1
|
Development of robust genotype 1a hepatitis C replicons harboring adaptive mutations for facilitating the antiviral drug discovery and study of virus replication. J Virol Methods 2018; 259:10-17. [PMID: 29782889 DOI: 10.1016/j.jviromet.2018.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 11/20/2022]
Abstract
The hepatitis C virus (HCV) subgenomic replicon is a valuable tool for studying virus replication and HCV drug development. Despite the fact that HCV genotype 1a (HCV1a) is the most prevalent genotype in the United States, few HCV1a reporter replicon constructs have been reported, and their replication capacities are not as efficient as those of HCV1b or 2a, especially in transient expression. In this study, we selected efficient HCV1a replicons and characterized the novel adaptive mutations derived from stable HCV1a (strain H77) replicon cells after G418 selection. These novel adaptive mutations were scored in NS3 (A1065V, C1073S, N1227D, D1431Y, and E1556G), NS4A (I1694T and E1709V), and NS4B (G1871C). The D1431Y mutation alone or combinations of other adaptive mutations introduced into the parental HCV1a replicon construct was observed to differentially enhance either transient or stable expression of replicon. In particular, two replicon mutants VDYG (A1065V, N1227D, D1431Y, and E1556G within NS3) and VDYGRG, VDYG with two additional adaptive mutations (NS4A-K1691R and NS4B-E1726G), displayed robust replication and exhibited no impairment in the susceptibility of replicon activity to various known HCV inhibitors.
Collapse
|
2
|
Li Z, Chen ZW, Li H, Ren H, Hu P. Prevalence of hepatitis C virus-resistant association substitutions to direct-acting antiviral agents in treatment-naïve hepatitis C genotype 1b-infected patients in western China. Infect Drug Resist 2017; 10:377-392. [PMID: 29184422 PMCID: PMC5673042 DOI: 10.2147/idr.s146595] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Direct-acting antivirals (DAAs) against hepatitis C virus (HCV) are potent and highly efficacious. However, resistance-associated substitutions (RASs) relevant to DAAs can impair treatment effectiveness even at baseline. Moreover, the prevalence of baseline RASs in HCV genotype 1b-infected patients in western China is still unclear. Materials and methods Direct sequencing of the HCV NS3, NS5A, and NS5B regions was performed in baseline serum samples of 70 DAAs treatment-naïve HCV 1b-infected patients in western China. The sequences were analyzed with MEGA version 5.05 software. Evolutionary patterns of RASs and amino-acid covariance patterns in the NS3, NS5A, and NS5B genes were analyzed by MEGA and Cytoscape (version 3.2.1), respectively. Results The presence of at least one RAS in the NS3 region (C16S, T54S, Q80R/L, A87T, R117H, S122G, V132I, V170I) was observed in 85.48% (53 of 62) of patients, RASs in the NS5A region (L28M, R30Q, Q54H, P58S/T, Q62H/R, Y93H) were observed in 42.42% (28 of 66) of patients, and RASs in the NS5B region (N142S, A300T, C316N, A338V, S365A, L392I, M414L, I424V, A442T, V499A, S556G) were observed in 100% (44 of 44) of patients. Evolutionary patterns of RASs and amino-acid covariance patterns for the NS3, NS5A, and NS5B genes are reported. Conclusion The prevalence of RASs relevant to DAAs detected in the NS3, NS5A, and NS5B regions of HCV 1b from DAA treatment-naïve patients is high. Therefore, more attention should be paid to RASs associated with DAAs in the upcoming DAA-treatment era in China.
Collapse
Affiliation(s)
- Zhao Li
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Wei Chen
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hu Li
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Ren
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Hu
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Ikram A, Obaid A, Awan FM, Hanif R, Naz A, Paracha RZ, Ali A, Janjua HA. Identification of drug resistance and immune-driven variations in hepatitis C virus (HCV) NS3/4A, NS5A and NS5B regions reveals a new approach toward personalized medicine. Antiviral Res 2017; 137:112-124. [PMID: 27984060 DOI: 10.1016/j.antiviral.2016.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 10/06/2016] [Accepted: 10/21/2016] [Indexed: 02/07/2023]
Abstract
Cellular immune responses (T cell responses) during hepatitis C virus (HCV) infection are significant factors for determining the outcome of infection. HCV adapts to host immune responses by inducing mutations in its genome at specific sites that are important for HLA processing/presentation. Moreover, HCV also adapts to resist potential drugs that are used to restrict its replication, such as direct-acting antivirals (DAAs). Although DAAs have significantly reduced disease burden, resistance to these drugs is still a challenge for the treatment of HCV infection. Recently, drug resistance mutations (DRMs) observed in HCV proteins (NS3/4A, NS5A and NS5B) have heightened concern that the emergence of drug resistance may compromise the effectiveness of DAAs. Therefore, the NS3/4A, NS5A and NS5B drug resistance variations were investigated in this study, and their prevalence was examined in a large number of protein sequences from all HCV genotypes. Furthermore, potential CD4+ and CD8+ T cell epitopes were predicted and their overlap with genetic variations was explored. The findings revealed that many reported DRMs within NS3/4A, NS5A and NS5B are not drug-induced; rather, they are already present in HCV strains, as they were also detected in HCV-naïve patients. This study highlights several hot spots in which HLA and drug selective pressure overlap. Interestingly, these overlapping mutations were frequently observed among many HCV genotypes. This study implicates that knowledge of the host HLA type and HCV subtype/genotype can provide important information in defining personalized therapy.
