1
|
Goh KGK, Desai D, Thapa R, Prince D, Acharya D, Sullivan MJ, Ulett GC. An opportunistic pathogen under stress: how Group B Streptococcus responds to cytotoxic reactive species and conditions of metal ion imbalance to survive. FEMS Microbiol Rev 2024; 48:fuae009. [PMID: 38678005 PMCID: PMC11098048 DOI: 10.1093/femsre/fuae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Group B Streptococcus (GBS; also known as Streptococcus agalactiae) is an opportunistic bacterial pathogen that causes sepsis, meningitis, pneumonia, and skin and soft tissue infections in neonates and healthy or immunocompromised adults. GBS is well-adapted to survive in humans due to a plethora of virulence mechanisms that afford responses to support bacterial survival in dynamic host environments. These mechanisms and responses include counteraction of cell death from exposure to excess metal ions that can cause mismetallation and cytotoxicity, and strategies to combat molecules such as reactive oxygen and nitrogen species that are generated as part of innate host defence. Cytotoxicity from reactive molecules can stem from damage to proteins, DNA, and membrane lipids, potentially leading to bacterial cell death inside phagocytic cells or within extracellular spaces within the host. Deciphering the ways in which GBS responds to the stress of cytotoxic reactive molecules within the host will benefit the development of novel therapeutic and preventative strategies to manage the burden of GBS disease. This review summarizes knowledge of GBS carriage in humans and the mechanisms used by the bacteria to circumvent killing by these important elements of host immune defence: oxidative stress, nitrosative stress, and stress from metal ion intoxication/mismetallation.
Collapse
Affiliation(s)
- Kelvin G K Goh
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Devika Desai
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Ruby Thapa
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Darren Prince
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Dhruba Acharya
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Matthew J Sullivan
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Glen C Ulett
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| |
Collapse
|
2
|
Fabra D, Amariei G, Ruiz-Camino D, Matesanz AI, Rosal R, Quiroga AG, Horcajada P, Hidalgo T. Proving the Antimicrobial Therapeutic Activity on a New Copper-Thiosemicarbazone Complex. Mol Pharm 2024; 21:1987-1997. [PMID: 38507593 DOI: 10.1021/acs.molpharmaceut.3c01235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The misuse and overdose of antimicrobial medicines are fostering the emergence of novel drug-resistant pathogens, providing negative repercussions not only on the global healthcare system due to the rise of long-term or chronic patients and inefficient therapies but also on the world trade, productivity, and, in short, to the global economic growth. In view of these scenarios, novel action plans to constrain this antibacterial resistance are needed. Thus, given the proven antiproliferative tumoral and microbial features of thiosemicarbazone (TSCN) ligands, we have here synthesized a novel effective antibacterial copper-thiosemicarbazone complex, demonstrating both its solubility profile and complex stability under physiological conditions, along with their safety and antibacterial activity in contact with human cellular nature and two most predominant bacterial strains, respectively. A significant growth inhibition (17% after 20 h) is evidenced over time, paving the way toward an effective antibacterial therapy based on these copper-TSCN complexes.
Collapse
Affiliation(s)
- David Fabra
- Department of Inorganic Chemistry, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Georgiana Amariei
- Department of Chemical Engineering, University of Alcalá, 28871 Alcalá de Henares, Spain
| | - Daniel Ruiz-Camino
- Department of Inorganic Chemistry, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Ana I Matesanz
- Department of Inorganic Chemistry, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, University of Alcalá, 28871 Alcalá de Henares, Spain
| | - Adoracion G Quiroga
- Department of Inorganic Chemistry, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramon de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Tania Hidalgo
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramon de la Sagra 3, 28935 Móstoles-Madrid, Spain
| |
Collapse
|
3
|
Sullivan MJ, Terán I, Goh KG, Ulett GC. Resisting death by metal: metabolism and Cu/Zn homeostasis in bacteria. Emerg Top Life Sci 2024; 8:45-56. [PMID: 38362914 PMCID: PMC10903455 DOI: 10.1042/etls20230115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
Metal ions such as zinc and copper play important roles in host-microbe interactions and their availability can drastically affect the survival of pathogenic bacteria in a host niche. Mechanisms of metal homeostasis protect bacteria from starvation, or intoxication, defined as when metals are limiting, or in excess, respectively. In this mini-review, we summarise current knowledge on the mechanisms of resistance to metal stress in bacteria, focussing specifically on the homeostasis of cellular copper and zinc. This includes a summary of the factors that subvert metal stress in bacteria, which are independent of metal efflux systems, and commentary on the role of small molecules and metabolic systems as important mediators of metal resistance.
Collapse
Affiliation(s)
- Matthew J. Sullivan
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, U.K
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Ignacio Terán
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Kelvin G.K. Goh
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Glen C. Ulett
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| |
Collapse
|
4
|
O'Brien H, Davoodian T, Johnson MDL. The promise of copper ionophores as antimicrobials. Curr Opin Microbiol 2023; 75:102355. [PMID: 37406562 PMCID: PMC10529258 DOI: 10.1016/j.mib.2023.102355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/07/2023]
Abstract
Antibiotic-resistant microbe-mediated deaths are a major worldwide health issue. Unfortunately, due to microbial adaptation to develop resistance, some antibiotics are nullified early in their usage, and worse, resistance is detected before they can even be prescribed. Copper's toxicity since antiquity against microbes at the host-pathogen interface offers a fascinating weapon to fight antimicrobial resistance. Here, we briefly review why copper is so effective, how drugs that work with copper are effective antimicrobials, and how compounds such as these could reinvigorate investment in antimicrobial development.
Collapse
Affiliation(s)
- Henrik O'Brien
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA
| | - Talish Davoodian
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA
| | - Michael D L Johnson
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA; Valley Fever Center for Excellence, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA; BIO5 Institute, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA; Asthma and Airway Disease Research Center, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA.
| |
Collapse
|
5
|
Božić Cvijan B, Korać Jačić J, Bajčetić M. The Impact of Copper Ions on the Activity of Antibiotic Drugs. Molecules 2023; 28:5133. [PMID: 37446795 DOI: 10.3390/molecules28135133] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 07/15/2023] Open
Abstract
Copper (Cu) is an essential trace metal and its concentration in body plasma is tightly regulated. An increase in Cu concentration in body fluids is observed in numerous pathological conditions, including infections caused by microorganisms. Evidence shows that Cu ions can impact the activity of antibiotics by increasing efficiency or diminishing/neutralizing antibiotic activity, forming complexes which may lead to antibiotic structure degradation. Herein, we represent the evidence available on Cu-antibiotic interactions and their possible impact on antimicrobial therapy efficiency. So far, in vitro studies described interactions between Cu ions and the majority of antibiotics in clinical use: penicillins, cephalosporins, carbapenems, macrolides, aminoglycosides, tetracyclines, fluoroquinolones, isoniazid, metronidazole. In vitro-described degradation or lower antimicrobial activity of amoxicillin, ampicillin, cefaclor, ceftriaxone, and meropenem in the presence of Cu ions suggest caution when using prescribed antibiotics in patients with altered Cu levels. On the other hand, several Cu-dependent compounds with antibacterial activity including the drug-resistant bacteria were discovered, such as thiosemicarbazones, disulfiram, dithiocarbamates, 8-hydroxiquinoline, phenanthrolines, pyrithione. Having in mind that the development of new antibiotics is already marked as inadequate and does not meet global needs, the potential of Cu-antibiotic interactions to change the efficiency of antimicrobial therapy requires further investigation.
Collapse
Affiliation(s)
- Bojana Božić Cvijan
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Korać Jačić
- Life Sciences Department, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Milica Bajčetić
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Clinical Pharmacology Unit, University Children's Hospital, 11000 Belgrade, Serbia
| |
Collapse
|
6
|
Mishra A, Djoko KY, Lee YH, Lord RM, Kaul G, Akhir A, Saxena D, Chopra S, Walton JW. Water-soluble copper pyrithione complexes with cytotoxic and antibacterial activity. Org Biomol Chem 2023; 21:2539-2544. [PMID: 36877005 DOI: 10.1039/d2ob01224c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Copper Pyrithione, [Cu(PyS)2] has shown excellent biological activity against cancer cells and bacterial cells, however, it has extremely low aqueous solubility, limiting its applicability. Herein, we report a series of PEG-substituted pyrithione copper(II) complexes with significantly increased aqueous solubility. While long PEG chains lead to a decrease in bioactivity, the addition of short PEG chains leads to improved aqueous solubility with retention of activity. One novel complex, [Cu(PyS1)2], has particularly impressive anticancer activity, surpassing that of the parent complex.
