Candida albicans, morphological transition from yeast to hyphae, secretion of hydrolytic enzymes, and formation of biofilms are considered to be crucial for pathogenicity. However, the arsenals for the treatment against these pathogens are restricted to only a few classes of approved drugs, the efficacy of which is being compromised by host toxicity, fungistatic activity, and the emergence of drug resistance. In this study, we have described the development of a molecule, exhibiting excellent antifungal activity (MIC 8 μg/mL), by tailoring acidic sophorolipids with aryl alcohols via enzyme catalysis. This novel derivative, ASLdC3, is a surface-active compound that lowers the surface tension of the air-water interface up to 2-fold before reaching the critical micelle concentration of 25 μg/mL. ASLdC3 exhibits excellent antibiofilm properties against Candida albicans and other nonalbicans Candida species. The molecule primarily exhibits its antifungal activity by perturbing mitochondrial function through the alteration of the mitochondrial membrane potential (MMP) and generation of reactive oxygen species (ROS). The ROS damages fungal cell membrane function and cell wall integrity, eventually leading to cell death. ASLdC3 was found to be nontoxic in in vitro assay and nonhemolytic. Besides, it does not cause toxicity in the C. elegans model. Our study provides a valuable foundation for the potential of acidic sophorolipid as a nontoxic, biodegradable precursor for the design and synthesis of novel molecules for use as antimicrobial drugs as well as for other clinical applications.
Collapse
Affiliation(s)
- Sandal Deep Basotra
- Biochemical Engineering Research and Process Development Centre (BERPDC), CSIR-Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh 160036, India
| | - Yachna Kumari
- Biochemical Engineering Research and Process Development Centre (BERPDC), CSIR-Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mansi Vij
- Biochemical Engineering Research and Process Development Centre (BERPDC), CSIR-Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh 160036, India
| | - Arpit Tyagi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- GN Ramachandran Protein Centre, CSIR-Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh 160036, India
| | - Deepak Sharma
- GN Ramachandran Protein Centre, CSIR-Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh 160036, India
| | - Mani Shankar Bhattacharyya
- Biochemical Engineering Research and Process Development Centre (BERPDC), CSIR-Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh 160036, India
| |
Collapse
|
12
|
Hao Y, Wang R, Ni T, Monk BC, Tyndall JDA, Bao J, Wang M, Chi X, Yu S, Jin Y, Zhang D, Yan L, Xie F. Synthesis and antifungal evaluation of novel triazole derivatives bearing a pyrazole-methoxyl moiety. Eur J Med Chem 2024; 275:116637. [PMID: 38959728 DOI: 10.1016/j.ejmech.2024.116637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Life-threatening invasive fungal infections pose a serious threat to human health. A series of novel triazole derivatives bearing a pyrazole-methoxyl moiety were designed and synthesized in an effort to obtain antifungals with potent, broad-spectrum activity that are less susceptible to resistance. Most of these compounds exhibited moderate to excellent in vitro antifungal activities against Candida albicans SC5314 and 10,231, Cryptococcus neoformans 32,609, Candida glabrata 537 and Candida parapsilosis 22,019 with minimum inhibitory concentration (MIC) values of ≤0.125 μg/mL to 0.5 μg/mL. Use of recombinant Saccharomyces cerevisiae strains showed compounds 7 and 10 overcame the overexpression and resistant-related mutations in ERG11 of S. cerevisae and several pathogenic Candida spp. Despite being substrates of the C. albicans and Candida auris Cdr1 drug efflux pumps, compounds 7 and 10 showed moderate potency against five fluconazole (FCZ)-resistant fungi with MIC values from 2.0 μg/mL to 16.0 μg/mL. Growth kinetics confirmed compounds 7 and 10 had much stronger fungistatic activity than FCZ. For C. albicans, compounds 7 and 10 inhibited the yeast-to-hyphae transition, biofilm formation and destroyed mature biofilm more effectively than FCZ. Preliminary mechanism of action studies showed compounds 7 and 10 blocked the ergosterol biosynthesis pathway at Erg11, ultimately leading to cell membrane disruption. Further investigation of these novel triazole derivatives is also warranted by their predicted ADMET properties and low cytotoxicity.
Collapse
Affiliation(s)
- Yumeng Hao
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai, 200433, China
| | - Ruina Wang
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai, 200433, China
| | - Tingjunhong Ni
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai, 200072, China
| | - Brian C Monk
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, 9016, New Zealand
| | - Joel D A Tyndall
- School of Pharmacy, University of Otago, Dunedin, 9054, New Zealand
| | - Junhe Bao
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai, 200433, China
| | - Mengyuan Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang, 110016, China
| | - Xiaochen Chi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang, 110016, China
| | - Shichong Yu
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai, 200433, China
| | - Yongsheng Jin
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai, 200433, China
| | - Dazhi Zhang
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai, 200433, China; Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai, 200072, China.
| | - Lan Yan
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai, 200433, China.
| | - Fei Xie
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
13
|
Conway TP, Simonicova L, Moye-Rowley WS. Overlapping coactivator function is required for transcriptional activation by the Candida glabrata Pdr1 transcription factor. Genetics 2024; 228:iyae115. [PMID: 39028831 PMCID: PMC11791784 DOI: 10.1093/genetics/iyae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/21/2024] Open
Abstract
Azole resistance in the pathogenic yeast Candida glabrata is a serious clinical complication and increasing in frequency. The majority of resistant organisms have been found to contain a substitution mutation in the Zn2Cys6 zinc cluster-containing transcription factor Pdr1. These mutations typically lead to this factor driving high, constitutive expression of target genes like the ATP-binding cassette transporter-encoding gene CDR1. Overexpression of Cdr1 is required for the observed elevated fluconazole resistance exhibited by strains containing one of these hyperactive PDR1 alleles. While the identity of hyperactive PDR1 alleles has been extensively documented, the mechanisms underlying how these gain-of-function (GOF) forms of Pdr1 lead to elevated target gene transcription are not well understood. We have used a tandem affinity purification-tagged form of Pdr1 to identify coactivator proteins that biochemically purify with the wild-type and 2 different GOF forms of Pdr1. Three coactivator proteins were found to associate with Pdr1: the SWI/SNF complex Snf2 chromatin remodeling protein and 2 different components of the SAGA complex, Spt7 and Ngg1. We found that deletion mutants lacking either SNF2 or SPT7 exhibited growth defects, even in the absence of fluconazole challenge. To overcome these issues, we employed a conditional degradation system to acutely deplete these coactivators and determined that loss of either coactivator complex, SWI/SNF or SAGA, caused defects in Pdr1-dependent transcription. A double degron strain that could be depleted for both SWI/SNF and SAGA exhibited a profound defect in PDR1 autoregulation, revealing that these complexes work together to ensure high-level Pdr1-dependent gene transcription.
Collapse
Affiliation(s)
- Thomas P Conway
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Lucia Simonicova
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - W Scott Moye-Rowley
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
14
|
Koren V, Ben-Zeev E, Voronov I, Fridman M. Chiral Fluorescent Antifungal Azole Probes Detect Resistance, Uptake Dynamics, and Subcellular Distribution in Candida Species. JACS AU 2024; 4:3157-3169. [PMID: 39211628 PMCID: PMC11350599 DOI: 10.1021/jacsau.4c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Azoles are essential for fungal infection treatment, yet the increasing resistance highlights the need for innovative diagnostic tools and strategies to revitalize this class of antifungals. We developed two enantiomers of a fluorescent antifungal azole probe (1 S and 1 R ), analyzing 60 Candida strains via live-cell microscopy. A database of azole distribution images in strains of Candida albicans, Candida glabrata, and Candida parapsilosis, among the most important pathogenic Candida species, was established and analyzed. This analysis revealed distinct populations of yeast cells based on the correlation between fluorescent probe uptake and cell diameter. Varied uptake levels and subcellular distribution patterns were observed in C. albicans, C. glabrata, and C. parapsilosis, with the latter displaying increased localization to lipid droplets. Comparison of the more potent fluorescent antifungal azole probe enantiomer 1 S with the moderately potent enantiomer 1 R highlighted time-dependent differences in the uptake profiles. The former displayed a marked elevation in uptake after approximately 150 min, indicating the time required for significant cell permeabilization to occur and its association with the azole's antifungal activity potency. Divergent uptake levels between susceptible and high efflux-based azole-resistant strains were detected, offering a rapid diagnostic approach for identifying azole resistance. This study highlights unique insights achievable through fluorescent antifungal azole probes, unraveling the complexities of azole resistance, subcellular dynamics, and uptake within fungal pathogens.
Collapse
Affiliation(s)
- Vlad Koren
- School
of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Efrat Ben-Zeev
- Ilana
and Pascal Mantoux Institute for Bioinformatics and Nancy and Stephen
Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ivan Voronov
- School
of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Micha Fridman
- School
of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
15
|
de Sousa Cutrim TA, Barcelos FF, Meireles LM, Rodrigues Gazolla PA, Almeida Lima ÂM, Teixeira RR, Moreira LC, de Queiroz VT, Almeida Barbosa LC, Bezerra Morais PA, do Nascimento CJ, Junker J, Costa AV, Fronza M, Scherer R. Design, synthesis, docking studies and bioactivity evaluation of 1,2,3-triazole eugenol derivatives. Future Med Chem 2024; 16:1883-1897. [PMID: 39157870 PMCID: PMC11486170 DOI: 10.1080/17568919.2024.2385292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Aim: The design, synthesis, docking studies and evaluation of the in vitro antifungal and cytotoxic properties of eugenol (EUG) containing 1,2,3-triazole derivatives are reported. Most of the derivatives have not been reported.Materials & methods: The EUG derivatives were synthesized, molecular docked and tested for their antifungal activity.Results: The compounds showed potent antifungal activity against Trichophyton rubrum, associated with dermatophytosis. Compounds 2a and 2i exhibited promising results, with 2a being four-times more potent than EUG. The binding mode prediction was similar to itraconazole in the lanosterol-14-α-demethylase wild-type and G73E mutant binding sites. Additionally, the pharmacokinetic profile prediction suggests good gastrointestinal absorption and potential oral administration.Conclusion: Compound 2a is a promising antifungal agent against dermatophytosis caused by T. rubrum.