Collapse
Affiliation(s)
- Aqsa Ikram
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Ayesha Obaid
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Faryal Mehwish Awan
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Rumeza Hanif
- Department of Healtcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Anam Naz
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Rehan Zafar Paracha
- Department of Computer Sciences, RCMS, National University of Sciences and Technology (NUST), Pakistan
| | - Amjad Ali
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Hussnain Ahmed Janjua
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan.
| |
Collapse
|
4
|
Hepatitis C virus RNA replication and virus particle assembly require specific dimerization of the NS4A protein transmembrane domain. J Virol 2013; 88:628-42. [PMID: 24173222 DOI: 10.1128/jvi.02052-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hepatitis C virus (HCV) NS4A is a single-pass transmembrane (TM) protein essential for viral replication and particle assembly. The sequence of the NS4A TM domain is highly conserved, suggesting that it may be important for protein-protein interactions. To test this hypothesis, we measured the potential dimerization of the NS4A TM domain in a well-characterized two-hybrid TM protein interaction system. The NS4A TM domain exhibited a strong homotypic interaction that was comparable in affinity to glycophorin A, a well-studied human blood group antigen that forms TM homodimers. Several mutations predicted to cluster on a common surface of the NS4A TM helix caused significant reductions in dimerization, suggesting that these residues form an interface for NS4A dimerization. Mutations in the NS4A TM domain were further examined in the JFH-1 genotype 2a replicon system; importantly, all mutations that destabilized NS4A dimers also caused defects in RNA replication and/or virus assembly. Computational modeling of NS4A TM interactions suggests a right-handed dimeric interaction of helices with an interface that is consistent with the mutational effects. Furthermore, defects in NS4A oligomerization and virus particle assembly of two mutants were rescued by NS4A A15S, a TM mutation recently identified through forward genetics as a cell culture-adaptive mutation. Together, these data provide the first example of a functionally important TM dimer interface within an HCV nonstructural protein and reveal a fundamental role of the NS4A TM domain in coordinating HCV RNA replication and virus particle assembly.
Collapse
|
5
|
Adapted J6/JFH1-based Hepatitis C virus recombinants with genotype-specific NS4A show similar efficacies against lead protease inhibitors, alpha interferon, and a putative NS4A inhibitor. Antimicrob Agents Chemother 2013; 57:6034-49. [PMID: 24060868 DOI: 10.1128/aac.01176-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
To facilitate studies of hepatitis C virus (HCV) NS4A, we aimed at developing J6/JFH1-based recombinants with genotype 1- to 7-specific NS4A proteins. We developed efficient culture systems expressing NS4A proteins of genotypes (isolates) 1a (H77 and TN), 1b (J4), 2a (J6), 4a (ED43), 5a (SA13), 6a (HK6a), and 7a (QC69), with peak infectivity titers of ∼3.5 to 4.5 log10 focus-forming units per ml. Except for genotype 2a (J6), growth depended on adaptive mutations identified in long-term culture. Genotype 1a, 1b, and 4a recombinants were adapted by amino acid substitutions F772S (p7) and V1663A (NS4A), while 5a, 6a, and 7a recombinants required additional substitutions in the NS3 protease and/or NS4A. We demonstrated applicability of the developed recombinants for study of antivirals. Genotype 1 to 7 NS4A recombinants showed similar responses to the protease inhibitors telaprevir (VX-950), boceprevir (Sch503034), simeprevir (TMC435350), danoprevir (ITMN-191), and vaniprevir (MK-7009), to alpha interferon 2b, and to the putative NS4A inhibitor ACH-806. The efficacy of ACH-806 was lower than that of protease inhibitors and was not influenced by changes at amino acids 1042 and 1065 (in the NS3 protease), which have been suggested to mediate resistance to ACH-806 in replicons. Genotype 1a, 1b, and 2a recombinants showed viral spread under long-term treatment with ACH-806, without acquisition of resistance mutations in the NS3-NS4A region. Relatively high concentrations of ACH-806 inhibited viral assembly, but not replication, in a single-cycle production assay. The developed HCV culture systems will facilitate studies benefitting from expression of genotype-specific NS4A in a constant backbone in the context of the complete viral replication cycle, including functional studies and evaluations of the efficacy of antivirals.