Collapse
Affiliation(s)
- Atreyee Mishra
- Durham University, Department of Chemistry, Lower Mountjoy, Durham, DH1 3LE, UK.
| | - Karrera Y Djoko
- Durham University, Department of Biosciences, Upper Mountjoy, Durham, DH1 3LE, UK
| | - Yi-Hsuan Lee
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| | - Rianne M Lord
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| | - Grace Kaul
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow-226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abdul Akhir
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow-226031, Uttar Pradesh, India
| | - Deepanshi Saxena
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow-226031, Uttar Pradesh, India
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow-226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - James W Walton
- Durham University, Department of Chemistry, Lower Mountjoy, Durham, DH1 3LE, UK.
| |
Collapse
|
7
|
Mahesha, Hema M, Karthik C, Udaya Kumar A, Pampa K, Mallu P, Lokanath N. Structural conformation and coordination architecture investigation in the solvent induced cis Cu(II) complex containing fluorine-substituted β-diketonate ligand. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Sabbouh M, Nikitina A, Rogacheva E, Nebalueva A, Shilovskikh V, Sadovnichii R, Koroleva A, Nikolaev K, Kraeva L, Ulasevich S, Skorb E. Sonochemical fabrication of gradient antibacterial materials based on Cu-Zn alloy. ULTRASONICS SONOCHEMISTRY 2023; 92:106247. [PMID: 36508894 PMCID: PMC9763737 DOI: 10.1016/j.ultsonch.2022.106247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
At present research, we highlight ultrasonic treatment as a new way to create materials with a gradient change of chemical or physical properties. We demonstrate the possibility to fabricate novel materials with biocide activity based on simple and cheap Cu-Zn alloy. In this research, we propose a green preparative technique for the sonication of an alloy in an alkali solution. The method leads to a significant visual change and differentiation of particles into three different fractions. Due to the chemical micro gradients in media near the solid surface under intensive sonication, fast formation of specific functional groups occurs on the particles' surface. The particles were studied X-ray diffraction analysis (XRD) analysis, the field-emission scanning electron microscope (SEM) as well as electron backscatter diffraction (EBSD) mode, X-ray Photoelectron Spectroscopy (XPS), the differential pulse anodic stripping voltammetry (DPASV) technique. A strong correlation of both methods proves a redistribution of copper ions from Fraction I to Fraction III that influence for the antibacterial properties of the prepared material. The different biocidal activity was demonstrated for each separated Fraction that could be related to their different phase content and ability to release the different types of ions.
Collapse
Affiliation(s)
- Mirna Sabbouh
- ITMO University, 9 Lomonosova Street, 191002 St. Petersburg, Russia
| | - Anna Nikitina
- ITMO University, 9 Lomonosova Street, 191002 St. Petersburg, Russia
| | - Elizaveta Rogacheva
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, Saint Petersburg 197101, Russia
| | - Anna Nebalueva
- ITMO University, 9 Lomonosova Street, 191002 St. Petersburg, Russia
| | - Vladimir Shilovskikh
- ITMO University, 9 Lomonosova Street, 191002 St. Petersburg, Russia; Saint-Petersburg State University, Russia
| | | | | | | | - Lyudmila Kraeva
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, Saint Petersburg 197101, Russia
| | | | - Ekaterina Skorb
- ITMO University, 9 Lomonosova Street, 191002 St. Petersburg, Russia
| |
Collapse
|
9
|
Rogala P, Jabłońska-Wawrzycka A, Czerwonka G, Kazimierczuk K, Gałczyńska K, Michałkiewicz S, Kalinowska-Tłuścik J, Karpiel M, Klika KD. Synthesis, Characterization and Biological Investigations of Half-Sandwich Ruthenium(II) Complexes Containing Benzimidazole Moiety. Molecules 2022; 28:40. [PMID: 36615237 PMCID: PMC9821818 DOI: 10.3390/molecules28010040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Half-sandwich Ru(II) complexes belong to group of biologically active metallo-compounds with promising antimicrobial and anticancer activity. Herein, we report the synthesis and characterization of arene ruthenium complexes containing benzimidazole moiety, namely, [(η6-p-cymene)RuCl(bimCOO)] (1) and [(η6-p-cymene)RuCl2(bim)] (2) (where bimCOO = benzimidazole-2-carboxylate and bim = 1-H-benzimidazole). The compounds were characterized by 1H NMR, 13C NMR, IR, UV-vis and CV. Molecular structures of the complexes were determined by SC-XRD analysis, and the results indicated the presence of a pseudo-tetrahedral (piano stool) geometry. Interactions in the crystals of the Ru complexes using the Hirshfeld surface analysis were also examined. In addition, the biological studies of the complexes, such as antimicrobial assays (against planktonic and adherent microbes), cytotoxicity and lipophilicity, were performed. Antibacterial activity of the complexes was evaluated against S. aureus, E. coli, P. aeruginosa PAO1 and LES B58. Cytotoxic activity was tested against primary human fibroblasts and adenocarcinoma human alveolar basal epithelial cells. Obtained biological results show that the ruthenium compounds have bacteriostatic activity toward Pseudomonas aeruginosa PAO1 strain and are not toxic to normal cells. A molecular docking study was applied as a predictive source of information about the plausibility of examined structures binding with HSA as a transporting system.
Collapse
Affiliation(s)
- Patrycja Rogala
- Institute of Chemistry, Jan Kochanowski University of Kielce, 7 Uniwersytecka Str., 25-406 Kielce, Poland
| | - Agnieszka Jabłońska-Wawrzycka
- Institute of Chemistry, Jan Kochanowski University of Kielce, 7 Uniwersytecka Str., 25-406 Kielce, Poland
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Kraków, Poland
| | - Grzegorz Czerwonka
- Institute of Biology, Jan Kochanowski University of Kielce, 7 Uniwersytecka Str., 25-406 Kielce, Poland
| | - Katarzyna Kazimierczuk
- Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Str., 80-233 Gdańsk, Poland
| | - Katarzyna Gałczyńska
- Institute of Biology, Jan Kochanowski University of Kielce, 7 Uniwersytecka Str., 25-406 Kielce, Poland
| | - Sławomir Michałkiewicz
- Institute of Chemistry, Jan Kochanowski University of Kielce, 7 Uniwersytecka Str., 25-406 Kielce, Poland
| | | | - Marta Karpiel
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Kraków, Poland
| | - Karel D. Klika
- Molecular Structure Analysis, NMR Spectroscopy Analysis Unit, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| |
Collapse
|
10
|
Regulatory cross-talk supports resistance to Zn intoxication in Streptococcus. PLoS Pathog 2022; 18:e1010607. [PMID: 35862444 PMCID: PMC9345489 DOI: 10.1371/journal.ppat.1010607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/02/2022] [Accepted: 05/19/2022] [Indexed: 01/07/2023] Open
Abstract
Metals such as copper (Cu) and zinc (Zn) are important trace elements that can affect bacterial cell physiology but can also intoxicate bacteria at high concentrations. Discrete genetic systems for management of Cu and Zn efflux have been described in several bacterial pathogens, including streptococci. However, insight into molecular cross-talk between systems for Cu and Zn management in bacteria that drive metal detoxification, is limited. Here, we describe a biologically consequential cross-system effect of metal management in group B Streptococcus (GBS) governed by the Cu-responsive copY regulator in response to Zn. RNAseq analysis of wild-type (WT) and copY-deficient GBS subjected to metal stress revealed unique transcriptional links between the systems for Cu and Zn detoxification. We show that the Cu-sensing role of CopY extends beyond Cu and enables CopY to regulate Cu and Zn stress responses that effect changes in gene function for central cellular processes, including riboflavin synthesis. CopY also supported GBS intracellular survival in human macrophages and virulence during disseminated infection in mice. In addition, we show a novel role for CovR in modulating GBS resistance to Zn intoxication. Identification of the Zn resistome of GBS using TraDIS revealed a suite of genes essential for GBS growth in metal stress. Several of the genes identified are novel to systems that support bacterial survival in metal stress and represent a diverse set of mechanisms that underpin microbial metal homeostasis during cell stress. Overall, this study reveals a new and important mechanism of cross-system complexity driven by CopY in bacteria to regulate cellular management of metal stress and survival. Metals, such as Cu and Zn, can be used by the mammalian immune system to target bacterial pathogens for destruction, and consequently, bacteria have evolved discrete genetic systems to enable subversion of this host antimicrobial response. Systems for Cu and Zn homeostasis are well characterized, including transcriptional control elements that sense and respond to metal stress. Here, we discover novel features of metal response systems in Streptococcus, which have broad implications for bacterial pathogenesis and virulence. We show that Streptococcus resists Zn intoxication by utilizing a bona fide Cu regulator, CopY, to manage cellular metal homeostasis, and enable the bacteria to survive stressful conditions. We identify several new genes that confer resistance to Zn intoxication in Streptococcus, including some that have hitherto not been linked to metal ion homeostasis in any bacterial pathogen. Identification of a novel cross-system metal management mechanism exploited by Streptococcus to co-ordinate and achieve metal resistance enhances our understanding of metal ion homeostasis in bacteria and its effect on pathogenesis.
Collapse
|
11
|
Zuily L, Lahrach N, Fassler R, Genest O, Faller P, Sénèque O, Denis Y, Castanié-Cornet MP, Genevaux P, Jakob U, Reichmann D, Giudici-Orticoni MT, Ilbert M. Copper Induces Protein Aggregation, a Toxic Process Compensated by Molecular Chaperones. mBio 2022; 13:e0325121. [PMID: 35289645 PMCID: PMC9040851 DOI: 10.1128/mbio.03251-21] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/26/2022] [Indexed: 01/16/2023] Open
Abstract
Copper is well known for its antimicrobial and antiviral properties. Under aerobic conditions, copper toxicity relies in part on the production of reactive oxygen species (ROS), especially in the periplasmic compartment. However, copper is significantly more toxic under anaerobic conditions, in which ROS cannot be produced. This toxicity has been proposed to arise from the inactivation of proteins through mismetallations. Here, using the bacterium Escherichia coli, we discovered that copper treatment under anaerobic conditions leads to a significant increase in protein aggregation. In vitro experiments using E. coli lysates and tightly controlled redox conditions confirmed that treatment with Cu+ under anaerobic conditions leads to severe ROS-independent protein aggregation. Proteomic analysis of aggregated proteins revealed an enrichment of cysteine- and histidine-containing proteins in the Cu+-treated samples, suggesting that nonspecific interactions of Cu+ with these residues are likely responsible for the observed protein aggregation. In addition, E. coli strains lacking the cytosolic chaperone DnaK or trigger factor are highly sensitive to copper stress. These results reveal that bacteria rely on these chaperone systems to protect themselves against Cu-mediated protein aggregation and further support our finding that Cu toxicity is related to Cu-induced protein aggregation. Overall, our work provides new insights into the mechanism of Cu toxicity and the defense mechanisms that bacteria employ to survive. IMPORTANCE With the increase of antibiotic drug resistance, alternative antibacterial treatment strategies are needed. Copper is a well-known antimicrobial and antiviral agent; however, the underlying molecular mechanisms by which copper causes cell death are not yet fully understood. Herein, we report the finding that Cu+, the physiologically relevant copper species in bacteria, causes widespread protein aggregation. We demonstrate that the molecular chaperones DnaK and trigger factor protect bacteria against Cu-induced cell death, highlighting, for the first time, the central role of these chaperones under Cu+ stress. Our studies reveal Cu-induced protein aggregation to be a central mechanism of Cu toxicity, a finding that will serve to guide future mechanistic studies and drug development.