Collapse
Affiliation(s)
- Thiago Antonio de Sousa Cutrim
- Universidade de Vila Velha, Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Av. Comissário José Dantas de Melo, 21, Vila Velha, Espírito Santo State, 29102-770, Brazil
| | - Fernando Fontes Barcelos
- Universidade de Vila Velha, Programa de Pós-Graduação em Biotecnologia Vegetal, Av. Comissário José Dantas de Melo, 21, Vila Velha, Espírito Santo State, 29102-770, Brazil
| | - Leandra Martins Meireles
- Universidade de Vila Velha, Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Av. Comissário José Dantas de Melo, 21, Vila Velha, Espírito Santo State, 29102-770, Brazil
| | - Poliana Aparecida Rodrigues Gazolla
- Departamento de Química e Física, Grupo de Pesquisa de Estudos Aplicados em Produtos Naturais e Síntese Orgânica (GEAPS), Universidade Federal do Espírito Santo, Alto Universitário, s/n, Alegre, Espírito Santo State, 29500-000, Brazil
| | - Ângela Maria Almeida Lima
- Departamento de Química e Física, Grupo de Pesquisa de Estudos Aplicados em Produtos Naturais e Síntese Orgânica (GEAPS), Universidade Federal do Espírito Santo, Alto Universitário, s/n, Alegre, Espírito Santo State, 29500-000, Brazil
| | - Róbson Ricardo Teixeira
- Departamento de Química, Grupo de Síntese e Pesquisa de Compostos Bioativos (GSPCB), Universidade Federal de Viçosa, Av. P.H. Rolfs, s/nViçosa, Minas Gerais State, 36570-900, Brazil
| | - Luiza Carvalheira Moreira
- Departamento de Química, Grupo de Síntese e Pesquisa de Compostos Bioativos (GSPCB), Universidade Federal de Viçosa, Av. P.H. Rolfs, s/nViçosa, Minas Gerais State, 36570-900, Brazil
| | - Vagner Tebaldi de Queiroz
- Departamento de Química e Física, Grupo de Pesquisa de Estudos Aplicados em Produtos Naturais e Síntese Orgânica (GEAPS), Universidade Federal do Espírito Santo, Alto Universitário, s/n, Alegre, Espírito Santo State, 29500-000, Brazil
| | - Luiz Cláudio Almeida Barbosa
- Departamento de Química, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, Minas Gerais State, 31270-901, Brazil
| | - Pedro Alves Bezerra Morais
- Departamento de Química e Física, Grupo de Pesquisa de Estudos Aplicados em Produtos Naturais e Síntese Orgânica (GEAPS), Universidade Federal do Espírito Santo, Alto Universitário, s/n, Alegre, Espírito Santo State, 29500-000, Brazil
| | - Cláudia Jorge do Nascimento
- Departamento de Ciências Naturais, Instituto de Biociências, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Av. Pauster, Rio de Janeiro, Rio de Janeiro State, 22290-240, Brazil
| | - Jochen Junker
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro, Rio de Janeiro State, 21040-900, Brazil
| | - Adilson Vidal Costa
- Departamento de Química e Física, Grupo de Pesquisa de Estudos Aplicados em Produtos Naturais e Síntese Orgânica (GEAPS), Universidade Federal do Espírito Santo, Alto Universitário, s/n, Alegre, Espírito Santo State, 29500-000, Brazil
| | - Marcio Fronza
- Universidade de Vila Velha, Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Av. Comissário José Dantas de Melo, 21, Vila Velha, Espírito Santo State, 29102-770, Brazil
- Universidade de Vila Velha, Programa de Pós-Graduação em Biotecnologia Vegetal, Av. Comissário José Dantas de Melo, 21, Vila Velha, Espírito Santo State, 29102-770, Brazil
| | - Rodrigo Scherer
- Universidade de Vila Velha, Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Av. Comissário José Dantas de Melo, 21, Vila Velha, Espírito Santo State, 29102-770, Brazil
- Universidade de Vila Velha, Programa de Pós-Graduação em Biotecnologia Vegetal, Av. Comissário José Dantas de Melo, 21, Vila Velha, Espírito Santo State, 29102-770, Brazil
| |
Collapse
|
16
|
Ghanegolmohammadi F, Liu W, Xu T, Li Y, Ohnuki S, Kojima T, Itto-Nakama K, Ohya Y. Rational selection of morphological phenotypic traits to extract essential similarities in chemical perturbation in the ergosterol pathway. Sci Rep 2024; 14:17093. [PMID: 39107358 PMCID: PMC11303412 DOI: 10.1038/s41598-024-67634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Terbinafine, fluconazole, and amorolfine inhibit fungal ergosterol synthesis by acting on their target enzymes at different steps in the synthetic pathway, causing the accumulation of various intermediates. We found that the effects of these three in- hibitors on yeast morphology were different. The number of morphological parameters commonly altered by these drugs was only approximately 6% of the total. Using a rational strategy to find commonly changed parameters,we focused on hidden essential similarities in the phenotypes possibly due to decreased ergosterol levels. This resulted in higher apparent morphological similarity. Improvements in morphological similarity were observed even when canonical correlation analysis was used to select biologically meaningful morphological parameters related to gene function. In addition to changes in cell morphology, we also observed differences in the synergistic effects among the three inhibitors and in their fungicidal effects against pathogenic fungi possibly due to the accumulation of different intermediates. This study provided a comprehensive understanding of the properties of inhibitors acting in the same biosynthetic pathway.
Collapse
Affiliation(s)
- Farzan Ghanegolmohammadi
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwa-no-ha, Kashiwa City, Chiba, 277-8561, Japan
| | - Wei Liu
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwa-no-ha, Kashiwa City, Chiba, 277-8561, Japan
| | - Tingtao Xu
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwa-no-ha, Kashiwa City, Chiba, 277-8561, Japan
| | - Yuze Li
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwa-no-ha, Kashiwa City, Chiba, 277-8561, Japan
| | - Shinsuke Ohnuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwa-no-ha, Kashiwa City, Chiba, 277-8561, Japan
| | - Tetsuya Kojima
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwa-no-ha, Kashiwa City, Chiba, 277-8561, Japan
| | - Kaori Itto-Nakama
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwa-no-ha, Kashiwa City, Chiba, 277-8561, Japan
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwa-no-ha, Kashiwa City, Chiba, 277-8561, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
17
|
Barazetti AR, Dealis ML, Basso KR, Silva MCD, Alves LDC, Parra MEA, Simionato AS, Cely MVT, Macedo AL, Silva DB, Andrade G. Evaluation of Resistance Induction Promoted by Bioactive Compounds of Pseudomonas aeruginosa LV Strain against Asian Soybean Rust. Microorganisms 2024; 12:1576. [PMID: 39203418 PMCID: PMC11355946 DOI: 10.3390/microorganisms12081576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/20/2024] [Accepted: 07/11/2024] [Indexed: 09/03/2024] Open
Abstract
Pseudomonas are known as higher producers of secondary metabolites with antimicrobial properties and plant growth promoters, including resistance induction. These mechanisms should be an alternative to pesticide use in crop production. Phakopsora pachyrhizi causes Asian soybean rust, representing a high loss of yield around the world. The objective of this paper was to evaluate the application of secondary metabolites produced by Pseudomonas aeruginosa LV strain from the semi-purified fraction F4A in soybean plants to induce plant resistance against P. pachyrhizi in field conditions. The experimental design was performed in randomized blocks with three replicates using two F4A doses (1 and 10 μg mL-1) combined or not with fungicides (Unizeb Gold® or Sphere Max®). The control treatment, with Uni + Sph, saponins, flavonoids, and sphingolipids, showed higher intensities in the plants. In contrast, plants treated with the F4A fraction mainly exhibited fatty acid derivatives and some non-identified compounds with nitrogen. Plants treated with Sphere Max®, with or without F4A10, showed higher intensities of glycosylated flavonoids, such as kaempferol, luteolin, narigenin, and apigenin. Plants treated with F4A showed higher intensities of genistein and fatty acid derivatives. These increases in flavonoid compound biosynthesis and antioxidant properties probably contribute to the protection against reactive oxygen species (ROS).
Collapse
Affiliation(s)
- André Riedi Barazetti
- Microbial Ecology Laboratory, Department of Microbiology, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.R.B.); (M.L.D.); (K.R.B.); (M.C.D.S.); (L.d.C.A.); (M.E.A.P.); (A.S.S.)
| | - Mickely Liuti Dealis
- Microbial Ecology Laboratory, Department of Microbiology, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.R.B.); (M.L.D.); (K.R.B.); (M.C.D.S.); (L.d.C.A.); (M.E.A.P.); (A.S.S.)
| | - Kawany Roque Basso
- Microbial Ecology Laboratory, Department of Microbiology, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.R.B.); (M.L.D.); (K.R.B.); (M.C.D.S.); (L.d.C.A.); (M.E.A.P.); (A.S.S.)
| | - Maria Clara Davis Silva
- Microbial Ecology Laboratory, Department of Microbiology, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.R.B.); (M.L.D.); (K.R.B.); (M.C.D.S.); (L.d.C.A.); (M.E.A.P.); (A.S.S.)
| | - Leonardo da Cruz Alves
- Microbial Ecology Laboratory, Department of Microbiology, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.R.B.); (M.L.D.); (K.R.B.); (M.C.D.S.); (L.d.C.A.); (M.E.A.P.); (A.S.S.)
| | - Maria Eugênia Alcântara Parra
- Microbial Ecology Laboratory, Department of Microbiology, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.R.B.); (M.L.D.); (K.R.B.); (M.C.D.S.); (L.d.C.A.); (M.E.A.P.); (A.S.S.)
| | - Ane Stéfano Simionato
- Microbial Ecology Laboratory, Department of Microbiology, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.R.B.); (M.L.D.); (K.R.B.); (M.C.D.S.); (L.d.C.A.); (M.E.A.P.); (A.S.S.)
| | - Martha Viviana Torres Cely
- Agricultural and Environmental Sciences Institute, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil;
| | - Arthur Ladeira Macedo
- Natural Products and Mass Spectrometry Laboratory (LaPNEM), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (A.L.M.); (D.B.S.)
| | - Denise Brentan Silva
- Natural Products and Mass Spectrometry Laboratory (LaPNEM), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (A.L.M.); (D.B.S.)
| | - Galdino Andrade
- Microbial Ecology Laboratory, Department of Microbiology, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.R.B.); (M.L.D.); (K.R.B.); (M.C.D.S.); (L.d.C.A.); (M.E.A.P.); (A.S.S.)
| |
Collapse
|
18
|
Engle K, Kumar G. Tackling multi-drug resistant fungi by efflux pump inhibitors. Biochem Pharmacol 2024; 226:116400. [PMID: 38945275 DOI: 10.1016/j.bcp.2024.116400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
The emergence of multidrug-resistant fungi is of grave concern, and its infections are responsible for significant deaths among immunocompromised patients. The treatment of fungal infections primarily relies on a clinical class of antibiotics, including azoles, polyenes, echinocandins, polyketides, and a nucleotide analogue. However, the incidence of fungal infections is increasing as the treatment for human and plant fungal infections overlaps with antifungal drugs. The need for new antifungal agents acting on different targets than known targets is undeniable. Also, the pace at which loss of fungal susceptibility to antibiotics cannot be undermined. There are several modes by which fungi can develop resistance to antibiotics, including reduced drug uptake, drug target alteration, and a reduction in the cellular concentration of the drug due to active extrusions and biofilm formation. The efflux pump's overexpression in the fungi primarily reduced the antibiotic's concentration to a sub-lethal concentration, thus responsible for developing resistant fungus strains. Several strategies are used to check antibiotic resistance in multi-drug resistant fungi, including synthesizing antibiotic analogs and giving antibiotics in combination therapies. Among them, the efflux pump protein inhibitors are considered potential adjuvants to antibiotics and can block the efflux of antibiotics by inhibiting efflux pump protein transporters. Moreover, it can sensitize the antifungal drugs to multi-drug resistant fungi with overexpressed efflux pump proteins. This review discusses the natural lead molecules, repurposable drugs, and formulation strategies to overcome the efflux pump activity in the fungi.
Collapse
Affiliation(s)
- Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar 500037, India
| | - Gautam Kumar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
19
|
Li H, Zhao P, Li S, Guo J, Hao D. Trial and error: New insights into recombinant expression of membrane-bound insect cytochromes P450 in Escherichia coli systems. Int J Biol Macromol 2024; 273:133183. [PMID: 38897522 DOI: 10.1016/j.ijbiomac.2024.133183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/02/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Insect cytochromes P450 (CYP450s) are key enzymes responsible for a wide array of oxidative transformations of both endogenous and exogenous substrates. However, there is currently no a universal guideline established for heterologous expression of membrane-bound CYP450s, which hampers their downstream biochemical and structural studies. In this study, we conducted large-scale screening of protein overexpression in Escherichia coli using 71 insect CYP450 sequences and optimized the expression of a difficult-to-express CYP450 (CYP6HX3) using eight different optimizations, including selection of host strains and expression vectors, alternative of leader signal peptides, and N-terminal modifications. We confirmed that 1) Only insect CYP450s belonging to the CYP347 family could be expressed with N-terminal fusion of ompA2+ signal peptide in E. coli expression system. 2) E. coli Lemo 21 (DE3) effectively improved the expression of CYP6HX3 in the plasma membrane. 3) A brick-red appearance occurred frequently in the expressed thallus or membrane proteins, but this phenomenon could not necessarily indicate successful overexpression of target CYP450s. These findings provide new insights into the recombinant expression of insect CYP450s in E. coli systems and will facilitate the theoretical approaches for functional expression and production of eukaryotic CYP450s.