Collapse
|
6
|
Bartolini B, Giombini E, Zaccaro P, Selleri M, Rozera G, Abbate I, Comandini UV, Ippolito G, Solmone M, Capobianchi MR. Extent of HCV NS3 protease variability and resistance-associated mutations assessed by next generation sequencing in HCV monoinfected and HIV/HCV coinfected patients. Virus Res 2013; 177:205-8. [PMID: 23954579 DOI: 10.1016/j.virusres.2013.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 02/07/2023]
Abstract
HCV quasispecies variability represents the background for the selection of mutations and for the development of drug resistance. Natural aminoacid changes in NS3, associated with reduced protease inhibitor susceptibility, have been observed in treatment-naïve patients. Massively parallel sequencing has been used to analyze NS3 quasispecies in patients infected with HCV genotype 1, naive to anti-HCV treatment, with/without HIV-coinfection, to establish the genetic heterogeneity and the presence of amino acid substitutions at positions responsible for drug resistance. Genomes carrying substitutions represented either predominant or minority components of viral quasispecies, and were observed in 85.7% of patients. Multiple substitutions, frequently associated on the same haplotype, were observed in 46.4% of patients. High resistance combinations were not detected, neither on the same genome, nor in the whole quasispecies. Heterogeneity of HCV NS3 was lower in HIV-coinfected as compared to HCV-monoinfected patients, but factors underlying this difference remain to be established. Although the relevance of naturally occurring mutations with respect of resistance development and probability of success of direct acting antivirals is questioned, UDPS may be beneficial to help understanding viral dynamics, providing high resolution view of viral diversity.
Collapse
Affiliation(s)
- Barbara Bartolini
- "L. Spallanzani" National Institute for Infectious Diseases, Via Portuense 292, 00149 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Newman RM, Kuntzen T, Weiner B, Berical A, Charlebois P, Kuiken C, Murphy DG, Simmonds P, Bennett P, Lennon NJ, Birren BW, Zody MC, Allen TM, Henn MR. Whole genome pyrosequencing of rare hepatitis C virus genotypes enhances subtype classification and identification of naturally occurring drug resistance variants. J Infect Dis 2013; 208:17-31. [PMID: 23136221 PMCID: PMC3666132 DOI: 10.1093/infdis/jis679] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 08/08/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Infection with hepatitis C virus (HCV) is a burgeoning worldwide public health problem, with 170 million infected individuals and an estimated 20 million deaths in the coming decades. While 6 main genotypes generally distinguish the global geographic diversity of HCV, a multitude of closely related subtypes within these genotypes are poorly defined and may influence clinical outcome and treatment options. Unfortunately, the paucity of genetic data from many of these subtypes makes time-consuming primer walking the limiting step for sequencing understudied subtypes. METHODS Here we combined long-range polymerase chain reaction amplification with pyrosequencing for a rapid approach to generate the complete viral coding region of 31 samples representing poorly defined HCV subtypes. RESULTS Phylogenetic classification based on full genome sequences validated previously identified HCV subtypes, identified a recombinant sequence, and identified a new distinct subtype of genotype 4. Unlike conventional sequencing methods, use of deep sequencing also facilitated characterization of minor drug resistance variants within these uncommon or, in some cases, previously uncharacterized HCV subtypes. CONCLUSIONS These data aid in the classification of uncommon HCV subtypes while also providing a high-resolution view of viral diversity within infected patients, which may be relevant to the development of therapeutic regimens to minimize drug resistance.
Collapse
Affiliation(s)
- Ruchi M Newman
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Alves R, Queiroz ATL, Pessoa MG, da Silva EF, Mazo DFC, Carrilho FJ, Carvalho-Filho RJ, de Carvalho IMVG. The presence of resistance mutations to protease and polymerase inhibitors in Hepatitis C virus sequences from the Los Alamos databank. J Viral Hepat 2013; 20:414-421. [PMID: 23647958 DOI: 10.1111/jvh.12051] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/15/2012] [Indexed: 12/14/2022]
Abstract
Several new direct-acting antiviral (DAA) drugs are in development for chronic hepatitis C viral (HCV) infection, and NS3-NS4A serine protease and the NS5B RNA-dependent RNA polymerase have been the major targets. HCV variants displaying drug-resistant phenotypes have been observed both in vitro and during clinical trials. Our aim was to characterize amino acid changes at positions previously associated with resistance in protease (NS3) and polymerase (NS5B) regions from treatment-naïve HCV patients infected with genotypes 1a, 1b and 3a. All 1383 NS3 protease sequences (genotype 1a = 680, 1b = 498 and 3a = 205) and 806 NS5B polymerase sequences (genotypes 1a = 471, 1b = 329, 3a = 6) were collected from Los Alamos databank. Genotype 3a protease sequences showed the typical low-level resistance mutation V36L. NS3 sequences from other genotypes presented mutations on positions 36, 39, 41, 43, 54, 80, 109, 155 and 168 in a frequency lower than 2%, except for the mutation Q80R found in 35% of genotype 1a isolates. Polymerase sequences from genotype 3a patients showed five typical mutations: L419I, I424V, I482L, V499A and S556G. Two positions presented high polymorphism in the NS5B region from genotype 1a (V499A) and genotype 1b (C316N) subjects. Our results demonstrated a natural profile of genotype 3a that can be associated with the pre-existence of HCV variants resistant to first-generation protease inhibitors and to non-nucleoside polymerase inhibitors. Likewise, genotype 1b isolates and genotype 1a sequences exhibited pre-existing mutations associated with resistance to Palm II and Thumb I polymerase inhibitors, respectively.