Collapse
Affiliation(s)
- Lisa Zuily
- Aix-Marseille Université, CNRS, BIP, UMR 7281, IMM, Marseille, France
| | - Nora Lahrach
- Aix-Marseille Université, CNRS, BIP, UMR 7281, IMM, Marseille, France
| | - Rosi Fassler
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Olivier Genest
- Aix-Marseille Université, CNRS, BIP, UMR 7281, IMM, Marseille, France
| | - Peter Faller
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR7177), Université de Strasbourg, Strasbourg, France
| | - Olivier Sénèque
- Université Grenoble Alpes, CNRS, CEA, IRIG/DIESE, LCBM (UMR 5249), Grenoble, France
| | - Yann Denis
- Plateforme Transcriptome, Aix-Marseille Université, CNRS, IMM-FR3479, Marseille, France
| | - Marie-Pierre Castanié-Cornet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Marianne Ilbert
- Aix-Marseille Université, CNRS, BIP, UMR 7281, IMM, Marseille, France
| |
Collapse
|
12
|
The Copper Resistome of Group B Streptococcus Reveals Insight into the Genetic Basis of Cellular Survival during Metal Ion Stress. J Bacteriol 2022; 204:e0006822. [PMID: 35404113 DOI: 10.1128/jb.00068-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In bacteria, copper (Cu) can support metabolic processes as an enzymatic cofactor but can also cause cell damage if present in excess, leading to intoxication. In group B Streptococcus (GBS), a system for control of Cu efflux based on the prototypical cop operon supports survival during Cu stress. In some other bacteria, genetic systems additional to the cop operon are engaged during Cu stress and also contribute to the management of cellular Cu homeostasis. Here, we examined genetic systems beyond the cop operon in GBS for regions that contribute to survival of GBS in Cu stress using a forward genetic screen and probe of the entire bacterial genome. A high-density mutant library, generated using pGh9-ISS1, was used to expose GBS to Cu stress and compare it to nonexposed controls en masse. Eight genes were identified as essential for GBS survival in Cu stress, whereas five genes constrained GBS growth in Cu stress. The genes encode varied factors including enzymes for metabolism, cell wall synthesis, transporters, and cell signaling factors. Targeted mutation of the genes validated their roles in GBS resistance to Cu stress. Excepting copA, the genes identified are new to the area of bacterial metal ion intoxication. We conclude that a discrete and limited suite of genes beyond the cop operon in GBS contributes to a repertoire of mechanisms used to survive Cu stress in vitro and achieve cellular homeostasis. IMPORTANCE Genetic systems for copper (Cu) homeostasis in bacteria, including streptococci, are vital to survive metal ion stress. Genetic systems that underpin survival of GBS during Cu stress, beyond the archetypal cop operon for Cu management, are undefined. We show that Streptococcus resists Cu intoxication by utilizing a discrete and limited suite of genes beyond the cop operon, including several genes that are new to the area of bacterial cell metal ion homeostasis. The Cu resistome of GBS defined here enhances our understanding of metal ion homeostasis in GBS.
Collapse
|
13
|
Lutsenko IA, Baravikov DE, Koshenskova KA, Kiskin MA, Nelyubina YV, Primakov PV, Voronina YK, Garaeva VV, Aleshin DA, Aliev TM, Danilenko VN, Bekker OB, Eremenko IL. What are the prospects for using complexes of copper(ii) and zinc(ii) to suppress the vital activity of Mycolicibacterium smegmatis? RSC Adv 2022; 12:5173-5183. [PMID: 35425585 PMCID: PMC8981969 DOI: 10.1039/d1ra08555g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
New complexes of zinc(ii) and copper(ii) with 2-furoic acid (Hfur), acetic acids and N-donor ligands with the compositions [Zn2(fur)4] n (1), [Zn2(fur)4(NH2py)2] (2, NH2py = 3-aminopyridine), [Zn(fur)2(neoc)] (3, neoc = 2,9-dimethyl-1,10-phenantroline), [Zn(OAc)2(neoc)] (4, OAc = acetat-anion), and [Cu(fur)2(neoc)(H2O)] (5) were synthesized. The structures of the compounds were established by single crystal X-ray diffraction analysis. Complexes 1 and 2 are binuclear; whereas 3-5 are mononuclear. The stabilization of supramolecular architectures in crystals for compounds 1-5 occurs due to π-π-bonding between heterocycles and hydrogen interactions that provide good solubility in aqueous solutions. The stability of the complexes upon dissolution in 5% dextrose and 0.9% NaCl was confirmed by UV-vis spectroscopic and NMR (1H) data. The study of in vitro biological activity was carried out against the non-pathogenic strain of Mycolicibacterium smegmatis that is a model for M. tuberculosis. The synergistic effect of ligands is observed for complexes 3-5 and is characterized by an increase in the biological activity values. On passage from Zn2+ to Cu2+ complexes, the biological activity increases and the maximum effect is observed for compound [Cu(fur)2(phen)]. Analysis of the transcriptomic profiles of the M. smegmatis mc 2 155 strain under the pressure of the copper complex [Cu(fur)2(phen)] made it possible to isolate 185 genes, one quarter of which are associated with the compensation of iron deficiency in the bacterial strain. Genes associated with the transport and metabolism of heavy metals, biosynthesis of fatty and amino acids, biodegradation and transport of urea were also isolated.
Collapse
Affiliation(s)
- Irina A Lutsenko
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31, 119991 GSP-1 Moscow Russian Federation +7-495-952-1279
| | - Dmitry E Baravikov
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31, 119991 GSP-1 Moscow Russian Federation +7-495-952-1279
- D.I. Mendeleev University of Chemical Technology of Russia M. Pirogovskaya str. 1a 119435 Moscow Russian Federation
| | - Kseniya A Koshenskova
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31, 119991 GSP-1 Moscow Russian Federation +7-495-952-1279
- D.I. Mendeleev University of Chemical Technology of Russia M. Pirogovskaya str. 1a 119435 Moscow Russian Federation
| | - Mikhail A Kiskin
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31, 119991 GSP-1 Moscow Russian Federation +7-495-952-1279
| | - Yulia V Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences Vavilova str. 28 119991 Moscow Russian Federation
| | - Petr V Primakov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences Vavilova str. 28 119991 Moscow Russian Federation
| | - Yulia K Voronina
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31, 119991 GSP-1 Moscow Russian Federation +7-495-952-1279
| | - Veronika V Garaeva
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences Vavilova str. 28 119991 Moscow Russian Federation
- Moscow Institute of Physics and Technology 9 Institutskiy per, Dolgoprudny Moscow Region 141701 Russian Federation
| | - Dmytry A Aleshin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences Vavilova str. 28 119991 Moscow Russian Federation
| | - Teimur M Aliev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences Vavilova str. 28 119991 Moscow Russian Federation
| | - Valery N Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences Gubkina 3119333 Moscow Russian Federation
| | - Olga B Bekker
- Vavilov Institute of General Genetics, Russian Academy of Sciences Gubkina 3119333 Moscow Russian Federation
| | - Igor L Eremenko
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31, 119991 GSP-1 Moscow Russian Federation +7-495-952-1279
| |
Collapse
|
14
|
Gan WK, Liew HS, Pua LJW, Ng XY, Fong KW, Cheong SL, Liew YK, Low ML. Novel Cu(II) Schiff Base Complex Combination with Polymyxin B/Phenylalanine-Arginine β-Naphthylamide Against Various Bacterial Strains. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-021-10358-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Taherzade SD, Soleimannejad J. Controlled API release in azelaic acid coordination compounds with potential dermatological properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Hyre A, Casanova-Hampton K, Subashchandrabose S. Copper Homeostatic Mechanisms and Their Role in the Virulence of Escherichia coli and Salmonella enterica. EcoSal Plus 2021; 9:eESP00142020. [PMID: 34125582 PMCID: PMC8669021 DOI: 10.1128/ecosalplus.esp-0014-2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Copper is an essential micronutrient that also exerts toxic effects at high concentrations. This review summarizes the current state of knowledge on copper handling and homeostasis systems in Escherichia coli and Salmonella enterica. We describe the mechanisms by which transcriptional regulators, efflux pumps, detoxification enzymes, metallochaperones, and ancillary copper response systems orchestrate cellular response to copper stress. E. coli and S. enterica are important pathogens of humans and animals. We discuss the critical role of copper during killing of these pathogens by macrophages and in nutritional immunity at the bacterial-pathogen-host interface. In closing, we identify opportunities to advance our understanding of the biological roles of copper in these model enteric bacterial pathogens.