Collapse
Affiliation(s)
- Hui Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Peiyuan Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shouyin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jinyan Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Dejun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
20
|
Macedo D, Berrio I, Escandon P, Gamarra S, Garcia-Effron G. Mechanism of azole resistance in Candida vulturna, an emerging multidrug resistant pathogen related with Candida haeumulonii and Candida auris. Mycoses 2024; 67:e13757. [PMID: 39049157 DOI: 10.1111/myc.13757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Candida vulturna is an emerging pathogen belonging to the Metshnikowiaceae family together with Candida auris and Candida haemulonii species complex. Some strains of this species were reported to be resistant to several antifungal agents. OBJECTIVES This study aims to address identification difficulties, evaluate antiungal susceptibilities and explore the molecular mechanisms of azole resistance of Candida vulturna. METHODS We studied five C. vulturna clinical strains isolated in three Colombian cities. Identification was performed by phenotypical, proteomic and molecular methods. Antifungal susceptibility testing was performed following CLSI protocol. Its ERG11 genes were sequenced and a substitution was encountered in azole resistant isolates. To confirm the role of this substitution in the resistance phenotype, Saccharomyces cerevisiae strains with a chimeric ERG11 gene were created. RESULTS Discrepancies in identification methods are highlighted. Sequencing confirmed the identification as C. vulturna. Antifungal susceptibility varied among strains, with four strains exhibiting reduced susceptibility to azoles and amphotericin B. ERG11 sequencing showed a point mutation (producing a P135S substitution) that was associated with the azole-resistant phenotype. CONCLUSIONS This study contributes to the understanding of C. vulturna's identification challenges, its susceptibility patterns, and sheds light on its molecular mechanisms of azole resistance.
Collapse
Affiliation(s)
- Daiana Macedo
- Facultad de Bioquímica, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Indira Berrio
- Corporación para Investigaciones Biológicas, Medellín, Colombia
- Hospital General de Medellín, Luz Castro Gutiérrez ESE, Medellín, Colombia
| | - Patricia Escandon
- Grupo de Microbiologia, Instituto Nacional de Salud, Bogotá, Colombia
| | - Soledad Gamarra
- Facultad de Bioquímica, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Guillermo Garcia-Effron
- Facultad de Bioquímica, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| |
Collapse
|
21
|
Hartuis S, Ourliac-Garnier I, Robert E, Albassier M, Duchesne L, Beaufils C, Kuhn J, Le Pape P, Morio F. Precise genome editing underlines the distinct contributions of mutations in ERG11, ERG3, MRR1, and TAC1 genes to antifungal resistance in Candida parapsilosis. Antimicrob Agents Chemother 2024; 68:e0002224. [PMID: 38624217 PMCID: PMC11620491 DOI: 10.1128/aac.00022-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024] Open
Abstract
Candida parapsilosis has recently emerged as a major threat due to the worldwide emergence of fluconazole-resistant strains causing clonal outbreaks in hospitals and poses a therapeutic challenge due to the limited antifungal armamentarium. Here, we used precise genome editing using CRISPR-Cas9 to gain further insights into the contribution of mutations in ERG11, ERG3, MRR1, and TAC1 genes and the influence of allelic dosage to antifungal resistance in C. parapsilosis. Seven of the most common amino acid substitutions previously reported in fluconazole-resistant clinical isolates (including Y132F in ERG11) were engineered in two fluconazole-susceptible C. parapsilosis lineages (ATCC 22019 and STZ5). Each mutant was then challenged in vitro against a large array of antifungals, with a focus on azoles. Any possible change in virulence was also assessed in a Galleria mellonella model. We successfully generated a total of 19 different mutants, using CRISPR-Cas9. Except for R398I (ERG11), all remaining amino acid substitutions conferred reduced susceptibility to fluconazole. However, the impact on fluconazole in vitro susceptibility varied greatly according to the engineered mutation, the stronger impact being noted for G583R acting as a gain-of-function mutation in MRR1. Cross-resistance with newer azoles, non-medical azoles, but also non-azole antifungals such as flucytosine, was occasionally noted. Posaconazole and isavuconazole remained the most active in vitro. Except for G583R, no fitness cost was associated with the acquisition of fluconazole resistance. We highlight the distinct contributions of amino acid substitutions in ERG11, ERG3, MRR1, and TAC1 genes to antifungal resistance in C. parapsilosis.
Collapse
Affiliation(s)
- Sophie Hartuis
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l'Immunité, Nantes, France
| | | | - Estelle Robert
- Nantes Université, Cibles et Médicaments des Infections et de l'Immunité, Nantes, France
| | - Marjorie Albassier
- Nantes Université, Cibles et Médicaments des Infections et de l'Immunité, Nantes, France
| | - Léa Duchesne
- Department Public Health, Nantes Université, CHU Nantes, Nantes, France
| | - Clara Beaufils
- Nantes Université, Cibles et Médicaments des Infections et de l'Immunité, Nantes, France
| | - Joséphine Kuhn
- Nantes Université, Cibles et Médicaments des Infections et de l'Immunité, Nantes, France
| | - Patrice Le Pape
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l'Immunité, Nantes, France
| | - Florent Morio
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l'Immunité, Nantes, France
| |
Collapse
|
22
|
Levshin IB, Simonov AY, Panov AA, Grammatikova NE, Alexandrov AI, Ghazy ESMO, Ivlev VA, Agaphonov MO, Mantsyzov AB, Polshakov VI. Synthesis and Biological Evaluation of a Series of New Hybrid Amide Derivatives of Triazole and Thiazolidine-2,4-dione. Pharmaceuticals (Basel) 2024; 17:723. [PMID: 38931390 PMCID: PMC11206592 DOI: 10.3390/ph17060723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
A series of hybrid compounds with triazole and thiazolidine nuclei connected by a linker has been synthesized and extensively studied. Various synthetic methods for the target compounds have been tested. A microbiological assessment of the obtained compounds was carried out on strains of pathogenic fungi C. albicans, C. non-albicans, multidrug-resistant C. auris, Rhizopus arrhizus, Aspergillus spp. and some dermatophytes and other yeasts. The lowest obtained MIC values for target compounds lie between 0.003 µg/mL and 0.5 µg/mL and therefore the compounds are not inferior or several times better than commercial azole drugs. The length of the acylpiperazine linker has a limited effect on antifungal activity. Some bioisosteric analogues were tested in microbiological analysis, but turned out to be weaker than the leader in activity. The highest activity was demonstrated by a compound with para-chlorobenzylidene substituent in the thiazolidine fragment. Molecular modelling was used to predict binding modes of synthesized molecules and rationalize experimentally observed SAR. The leader compound is twice more effective in inhibiting the formation of germ tubes by Candida albicans yeast cells compared to voriconazole. An increased level of Pdr5, an azoles drug efflux pump was observed, but the increase is lower than that caused by azoles. The results can be useful for further development of more powerful and safe antifungal agents.
Collapse
Affiliation(s)
- Igor B. Levshin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia; (I.B.L.); (A.Y.S.); (N.E.G.)
| | - Alexander Yu. Simonov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia; (I.B.L.); (A.Y.S.); (N.E.G.)
| | - Alexey A. Panov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia; (I.B.L.); (A.Y.S.); (N.E.G.)
| | - Natalia E. Grammatikova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia; (I.B.L.); (A.Y.S.); (N.E.G.)
| | - Alexander I. Alexandrov
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the RAS, 119071 Moscow, Russia; (A.I.A.); (E.S.M.O.G.); (M.O.A.)
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya Street, 17198 Moscow, Russia;
| | - Eslam S. M. O. Ghazy
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the RAS, 119071 Moscow, Russia; (A.I.A.); (E.S.M.O.G.); (M.O.A.)
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya Street, 17198 Moscow, Russia;
- Department of Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Vasiliy A. Ivlev
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya Street, 17198 Moscow, Russia;
| | - Michael O. Agaphonov
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the RAS, 119071 Moscow, Russia; (A.I.A.); (E.S.M.O.G.); (M.O.A.)
| | - Alexey B. Mantsyzov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119991 Moscow, Russia; (A.B.M.); (V.I.P.)
| | - Vladimir I. Polshakov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119991 Moscow, Russia; (A.B.M.); (V.I.P.)
| |
Collapse
|
23
|
Ghorbel D, Amouri I, Khemekhem N, Neji S, Trabelsi H, Elloumi M, Sellami H, Makni F, Ayadi A, Hadrich I. Investigation of Azole Resistance Involving cyp51A and cyp51B Genes in Clinical Aspergillus flavus Isolates. Pol J Microbiol 2024; 73:131-142. [PMID: 38700908 PMCID: PMC11192525 DOI: 10.33073/pjm-2024-001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/03/2023] [Indexed: 06/22/2024] Open
Abstract
This study aimed to investigate azole resistance mechanisms in Aspergillus flavus, which involve cyp51A and cyp51B genes. Real-time Reverse Transcriptase qPCR method was applied to determine the overexpression of cyp51A and cyp51B genes for 34 A. flavus isolates. PCR sequencing of these two genes was used to detect the presence of gene mutations. Susceptibility test found sensitivity to voriconazole (VOR) in all strains. 14.7% and 8.8% of isolates were resistant to itraconazole (IT) and posaconazole (POS), respectively, with a cross-resistance in 5.8%. For the double resistant isolates (IT/POS), the expression of cyp51A was up to 17-fold higher. PCR sequencing showed the presence of 2 mutations in cyp51A: a synonymous point mutation (P61P) in eight isolates, which did not affect the structure of CYP51A protein, and another non synonymous mutation (G206L) for only the TN-33 strain (cross IT/POS resistance) causing an amino acid change in the protein sequence. However, we noted in cyp51B the presence of the only non-synonymous mutation (L177G) causing a change in amino acids in the protein sequence for the TN-31 strain, which exhibits IT/POS cross-resistance. A short single intron of 67 bp was identified in the cyp51A gene, whereas three short introns of 54, 53, and 160 bp were identified in the cyp51B gene. According to the models provided by PatchDock software, the presence of non-synonymous mutations did not affect the interaction of CYP51A and CYP51B proteins with antifungals. In our study, the overexpression of the cyp51A and cyp51B genes is the primary mechanism responsible for resistance in A. flavus collection. Nevertheless, other resistance mechanisms can be involved.
Collapse
Affiliation(s)
- Dhoha Ghorbel
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Imen Amouri
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Nahed Khemekhem
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Sourour Neji
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Houaida Trabelsi
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Moez Elloumi
- Haematology Department, UH Hedi Chaker, Sfax, Tunisia
| | - Hayet Sellami
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Fattouma Makni
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Ali Ayadi
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Ines Hadrich
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
- Faculty of Science, University of Gabes, Gabes, Tunisia
| |
Collapse
|
24
|
Conway TP, Simonicova L, Moye-Rowley WS. Overlapping coactivator function is required for transcriptional activation by the Candida glabrata Pdr1 transcription factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595833. [PMID: 38853834 PMCID: PMC11160619 DOI: 10.1101/2024.05.24.595833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Azole resistance in the pathogenic yeast Candida glabrata is a serious clinical complication and increasing in frequency. The majority of resistant organisms have been found to contain a substitution mutation in the Zn2Cys6 zinc cluster-containing transcription factor Pdr1. These mutations typically lead to this factor driving high, constitutive expression of target genes like the ATP-binding cassette transporter-encoding gene CDR1 . Overexpression of Cdr1 is required for the observed elevated fluconazole resistance exhibited by strains containing one of these hyperactive PDR1 alleles. While the identity of hyperactive PDR1 alleles has been extensively documented, the mechanisms underlying how these gain-of-function (GOF) forms of Pdr1 lead to elevated target gene transcription are not well understood. We have used a tandem affinity purification (TAP)-tagged form of Pdr1 to identify coactivator proteins that biochemically purify with the wild-type and two different GOF forms of Pdr1. Three coactivator proteins were found to associate with Pdr1: the SWI/SNF complex Snf2 chromatin remodeling protein and two different components of the SAGA complex, Spt7 and Ngg1. We found that deletion mutants lacking either SNF2 or SPT7 exhibited growth defects, even in the absence of fluconazole challenge. To overcome these issues, we employed a conditional degradation system to acutely deplete these coactivators and determined that loss of either coactivator complex, SWI/SNF or SAGA, caused defects in Pdr1-dependent transcription. A double degron strain that could be depleted for both SWI/SNF and SAGA exhibited a profound defect in PDR1 autoregulation, revealing that these complexes work together to ensure high level Pdr1-dependent gene transcription.