Collapse
Affiliation(s)
- R Alves
- Laboratório de Hepatologia Molecular Aplicada, Setor de Hepatites, Divisão de Gastroenterologia, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
9
|
ACH-806, an NS4A antagonist, inhibits hepatitis C virus replication by altering the composition of viral replication complexes. Antimicrob Agents Chemother 2013; 57:3168-77. [PMID: 23629709 DOI: 10.1128/aac.02630-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Treatment of hepatitis C patients with direct-acting antiviral drugs involves the combination of multiple small-molecule inhibitors of distinctive mechanisms of action. ACH-806 (or GS-9132) is a novel, small-molecule inhibitor specific for hepatitis C virus (HCV). It inhibits viral RNA replication in HCV replicon cells and was active in genotype 1 HCV-infected patients in a proof-of-concept clinical trial (1). Here, we describe a potential mechanism of action (MoA) wherein ACH-806 alters viral replication complex (RC) composition and function. We found that ACH-806 did not affect HCV polyprotein translation and processing, the early events of the formation of HCV RC. Instead, ACH-806 triggered the formation of a homodimeric form of NS4A with a size of 14 kDa (p14) both in replicon cells and in Huh-7 cells where NS4A was expressed alone. p14 production was negatively regulated by NS3, and its appearance in turn was associated with reductions in NS3 and, especially, NS4A content in RCs due to their accelerated degradation. A previously described resistance substitution near the N terminus of NS3, where NS3 interacts with NS4A, attenuated the reduction of NS3 and NS4A conferred by ACH-806 treatment. Taken together, we show that the compositional changes in viral RCs are associated with the antiviral activity of ACH-806. Small molecules, including ACH-806, with this novel MoA hold promise for further development and provide unique tools for clarifying the functions of NS4A in HCV replication.
Collapse
|
10
|
Holler TP, Parkinson T, Pryde DC. Targeting the non-structural proteins of hepatitis C virus: beyond hepatitis C virus protease and polymerase. Expert Opin Drug Discov 2013; 4:293-314. [PMID: 23489127 DOI: 10.1517/17460440902762802] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Chronic hepatitis C virus (HCV) infection is a main cause of cirrhosis of the liver and hepatocellular carcinoma. The standard of care is a combination of pegylated interferon with ribavirin, a regimen that has undesirable side effects and is frequently ineffective. Compounds targeting HCV protease and polymerase are in late-stage clinical trials and have been extensively reviewed elsewhere. OBJECTIVE To review and evaluate the progress towards finding novel HCV antivirals targeting HCV proteins beyond the already precedented NS3 protease and NS5B polymerase. METHODS Searches of CAplus and Medline databases were combined with information from key conferences. This review focuses on NS2/3 serine protease, NS3 helicase activity and the non-structural proteins 4A, 4B and 5A. CONCLUSIONS Use of the replicon model of HCV replication and biochemical assays of specific targets has allowed screening of vast libraries of compounds, but resulted in clinical candidates from only NS4A and NS5A. The field is hindered by a lack of good chemical matter that inhibits the remaining enzymes from HCV, and a lack of understanding of the functions of non-structural proteins 4A, 4B and 5A in the replication of HCV.
Collapse
Affiliation(s)
- Tod P Holler
- Associate Research Fellow Pfizer Global Research and Development, Antiviral Biology, Ramsgate Road, Sandwich, Kent CT13 9NJ, UK +44 130 464 6387 ; +44 130 465 1819 ;
| | | | | |
Collapse
|
11
|
Vallet S, Viron F, Henquell C, Le Guillou-Guillemette H, Lagathu G, Abravanel F, Trimoulet P, Soussan P, Schvoerer E, Rosenberg A, Gouriou S, Colson P, Izopet J, Payan C. NS3 protease polymorphism and natural resistance to protease inhibitors in French patients infected with HCV genotypes 1-5. Antivir Ther 2012; 16:1093-102. [PMID: 22024525 DOI: 10.3851/imp1900] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Resistant HCV populations may pre-exist in patients before NS3 protease inhibitor therapy and would likely be selected under specific antiviral pressure. The higher prevalence and lower rate of response to treatment associated with HCV genotype 1 infections has led to drug discovery efforts being focused primarily on enzymes produced by this genotype. Protease inhibitors may also be useful for non-genotype-1-infected patients, notably for non-responders. METHODS We investigated the prevalence of dominant resistance mutations and polymorphism in 298 HCV protease-inhibitor-naive patients infected with HCV genotypes 1, 2, 3, 4 or 5. Genotype-specific NS3 primers were designed to amplify and sequence the NS3 protease gene. RESULTS None of the 233 analysed sequences contained major telaprevir (TVR) or boceprevir (BOC) resistance mutations (R155K/T/M, A156S/V/T and V170A). Some substitutions (V36L, T54S, Q80K/R, D168Q and V170T) linked to low or moderate decreases in HCV sensitivity to protease inhibitors were prevalent according to genotype (between 2% and 100%). Other than genotype signature mutations at positions 36, 80 and 168, the most frequent substitution was T54S (4 genotype 1 and 2 genotype 4 sequences). All genotype 2-5 sequences had the non-genotype-1 signature V36L mutation known to confer low-level resistance to both TVR and BOC. CONCLUSIONS We have developed an HCV protease NS3 inhibitor resistance genotyping tool suitable for use with HCV genotypes 1-5. Polymorphism data is valuable for interpreting genotypic resistance profiles in cases of failure of anti-HCV NS3 protease treatment.