Collapse
Affiliation(s)
- Amanda Hyre
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Kaitlin Casanova-Hampton
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Sargurunathan Subashchandrabose
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| |
Collapse
|
17
|
Egorova A, Salina EG, Makarov V. Targeting Non-Replicating Mycobacterium tuberculosis and Latent Infection: Alternatives and Perspectives (Mini-Review). Int J Mol Sci 2021; 22:ijms222413317. [PMID: 34948114 PMCID: PMC8707483 DOI: 10.3390/ijms222413317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 01/02/2023] Open
Abstract
Latent tuberculosis infection (LTBI) represents a major challenge to curing TB disease. Current guidelines for LTBI management include only three older drugs and their combinations-isoniazid and rifamycins (rifampicin and rifapentine). These available control strategies have little impact on latent TB elimination, and new specific therapeutics are urgently needed. In the present mini-review, we highlight some of the alternatives that may potentially be included in LTBI treatment recommendations and a list of early-stage prospective small molecules that act on drug targets specific for Mycobacterium tuberculosis latency.
Collapse
Affiliation(s)
- Anna Egorova
- The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences (Research Center of Biotechnology RAS), 119071 Moscow, Russia; (A.E.); (E.G.S.)
| | - Elena G. Salina
- The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences (Research Center of Biotechnology RAS), 119071 Moscow, Russia; (A.E.); (E.G.S.)
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Vadim Makarov
- The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences (Research Center of Biotechnology RAS), 119071 Moscow, Russia; (A.E.); (E.G.S.)
- Correspondence:
| |
Collapse
|
18
|
Mukherjee S, Pal CK, Kotakonda M, Joshi M, Shit M, Ghosh P, Choudhury AR, Biswas B. Solvent induced distortion in a square planar copper(II) complex containing an azo-functionalized Schiff base: Synthesis, crystal structure, in-vitro fungicidal and anti-proliferative, and catecholase activity. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Richa, Kushwaha N, Negi S, Kumar A, Zangrando E, Kataria R, Saini V. Synthesis, characterization and utility of a series of novel copper(II) complexes as excellent surface disinfectants against nosocomial infections. Dalton Trans 2021; 50:13699-13711. [PMID: 34013925 DOI: 10.1039/d1dt00199j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nosocomial infections are among the major public health concerns, especially during the ongoing Covid19 pandemic. There is a great demand for novel chemical agents that are capable of killing specific pathogens or augmenting the efficiency of existing disinfectants. Herein, we report the synthesis and comprehensive characterization (through FT-IR, HR-MS, SEM, TGA-DSC, CV, UV and SCXRD analyses) of six novel copper(II) complexes, [CuL(4X-An)] (5a-5d), [CuL(An)] (5e), and [CuL(benzhydrylamine)] (5f), and their evaluation as anti-microbial agents against WHO priority pathogens, confirming their possible use in hospital settings. The compounds were synthesized with a Schiff base (H2L) obtained by the condensation reaction of 3-acetyl-6-methyl-2H-pyran-2,4(3H)-dione (DHA) and benzohydrazide and further addition of different p-substituted aniline (An) molecules. Single crystal structure analyses revealed that the aniline derivatives are isostructural to the copper atom in a square planar coordination, while the benzhydrylamine complex forms a dimer (5f), with a square pyramidal coordination geometry for the metal. Time-kill kinetics and reduced microbial recovery studies revealed excellent bactericidal action against Staphylococcus aureus and Enterococcus faecalis. Particularly, the novel compound 5f significantly reduced microbial recovery compared to ethanol-based sanitisers. In fact, addition of 5f to 70% ethanol remarkably synergized the killing with >6-log reduction in microbial burden. Overall, our novel compounds would increase the disinfection efficacy in hospitals and industries, thereby improving the efficiency and minimizing the risk of infections.
Collapse
Affiliation(s)
- Richa
- Department of Chemistry & Centre of Advance Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| | - Namrata Kushwaha
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| | - Sheetal Negi
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| | - Ajay Kumar
- Department of Chemistry & Centre of Advance Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Ramesh Kataria
- Department of Chemistry & Centre of Advance Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| | - Vikram Saini
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| |
Collapse
|
20
|
Jabłońska-Wawrzycka A, Rogala P, Czerwonka G, Michałkiewicz S, Hodorowicz M, Gałczyńska K, Cieślak B, Kowalczyk P. Tuning Anti-Biofilm Activity of Manganese(II) Complexes: Linking Biological Effectiveness of Heteroaromatic Complexes of Alcohol, Aldehyde, Ketone, and Carboxylic Acid with Structural Effects and Redox Activity. Int J Mol Sci 2021; 22:ijms22094847. [PMID: 34063691 PMCID: PMC8124774 DOI: 10.3390/ijms22094847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 01/07/2023] Open
Abstract
The constantly growing resistance of bacteria to antibiotics and other antibacterial substances has led us to an era in which alternative antimicrobial therapies are urgently required. One promising approach is to target bacterial pathogens using metal complexes. Therefore, we investigated the possibility of utilizing series of manganese(II) complexes with heteroaromatic ligands: Alcohol, aldehyde, ketone, and carboxylic acid as inhibitors for biofilm formation of Pseudomonas aeruginosa. To complete the series mentioned above, Mn-dipyCO-NO3 with dipyridin-2-ylmethanone (dipyCO) was isolated, and then structurally (single-crystal X-ray analysis) and physicochemically characterized (FT-IR, TG, CV, magnetic susceptibility). The antibacterial activity of the compounds against representative Gram-negative and Gram-positive bacteria was also evaluated. It is worth highlighting that the results of the cytotoxicity assays performed (MTT, DHI HoloMonitorM4) indicate high cell viability of the human fibroblast (VH10) in the presence of the Mn(II) complexes. Additionally, the inhibition effect of catalase activity by the complexes was studied. This paper focused on such aspects as studying different types of intermolecular interactions in the crystals of the Mn(II) complexes as well as their possible effect on anti-biofilm activity, the structure-activity relationship of the Mn(II) complexes, and regularity between the electrochemical properties of the Mn(II) complexes and anti-biofilm activity.
Collapse
Affiliation(s)
- Agnieszka Jabłońska-Wawrzycka
- Institute of Chemistry, Jan Kochanowski University of Kielce, 7 Uniwersytecka Str., 25-406 Kielce, Poland; (P.R.); (S.M.)
- Correspondence: or
| | - Patrycja Rogala
- Institute of Chemistry, Jan Kochanowski University of Kielce, 7 Uniwersytecka Str., 25-406 Kielce, Poland; (P.R.); (S.M.)
| | - Grzegorz Czerwonka
- Institute of Biology, Jan Kochanowski University of Kielce, 7 Uniwersytecka Str., 25-406 Kielce, Poland; (G.C.); (K.G.)
| | - Sławomir Michałkiewicz
- Institute of Chemistry, Jan Kochanowski University of Kielce, 7 Uniwersytecka Str., 25-406 Kielce, Poland; (P.R.); (S.M.)
| | - Maciej Hodorowicz
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Kraków, Poland;
| | - Katarzyna Gałczyńska
- Institute of Biology, Jan Kochanowski University of Kielce, 7 Uniwersytecka Str., 25-406 Kielce, Poland; (G.C.); (K.G.)
| | - Beata Cieślak
- Labsoft Sp. z o.o., 469 Puławska Str., 02-844 Warszawa, Poland;
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 3 Instytucka Str., 05-110 Jabłonna, Poland;
| |
Collapse
|
21
|
Palma E, Raposinho P, Campello MPC, Belo D, Guerreiro JF, Alves V, Fonseca A, Abrunhosa AJ, Paulo A, Mendes F. Anticancer Activity and Mode of Action of Copper(II)‐Bis(thiosemicarbazonato) Complexes with Pendant Nitrogen Heterocycles. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Elisa Palma
- C2TN Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico Universidade de Lisboa Estrada Nacional 10 2695-066 Bobadela LRS Portugal
| | - Paula Raposinho
- C2TN Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico Universidade de Lisboa Estrada Nacional 10 2695-066 Bobadela LRS Portugal
- DECN Departamento de Engenharia e Ciências Nucleares Instituto Superior Técnico Universidade de Lisboa Estrada Nacional 10 2695-066 Bobadela LRS Portugal
| | - Maria Paula Cabral Campello
- C2TN Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico Universidade de Lisboa Estrada Nacional 10 2695-066 Bobadela LRS Portugal
- DECN Departamento de Engenharia e Ciências Nucleares Instituto Superior Técnico Universidade de Lisboa Estrada Nacional 10 2695-066 Bobadela LRS Portugal
| | - Dulce Belo
- C2TN Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico Universidade de Lisboa Estrada Nacional 10 2695-066 Bobadela LRS Portugal
- DECN Departamento de Engenharia e Ciências Nucleares Instituto Superior Técnico Universidade de Lisboa Estrada Nacional 10 2695-066 Bobadela LRS Portugal
| | - Joana F. Guerreiro
- C2TN Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico Universidade de Lisboa Estrada Nacional 10 2695-066 Bobadela LRS Portugal
| | - Vítor Alves
- CIBIT/ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde Universidade de Coimbra Coimbra Portugal
| | - Alexandra Fonseca
- CIBIT/ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde Universidade de Coimbra Coimbra Portugal
| | - Antero J. Abrunhosa
- CIBIT/ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde Universidade de Coimbra Coimbra Portugal
| | - António Paulo
- C2TN Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico Universidade de Lisboa Estrada Nacional 10 2695-066 Bobadela LRS Portugal
- DECN Departamento de Engenharia e Ciências Nucleares Instituto Superior Técnico Universidade de Lisboa Estrada Nacional 10 2695-066 Bobadela LRS Portugal
| | - Filipa Mendes
- C2TN Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico Universidade de Lisboa Estrada Nacional 10 2695-066 Bobadela LRS Portugal
- DECN Departamento de Engenharia e Ciências Nucleares Instituto Superior Técnico Universidade de Lisboa Estrada Nacional 10 2695-066 Bobadela LRS Portugal
| |
Collapse
|
22
|
Antioxidant, antibacterial and electrochemical activity of (E)-N-(4 (dimethylamino) benzylidene)-4H-1,2,4-triazol-4-amine ligand and its transition metal complexes. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
23
|
Karami M, Ghanbari M, Alshamsi HA, Rashki S, Salavati-Niasari M. Facile fabrication of Tl4HgI6 nanostructures as novel antibacterial and antibiofilm agents and photocatalysts in the degradation of organic pollutants. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00155h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nano-Tl4HgI6 was fabricated via a co-precipitation route. It showed efficient antibacterial activity against Gram-negative and Gram-positive bacteria. Its photocatalytic activity indicated the highest degradation for RhB of around 78%.