Collapse
|
25
|
Nandhagopal M, Mala R, Somarathinam K, Dhakshinamurthy D, Narayanasamy M, Vijayan P, Shankar MM. Anti-fungal effects of novel N-(tert-butyl)-2-(pyridin-2-yl)imidazo[1,2-a]pyridin-3-amine derivative and it's in-vitro, in-silico, and mode of action against Candida spp. Arch Microbiol 2024; 206:186. [PMID: 38509398 DOI: 10.1007/s00203-023-03780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 03/22/2024]
Abstract
Imidazoles are a category of azole antifungals that encompass compounds such as ketoconazole, miconazole, esomeprazole, and clotrimazole. In contrast, the triazoles group, which includes fluconazole, voriconazole, and itraconazole, also plays a significant role. The rise of antibiotic resistance in fungal pathogens has evolved into a substantial global public health concern. In this study, two newly synthesized imidazo[1,2-a]pyridine derivative (Probe I and Probe II) molecules were investigated for its antimicrobial potency against of a panel of bacterial (Gram-positive and Gram-negative bacteria) and fungal pathogens. Among the different types of pathogens, we found that Probe II showed excellent antifungal activity against fungal pathogens, based on the preliminary screening the potent molecule further investigated against multidrug-resistance Candida sp. (n = 10) and compared with commercial molecules. In addition, in-silico molecular docking, its dynamics, absorption, distribution, metabolism, excretion and toxicity (ADMET) were analyzed. In this study, the small molecule (Probe II) displayed potent activity only against the Candida spp. including several multidrug-resistant Candida spp. Probe II exhibited minimum inhibitory concentration ranges from 4 to 16 µg/mL and minimum fungicidal concentration in the range 4‒32 µg/mL as the lowest concentration enough to eliminate the Candida spp. The selected molecules inhibit the formation of yeast to mold as well as ergosterol formation by the computational simulation against Sterol 14-alpha demethylase (CYP51) and inhibition of ergosterol biosynthesis by in-vitro model show that the Probe II completely inhibits the formation of ergosterol in yeast cells at 2× MIC. The ADMET analysis Probe II could be moderately toxic to the human being, though the in-vitro toxicity studies will help to understand the real-time toxic level. The novel compound Probe II, which was synthesized during the study, shows promise for development into a new generation of drug treatments aimed at addressing the emerging drug resistance in Candida sp.
Collapse
Affiliation(s)
- Manivannan Nandhagopal
- Bio-Control and Microbial Product Lab, Department of Microbiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, India.
| | - Ramanjaneyulu Mala
- Organic and Bioorganic Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | - Kanagasabai Somarathinam
- Centre for Advanced Studies in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600 025, Tamil Nadu, India
| | - Divya Dhakshinamurthy
- Department of Chemistry, Vel Tech Rangarajan Dr, Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, 600062, India
| | - Mathivanan Narayanasamy
- Biocontrol and Microbial Metabolites Lab, Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| | - Priyadharshni Vijayan
- Biocontrol and Microbial Metabolites Lab, Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| | - Manimuthu Mani Shankar
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, India
| |
Collapse
|
26
|
Mesquida A, Alcoceba E, Padilla E, Ramírez A, Merino P, González-Romo F, De Carolis E, Sanguinetti M, Mantecón-Vallejo MDLÁ, Muñoz-Algarra M, Durán-Valle T, Pérez-Ayala A, Gómez-García-de-la-Pedrosa E, Del Carmen Martínez-Jiménez M, Sánchez-Castellano MÁ, Quiles-Melero I, Cuétara MS, Sánchez-García A, Muñoz P, Escribano P, Guinea J. Fluconazole-resistant Candida parapsilosis genotypes from hospitals located in five Spanish cities and one in Italy: Description of azole-resistance profiles associated with the Y132F ERG11p substitution. Mycoses 2024; 67:e13706. [PMID: 38438313 DOI: 10.1111/myc.13706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Fluconazole-resistant Candida parapsilosis is a matter of concern. OBJECTIVES To describe fluconazole-resistant C. parapsilosis genotypes circulating across hospitals in Spain and Rome and to study their azole-resistance profile associated with ERG11p substitutions. PATIENTS/METHODS We selected fluconazole-resistant C. parapsilosis isolates (n = 528 from 2019 to 2023; MIC ≥8 mg/L according to EUCAST) from patients admitted to 13 hospitals located in five Spanish cities and Rome. Additionally, we tested voriconazole, posaconazole, isavuconazole, amphotericin B, micafungin, anidulafungin and ibrexafungerp susceptibility. RESULTS Of the 53 genotypes found, 49 harboured the Y132F substitution, five of which were dominating city-specific genotypes involving almost half the isolates. Another genotype involved isolates harbouring the G458S substitution. Finally, we found two genotypes with the wild-type ERG11 gene sequence and one with the R398I substitution. All isolates were fully susceptible/wild-type to amphotericin B, anidulafungin, micafungin and ibrexafungerp. The azole-resistance patterns found were: voriconazole-resistant (74.1%) or voriconazole-intermediate (25.2%), posaconazole-resistant (10%) and isavuconazole non-wild-type (47.5%). Fluconazole-resistant and voriconazole non-wild-type isolates were likely to harbour substitution Y132F if posaconazole was wild type; however, if posaconazole was non-wild type, substitution G458S was indicated if isavuconazole MIC was >0.125 mg/L or substitution Y132F if isavuconazole MIC was ≤0.125 mg/L. CONCLUSIONS We detected a recent clonal spread of fluconazole-resistant C. parapsilosis across some cities in Spain, mostly driven by dominating city-specific genotypes, which involved a large number of isolates harbouring the Y132F ERG11p substitution. Isolates harbouring substitution Y132F can be suspected because they are non-susceptible to voriconazole and rarely posaconazole-resistant.
Collapse
Affiliation(s)
- Aina Mesquida
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Eva Alcoceba
- Clinical Microbiology Department, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | | | - Aída Ramírez
- Clinical Microbiology Department, Hospital del Mar, Barcelona, Spain
| | - Paloma Merino
- Clinical Microbiology Department, Hospital Universitario Clínico San Carlos, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos IdISSC, Madrid, Spain
| | - Fernando González-Romo
- Clinical Microbiology Department, Hospital Universitario Clínico San Carlos, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos IdISSC, Madrid, Spain
| | - Elena De Carolis
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | | | - María Muñoz-Algarra
- Clinical Microbiology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Spain
| | - Teresa Durán-Valle
- Clinical Microbiology Department, Hospital Universitario de Móstoles, Móstoles, Spain
| | - Ana Pérez-Ayala
- Clinical Microbiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital 12 de Octubre, Madrid, Spain
| | - Elia Gómez-García-de-la-Pedrosa
- Clinical Microbiology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | - María Soledad Cuétara
- Clinical Microbiology Department, Hospital Universitario Severo Ochoa, Leganés, Spain
| | - Aída Sánchez-García
- Laboratorio Central de la CAM-UR Salud-Hospital Infanta Sofía, Madrid, Spain
| | - Patricia Muñoz
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Pilar Escribano
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Faculty of Health Sciences - HM Hospitals, Universidad Camilo José Cela, Madrid, Spain
| | - Jesús Guinea
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
- Faculty of Health Sciences - HM Hospitals, Universidad Camilo José Cela, Madrid, Spain
| |
Collapse
|
27
|
Asgaonkar KD, Chitre TS, Patil SM, Shevate KS, Sagar AK, Ghate DD, Shah PA. Green Chemistry and In silico Techniques for Synthesis of Novel Pyranopyrazole and Pyrazolo-pyrano-pyrimidine Derivatives as Promising Antifungal Agents. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2024; 19:216-231. [PMID: 38317465 DOI: 10.2174/0127724344269458231124123935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Every year Invasive Fungal Infections (IFI) are globally affecting millions of people. Candida albicans and Aspergillus niger have been reported as the most infectious and mortality-inducing fungal strains among all pathogenic fungi. AIMS & OBJECTIVES To tackle this problem in the current study Pyranopyrazoles and Pyrazolopyrano- pyrimidine derivatives were developed using molecular hybridization, green chemistry and one-pot multicomponent reaction. MATERIALS AND METHODS In the present work, New Chemical entities (NCE's) were developed on the basis of Structure activity relationship. All designed NCE's were screened for ADMET studies using the QikProp module of Schrodinger software. NCE's with zero violations were further docked on the crystal structure of 14α demethylase, cytochrome P450 and thymidine synthase (PDB ID: 5V5Z, 7SHI, 1BID). Selected molecules were synthesized using green chemistry techniques and evaluated for in vitro antifungal activity against Candida albicans and Aspergillus niger. RESULTS AND DISCUSSION Designed NCE's (B1-12 and C1-11) showed favorable results in ADMET studies. In the docking study six compounds from series-B and five molecules from series- C showed good dock score and binding interaction when compared with the standard drugs. Compounds B-3 and C-4 showed the highest zone of inhibition activity against Candida albicans, where as B-1 and C-3 had shown highest zone of inhibition activity against Aspergillus niger. CONCLUSION Bicyclic ring (series B) showed better activity as compare to fused tricyclic ring (series C).
Collapse
Affiliation(s)
- Kalyani Dhirendra Asgaonkar
- Department of Pharmaceutical Chemistry, All India Shri Shivaji Memorial Society's College of Pharmacy, Pune 411001, Maharashtra, India
| | - Trupti Sameer Chitre
- Department of Pharmaceutical Chemistry, All India Shri Shivaji Memorial Society's College of Pharmacy, Pune 411001, Maharashtra, India
| | - Shital Manoj Patil
- Department of Pharmaceutical Chemistry, All India Shri Shivaji Memorial Society's College of Pharmacy, Pune 411001, Maharashtra, India
| | - Krishna Sambhajirao Shevate
- Department of Pharmaceutical Chemistry, All India Shri Shivaji Memorial Society's College of Pharmacy, Pune 411001, Maharashtra, India
| | - Ashwini Kishan Sagar
- Department of Pharmaceutical Chemistry, All India Shri Shivaji Memorial Society's College of Pharmacy, Pune 411001, Maharashtra, India
| | - Dipti Dattatray Ghate
- Department of Pharmaceutical Chemistry, All India Shri Shivaji Memorial Society's College of Pharmacy, Pune 411001, Maharashtra, India
| | - Parth Anil Shah
- Department of Pharmaceutical Chemistry, All India Shri Shivaji Memorial Society's College of Pharmacy, Pune 411001, Maharashtra, India
| |
Collapse
|
28
|
de Lima Silva MG, de Lima LF, Alencar Fonseca VJ, Santos da Silva LY, Calixto Donelardy AC, de Almeida RS, de Morais Oliveira-Tintino CD, Pereira Bezerra Martins AOB, Ribeiro-Filho J, Bezerra Morais-Braga MF, Tintino SR, Alencar de Menezes IR. Enhancing the Antifungal Efficacy of Fluconazole with a Diterpene: Abietic Acid as a Promising Adjuvant to Combat Antifungal Resistance in Candida spp. Antibiotics (Basel) 2023; 12:1565. [PMID: 37998767 PMCID: PMC10668680 DOI: 10.3390/antibiotics12111565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
The increasing antifungal resistance rates against conventional drugs reveal the urgent need to search for new therapeutic alternatives. In this context, natural bioactive compounds have a critical role in antifungal drug development. Since evidence demonstrates that abietic acid, a diterpene found in Pinus species, has significant antimicrobial properties, this study aimed to evaluate the antifungal activity of abietic acid against Candida spp and its ability to potentiate the activity of fluconazole. Abietic acid was tested both individually and in combination with fluconazole against Candida albicans (CA INCQS 40006), Candida krusei (CK INCQS 40095), and Candida tropicalis (CT INCQS 40042). The microdilution method was used to determine the IC50 and the cell viability curve. Minimum Fungicidal Concentration (MFC) was determined by subculture in a solid medium. The plasma membrane permeability was measured using a fluorescent SYTOX Green probe. While the IC50 of the drugs alone ranged between 1065 and 3255 μg/mL, the IC50 resulting from the combination of abietic acid and fluconazole ranged between 7563 and 160.1 μg/mL. Whether used in combination with fluconazole or isolated, abietic acid exhibited Minimum Fungicidal Concentration (MFC) values exceeding 1024 μg/mL against Candida albicans, Candida krusei and Candida tropicalis. However, it was observed that the antifungal effect of fluconazole was enhanced when used in combination with abietic acid against Candida albicans and Candida tropicalis. These findings suggest that while abietic acid alone has limited inherent antifungal activity, it can enhance the effectiveness of fluconazole, thereby reducing antifungal resistance.