Collapse
Affiliation(s)
- Sophie Vallet
- Université de Brest, UFR Médecine et des Sciences de la Santé, LUBEM, EA3882, Brest, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Genotype and subtype profiling of PSI-7977 as a nucleotide inhibitor of hepatitis C virus. Antimicrob Agents Chemother 2012; 56:3359-68. [PMID: 22430955 DOI: 10.1128/aac.00054-12] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PSI-7977, a prodrug of 2'-F-2'-C-methyluridine monophosphate, is the purified diastereoisomer of PSI-7851 and is currently being investigated in phase 3 clinical trials for the treatment of hepatitis C. In this study, we profiled the activity of PSI-7977 and its ability to select for resistance using a number of different replicon cells. Results showed that PSI-7977 was active against genotype (GT) 1a, 1b, and 2a (strain JFH-1) replicons and chimeric replicons containing GT 2a (strain J6), 2b, and 3a NS5B polymerase. Cross-resistance studies using GT 1b replicons confirmed that the S282T change conferred resistance to PSI-7977. Subsequently, we evaluated the ability of PSI-7977 to select for resistance using GT 1a, 1b, and 2a (JFH-1) replicon cells. S282T was the common mutation selected among all three genotypes, but while it conferred resistance to PSI-7977 in GT 1a and 1b, JFH-1 GT 2a S282T showed only a very modest shift in 50% effective concentration (EC(50)) for PSI-7977. Sequence analysis of the JFH-1 NS5B region indicated that additional amino acid changes were selected both prior to and after the emergence of S282T. These include T179A, M289L, I293L, M434T, and H479P. Residues 179, 289, and 293 are located within the finger and palm domains, while 434 and 479 are located on the surface of the thumb domain. Data from the JFH-1 replicon variants showed that amino acid changes within the finger and palm domains together with S282T were required to confer resistance to PSI-7977, while the mutations on the thumb domain serve to enhance the replication capacity of the S282T replicons.
Collapse
|
13
|
Van Schoubroeck B, Van Acker K, Dams G, Jochmans D, Clayton R, Berke JM, Lievens S, Van der Heyden J, Tavernier J. MAPPIT as a high-throughput screening assay for modulators of protein-protein interactions in HIV and HCV. Methods Mol Biol 2012; 812:295-307. [PMID: 22218868 DOI: 10.1007/978-1-61779-455-1_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The discovery of novel antivirals for HIV and HCV has been a focus of intensive research for many years. Where the inhibition of critical viral enzymes by small molecules has proven effective for many viruses, there is considerable merit in pursuing protein-protein interactions (PPIs) as targets for therapeutic intervention. The mammalian protein-protein interaction trap (MAPPIT) is a two-hybrid system used for the study of PPIs. The bait and prey proteins are linked to deficient cytokine receptor chimeras, where the bait and prey interaction and subsequent ligand stimulation restores JAK-STAT signaling, resulting in reporter gene expression controlled by a STAT3-responsive promoter. We report the use of MAPPIT as a high-throughput screening assay for the discovery of inhibitors or stimulators of the Vif-APOBEC3G interaction and the reverse transcriptase heterodimerization (RTp66-RTp51) for HIV and the NS4A-NS3 interaction for HCV.
Collapse
|
14
|
Abstract
Treatment of chronic hepatitis C is currently based on a combination of pegylated interferon-o! and ribavirin. Neither drug exerts direct selective pressure on viral functions, meaning that interferon-a/ribavirin treatment failure is not due to selection of interferon-a- or ribavirin-resistant viral variants. Several novel antiviral approaches are currently in preclinical or clinical development, and most target viral enzymes and functions, such as hepatitis C virus protease and polymerase. These new drugs all potentially select resistant viral variants both in vitro and in vivo, and resistance is therefore likely to become an important issue in clinical practice.