Collapse
Affiliation(s)
- Maryam Karami
- Institute of Nano Science and Nano Technology
- University of Kashan
- I. R. Iran
| | - Mojgan Ghanbari
- Institute of Nano Science and Nano Technology
- University of Kashan
- I. R. Iran
| | - Hassan Abbas Alshamsi
- Department of Chemistry
- College of Education
- University of Al-Qadisiyah
- Diwaniya 1753
- Iraq
| | - Somaye Rashki
- Department of Microbiology and Immunology
- School of Medicine
- Kashan University of Medical Sciences
- Kashan
- Iran
| | | |
Collapse
|
24
|
|
25
|
Loginova NV, Harbatsevich HI, Osipovich NP, Ksendzova GA, Koval’chuk TV, Polozov GI. Metal Complexes as Promising Agents for Biomedical Applications. Curr Med Chem 2020; 27:5213-5249. [DOI: 10.2174/0929867326666190417143533] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/02/2019] [Accepted: 03/29/2019] [Indexed: 12/24/2022]
Abstract
Background::
In this review article, a brief overview of novel metallotherapeutic agents
(with an emphasis on the complexes of essential biometals) promising for medical application is
presented. We have also focused on the recent work carried out by our research team, specifically
the development of redox-active antimicrobial complexes of sterically hindered diphenols with some
essential biometals (copper, zinc, nickel).
Results::
The complexes of essential metals (manganese, iron, cobalt, nickel, copper, zinc) described
in the review show diverse in vitro biological activities, ranging from antimicrobial and antiinflammatory
to antiproliferative and enzyme inhibitory. It is necessary to emphasize that the type of
organic ligands in these metal complexes seems to be responsible for their pharmacological
activities. In the last decades, there has been a significant interest in synthesis and biological
evaluation of metal complexes with redox-active ligands. A substantial step in the development of
these redox-active agents is the study of their physicochemical and biological properties, including
investigations in vitro of model enzyme systems, which can provide evidence on a plausible
mechanism underlying the pharmacological activity. When considering the peculiarities of the
pharmacological activity of the sterically hindered diphenol derivatives and their nickel(II),
copper(II) and zinc(II) complexes synthesized, we took into account the following: (i) all these
compounds are potential antioxidants and (ii) their antimicrobial activity possibly results from their
ability to affect the electron-transport chain.
Conclusion::
We obtained novel data demonstrating that the level of antibacterial and antifungal
activity in the series of the above-mentioned metal-based antimicrobials depends not only on the
nature of the phenolic ligands and complexing metal ions, but also on the lipophilicity and reducing
ability of the ligands and metal complexes, specifically regarding the potential biotargets of their
antimicrobial action – ferricytochrome c and the superoxide anion radical. The combination of
antibacterial, antifungal and antioxidant activity allows one to consider these compounds as
promising substances for developing therapeutic agents with a broad spectrum of activities.
Collapse
Affiliation(s)
| | | | - Nikolai P. Osipovich
- Research Institute for Physico-Chemical Problems of the Belarusian State University, Minsk, Belarus
| | - Galina A. Ksendzova
- Research Institute for Physico-Chemical Problems of the Belarusian State University, Minsk, Belarus
| | | | | |
Collapse
|
26
|
Mahato S, Meheta N, Kotakonda M, Joshi M, Ghosh P, Shit M, Choudhury AR, Biswas B. Ligand directed synthesis of a unprecedented tetragonalbipyramidal copper (II) complex and its antibacterial activity and catalytic role in oxidative dimerisation of 2‐aminophenol. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5935] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shreya Mahato
- Department of Chemistry University of North Bengal Darjeeling‐734013 India
| | - Nishith Meheta
- Department of Chemistry University of North Bengal Darjeeling‐734013 India
| | | | - Mayank Joshi
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli PO Mohali Punjab 140306 India
| | - Prasanta Ghosh
- Department of Chemistry Narendrapur Ramakrishna Mission Residential College Kolkata 700103 India
| | - Madhusudan Shit
- Department of Chemistry Dinabandhu Andrews College Kolkata 700084 India
| | - Angshuman Roy Choudhury
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli PO Mohali Punjab 140306 India
| | - Bhaskar Biswas
- Department of Chemistry University of North Bengal Darjeeling‐734013 India
| |
Collapse
|
27
|
Lutsenko IA, Baravikov DE, Kiskin MA, Nelyubina YV, Primakov PV, Bekker OB, Khoroshilov AV, Sidorov AA, Eremenko IL. Bioisostere Modifications of Cu2+ and Zn2+ with Pyromucic Acid Anions and N-Donors: Synthesis, Structures, Thermal Properties, and Biological Activity. RUSS J COORD CHEM+ 2020. [DOI: 10.1134/s1070328420060056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Dalecki AG, Zorn KM, Clark AM, Ekins S, Narmore WT, Tower N, Rasmussen L, Bostwick R, Kutsch O, Wolschendorf F. High-throughput screening and Bayesian machine learning for copper-dependent inhibitors of Staphylococcus aureus. Metallomics 2020; 11:696-706. [PMID: 30839007 DOI: 10.1039/c8mt00342d] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
One potential source of new antibacterials is through probing existing chemical libraries for copper-dependent inhibitors (CDIs), i.e., molecules with antibiotic activity only in the presence of copper. Recently, our group demonstrated that previously unknown staphylococcal CDIs were frequently present in a small pilot screen. Here, we report the outcome of a larger industrial anti-staphylococcal screen consisting of 40 771 compounds assayed in parallel, both in standard and in copper-supplemented media. Ultimately, 483 had confirmed copper-dependent IC50 values under 50 μM. Sphere-exclusion clustering revealed that these hits were largely dominated by sulfur-containing motifs, including benzimidazole-2-thiones, thiadiazines, thiazoline formamides, triazino-benzimidazoles, and pyridinyl thieno-pyrimidines. Structure-activity relationship analysis of the pyridinyl thieno-pyrimidines generated multiple improved CDIs, with activity likely dependent on ligand/ion coordination. Molecular fingerprint-based Bayesian classification models were built using Discovery Studio and Assay Central, a new platform for sharing and distributing cheminformatic models in a portable format, based on open-source tools. Finally, we used the latter model to evaluate a library of FDA-approved drugs for copper-dependent activity in silico. Two anti-helminths, albendazole and thiabendazole, scored highly and are known to coordinate copper ions, further validating the model's applicability.
Collapse
Affiliation(s)
- Alex G Dalecki
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, BBRB 562, 845 19th St S, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Breijyeh Z, Jubeh B, Karaman R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules 2020; 25:E1340. [PMID: 32187986 PMCID: PMC7144564 DOI: 10.3390/molecules25061340] [Citation(s) in RCA: 633] [Impact Index Per Article: 126.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial resistance represents an enormous global health crisis and one of the most serious threats humans face today. Some bacterial strains have acquired resistance to nearly all antibiotics. Therefore, new antibacterial agents are crucially needed to overcome resistant bacteria. In 2017, the World Health Organization (WHO) has published a list of antibiotic-resistant priority pathogens, pathogens which present a great threat to humans and to which new antibiotics are urgently needed the list is categorized according to the urgency of need for new antibiotics as critical, high, and medium priority, in order to guide and promote research and development of new antibiotics. The majority of the WHO list is Gram-negative bacterial pathogens. Due to their distinctive structure, Gram-negative bacteria are more resistant than Gram-positive bacteria, and cause significant morbidity and mortality worldwide. Several strategies have been reported to fight and control resistant Gram-negative bacteria, like the development of antimicrobial auxiliary agents, structural modification of existing antibiotics, and research into and the study of chemical structures with new mechanisms of action and novel targets that resistant bacteria are sensitive to. Research efforts have been made to meet the urgent need for new treatments; some have succeeded to yield activity against resistant Gram-negative bacteria by deactivating the mechanism of resistance, like the action of the β-lactamase Inhibitor antibiotic adjuvants. Another promising trend was by referring to nature to develop naturally derived agents with antibacterial activity on novel targets, agents such as bacteriophages, DCAP(2-((3-(3,6-dichloro-9H-carbazol-9-yl)-2-hydroxypropyl)amino)-2(hydroxymethyl)propane1,3-diol, Odilorhabdins (ODLs), peptidic benzimidazoles, quorum sensing (QS) inhibitors, and metal-based antibacterial agents.