Collapse
Affiliation(s)
- Maria Gabriely de Lima Silva
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (M.G.d.L.S.); (L.Y.S.d.S.); (A.C.C.D.); (A.O.B.P.B.M.)
| | - Luciene Ferreira de Lima
- Laboratory of Applied Mycology of Cariri (LMAC), Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (L.F.d.L.); (V.J.A.F.); (M.F.B.M.-B.)
| | - Victor Juno Alencar Fonseca
- Laboratory of Applied Mycology of Cariri (LMAC), Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (L.F.d.L.); (V.J.A.F.); (M.F.B.M.-B.)
| | - Lucas Yure Santos da Silva
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (M.G.d.L.S.); (L.Y.S.d.S.); (A.C.C.D.); (A.O.B.P.B.M.)
| | - Ana Cecília Calixto Donelardy
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (M.G.d.L.S.); (L.Y.S.d.S.); (A.C.C.D.); (A.O.B.P.B.M.)
| | - Ray Silva de Almeida
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (R.S.d.A.); (C.D.d.M.O.-T.)
| | | | - Anita Oliveira Brito Pereira Bezerra Martins
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (M.G.d.L.S.); (L.Y.S.d.S.); (A.C.C.D.); (A.O.B.P.B.M.)
| | - Jaime Ribeiro-Filho
- Oswaldo Cruz Foundation (Fiocruz), Fiocruz Ceará, Eusébio 61773-270, Ceará, Brazil;
| | - Maria Flaviana Bezerra Morais-Braga
- Laboratory of Applied Mycology of Cariri (LMAC), Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (L.F.d.L.); (V.J.A.F.); (M.F.B.M.-B.)
| | - Saulo Relison Tintino
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (R.S.d.A.); (C.D.d.M.O.-T.)
| | - Irwin Rose Alencar de Menezes
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (M.G.d.L.S.); (L.Y.S.d.S.); (A.C.C.D.); (A.O.B.P.B.M.)
| |
Collapse
|
29
|
Khattak SU, Iqbal Z, Lutfullah G, Ahmad S, Alharbi M, Alasmari AF, Irfan M. Purification and structure elucidation of Penicillium chrysogenum derived antifungal compound with potential anti-Candida property: in silico and in vitro evidence. J Biomol Struct Dyn 2023; 42:12776-12787. [PMID: 37878068 DOI: 10.1080/07391102.2023.2273435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023]
Abstract
Following preliminary bioactivity testing, the fungal strain identified as Penicillium crysogenum was cultured in a modified Czapec Yeast Broth medium (CYB) for the production of antifungal compounds. Several chromatographic techniques including HPLC were used to purify the fungal metabolites from the crude extract. The mass determination of the purified compound was performed using Water's LCMS system while the structure of the compound was elucidated using 400 and 500 Varian NMR machines. The chemical name of the purified compound is (2 R, 4S) -2, 4-dimethyl-4-((E)-2-((3S, 4S)-2, 4, 5-trihydroxy-3-methoxy-4-phenyl-1, 2, 3, 4-tetrahydroquinolin-6-yl) vinyl) cyclohexanone with the chemical formula C26H31NO5 and exact mass of 437.2. Molecular docking predicted compound docking score with dihydrofolate reductase enzyme and lanosterol 14α-demethylase enzyme as -8.1 kcal/mol and -9.8 kcal/mol respectively. Further, the compounds showed stable binding mode with the enzymes and reported robust binding energies. After insilico analysis, the compound with mass 437 was tested for its antifungal potential in vitro against two pathogenic yeast species (i.e. Candida albicans and Candida glaberata) using the agar tube diffusion method. Using sterile di-methyl sulfoxide (DMSO) the compound was prepared in four dose concentrations (100, 250, 500, 1000 µg mL-1) and mixed with autoclaved semisolid Potato Dextrose Agar (PDA) medium in screw-capped test tubes labelled with the corresponding dose concentration. The fungal strains were inoculated on this medium and linear growth inhibition of the fungal strains was calculated using fluconazole as the control drug. The results from in vitro experiments were encouraging as at concentrations of 500 and 1000 μg mL-1 the compound inhibited the growth of C. albicans by 17% and 38% while 19% and 41% inhibition were recorded against C. glaberata. The compound showed antifungal activity in silico and in vitro against both the Candida species and can act as a potent antifungal candidate in the future upon further investigation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saeed Ullah Khattak
- Center of Biotechnology and Microbiology, University of Peshawar, KPK, Pakistan
| | - Zafar Iqbal
- Department of Agricultural Chemistry, University of Agriculture, KPK, Pakistan
| | - Ghosia Lutfullah
- Center of Biotechnology and Microbiology, University of Peshawar, KPK, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Department of Natural Sciences, Lebanese American University, Beirut, Lebanon
- Department of Computer Science, Virginia Tech, USA
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
30
|
Choy HL, Gaylord EA, Doering TL. Ergosterol distribution controls surface structure formation and fungal pathogenicity. mBio 2023; 14:e0135323. [PMID: 37409809 PMCID: PMC10470819 DOI: 10.1128/mbio.01353-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 07/07/2023] Open
Abstract
Ergosterol, the major sterol in fungal membranes, is critical for defining membrane fluidity and regulating cellular processes. Although ergosterol synthesis has been well defined in model yeast, little is known about sterol organization in the context of fungal pathogenesis. We identified a retrograde sterol transporter, Ysp2, in the opportunistic fungal pathogen Cryptococcus neoformans. We found that the lack of Ysp2 under host-mimicking conditions leads to abnormal accumulation of ergosterol at the plasma membrane, invagination of the plasma membrane, and malformation of the cell wall, which can be functionally rescued by inhibiting ergosterol synthesis with the antifungal drug fluconazole. We also observed that cells lacking Ysp2 mislocalize the cell surface protein Pma1 and have abnormally thin and permeable capsules. As a result of perturbed ergosterol distribution and its consequences, ysp2∆ cells cannot survive in physiologically relevant environments such as host phagocytes and are dramatically attenuated in virulence. These findings expand our knowledge of cryptococcal biology and underscore the importance of sterol homeostasis in fungal pathogenesis. IMPORTANCE Cryptococcus neoformans is an opportunistic fungal pathogen that kills over 100,000 people worldwide each year. Only three drugs are available to treat cryptococcosis, and these are variously limited by toxicity, availability, cost, and resistance. Ergosterol is the most abundant sterol in fungi and a key component in modulating membrane behavior. Two of the drugs used for cryptococcal infection, amphotericin B and fluconazole, target this lipid and its synthesis, highlighting its importance as a therapeutic target. We discovered a cryptococcal ergosterol transporter, Ysp2, and demonstrated its key roles in multiple aspects of cryptococcal biology and pathogenesis. These studies demonstrate the role of ergosterol homeostasis in C. neoformans virulence, deepen our understanding of a pathway with proven therapeutic importance, and open a new area of study.
Collapse
Affiliation(s)
- Hau Lam Choy
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Elizabeth A. Gaylord
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamara L. Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
31
|
Sun M, Lyu L, Zheng Q. Active Binding Modes of Caffeine with Cytochrome P450 1A2 Determine Its Metabolite Profiles. Chem Res Toxicol 2023; 36:1313-1320. [PMID: 37468477 DOI: 10.1021/acs.chemrestox.3c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Caffeine is a very common kind of nervous stimulant, and it is primarily metabolized by Cytochrome P450 1A2 (CYP1A2) in the human body. Over the years, determining the interactions between caffeine and CYP1A2 has been a tough issue. The active binding modes and the catalytic regioselectivity of the metabolism between CYP1A2 and caffeine remain unclear. Here, to investigate the interactions between CYP1A2 and caffeine, we constructed the all-sequence CYP1A2-caffeine-membrane system using a multiple template approach. According to our simulation results, four active binding modes between CYP1A2 and caffeine that correspond to the four metabolic sites of caffeine are determined. What is more, a pre-reaction state for the CYP1A2-catalyzed reaction at caffeine's N3 site is identified. A more preponderant active binding mode might be the reason why the N3 site of caffeine becomes the primary metabolic site. Our findings could enhance our knowledge of the interactions between CYP1A2 and caffeine and help us better understand the regioselectivity of the metabolism between CYP1A2 and caffeine.
Collapse
Affiliation(s)
- Minzhang Sun
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Lingshan Lyu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Qingchuan Zheng
- School of Pharmaceutical Sciences, Jilin University, Changchun 130023, China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| |
Collapse
|
32
|
Zhu G, Chen S, Zhang Y, Lu L. Mitochondrial Membrane-Associated Protein Mba1 Confers Antifungal Resistance by Affecting the Production of Reactive Oxygen Species in Aspergillus fumigatus. Antimicrob Agents Chemother 2023; 67:e0022523. [PMID: 37428039 PMCID: PMC10433838 DOI: 10.1128/aac.00225-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Azole resistance in the human fungal pathogen Aspergillus fumigatus is becoming a major threat to global health. To date, mutations in the azole target-encoding cyp51A gene have been implicated in conferring azole resistance, but a steady increase in the number of A. fumigatus isolates with azole resistance resulting from non-cyp51A mutations has been recognized. Previous studies have revealed that some isolates with non-cyp51A mutation-induced azole resistance are related to mitochondrial dysfunction. However, knowledge of the molecular mechanism underlying the involvement of non-cyp51A mutations is limited. In this study, using next-generation sequencing, we found that nine independent azole-resistant isolates without cyp51A mutations had normal mitochondrial membrane potential. Among these isolates, a mutation in a mitochondrial ribosome-binding protein, Mba1, conferred multidrug resistance to azoles, terbinafine, and amphotericin B but not caspofungin. Molecular characterization verified that the TIM44 domain of Mba1 was crucial for drug resistance and that the N terminus of Mba1 played a major role in growth. Deletion of mba1 had no effect on Cyp51A expression but decreased the fungal cellular reactive oxygen species (ROS) content, which contributed to mba1-mediated drug resistance. The findings in this study suggest that some non-cyp51A proteins drive drug resistance mechanisms that result from reduced ROS production induced by antifungals.
Collapse
Affiliation(s)
- Guoxing Zhu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shu Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuanwei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
33
|
Toepfer S, Lackner M, Keniya MV, Zenz LM, Friemert M, Bracher F, Monk BC. Clorgyline Analogs Synergize with Azoles against Drug Efflux in Candida auris. J Fungi (Basel) 2023; 9:663. [PMID: 37367600 DOI: 10.3390/jof9060663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Concern about the global emergence of multidrug-resistant fungal pathogens led us to explore the use of combination therapy to combat azole resistance in Candida auris. Clorgyline had previously been shown to be a multi-target inhibitor of Cdr1 and Mdr1 efflux pumps of Candida albicans and Candida glabrata. A screen for antifungal sensitizers among synthetic analogs of Clorgyline detected interactions with the C. auris efflux pump azole substrates Posaconazole and Voriconazole. Of six Clorgyline analogs, M19 and M25 were identified as potential sensitizers of azole resistance. M19 and M25 were found to act synergistically with azoles against resistant C. auris clade I isolates and recombinant Saccharomyces cerevisiae strains overexpressing C. auris efflux pumps. Nile Red assays with the recombinant strains showed M19 and M25 inhibited the activity of Cdr1 and Mdr1 efflux pumps that are known to play key roles in azole resistance in C. auris clades I, III, and IV. While Clorgyline, M19 and M25 uncoupled the Oligomycin-sensitive ATPase activity of Cdr1 from C. albicans and C. auris, their mode of action is yet to be fully elucidated. The experimental combinations described herein provides a starting point to combat azole resistance dominated by overexpression of CauCdr1 in C. auris clades I and IV and CauMdr1 in C. auris clade III.