Collapse
Affiliation(s)
- Jean-Michel Pawlotsky
- National Reference Center for Viral Hepatitis B, C and Delta, Department of Virology, Hôpital Henri Mondor, Université Paris 12, Créteil, France; and INSERM U955, Créteil, France
| |
Collapse
|
15
|
Robinson M, Tian Y, Pagratis N, Delaney WE. Screening of Hepatitis C Virus Inhibitors Using Genotype 1a HCV Replicon Cell Lines. ACTA ACUST UNITED AC 2011; Chapter 17:Unit17.7. [DOI: 10.1002/9780471729259.mc1707s22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | - Yang Tian
- Gilead Sciences Foster City California
| | | | | |
Collapse
|
16
|
Comparative study of the genetic barriers and pathways towards resistance of selective inhibitors of hepatitis C virus replication. Antimicrob Agents Chemother 2011; 55:4103-13. [PMID: 21709100 DOI: 10.1128/aac.00294-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hepatitis C virus (HCV) inhibitors include direct-acting antivirals (DAAs) such as NS3 serine protease inhibitors, nucleoside and nonnucleoside polymerase inhibitors, and host-targeting antivirals (HTAs) such as cyclophilin inhibitors that have been developed in recent years. Drug-resistant HCV variants have been reported both in vitro and in the clinical setting for most classes of drugs. We report a comparative study in which the genetic barrier to drug resistance of a representative selection of these inhibitors is evaluated employing a number of resistance selection protocols. The NS3 protease inhibitors VX-950 and BILN 2061, the nucleoside polymerase inhibitor 2'-C-methylcytidine, three nonnucleoside polymerase inhibitors (thiophene carboxylic acid, benzimidazole, and benzothiadiazine), and DEB025 were included. For each drug and passage in the selection process, the phenotype and genotype of the drug-resistant replicon were determined. For a number of molecules (BILN 2061 and nonnucleoside inhibitors), drug-resistant variants were readily selected when wild-type replicon-containing cells were directly cultured in the presence of high concentrations of the inhibitor. Resistance to DEB025 could be selected only following a lengthy stepwise selection procedure. For some DAAs, the signature mutations that emerged under inhibitor pressure differed depending on the selection protocol that was employed. Replication fitness of resistant mutants revealed that the C445F mutation in the RNA-dependent RNA polymerase can restore loss of fitness caused by a number of unfit resistance mutations. These data provide important insights into the various pathways leading to drug resistance and allow a direct comparison of the genetic barriers of various HCV drugs.
Collapse
|
17
|
Rehman S, Ashfaq UA, Javed T. Antiviral drugs against hepatitis C virus. GENETIC VACCINES AND THERAPY 2011; 9:11. [PMID: 21699699 PMCID: PMC3136400 DOI: 10.1186/1479-0556-9-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 06/23/2011] [Indexed: 12/20/2022]
Abstract
Hepatitis C virus (HCV) infection is a major worldwide problem causes acute and chronic HCV infection. Current treatment of HCV includes pegylated interferon-α (PEG IFN- α) plus ribavirin (RBV) which has significant side effects depending upon the type of genotype. Currently, there is a need to develop antiviral agents, both from synthetic chemistry and Herbal sources. In the last decade, various novel HCV replication, helicase and entry inhibitors have been synthesized and some of which have been entered in different phases of clinical trials. Successful results have been acquired by executing combinational therapy of compounds with standard regime in different HCV replicons. Even though, diverse groups of compounds have been described as antiviral targets against HCV via Specifically Targeted Antiviral Therapy for hepatitis C (STAT-C) approach (in which compounds are designed to directly block HCV or host proteins concerned in HCV replication), still there is a need to improve the properties of existing antiviral compounds. In this review, we sum up potent antiviral compounds against entry, unwinding and replication of HCV and discussed their activity in combination with standard therapy. Conclusively, further innovative research on chemical compounds will lead to consistent standard therapy with fewer side effects.
Collapse
Affiliation(s)
- Sidra Rehman
- Division of Molecular Medicine, National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Usman A Ashfaq
- Division of Molecular Medicine, National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Tariq Javed
- Division of Molecular Medicine, National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
18
|
Mo H, Yang C, Wang K, Wang Y, Huang M, Murray B, Qi X, Sun SC, Deshpande M, Rhodes G, Miller MD. Estimation of inhibitory quotient using a comparative equilibrium dialysis assay for prediction of viral response to hepatitis C virus inhibitors. J Viral Hepat 2011; 18:338-48. [PMID: 20456634 DOI: 10.1111/j.1365-2893.2010.01314.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The relationship of inhibitory quotient (IQ) with the virologic response to specific inhibitors of human hepatitis C virus (HCV) and the best method to correct for serum protein binding in calculating IQ have not been addressed. A common method is to determine a fold shift by comparing the EC(50) values determined in cell culture in the absence and presence of human serum (fold shift in EC(50) ), but this method has a number of disadvantages. In the present study, the fold shifts in drug concentrations between 100% human plasma (HP) and cell culture medium (CCM) were directly measured using a modified comparative equilibrium dialysis (CED) assay for three HCV protease inhibitors (PIs) and for a novel HCV inhibitor GS-9132. The fold shift values in drug concentration between the HP and CCM (CED ratio) were ∼1 for SCH-503034, VX-950 and GS-9132 and 13 for BILN-2061. These values were ∼3-10-fold lower than the fold shift values calculated from the EC(50) assay for all inhibitors except BILN-2061. Using the CED values, a consistent pharmacokinetic and pharmacodynamic relationship was observed for the four HCV inhibitors analysed. Specifically, an approximate 1 log(10) reduction in HCV RNA was achieved with an IQ close to 1, while 2-3 and greater log(10) reductions in HCV RNA were achieved with IQ values of 3-5 and greater, respectively. Thus, use of CED to define IQ provides a predictive and quantitative approach for the assessment of the in vivo potency of HCV PIs and GS-9132. This method provides a framework for the evaluation of other classes of drugs that are bound by serum proteins but require the presence of serum for in vitro evaluation.