Collapse
Affiliation(s)
| | | | - Rafik Karaman
- Department of Bioorganic & Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine; (Z.B.); (B.J.)
| |
Collapse
|
30
|
Andres SA, Bajaj K, Vishnosky NS, Peterson MA, Mashuta MS, Buchanan RM, Bates PJ, Grapperhaus CA. Synthesis, Characterization, and Biological Activity of Hybrid Thiosemicarbazone–Alkylthiocarbamate Metal Complexes. Inorg Chem 2020; 59:4924-4935. [DOI: 10.1021/acs.inorgchem.0c00182] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sarah A. Andres
- Department of Medicine and James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, United States
| | - Kritika Bajaj
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Nicholas S. Vishnosky
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Megan A. Peterson
- Department of Medicine and James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, United States
| | - Mark S. Mashuta
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Robert M. Buchanan
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Paula J. Bates
- Department of Medicine and James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, United States
| | - Craig A. Grapperhaus
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
31
|
Namiecińska E, Sobiesiak M, Małecka M, Guga P, Rozalska B, Budzisz E. Antimicrobial and Structural Properties of Metal Ions Complexes with Thiosemicarbazide Motif and Related Heterocyclic Compounds. Curr Med Chem 2019; 26:664-693. [PMID: 29493443 DOI: 10.2174/0929867325666180228164656] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 01/31/2018] [Accepted: 02/15/2018] [Indexed: 01/25/2023]
Abstract
Antibiotic resistance acquired by various bacterial fungal and viral pathogens poses therapeutic problems of increasing severity. Among the infections that are very difficult to treat, biofilm-associated cases are one of the most hazardous. Complex structure of a biofilm and unique physiology of the biofilm cells contribute to their extremely high resistance to environmental conditions, antimicrobial agents and the mechanisms of host immune response. Therefore, the biofilm formation, especially by multidrugresistant pathogens, is a serious medical problem, playing a pivotal role in the development of chronic and recurrent infections. These factors create a limitation for using traditional chemiotherapeutics and contribute to a request for development of new approaches for treatment of infectious diseases. Therefore, early reports on antimicrobial activity of several complexes of metal ions, bearing thiosemicarbazide or thiosemicarbazones as the ligands, gave a boost to worldwide search for new, more efficient compounds of this class, to be used as alternatives to commonly known drugs. In general, depending on the presence of other heteroatoms, these ligands may function in a di-, tri- or tetradentate forms (e.g., of N,S,-, N,N,S-, N,N,N,S-, N,N,S,S-, or N,S,O-type), which impose different coordination geometries to the resultant complexes. In the first part of this review, we describe the ways of synthesis and the structures of the ligands based on the thiosemicarbazone motif, while the second part deals with the antimicrobial activity of their complexes with selected metal ions.
Collapse
Affiliation(s)
- Ewelina Namiecińska
- Department of Cosmetic Raw Materials Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Marta Sobiesiak
- Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Faculty of Pharmacy, Department of Inorganic and Analytical Chemistry, 85-094 Bydgoszcz, Poland
| | - Magdalena Małecka
- Department of Theoretical and Structural Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163/165, 90-236 Lodz, Poland
| | - Piotr Guga
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Bioorganic Chemistry, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Barbara Rozalska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Elzbieta Budzisz
- Department of Cosmetic Raw Materials Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
32
|
Azizi-Lalabadi M, Alizadeh-Sani M, Khezerlou A, Mirzanajafi-Zanjani M, Zolfaghari H, Bagheri V, Divband B, Ehsani A. Nanoparticles and Zeolites: Antibacterial Effects and their Mechanism against Pathogens. Curr Pharm Biotechnol 2019; 20:1074-1086. [DOI: 10.2174/1573397115666190708120040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 01/21/2023]
Abstract
Nowadays, distribution and microorganism resistance against antimicrobial compounds
have caused crucial food safety problems. Hence, nanotechnology and zeolite are recognized as new
approaches to manage this problem due to their inherent antimicrobial activity. Different studies have
confirmed antimicrobial effects of Nano particles (NPs) (metal and metal oxide) and zeolite, by using
various techniques to determine antimicrobial mechanism. This review includes an overview of research
with the results of studies about antimicrobial mechanisms of nanoparticles and zeolite. Many
researches have shown that type, particle size and shape of NPs and zeolite are important factors showing
antimicrobial effectiveness. The use of NPs and zeolite as antimicrobial components especially in
food technology and medical application can be considered as prominent strategies to overcome pathogenic
microorganisms. Nevertheless, further studies are required to minimize the possible toxicity of
NPs in order to apply suitable alternatives for disinfectants and antibacterial agents in food applications.
Collapse
Affiliation(s)
- Maryam Azizi-Lalabadi
- Students' Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmood Alizadeh-Sani
- Food safety and hygiene division, Environmental Health Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Khezerlou
- Students' Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Mirzanajafi-Zanjani
- Students' Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Zolfaghari
- Students' Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Bagheri
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. BOX 51666-16471, Tabriz, Iran
| | - Baharak Divband
- Inorganic Chemistry Department, Faculty of Chemistry, University of Tabriz, C.P. 51664 Tabriz, Iran
| | - Ali Ehsani
- Nutrition Research Center, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Nasrin T, Patra M, Escudey M, Das TK. Biosynthesized CdS nanoparticles disturb E. coli growth through reactive oxygen production. Microb Pathog 2019; 135:103639. [DOI: 10.1016/j.micpath.2019.103639] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 07/01/2019] [Accepted: 07/18/2019] [Indexed: 11/27/2022]
|
34
|
Synthesis, structure and antibacterial activity of a copper(II) coordination polymer based on thiophene-2,5-dicarboxylate ligand. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.03.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
35
|
Ratiometric two-photon microscopy reveals attomolar copper buffering in normal and Menkes mutant cells. Proc Natl Acad Sci U S A 2019; 116:12167-12172. [PMID: 31160463 DOI: 10.1073/pnas.1900172116] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Copper is controlled by a sophisticated network of transport and storage proteins within mammalian cells, yet its uptake and efflux occur with rapid kinetics. Present as Cu(I) within the reducing intracellular environment, the nature of this labile copper pool remains elusive. While glutathione is involved in copper homeostasis and has been assumed to buffer intracellular copper, we demonstrate with a ratiometric fluorescent indicator, crisp-17, that cytosolic Cu(I) levels are buffered to the vicinity of 1 aM, where negligible complexation by glutathione is expected. Enabled by our phosphine sulfide-stabilized phosphine (PSP) ligand design strategy, crisp-17 offers a Cu(I) dissociation constant of 8 aM, thus exceeding the binding affinities of previous synthetic Cu(I) probes by four to six orders of magnitude. Two-photon excitation microscopy with crisp-17 revealed rapid, reversible increases in intracellular Cu(I) availability upon addition of the ionophoric complex CuGTSM or the thiol-selective oxidant 2,2'-dithiodipyridine (DTDP). While the latter effect was dramatically enhanced in 3T3 cells grown in the presence of supplemental copper and in cultured Menkes mutant fibroblasts exhibiting impaired copper efflux, basal Cu(I) availability in these cells showed little difference from controls, despite large increases in total copper content. Intracellular copper is thus tightly buffered by endogenous thiol ligands with significantly higher affinity than glutathione. The dual utility of crisp-17 to detect normal intracellular buffered Cu(I) levels as well as to probe the depth of the labile copper pool in conjunction with DTDP provides a promising strategy to characterize perturbations of cellular copper homeostasis.
Collapse
|
36
|
Robinett NG, Culbertson EM, Peterson RL, Sanchez H, Andes DR, Nett JE, Culotta VC. Exploiting the vulnerable active site of a copper-only superoxide dismutase to disrupt fungal pathogenesis. J Biol Chem 2018; 294:2700-2713. [PMID: 30593499 DOI: 10.1074/jbc.ra118.007095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/21/2018] [Indexed: 01/08/2023] Open
Abstract
Copper-only superoxide dismutases (SODs) represent a new class of SOD enzymes that are exclusively extracellular and unique to fungi and oomycetes. These SODs are essential for virulence of fungal pathogens in pulmonary and disseminated infections, and we show here an additional role for copper-only SODs in promoting survival of fungal biofilms. The opportunistic fungal pathogen Candida albicans expresses three copper-only SODs, and deletion of one of them, SOD5, eradicated candidal biofilms on venous catheters in a rodent model. Fungal copper-only SODs harbor an irregular active site that, unlike their Cu,Zn-SOD counterparts, contains a copper co-factor unusually open to solvent and lacks zinc for stabilizing copper binding, making fungal copper-only SODs highly vulnerable to metal chelators. We found that unlike mammalian Cu,Zn-SOD1, C. albicans SOD5 indeed rapidly loses its copper to metal chelators such as EDTA, and binding constants for Cu(II) predict that copper-only SOD5 has a much lower affinity for copper than does Cu,Zn-SOD1. We screened compounds with a variety of indications and identified several metal-binding compounds, including the ionophore pyrithione zinc (PZ), that effectively inhibit C. albicans SOD5 but not mammalian Cu,Zn-SOD1. We observed that PZ both acts as an ionophore that promotes uptake of toxic metals and inhibits copper-only SODs. The pros and cons of a vulnerable active site for copper-only SODs and the possible exploitation of this vulnerability in antifungal drug design are discussed.
Collapse
Affiliation(s)
- Natalie G Robinett
- From the Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205 and
| | - Edward M Culbertson
- From the Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205 and
| | - Ryan L Peterson
- From the Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205 and
| | - Hiram Sanchez
- the Departments of Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53726
| | - David R Andes
- the Departments of Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53726
| | - Jeniel E Nett
- the Departments of Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53726
| | - Valeria C Culotta
- From the Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205 and
| |
Collapse
|
37
|
Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microb Pathog 2018; 123:505-526. [DOI: 10.1016/j.micpath.2018.08.008] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/15/2018] [Accepted: 08/06/2018] [Indexed: 12/17/2022]
|
38
|
Wehbe M, Leung AWY, Abrams MJ, Orvig C, Bally MB. A Perspective - can copper complexes be developed as a novel class of therapeutics? Dalton Trans 2018; 46:10758-10773. [PMID: 28702645 DOI: 10.1039/c7dt01955f] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although copper-ligand complexes appear to be promising as a new class of therapeutics, other than the family of copper(ii) coordination compounds referred to as casiopeínas these compounds have yet to reach the clinic for human use. The pharmaceutical challenges associated with developing copper-based therapeutics will be presented in this article along with a discussion of the potential for high-throughput chemistry, computer-aided drug design, and nanotechnology to address the development of this important class of drug candidates.