Collapse
Affiliation(s)
- Stephanie Toepfer
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Michaela Lackner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Mikhail V Keniya
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ 07110, USA
| | - Lisa-Maria Zenz
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Marianne Friemert
- Center for Drug Research, Department of Pharmacy, Ludwig-Maximilian University of Munich, 81377 Munich, Germany
| | - Franz Bracher
- Center for Drug Research, Department of Pharmacy, Ludwig-Maximilian University of Munich, 81377 Munich, Germany
| | - Brian C Monk
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
34
|
Remines M, Schoonover M, Knox Z, Kenwright K, Hoffert KM, Coric A, Mead J, Ampfer J, Seye S, Strome ED. Profiling The Compendium Of Changes In Saccharomyces cerevisiae Due To Mutations That Alter Availability Of The Main Methyl Donor S-Adenosylmethionine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544294. [PMID: 37333147 PMCID: PMC10274911 DOI: 10.1101/2023.06.09.544294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The SAM1 and SAM2 genes encode for S-AdenosylMethionine (AdoMet) synthetase enzymes, with AdoMet serving as the main methyl donor. We have previously shown that independent deletion of these genes alters chromosome stability and AdoMet concentrations in opposite ways in S. cerevisiae. To characterize other changes occurring in these mutants, we grew wildtype, sam1∆/sam1∆, and sam2∆/sam2∆ strains in 15 different Phenotypic Microarray plates with different components, equal to 1440 wells, and measured for growth variations. RNA-Sequencing was also carried out on these strains and differential gene expression determined for each mutant. In this study, we explore how the phenotypic growth differences are linked to the altered gene expression, and thereby predict the mechanisms by which loss of the SAM genes and subsequent AdoMet level changes, impact S. cerevisiae pathways and processes. We present six stories, discussing changes in sensitivity or resistance to azoles, cisplatin, oxidative stress, arginine biosynthesis perturbations, DNA synthesis inhibitors, and tamoxifen, to demonstrate the power of this novel methodology to broadly profile changes due to gene mutations. The large number of conditions that result in altered growth, as well as the large number of differentially expressed genes with wide-ranging functionality, speaks to the broad array of impacts that altering methyl donor abundance can impart, even when the conditions tested were not specifically selected as targeting known methyl involving pathways. Our findings demonstrate that some cellular changes are directly related to AdoMet-dependent methyltransferases and AdoMet availability, some are directly linked to the methyl cycle and its role is production of several important cellular components, and others reveal impacts of SAM gene mutations on previously unconnected pathways.
Collapse
Affiliation(s)
- McKayla Remines
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Makailyn Schoonover
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Zoey Knox
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Kailee Kenwright
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Kellyn M. Hoffert
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Amila Coric
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - James Mead
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Joseph Ampfer
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Serigne Seye
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Erin D. Strome
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| |
Collapse
|
35
|
Xie F, Hao Y, Li L, Wang R, Bao J, Chi X, Monk BC, Wang T, Yu S, Jin Y, Zhang D, Ni T, Yan L. Novel antifungal triazoles with alkynyl-methoxyl side chains: Design, synthesis, and biological activity evaluation. Eur J Med Chem 2023; 257:115506. [PMID: 37216811 DOI: 10.1016/j.ejmech.2023.115506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Previous work led to the rational design, synthesis and testing of novel antifungal triazole analogues bearing alkynyl-methoxyl side chains. Tests of in vitro antifungal activity showed Candida albicans SC5314 and Candida glabrata 537 gave MIC values of ≤0.125 μg/mL for most of the compounds. Among these, compounds 16, 18, and 29 displayed broad-spectrum antifungal activity against seven human pathogenic fungal species, two fluconazole-resistant C. albicans isolates and two multi-drug resistant Candida auris isolates. Moreover, 0.5 μg/mL of 16, 18, and 29 was more effective than 2 μg/mL of fluconazole at inhibiting fungal growth of the strains tested. The most active compound (16) completely inhibited the growth of C. albicans SC5314 at 16 μg/mL for 24 h, affected biofilm formation and destroyed the mature biofilm at 64 μg/mL. Several Saccharomyces cerevisiae strains, overexpressing recombinant Cyp51s or drug efflux pumps, indicated 16, 18, and 29 targeted Cyp51 without being significantly affected by a common active site mutation, but were susceptible to target overexpression and efflux by both MFS and ABC transporters. GC-MS analysis demonstrated that 16, 18, and 29 interfered with the C. albicans ergosterol biosynthesis pathway by inhibition at Cyp51. Molecular docking studies elucidated the binding modes of 18 with Cyp51. The compounds showed low cytotoxicity, low hemolytic activity and favorable ADMT properties. Importantly, compound 16 showed potent in vivo antifungal efficacy in the G. mellonella infection model. Taken together, this study presents more effective, broad-spectrum, low toxicity triazole analogues that can contribute to the development of novel antifungal agents and help overcome antifungal resistance.
Collapse
Affiliation(s)
- Fei Xie
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Yumeng Hao
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Liping Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai, 200072, China
| | - Ruina Wang
- Center of New Drug Research, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Junhe Bao
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Xiaochen Chi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Brian C Monk
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, 9016, New Zealand
| | - Ting Wang
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Shichong Yu
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Yongsheng Jin
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Dazhi Zhang
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | - Tingjunhong Ni
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai, 200072, China.
| | - Lan Yan
- Center of New Drug Research, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
36
|
Noel D, Hallsworth JE, Gelhaye E, Darnet S, Sormani R, Morel-Rouhier M. Modes-of-action of antifungal compounds: Stressors and (target-site-specific) toxins, toxicants, or Toxin-stressors. Microb Biotechnol 2023. [PMID: 37191200 DOI: 10.1111/1751-7915.14242] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 05/17/2023] Open
Abstract
Fungi and antifungal compounds are relevant to the United Nation's Sustainable Development Goals. However, the modes-of-action of antifungals-whether they are naturally occurring substances or anthropogenic fungicides-are often unknown or are misallocated in terms of their mechanistic category. Here, we consider the most effective approaches to identifying whether antifungal substances are cellular stressors, toxins/toxicants (that are target-site-specific), or have a hybrid mode-of-action as Toxin-stressors (that induce cellular stress yet are target-site-specific). This newly described 'toxin-stressor' category includes some photosensitisers that target the cell membrane and, once activated by light or ultraviolet radiation, cause oxidative damage. We provide a glossary of terms and a diagrammatic representation of diverse types of stressors, toxic substances, and Toxin-stressors, a classification that is pertinent to inhibitory substances not only for fungi but for all types of cellular life. A decision-tree approach can also be used to help differentiate toxic substances from cellular stressors (Curr Opin Biotechnol 2015 33: 228-259). For compounds that target specific sites in the cell, we evaluate the relative merits of using metabolite analyses, chemical genetics, chemoproteomics, transcriptomics, and the target-based drug-discovery approach (based on that used in pharmaceutical research), focusing on both ascomycete models and the less-studied basidiomycete fungi. Chemical genetic methods to elucidate modes-of-action currently have limited application for fungi where molecular tools are not yet available; we discuss ways to circumvent this bottleneck. We also discuss ecologically commonplace scenarios in which multiple substances act to limit the functionality of the fungal cell and a number of as-yet-unresolved questions about the modes-of-action of antifungal compounds pertaining to the Sustainable Development Goals.
Collapse
Affiliation(s)
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Eric Gelhaye
- Université de Lorraine, INRAE, IAM, Nancy, France
| | | | | | | |
Collapse
|
37
|
Campos Péret VA, Reis RCFM, Braga SFP, Benedetti MD, Caldas IS, Carvalho DT, Santana LFDA, Johann S, Souza TBD. New miconazole-based azoles derived from eugenol show activity against Candida spp. and Cryptococcus gattii by inhibiting the fungal ergosterol biosynthesis. Eur J Med Chem 2023; 256:115436. [PMID: 37146343 DOI: 10.1016/j.ejmech.2023.115436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/07/2023]
Abstract
This work describes the design, synthesis and antifungal activity of new imidazoles and 1,2,4-triazoles derived from eugenol and dihydroeugenol. These new compounds were fully characterized by spectroscopy/spectrometric analyses and the imidazoles 9, 10, 13 e 14 showed relevant antifungal activity against Candida sp. and Cryptococcus gattii in the range of 4.6-75.3 μM. Although no compound has shown a broad spectrum of antifungal activity against all evaluated strains, some azoles were more active than either reference drugs employed against specific strains. Eugenol-imidazole 13 was the most promising azole (MIC: 4.6 μM) against Candida albicans being 32 times more potent than miconazole (MIC: 150.2 μM) with no relevant cytotoxicity (selectivity index >28). Notably, dihydroeugenol-imidazole 14 was twice as potent (MIC: 36.4 μM) as miconazole (MIC: 74.9 μM) and more than 5 times more active than fluconazole (MIC: 209.0 μM) against alarming multi-resistant Candida auris. Furthermore, in vitro assays showed that most active compounds 10 and 13 altered the fungal ergosterol biosynthesis, reducing its content as fluconazole does, suggesting the enzyme lanosterol 14α-demethylase (CYP51) as a possible target for these new compounds. Docking studies with CYP51 revealed an interaction between the imidazole ring of the active substances with the heme group, as well as insertion of the chlorinated ring into a hydrophobic cavity at the binding site, consistent with the behavior observed with control drugs miconazole and fluconazole. The increase of azoles-resistant isolates of Candida species and the impact that C. auris has had on hospitals around the world reinforces the importance of discovery of azoles 9, 10, 13 e 14 as new bioactive compounds for further chemical optimization to afford new clinically antifungal agents.
Collapse
Affiliation(s)
| | | | | | | | - Ivo Santana Caldas
- Institute of Biomedical Sciences - Federal University of Alfenas, Alfenas, Brazil
| | - Diogo Teixeira Carvalho
- Pharmaceutical Sciences Faculty - Federal University of Alfenas, 37130-001, Alfenas, MG, Brazil
| | - Luiz Felipe de Andrade Santana
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Susana Johann
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
38
|
Gao T, Zhao Y, Zhang L, Wang H. Secondary and Topological Structural Merge Prediction of Alpha-Helical Transmembrane Proteins Using a Hybrid Model Based on Hidden Markov and Long Short-Term Memory Neural Networks. Int J Mol Sci 2023; 24:5720. [PMID: 36982795 PMCID: PMC10057634 DOI: 10.3390/ijms24065720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Alpha-helical transmembrane proteins (αTMPs) play essential roles in drug targeting and disease treatments. Due to the challenges of using experimental methods to determine their structure, αTMPs have far fewer known structures than soluble proteins. The topology of transmembrane proteins (TMPs) can determine the spatial conformation relative to the membrane, while the secondary structure helps to identify their functional domain. They are highly correlated on αTMPs sequences, and achieving a merge prediction is instructive for further understanding the structure and function of αTMPs. In this study, we implemented a hybrid model combining Deep Learning Neural Networks (DNNs) with a Class Hidden Markov Model (CHMM), namely HDNNtopss. DNNs extract rich contextual features through stacked attention-enhanced Bidirectional Long Short-Term Memory (BiLSTM) networks and Convolutional Neural Networks (CNNs), and CHMM captures state-associative temporal features. The hybrid model not only reasonably considers the probability of the state path but also has a fitting and feature-extraction capability for deep learning, which enables flexible prediction and makes the resulting sequence more biologically meaningful. It outperforms current advanced merge-prediction methods with a Q4 of 0.779 and an MCC of 0.673 on the independent test dataset, which have practical, solid significance. In comparison to advanced prediction methods for topological and secondary structures, it achieves the highest topology prediction with a Q2 of 0.884, which has a strong comprehensive performance. At the same time, we implemented a joint training method, Co-HDNNtopss, and achieved a good performance to provide an important reference for similar hybrid-model training.
Collapse
Affiliation(s)
- Ting Gao
- School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, Changchun 130117, China; (T.G.); (Y.Z.)
| | - Yutong Zhao
- School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, Changchun 130117, China; (T.G.); (Y.Z.)
| | - Li Zhang
- School of Computer Science and Engineering, Changchun University of Technology, Changchun 130012, China;
| | - Han Wang
- School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, Changchun 130117, China; (T.G.); (Y.Z.)
| |
Collapse
|
39
|
Lu H, Li W, Whiteway M, Wang H, Zhu S, Ji Z, Feng Y, Yan L, Fang T, Li L, Ni T, Zhang X, Lv Q, Ding Z, Qiu L, Zhang D, Jiang Y. A Small Molecule Inhibitor of Erg251 Makes Fluconazole Fungicidal by Inhibiting the Synthesis of the 14α-Methylsterols. mBio 2023; 14:e0263922. [PMID: 36475771 PMCID: PMC9973333 DOI: 10.1128/mbio.02639-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Fluconazole (FLC) is widely used to prevent and treat invasive fungal infections. However, FLC is a fungistatic agent, allowing clinical FLC-susceptible isolates to tolerate FLC. Making FLC fungicidal in combination with adjuvants is a promising strategy to avoid FLC resistance and eliminate the persistence and recurrence of fungal infections. Here, we identify a new small molecule compound, CZ66, that can make FLC fungicidal. The mechanism of action of CZ66 is targeting the C-4 sterol methyl oxidase, encoded by the ERG251 gene, resulting in decreased content of sterols with the 14α-methyl group and ultimately eliminating FLC tolerance of Candida albicans. CZ66 most likely interacts with Erg251 through residues Glu195, Gly206, and Arg241. Establishing Erg251 as a synergistic lethal target protein of FLC should direct research to identify specific small molecule inhibitors of 14α-methylsterol synthesis and open the way to abolishing fungal FLC tolerance. IMPORTANCE Fluconazole (FLC) tolerance increases the frequency of acquired FLC resistance, and a high FLC tolerance level is associated with persistent candidemia. Multiple functional proteins, such as calcineurin, heat shock protein 90 (Hsp90), and ADP ribosylation factor, are essential for the survival of C. albicans exposed to FLC, but how these factors increase the fungicidal activity of FLC remains to be determined. In this study, we found that 14α-methylsterols replace ergosterol to allow C. albicans to survive FLC, but Erg251 inactivated by CZ66 results in loss of 14α-methylsterol synthesis and cell death of C. albicans treated with FLC. Establishing Erg251 as a synergistic lethal target protein of FLC should direct research to identify specific small molecule inhibitors of 14α-methylsterol synthesis and open the way to abolishing fungal FLC tolerance.