Collapse
Affiliation(s)
- H Mo
- Department of Clinical Virology, Gilead Sciences Inc., Foster City, CA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Susceptibility of treatment-naive hepatitis C virus (HCV) clinical isolates to HCV protease inhibitors. Antimicrob Agents Chemother 2010; 54:5288-97. [PMID: 20855726 DOI: 10.1128/aac.00777-10] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In order to assess the natural variation in susceptibility to hepatitis C virus (HCV) NS3 protease inhibitors (PIs) among untreated HCV patient samples, the susceptibilities of 39 baseline clinical isolates were determined using a transient-replication assay on a panel of HCV PIs, including two α-ketoamides (VX-950 and SCH-503034) and three macrocyclic inhibitors (MK-7009, ITMN-191, and TMC-435350). Some natural variation in susceptibility to all HCV PIs tested was observed among the baseline clinical isolates. The susceptibility to VX-950 correlated strongly with the susceptibility to SCH-503034. A moderate correlation was observed between the susceptibilities to ITMN-191 and MK-7009. In contrast, the phenotypic correlations between the α-ketoamides and macrocyclic inhibitors were significantly lower. This difference is partly attributable to reduced susceptibility of the HCV variants containing the NS3 polymorphism Q80K (existing in 47% of genotype 1a isolates) to the macrocyclic compounds but no change in the sensitivity of the same variants to the α-ketoamides tested. Our results suggest that the natural variation in baseline susceptibility may contribute to different degrees of antiviral response among patients in vivo, particularly at lower doses.
Collapse
|
20
|
Zhao Y, Huang M. Studies on hepatitis C virus resistance to inhibitors in replicon systems. CURRENT PROTOCOLS IN PHARMACOLOGY 2010; Chapter 13:Unit 13B.2. [PMID: 22294367 DOI: 10.1002/0471141755.ph13b02s50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Viruses evolve under selection pressure from a particular antiviral agent, resulting in the emergence of organisms that are not susceptible to the drug. This process is referred to as "virus resistance induction." While conventional in vitro resistance studies are conducted using infectious viruses, the lack of a robust hepatitis C virus (HCV) infection system in cell culture makes such an approach impossible in this case. Instead, cell lines harboring a self-replicating HCV RNA (or HCV replicon) are used for this purpose. The protocols detailed in this unit describe methods for studying HCV resistance to inhibitors, including the selection of replicon variants resistant to HCV inhibitors, characterization of these variants for their phenotypes and genotypes, and determination of the role of the mutation(s) identified in their genomes. The results from such studies are not only important for lead identification and confirmation of drug targets, but also aid in monitoring the appearance of resistant variants in clinical settings.
Collapse
Affiliation(s)
- Yongsen Zhao
- Achillion Pharmaceuticals, New Haven, Connecticut, USA
| | | |
Collapse
|
21
|
Shiryaev SA, Strongin AY. Structural and functional parameters of the flaviviral protease: a promising antiviral drug target. Future Virol 2010; 5:593-606. [PMID: 21076642 PMCID: PMC2976050 DOI: 10.2217/fvl.10.39] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Flaviviruses have a single-strand, positive-polarity RNA genome that encodes a single polyprotein. The polyprotein is comprised of seven nonstructural (NS) and three structural proteins. The N- and C-terminal parts of NS3 represent the serine protease and the RNA helicase, respectively. The cleavage of the polyprotein by the protease is required to produce the individual viral proteins, which assemble a new viral progeny. Conversely, inactivation of the protease blocks viral infection. Both the protease and the helicase are conserved among flaviviruses. As a result, NS3 is a promising drug target in flaviviral infections. This article examines the West Nile virus NS3 with an emphasis on the structural and functional parameters of the protease, the helicase and their cofactors.
Collapse
Affiliation(s)
- Sergey A Shiryaev
- Inflammatory & Infectious Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Alex Y Strongin
- Inflammatory & Infectious Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
22
|
Development of novel antiviral therapies for hepatitis C virus. Virol Sin 2010; 25:246-66. [PMID: 20960299 DOI: 10.1007/s12250-010-3140-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 05/29/2010] [Indexed: 02/08/2023] Open
Abstract
Over 170 million people worldwide are infected with hepatitis C virus (HCV), a major cause of liver diseases. Current interferon-based therapy is of limited efficacy and has significant side effects and more effective and better tolerated therapies are urgently needed. HCV is a positive, single-stranded RNA virus with a 9.6 kb genome that encodes ten viral proteins. Among them, the NS3 protease and the NS5B polymerase are essential for viral replication and have been the main focus of drug discovery efforts. Aided by structure-based drug design, potent and specific inhibitors of NS3 and NS5B have been identified, some of which are in late stage clinical trials and may significantly improve current HCV treatment. Inhibitors of other viral targets such as NS5A are also being pursued. However, HCV is an RNA virus characterized by high replication and mutation rates and consequently, resistance emerges quickly in patients treated with specific antivirals as monotherapy. A complementary approach is to target host factors such as cyclophilins that are also essential for viral replication and may present a higher genetic barrier to resistance. Combinations of these inhibitors of different mechanism are likely to become the essential components of future HCV therapies in order to maximize antiviral efficacy and prevent the emergence of resistance.