Collapse
Affiliation(s)
- Mohamed Wehbe
- Experimental Therapeutics, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada.
| | | | | | | | | |
Collapse
|
39
|
Sirois JJ, Padgitt-Cobb L, Gallegos MA, Beckman JS, Beaudry CM, Hurst JK. Oxidative Release of Copper from Pharmacologic Copper Bis(thiosemicarbazonato) Compounds. Inorg Chem 2018; 57:8923-8932. [DOI: 10.1021/acs.inorgchem.8b00853] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Zaengle-Barone JM, Jackson AC, Besse DM, Becken B, Arshad M, Seed PC, Franz KJ. Copper Influences the Antibacterial Outcomes of a β-Lactamase-Activated Prochelator against Drug-Resistant Bacteria. ACS Infect Dis 2018; 4:1019-1029. [PMID: 29557647 PMCID: PMC6252259 DOI: 10.1021/acsinfecdis.8b00037] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The unabated rise in bacterial resistance to conventional antibiotics, coupled with collateral damage to normal flora incurred by overuse of broad-spectrum antibiotics, necessitates the development of new antimicrobials targeted against pathogenic organisms. Here, we explore the antibacterial outcomes and mode of action of a prochelator that exploits the production of β-lactamase enzymes by drug-resistant bacteria to convert a nontoxic compound into a metal-binding antimicrobial agent directly within the microenvironment of pathogenic organisms. Compound PcephPT (phenylacetamido-cephem-pyrithione) contains a cephalosporin core linked to 2-mercaptopyridine N-oxide (pyrithione) via one of its metal-chelating atoms, which minimizes its preactivation interaction with metal ions and its cytotoxicity. Spectroscopic and chromatographic assays indicate that PcephPT releases pyrithione in the presence of β-lactamase-producing bacteria. The prochelator shows enhanced antibacterial activity against strains expressing β-lactamases, with bactericidal efficacy improved by the presence of low-micromolar copper in the growth medium. Metal analysis shows that cell-associated copper accumulation by the prochelator is significantly lower than that induced by pyrithione itself, suggesting that the location of pyrithione release influences biological outcomes. Low-micromolar (4-8 μg/mL) minimum inhibitory concentration (MIC) values of PcephPT in ceftriaxone-resistant bacteria compared with median lethal dose (LD50) values greater than 250 μM in mammalian cells suggests favorable selectivity. Further investigation into the mechanisms of prochelators will provide insight for the design of new antibacterial agents that manipulate cellular metallobiology as a strategy against infection.
Collapse
Affiliation(s)
| | - Abigail C. Jackson
- Department of Chemistry, Duke University, 124 Science Dr. Durham, North Carolina 27708, United States
| | - David M. Besse
- Department of Chemistry, Duke University, 124 Science Dr. Durham, North Carolina 27708, United States
| | - Bradford Becken
- Department of Pediatrics, Duke University, Durham, North Carolina 27710, United States
| | - Mehreen Arshad
- Department of Pediatrics, Duke University, Durham, North Carolina 27710, United States
| | - Patrick C. Seed
- Ann and Robert H. Lurie Children’s Hospital and Stanley Manne Children’s Research Institute, 225 E. Chicago Ave. Chicago, Illinois 60611, United States
- Department of Microbiology and Immunology, Northwestern University, 300 E. Superior St. Chicago, Illinois 60611, United States
| | - Katherine J. Franz
- Department of Chemistry, Duke University, 124 Science Dr. Durham, North Carolina 27708, United States
| |
Collapse
|
41
|
Brahma U, Kothari R, Sharma P, Bhandari V. Antimicrobial and anti-biofilm activity of hexadentated macrocyclic complex of copper (II) derived from thiosemicarbazide against Staphylococcus aureus. Sci Rep 2018; 8:8050. [PMID: 29795120 PMCID: PMC5966380 DOI: 10.1038/s41598-018-26483-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/30/2018] [Indexed: 12/11/2022] Open
Abstract
Multidrug-resistant pathogens causing nosocomial and community acquired infections delineate a significant threat to public health. It had urged to identify new antimicrobials and thus, generated interest in studying macrocyclic metal complex, which has been studied in the past for their antimicrobial activity. Hence, in the present study, we have evaluated the antimicrobial activity of the hexadentated macrocyclic complex of copper (II) (Cu Complex) derived from thiosemicarbazide against Gram-positive and Gram-negative bacteria. We observed increased susceptibility against standard isolates of Staphylococcus aureus with a minimum inhibitory concentration (MIC) range of 6.25 to 12.5 μg/mL. Similar activity was also observed towards methicillin resistant and sensitive clinical isolates of S. aureus from human (n = 20) and animal (n = 20) infections. The compound has rapid bactericidal activity, and we did not observe any resistant mutant of S. aureus. The compound also exhibited antibiofilm activity and was able to disrupt pre-formed biofilms. Cu complex showed increased susceptibility towards intracellular S. aureus and was able to reduce more than 95% of the bacterial load at 10 μg/mL. Overall, our results suggest that Cu complex with its potent anti-microbial and anti-biofilm activity can be used to treat MRSA infections and evaluated further clinically.
Collapse
Affiliation(s)
- Umarani Brahma
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| | | | - Paresh Sharma
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| | - Vasundhra Bhandari
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India.
| |
Collapse
|
42
|
Marsh JW, Djoko KY, McEwan AG, Huston WM. Copper(II)-bis(thiosemicarbazonato) complexes as anti-chlamydial agents. Pathog Dis 2018; 75:4033033. [PMID: 28830076 DOI: 10.1093/femspd/ftx084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/20/2017] [Indexed: 11/14/2022] Open
Abstract
Lipophilic copper (Cu)-containing complexes have shown promising antibacterial activity against a range of bacterial pathogens. To examine the susceptibility of the intracellular human pathogen Chlamydia trachomatis to copper complexes containing bis(thiosemicarbazone) ligands [Cu(btsc)], we tested the in vitro effect of CuII-diacetyl- and CuII-glyoxal-bis[N(4)-methylthiosemicarbazonato] (Cu(atsm) and Cu(gtsm), respectively) on C. trachomatis. Cu(atsm) and to a greater extent, Cu(gtsm), prevented the formation of infectious chlamydial progeny. Impacts on host cell viability and respiration were also observed in addition to the Chlamydia impacts. This work suggests that copper-based complexes may represent a new lead approach for future development of new therapeutics against chlamydial infections, although host cell impacts need to be fully explored.
Collapse
Affiliation(s)
- James W Marsh
- The iThree Institute, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Karrera Y Djoko
- School of Chemistry and Molecular Biosciences and Australian Centre for Infectious Disease Research, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Alastair G McEwan
- School of Chemistry and Molecular Biosciences and Australian Centre for Infectious Disease Research, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Wilhelmina M Huston
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| |
Collapse
|
43
|
Copper Ions and Coordination Complexes as Novel Carbapenem Adjuvants. Antimicrob Agents Chemother 2018; 62:AAC.02280-17. [PMID: 29133551 DOI: 10.1128/aac.02280-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae are urgent threats to global human health. These organisms produce β-lactamases with carbapenemase activity, such as the metallo-β-lactamase NDM-1, which is notable due to its association with mobile genetic elements and the lack of a clinically useful inhibitor. Here we examined the ability of copper to inhibit the activity of NDM-1 and explored the potential of a copper coordination complex as a mechanism to efficiently deliver copper as an adjuvant in clinical therapeutics. An NDM-positive Escherichia coli isolate, MS6192, was cultured from the urine of a patient with a urinary tract infection. MS6192 was resistant to antibiotics from multiple classes, including diverse β-lactams (penicillins, cephalosporins, and carbapenems), aminoglycosides, and fluoroquinolones. In the presence of copper (range, 0 to 2 mM), however, the susceptibility of MS6192 to the carbapenems ertapenem and meropenem increased markedly. In standard checkerboard assays, copper decreased the MICs of ertapenem and meropenem against MS6192 in a dose-dependent manner, suggesting a synergistic mode of action. To examine the inhibitory effect of copper in the absence of other β-lactamases, the blaNDM-1 gene from MS6192 was cloned and expressed in a recombinant E. coli K-12 strain. Analysis of cell extracts prepared from this strain revealed that copper directly inhibited NDM-1 activity, which was confirmed using purified recombinant NDM-1. Finally, delivery of copper at a low concentration of 10 μM by using the FDA-approved coordination complex copper-pyrithione sensitized MS6192 to ertapenem and meropenem in a synergistic manner. Overall, this work demonstrates the potential use of copper coordination complexes as novel carbapenemase adjuvants.
Collapse
|
44
|
Salina EG, Huszár S, Zemanová J, Keruchenko J, Riabova O, Kazakova E, Grigorov A, Azhikina T, Kaprelyants A, Mikušová K, Makarov V. Copper-related toxicity in replicating and dormantMycobacterium tuberculosiscaused by 1-hydroxy-5-R-pyridine-2(1H)-thiones. Metallomics 2018; 10:992-1002. [DOI: 10.1039/c8mt00067k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
1-Hydroxy-5-R-pyridine-2(1H)-thiones are novel copper-dependentM. tuberculosisinhibitors that provide intracellular accumulation of toxic concentrations of copper.