Collapse
Affiliation(s)
- Hui Lu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wanqian Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Hongkang Wang
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shuo Zhu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhe Ji
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanru Feng
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lan Yan
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Ting Fang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liping Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tingjunhong Ni
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaolong Zhang
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Quanzhen Lv
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Zichao Ding
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Lijuan Qiu
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Dazhi Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
40
|
Choy HL, Gaylord EA, Doering TL. Ergosterol distribution controls surface structure formation and fungal pathogenicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.528979. [PMID: 36824733 PMCID: PMC9949117 DOI: 10.1101/2023.02.17.528979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Ergosterol, the major sterol in fungal membranes, is critical for defining membrane fluidity and regulating cellular processes. Although ergosterol synthesis has been well defined in model yeast, little is known about sterol organization in the context of fungal pathogenesis. We identified a retrograde sterol transporter, Ysp2, in the opportunistic fungal pathogen Cryptococcus neoformans . We found that the lack of Ysp2 under host-mimicking conditions leads to abnormal accumulation of ergosterol at the plasma membrane, invagination of the plasma membrane, and malformation of the cell wall, which can be functionally rescued by inhibiting ergosterol synthesis with the antifungal drug fluconazole. We also observed that cells lacking Ysp2 mislocalize the cell surface protein Pma1 and have thinner and more permeable capsules. As a result of perturbed ergosterol distribution and its consequences, ysp2 Î" cells cannot survive in physiologically-rele-vant environments such as host phagocytes and are dramatically attenuated in virulence. These findings expand our knowledge of cryptococcal biology and underscore the importance of sterol homeostasis in fungal pathogenesis. IMPORTANCE Cryptococcus neoformans is an opportunistic fungal pathogen that kills over 100,000 people worldwide each year. Only three drugs are available to treat cryptococcosis, and these are variously limited by toxicity, availability, cost, and resistance. Ergosterol is the most abundant sterol in fungi and a key component in modulating membrane behavior. Two of the drugs used for cryptococcal infection, amphotericin B and fluconazole, target this lipid and its synthesis, highlighting its importance as a therapeutic target. We discovered a cryptococcal ergosterol transporter, Ysp2, and demonstrated its key roles in multiple aspects of cryptococcal biology and pathogenesis. These studies demonstrate the role of ergosterol homeostasis in C. neoformans virulence, deepen our understanding of a pathway with proven therapeutic importance, and open a new area of study.
Collapse
Affiliation(s)
- Hau Lam Choy
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Elizabeth A. Gaylord
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamara L. Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
41
|
Controlling antifungal activity with light: Optical regulation of fungal ergosterol biosynthetic pathway with photo-responsive CYP51 inhibitors. Acta Pharm Sin B 2023. [PMID: 37521860 PMCID: PMC10372832 DOI: 10.1016/j.apsb.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Invasive fungal infections (IFIs) have been associated with high mortality, highlighting the urgent need for developing novel antifungal strategies. Herein the first light-responsive antifungal agents were designed by optical control of fungal ergosterol biosynthesis pathway with photocaged triazole lanosterol 14α-demethylase (CYP51) inhibitors. The photocaged triazoles completely shielded the CYP51 inhibition. The content of ergosterol in fungi before photoactivation and after photoactivation was 4.4% and 83.7%, respectively. Importantly, the shielded antifungal activity (MIC80 ≥ 64 μg/mL) could be efficiently recovered (MIC80 = 0.5-8 μg/mL) by light irradiation. The new chemical tools enable optical control of fungal growth arrest, morphological conversion and biofilm formation. The ability for high-precision antifungal treatment was validated by in vivo models. The light-activated compound A1 was comparable to fluconazole in prolonging survival in Galleria mellonella larvae with a median survival of 14 days and reducing fungal burden in the mouse skin infection model. Overall, this study paves the way for precise regulation of antifungal therapy with improved efficacy and safety.
Collapse
|
42
|
Functional Expression of Recombinant Candida auris Proteins in Saccharomyces cerevisiae Enables Azole Susceptibility Evaluation and Drug Discovery. J Fungi (Basel) 2023; 9:jof9020168. [PMID: 36836283 PMCID: PMC9960696 DOI: 10.3390/jof9020168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Candida auris infections are difficult to treat due to acquired drug resistance against one or multiple antifungal drug classes. The most prominent resistance mechanisms in C. auris are overexpression and point mutations in Erg11, and the overexpression of efflux pump genes CDR1 and MDR1. We report the establishment of a novel platform for molecular analysis and drug screening based on acquired azole-resistance mechanisms found in C. auris. Constitutive functional overexpression of wild-type C. auris Erg11, Erg11 with amino acid substitutions Y132F or K143R and the recombinant efflux pumps Cdr1 and Mdr1 has been achieved in Saccharomyces cerevisiae. Phenotypes were evaluated for standard azoles and the tetrazole VT-1161. Overexpression of CauErg11 Y132F, CauErg11 K143R, and CauMdr1 conferred resistance exclusively to the short-tailed azoles Fluconazole and Voriconazole. Strains overexpressing the Cdr1 protein were pan-azole resistant. While CauErg11 Y132F increased VT-1161 resistance, K143R had no impact. Type II binding spectra showed tight azole binding to the affinity-purified recombinant CauErg11 protein. The Nile Red assay confirmed the efflux functions of CauMdr1 and CauCdr1, which were specifically inhibited by MCC1189 and Beauvericin, respectively. CauCdr1 exhibited ATPase activity that was inhibited by Oligomycin. The S. cerevisiae overexpression platform enables evaluation of the interaction of existing and novel azole drugs with their primary target CauErg11 and their susceptibility to drug efflux.
Collapse
|
43
|
Slavin YN, Bach H. Mechanisms of Antifungal Properties of Metal Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12244470. [PMID: 36558323 PMCID: PMC9781740 DOI: 10.3390/nano12244470] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 05/13/2023]
Abstract
The appearance of resistant species of fungi to the existent antimycotics is challenging for the scientific community. One emergent technology is the application of nanotechnology to develop novel antifungal agents. Metal nanoparticles (NPs) have shown promising results as an alternative to classical antimycotics. This review summarizes and discusses the antifungal mechanisms of metal NPs, including combinations with other antimycotics, covering the period from 2005 to 2022. These mechanisms include but are not limited to the generation of toxic oxygen species and their cellular target, the effect of the cell wall damage and the hyphae and spores, and the mechanisms of defense implied by the fungal cell. Lastly, a description of the impact of NPs on the transcriptomic and proteomic profiles is discussed.
Collapse
|
44
|
Ruma YN, Keniya MV, Monk BC. Exploring Cryptococcus neoformans CYP51 and Its Cognate Reductase as a Drug Target. J Fungi (Basel) 2022; 8:jof8121256. [PMID: 36547589 PMCID: PMC9785471 DOI: 10.3390/jof8121256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Cryptococcus remains a leading cause of invasive fungal infections in immunocompromised people. Resistance to azole drugs has imposed a further challenge to the effective treatment of such infections. In this study, the functional expression of full-length hexahistidine-tagged Cryptococcus neoformans CYP51 (CnCYP51-6×His), with or without its cognate hexahistidine-tagged NADPH-cytochrome P450 reductase (CnCPR-6×His), in a Saccharomyces cerevisiae host system has been used to characterise these enzymes. The heterologous expression of CnCYP51-6×His complemented deletion of the host CYP51 and conferred increased susceptibility to both short-tailed and long-tailed azole drugs. In addition, co-expression of CnCPR-6×His decreased susceptibility 2- to 4-fold for short-tailed but not long-tailed azoles. Type 2 binding of azoles to CnCYP51-6×His and assay of NADPH cytochrome P450 reductase activity confirmed that the heterologously expressed CnCYP51 and CnCPR are functional. The constructs have potential as screening tools and use in structure-directed antifungal discovery.
Collapse
Affiliation(s)
- Yasmeen N. Ruma
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Mikhail V. Keniya
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ 07110, USA
| | - Brian C. Monk
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Correspondence:
| |
Collapse
|
45
|
Ashmawy NS, El-labbad EM, Hamoda AM, El-Keblawy AA, El-Shorbagi ANA, Mosa KA, Soliman SSM. The Anti-Candida Activity of Tephrosia apollinea Is More Superiorly Attributed to a Novel Steroidal Compound with Selective Targeting. PLANTS 2022; 11:plants11162120. [PMID: 36015423 PMCID: PMC9415581 DOI: 10.3390/plants11162120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022]
Abstract
Tephrosia is widely distributed throughout tropical, subtropical, and arid regions. This genus is known for several biological activities, including its anti-Candida activity, which is mainly attributed to prenylated flavonoids. The biological activities of most Tephrosia species have been studied, except T. apollinea. This study was conducted to investigate the underlying anti-Candida activity of T. apollinea, wildly grown in the United Arab Emirates (UAE). The T. apollinea plant was collected, dried, and the leaves were separated. The leaves were ground and extracted. The dried extract was subjected to successive chromatography to identify unique phytochemicals with a special pharmacological activity. The activity of the compound was validated by homology modeling and molecular docking studies. A novel steroidal compound (ergosta-6, 8(14), 22, 24(28)-tetraen-3-one) was isolated and named TNS. In silico target identification of TNS revealed a high structural similarity with the Candida 14-α-demethylase enzyme substrate. The compound exhibited a significant anti-Candida activity, specifically against the multi-drug-resistant Candida auris at MIC50, 16 times less than the previously reported prenylated flavonoids and 5 times less than the methanol extract of the plant. These findings were supported by homology modeling and molecular docking studies. TNS may represent a new class of Candida 14-α-demethylase inhibitors.
Collapse
Affiliation(s)
- Naglaa S. Ashmawy
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Faculty of Pharmacy, Ain Shams University, El-Abaseya, Cairo 11566, Egypt
| | - Eman M. El-labbad
- Faculty of Pharmacy, Ain Shams University, El-Abaseya, Cairo 11566, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates
- Correspondence: (E.M.E.-l.); (S.S.M.S.); Tel.: +971-65057472 (S.S.M.S.)
| | - Alshaimaa M. Hamoda
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ali A. El-Keblawy
- Department of Applied Biology, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Abdel-Nasser A. El-Shorbagi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Kareem A. Mosa
- Department of Applied Biology, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Sameh S. M. Soliman
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Correspondence: (E.M.E.-l.); (S.S.M.S.); Tel.: +971-65057472 (S.S.M.S.)
| |
Collapse
|
46
|
Borrego-Muñoz P, Becerra LD, Ospina F, Coy-Barrera E, Quiroga D. Synthesis ( Z) vs ( E) Selectivity, Antifungal Activity against Fusarium oxysporum, and Structure-Based Virtual Screening of Novel Schiff Bases Derived from l-Tryptophan. ACS OMEGA 2022; 7:24714-24726. [PMID: 35874194 PMCID: PMC9301946 DOI: 10.1021/acsomega.2c02614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Schiff bases are widely used molecules due to their potential biological activity. In this manuscript, we presented the synthesis and NMR study of new enamine Schiff bases derived from l-tryptophan, showing that the Z-form of the enamine is the main tautomeric form for aliphatic precursors. The DFT-B3LYP methodology at the 6-311+G**(d,p) level suggested that the tautomeric imine forms are less stable than the corresponding enamine forms. Their isomerism depends on the formation of intramolecular hydrogen bonds and steric factors associated with the starting carbonyl precursors. The in vitro biological activity tests against Fusarium oxysporum revealed that acetylacetone derivatives are the most active agents (IC50 < 0.9 mM); however, the antifungal activity could be disfavored by bulky groups on ester and enamine moieties. Finally, the structure-based virtual screening through molecular docking and MM-GBSA rescoring revealed that Schiff bases 3e, 3g, and 3j behave putatively as binders for target proteins involved in the life processes of F. oxysporum. In this sense, molecular dynamics analysis showed that the ligand-protein complexes have good stability with root-mean-square deviation (RMSD) values within the allowed range. Therefore, the present study paves the way for designing new antifungal compounds based on l-tryptophan-derived Schiff bases.
Collapse
|
47
|
Odiba AS, Durojaye OA, Ezeonu IM, Mgbeahuruike AC, Nwanguma BC. A New Variant of Mutational and Polymorphic Signatures in the ERG11 Gene of Fluconazole-Resistant Candida albicans. Infect Drug Resist 2022; 15:3111-3133. [PMID: 35747333 PMCID: PMC9213107 DOI: 10.2147/idr.s360973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/03/2022] [Indexed: 11/23/2022] Open
Abstract
Background Resistance to antifungal drugs for treating Candida infections remains a major concern globally despite the range of medications available. Most of these drugs target key proteins essential to the life cycle of the organism. An enzyme essential for fungal cell membrane integrity, lanosterol 14–α demethylase (CYP51), is encoded by the ERG11 gene in Candida species. This enzyme is the target of azole–based drugs. The organism has, however, devised molecular adaptations to evade the activity of these drugs. Materials and Methods Classical methods were employed to characterize clinical isolates sampled from women and dogs of reproductive age. For fluconazole efficacy studies, CLSI guidelines on drug susceptibility testing were used. To understand the susceptibility pattern, various molecular and structural analytic approaches, including sequencing, in silico site-directed mutagenesis, and protein-ligand profiling, were applied to the ERG11 gene and CYP51 protein sequences. Several platforms, comprising Clustal Omega, Pymol plugin manager, Pymol molecular visualizer, Chimera–curated Dynameomics rotamer library, protein–ligand interaction profiler, Charmm36 force field, GROMACS, Geneious, and Mega7, were employed for this analysis. Results The following Candida species distribution was obtained: 37.84% C. albicans, 8.12% C. glabrata, 10.81% C. krusei, 5.41% C. tropicalis, and 37.84% of other unidentified Candida species. Two codons in the nucleotide sequence of the wild-type (CTC and CCA) coding for LEU–370 and PRO–375, respectively, were mutated to L370S and P375H in the resistant strain. The mutation stabilized the protein at the expense of the heme moiety. We found that the susceptible isolate from dogs (Can–iso–029/dog) is closely related to the most resistant isolate from humans. Conclusion Taken together, our results showed new mutations in the heme-binding pocket of caCYP51 that explain the resistance to fluconazole exhibited by the Candida isolates. So far, the L370S and P375H resistance-linked mutations have not been previously reported.
Collapse
Affiliation(s)
- Arome Solomon Odiba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria.,Department of Molecular Genetics and Biotechnology, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Olanrewaju Ayodeji Durojaye
- Department of Chemical Sciences, Coal City University, Emene, Enugu State, Nigeria.,Department of Molecular and Cell Biology, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.,MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Ifeoma Maureen Ezeonu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Anthony Christian Mgbeahuruike
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Bennett Chima Nwanguma
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria.,Department of Molecular Genetics and Biotechnology, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| |
Collapse
|
48
|
Stevenson EM, Gaze WH, Gow NAR, Hart A, Schmidt W, Usher J, Warris A, Wilkinson H, Murray AK. Antifungal Exposure and Resistance Development: Defining Minimal Selective Antifungal Concentrations and Testing Methodologies. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:918717. [PMID: 37746188 PMCID: PMC10512330 DOI: 10.3389/ffunb.2022.918717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 09/26/2023]
Abstract
This scoping review aims to summarise the current understanding of selection for antifungal resistance (AFR) and to compare and contrast this with selection for antibacterial resistance, which has received more research attention. AFR is an emerging global threat to human health, associated with high mortality rates, absence of effective surveillance systems and with few alternative treatment options available. Clinical AFR is well documented, with additional settings increasingly being recognised to play a role in the evolution and spread of AFR. The environment, for example, harbours diverse fungal communities that are regularly exposed to antifungal micropollutants, potentially increasing AFR selection risk. The direct application of effect concentrations of azole fungicides to agricultural crops and the incomplete removal of pharmaceutical antifungals in wastewater treatment systems are of particular concern. Currently, environmental risk assessment (ERA) guidelines do not require assessment of antifungal agents in terms of their ability to drive AFR development, and there are no established experimental tools to determine antifungal selective concentrations. Without data to interpret the selective risk of antifungals, our ability to effectively inform safe environmental thresholds is severely limited. In this review, potential methods to generate antifungal selective concentration data are proposed, informed by approaches used to determine antibacterial minimal selective concentrations. Such data can be considered in the development of regulatory guidelines that aim to reduce selection for AFR.
Collapse
Affiliation(s)
- Emily M. Stevenson
- European Centre for Environment and Human Health, University of Exeter Medical School, Cornwall, United Kingdom
- Environment and Sustainability Institute, University of Exeter Medical School, Cornwall, United Kingdom
| | - William H. Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Cornwall, United Kingdom
- Environment and Sustainability Institute, University of Exeter Medical School, Cornwall, United Kingdom
| | - Neil A. R. Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Alwyn Hart
- Chief Scientist’s Group, Environment Agency, Horizon House, Bristol, England, United Kingdom
| | - Wiebke Schmidt
- Chief Scientist’s Group, Environment Agency, Horizon House, Bristol, England, United Kingdom
| | - Jane Usher
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Adilia Warris
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Helen Wilkinson
- Chief Scientist’s Group, Environment Agency, Horizon House, Bristol, England, United Kingdom
| | - Aimee K. Murray
- European Centre for Environment and Human Health, University of Exeter Medical School, Cornwall, United Kingdom
- Environment and Sustainability Institute, University of Exeter Medical School, Cornwall, United Kingdom
| |
Collapse
|
49
|
Bioassay’s Directed Isolation-Structure Elucidation and Molecular Docking of Triterpenes from Persea duthiei against Biologically Important Microbial Proteins. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3839271. [PMID: 35668783 PMCID: PMC9166971 DOI: 10.1155/2022/3839271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022]
Abstract
The research work presented in this study is mainly concerned with the bioactivity-directed phytochemical and biological evaluation of Persea duthiei. Persea duthiei is a typical medicinal plant used to treat a variety of ailments such as asthma, edema, and bronchitis. Ethyl acetate, n-hexane, n-butanol, and compounds that are soluble in water were used to examine the antibacterial as well as antifungal capacities of the plant. The antibacterial activity of the soluble parts of ethyl acetate and n-hexane against Escherichia coli, Staphylococcus aureus, Salmonella typhi, and Bacillus subtilis was high, even though there was no activity against Pseudomonas aeruginosa. Likewise, the n-hexane and ethyl acetate fractions were found to have substantial efficacy against several fungal strains such as Aspergillus flavus, Aspergillus fumigates, Fusarium solani, and Aspergillus niger, but not against Candida glabrata. Among the studied fractions, the ethyl acetate soluble fraction had potent antibacterial activity against all of the tested species. This fraction was submitted to phytochemical analysis utilizing various chromatographic methods for the extraction of various pure components. As a consequence, four compounds were isolated, and their structures were elucidated using various spectroscopic methods such as IR, EIMS, HR-EIMS, 1H-NMR, 13C-NMR, NOESY, COSY, HMBC, and HMQC. Urs-12-en-3β-ol (α-amyrine) (1), Urs-12-ene-2α-3β-diol (chamaedrydiol) (2), 3β-hydroxyurs-12-en-28-aldehyde (ursolic aldehyde) (3), and 12-oleanex-3β-ol (β-amyrine) (4) were extracted. Compounds 1, 2, 3, and 4 were examined for antibacterial and antifungal activity and found to have zones of inhibition ranging from 0 to 11 mm against tested bacteria strains and percent inhibition ranging from 0 to 25 percent against fungus strains. Compounds 1 and 4 showed strong efficacy against the investigated fungal species, with a 25% inhibition rate. In the case of antibacterial activity, compounds 4 and 1 showed potent activity with zones of inhibition of 11 mm and 10 mm, respectively. Compounds 2 and 3 were observed to have nonsignificant antimicrobial activity. However, docking studies reflected the complex formation of compound 1 with beta-hydroxyacyl-ACP dehydratase HadAB and S. aureus tyrosyl-tRNA synthetase and compound 2 with topoisomerase II DNA gyrase complex, and they were reported to have antibacterial properties. Similarly, compound 4 was discovered to be well compatible with the lanosterol 14-demethylase (fungal enzyme) and is thus regarded as having antifungal capabilities. Chimera software was used to identify the binding pockets of these complexes. These results indicated that Persea duthiei is a valuable source of medicinal compounds for medication development.
Collapse
|
50
|
Brankiewicz W, Okońska J, Serbakowska K, Lica J, Drab M, Ptaszyńska N, Łęgowska A, Rolka K, Szweda P. New Peptide Based Fluconazole Conjugates with Expanded Molecular Targets. Pharmaceutics 2022; 14:pharmaceutics14040693. [PMID: 35456526 PMCID: PMC9026428 DOI: 10.3390/pharmaceutics14040693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Infections of Candida spp. etiology are frequently treated with azole drugs. Among azoles, the most widely used in the clinical scenario remains fluconazole (FLC). Promising results in treatment of dangerous, systemic Candida infections demonstrate the advantages of combined therapies carried out with combinations of at least two different antifungal agents. Here, we report five conjugates composed of covalently linked FLC and cell penetrating or antimicrobial peptide: TP10-7-NH2, TP10-NH2, LFcinB(2-11)-NH2, LFcinB[Nle1,11]-NH2, and HLopt2-NH2, with aspects of design, chemical synthesis and their biological activities. Two of these compounds, namely FLCpOH-TP10-NH2 and FLCpOH-TP10-7-NH2, exhibit high activity against reference strains and fluconazole-resistant clinical isolates of C. albicans, including strains overproducing drug transporters. Moreover, both of them demonstrate higher fungicidal effects compared to fluconazole. Analysis performed with fluorescence and scanning electron microscopy as well as flow cytometry indicated the cell membrane as a molecular target of synthesized conjugates. An important advantage of FLCpOH-TP10-NH2 and FLCpOH-TP10-7-NH2 is their low cytotoxicity. The IC90 value for the human cells after 72 h treatment was comparable to the MIC50 value after 24 h treatment for most strains of C. albicans. In reported conjugates, FLC was linked to the peptide by its hydroxyl group. It is worth noting that conjugation of FLC by the nitrogen atom of the triazole ring led to practically inactive compounds. Two compounds produced by us and reported herein appear to be potential candidates for novel antifungal agents.
Collapse
Affiliation(s)
- Wioletta Brankiewicz
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (W.B.); (K.S.)
| | - Joanna Okońska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (J.O.); (J.L.); (A.Ł.); (K.R.)
| | - Katarzyna Serbakowska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (W.B.); (K.S.)
| | - Jan Lica
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (J.O.); (J.L.); (A.Ł.); (K.R.)
| | - Marek Drab
- Unit of Nanostructural Bio-Interactions, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigla-Street, 53-114 Wrocław, Poland;
| | - Natalia Ptaszyńska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (J.O.); (J.L.); (A.Ł.); (K.R.)
- Correspondence: (N.P.); (P.S.); Tel.: +48-58-523-5092 (N.P.); +48-58-347-2440 (P.S.); Fax: +48-58-523-5012 (N.P.)
| | - Anna Łęgowska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (J.O.); (J.L.); (A.Ł.); (K.R.)
| | - Krzysztof Rolka
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (J.O.); (J.L.); (A.Ł.); (K.R.)
| | - Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (W.B.); (K.S.)
- Correspondence: (N.P.); (P.S.); Tel.: +48-58-523-5092 (N.P.); +48-58-347-2440 (P.S.); Fax: +48-58-523-5012 (N.P.)
| |
Collapse
|