Collapse
Affiliation(s)
- Elena G. Salina
- Bach Institute of Biochemistry
- Research Center of Biotechnology of the Russian Academy of Sciences
- Moscow
- Russia
| | - Stanislav Huszár
- Comenius University in Bratislava
- Faculty of Natural Sciences
- Department of Biochemistry
- 84215 Bratislava
- Slovak Republic
| | - Júlia Zemanová
- Comenius University in Bratislava
- Faculty of Natural Sciences
- Department of Biochemistry
- 84215 Bratislava
- Slovak Republic
| | - Jan Keruchenko
- Bach Institute of Biochemistry
- Research Center of Biotechnology of the Russian Academy of Sciences
- Moscow
- Russia
| | - Olga Riabova
- Bach Institute of Biochemistry
- Research Center of Biotechnology of the Russian Academy of Sciences
- Moscow
- Russia
| | - Elena Kazakova
- Bach Institute of Biochemistry
- Research Center of Biotechnology of the Russian Academy of Sciences
- Moscow
- Russia
| | | | - Tatyana Azhikina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry
- Russian Academy of Sciences
- Moscow
- Russian Federation
| | - Arseny Kaprelyants
- Bach Institute of Biochemistry
- Research Center of Biotechnology of the Russian Academy of Sciences
- Moscow
- Russia
| | - Katarína Mikušová
- Comenius University in Bratislava
- Faculty of Natural Sciences
- Department of Biochemistry
- 84215 Bratislava
- Slovak Republic
| | - Vadim Makarov
- Bach Institute of Biochemistry
- Research Center of Biotechnology of the Russian Academy of Sciences
- Moscow
- Russia
| |
Collapse
|
45
|
Interplay between tolerance mechanisms to copper and acid stress in Escherichia coli. Proc Natl Acad Sci U S A 2017; 114:6818-6823. [PMID: 28611214 DOI: 10.1073/pnas.1620232114] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Copper (Cu) is a key antibacterial component of the host innate immune system and almost all bacterial species possess systems that defend against the toxic effects of excess Cu. The Cu tolerance system in Gram-negative bacteria is composed minimally of a Cu sensor (CueR) and a Cu export pump (CopA). The cueR and copA genes are encoded on the chromosome typically as a divergent but contiguous operon. In Escherichia coli, cueR and copA are separated by two additional genes, ybaS and ybaT, which confer glutamine (Gln)-dependent acid tolerance and contribute to the glutamate (Glu)-dependent acid resistance system in this organism. Here we show that Cu strongly inhibits growth of a ∆copA mutant strain in acidic cultures. We further demonstrate that Cu stress impairs the pathway for Glu biosynthesis via glutamate synthase, leading to decreased intracellular levels of Glu. Addition of exogenous Glu rescues the ∆copA mutant from Cu stress in acidic conditions. Gln is also protective but this relies on the activities of YbaS and YbaT. Notably, expression of both enzymes is up-regulated during Cu stress. These results demonstrate a link between Cu stress, acid stress, and Glu/Gln metabolism, establish a role for YbaS and YbaT in Cu tolerance, and suggest that subtle changes in core metabolic pathways may contribute to overcoming host-imposed copper toxicity.
Collapse
|
46
|
Poole K. At the Nexus of Antibiotics and Metals: The Impact of Cu and Zn on Antibiotic Activity and Resistance. Trends Microbiol 2017; 25:820-832. [PMID: 28526548 DOI: 10.1016/j.tim.2017.04.010] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/18/2017] [Accepted: 04/26/2017] [Indexed: 12/14/2022]
Abstract
Environmental influences on antibiotic activity and resistance can wreak havoc with in vivo antibiotic efficacy and, ultimately, antimicrobial chemotherapy. In nature, bacteria encounter a variety of metal ions, particularly copper (Cu) and zinc (Zn), as contaminants in soil and water, as feed additives in agriculture, as clinically-used antimicrobials, and as components of human antibacterial responses. Importantly, there is a growing body of evidence for Cu/Zn driving antibiotic resistance development in metal-exposed bacteria, owing to metal selection of genetic elements harbouring both metal and antibiotic resistance genes, and metal recruitment of antibiotic resistance mechanisms. Many classes of antibiotics also form complexes with metal cations, including Cu and Zn, and this can hinder (or enhance) antibiotic activity. This review highlights the ways in which Cu/Zn influence antibiotic resistance development and antibiotic activity, and in so doing impact in vivo antibiotic efficacy.
Collapse
Affiliation(s)
- Keith Poole
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada, K7L 3N6.
| |
Collapse
|
47
|
Dalecki AG, Crawford CL, Wolschendorf F. Copper and Antibiotics: Discovery, Modes of Action, and Opportunities for Medicinal Applications. Adv Microb Physiol 2017; 70:193-260. [PMID: 28528648 DOI: 10.1016/bs.ampbs.2017.01.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Copper is a ubiquitous element in the environment as well as living organisms, with its redox capabilities and complexation potential making it indispensable for many cellular functions. However, these same properties can be highly detrimental to prokaryotes and eukaryotes when not properly controlled, damaging many biomolecules including DNA, lipids, and proteins. To restrict free copper concentrations, all bacteria have developed mechanisms of resistance, sequestering and effluxing labile copper to minimize its deleterious effects. This weakness is actively exploited by phagocytes, which utilize a copper burst to destroy pathogens. Though administration of free copper is an unreasonable therapeutic antimicrobial itself, due to insufficient selectivity between host and pathogen, small-molecule ligands may provide an opportunity for therapeutic mimicry of the immune system. By modulating cellular entry, complex stability, resistance evasion, and target selectivity, ligand/metal coordination complexes can synergistically result in high levels of antibacterial activity. Several established therapeutic drugs, such as disulfiram and pyrithione, display remarkable copper-dependent inhibitory activity. These findings have led to development of new drug discovery techniques, using copper ions as the focal point. High-throughput screens for copper-dependent inhibitors against Mycobacterium tuberculosis and Staphylococcus aureus uncovered several new compounds, including a new class of inhibitors, the NNSNs. In this review, we highlight the microbial biology of copper, its antibacterial activities, and mechanisms to discover new inhibitors that synergize with copper.
Collapse
Affiliation(s)
- Alex G Dalecki
- The University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | |
Collapse
|
48
|
Turner AG, Ong CLY, Walker MJ, Djoko KY, McEwan AG. Transition Metal Homeostasis in Streptococcus pyogenes and Streptococcus pneumoniae. Adv Microb Physiol 2017; 70:123-191. [PMID: 28528647 DOI: 10.1016/bs.ampbs.2017.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Trace metals such as Fe, Mn, Zn and Cu are essential for various biological functions including proper innate immune function. The host immune system has complicated and coordinated mechanisms in place to either starve and/or overload invading pathogens with various metals to combat the infection. Here, we discuss the roles of Fe, Mn and Zn in terms of nutritional immunity, and also the roles of Cu and Zn in metal overload in relation to the physiology and pathogenesis of two human streptococcal species, Streptococcus pneumoniae and Streptococcus pyogenes. S. pneumoniae is a major human pathogen that is carried asymptomatically in the nasopharynx by up to 70% of the population; however, transition to internal sites can cause a range of diseases such as pneumonia, otitis media, meningitis and bacteraemia. S. pyogenes is a human pathogen responsible for diseases ranging from pharyngitis and impetigo, to severe invasive infections. Both species have overlapping capacity with respect to metal acquisition, export and regulation and how metal homeostasis relates to their virulence and ability to invade and survive within the host. It is becoming more apparent that metals have an important role to play in the control of infection, and with further investigations, it could lead to the potential use of metals in novel antimicrobial therapies.
Collapse
Affiliation(s)
- Andrew G Turner
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Cheryl-Lynn Y Ong
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Karrera Y Djoko
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Alastair G McEwan
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
49
|
8-Hydroxyquinolines Are Boosting Agents of Copper-Related Toxicity in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2016; 60:5765-76. [PMID: 27431227 DOI: 10.1128/aac.00325-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/06/2016] [Indexed: 12/13/2022] Open
Abstract
Copper (Cu) ions are likely the most important immunological metal-related toxin utilized in controlling bacterial infections. Impairment of bacterial Cu resistance reduces viability within the host. Thus, pharmacological enhancement of Cu-mediated antibacterial toxicity may lead to novel strategies in drug discovery and development. Screening for Cu toxicity-enhancing antibacterial molecules identified 8-hydroxyquinoline (8HQ) to be a potent Cu-dependent bactericidal inhibitor of Mycobacterium tuberculosis The MIC of 8HQ in the presence of Cu was 0.16 μM for replicating and nonreplicating M. tuberculosis cells. We found 8HQ's activity to be dependent on the presence of extracellular Cu and to be related to an increase in cell-associated labile Cu ions. Both findings are consistent with 8HQ acting as a Cu ionophore. Accordingly, we identified the 1:1 complex of 8HQ and Cu to be its active form, with Zn, Fe, or Mn neither enhancing nor reducing its Cu-specific action. This is remarkable, considering that the respective metal complexes have nearly identical structures and geometries. Finally, we found 8HQ to kill M. tuberculosis selectively within infected primary macrophages. Given the stark Cu-dependent nature of 8HQ activity, this is the first piece of evidence that Cu ions within macrophages may bestow antibacterial properties to a Cu-dependent inhibitor of M. tuberculosis In conclusion, our findings highlight the metal-binding ability of the 8-hydroxyquinoline scaffold to be a potential focus for future medicinal chemistry and highlight the potential of innate immunity-inspired screening platforms to reveal molecules with novel modes of action against M. tuberculosis.
Collapse
|
50
|
Low ML, Maigre L, Tahir MIM, Tiekink ER, Dorlet P, Guillot R, Ravoof TB, Rosli R, Pagès JM, Policar C, Delsuc N, Crouse KA. New insight into the structural, electrochemical and biological aspects of macroacyclic Cu(II) complexes derived from S-substituted dithiocarbazate schiff bases. Eur J Med Chem 2016; 120:1-12. [DOI: 10.1016/j.ejmech.2016.04.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 03/25/2016] [Accepted: 04/09/2016] [Indexed: 11/28/2022]
|