Collapse
|
23
|
Kang IJ, Wang LW, Yeh TK, Lee CC, Lee YC, Hsu SJ, Wu YS, Wang JC, Chao YS, Yueh A, Chern JH. Synthesis, activity, and pharmacokinetic properties of a series of conformationally-restricted thiourea analogs as novel hepatitis C virus inhibitors. Bioorg Med Chem 2010; 18:6414-21. [PMID: 20675142 DOI: 10.1016/j.bmc.2010.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 06/30/2010] [Accepted: 07/01/2010] [Indexed: 01/06/2023]
Abstract
A series of novel conformationally-restricted thiourea analogs were designed, synthesized, and evaluated for their anti-HCV activity. Herein we report the synthesis, structure-activity relationships (SARs), and pharmacokinetic properties of this new class of thiourea compounds that showed potent inhibitory activities against HCV in the cell-based subgenomic HCV replicon assay. Among compounds tested, the fluorene compound 4b was found to possess the most potent activity (EC(50)=0.3 microM), lower cytotoxicity (CC(50)>50 microM), and significantly better pharmacokinetic properties compared to its corresponding fluorenone compound 4c.
Collapse
Affiliation(s)
- Iou-Jiun Kang
- Division of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lange CM, Sarrazin C, Zeuzem S. Review article: specifically targeted anti-viral therapy for hepatitis C - a new era in therapy. Aliment Pharmacol Ther 2010; 32:14-28. [PMID: 20374226 DOI: 10.1111/j.1365-2036.2010.04317.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Novel, directly acting anti-viral agents, also named 'specifically targeted anti-viral therapy for hepatitis C' (STAT-C) compounds, are currently under development. AIM To review the potential of STAT-C agents which are currently under clinical development, with a focus on agents that target HCV proteins. METHODS Studies evaluating STAT-C compounds were identified by systematic literature search using PubMed as well as databases of abstracts presented in English at recent liver and gastroenterology congresses. RESULTS Numerous directly-acting anti-viral agents are currently under clinical phase I-III evaluation. Final results of phase II clinical trials evaluating the most advanced compounds telaprevir and boceprevir indicate that the addition of these NS3/4A protease inhibitors to pegylated interferon-alfa and ribavirin strongly improves the chance to achieve a SVR in treatment-naive HCV genotype 1 patient as well as in prior nonresponders and relapsers to standard therapy. Monotherapy with directly acting anti-virals is not suitable. NS5B polymerase inhibitors in general have a lower anti-viral efficacy than protease inhibitors. CONCLUSIONS STAT-C compounds in addition to pegylated interferon-alfa and ribavirin can improve SVR rates at least in HCV genotype 1 patients. Future research needs to evaluate whether a SVR can be achieved by combination therapies of STAT-C compounds in interferon-free regimens.
Collapse
Affiliation(s)
- C M Lange
- Department of Medicine, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | | | | |
Collapse
|
25
|
Delang L, Coelmont L, Neyts J. Antiviral therapy for hepatitis C virus: beyond the standard of care. Viruses 2010; 2:826-866. [PMID: 21994657 PMCID: PMC3185663 DOI: 10.3390/v2040826] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 03/09/2010] [Accepted: 03/17/2010] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) represents a major health burden, with an estimated 180 million chronically infected individuals worldwide. These patients are at increased risk of developing liver cirrhosis and hepatocellular carcinoma. Infection with HCV is the leading cause of liver transplantation in the Western world. Currently, the standard of care (SoC) consists of pegylated interferon alpha (pegIFN-α) and ribavirin (RBV). However this therapy has a limited efficacy and is associated with serious side effects. Therefore more tolerable, highly potent inhibitors of HCV replication are urgently needed. Both Specifically Targeted Antiviral Therapy for HCV (STAT-C) and inhibitors that are believed to interfere with the host-viral interaction are discussed.
Collapse
Affiliation(s)
| | | | - Johan Neyts
- Rega Institute for Medical Research, KULeuven, Minderbroedersstraat 10, 3000 Leuven, Belgium; E-Mails: (L.D.); (L.C.)
| |
Collapse
|
26
|
A novel class of meso-tetrakis-porphyrin derivatives exhibits potent activities against hepatitis C virus genotype 1b replicons in vitro. Antimicrob Agents Chemother 2009; 54:197-206. [PMID: 19901090 DOI: 10.1128/aac.01206-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recent years have seen the rapid advancement of new therapeutic agents against hepatitis C virus (HCV) in response to the need for treatment that is unmet by interferon (IFN)-based therapies. Most antiviral drugs discovered to date are small molecules that modulate viral enzyme activities. In the search for highly selective protein-binding molecules capable of disrupting the viral life cycle, we have identified a class of anionic tetraphenylporphyrins as potent and specific inhibitors of the HCV replicons. Based on the structure-activity relationship studies reported herein, meso-tetrakis-(3,5-dicarboxy-4,4'-biphenyl) porphyrin was found to be the most potent inhibitor of HCV genotype 1b (Con1) replicon systems but was less effective against the genotype 2a (JFH-1) replicon. This compound induced a reduction of viral RNA and protein levels when acting in the low nanomolar range. Moreover, the compound could suppress replicon rebound in drug-treated cells and exhibited additive to synergistic effects when combined with protease inhibitor BILN 2061 or with IFN-alpha-2a. Our results demonstrate the potential use of tetracarboxyphenylporphyrins as potent anti-HCV agents.
Collapse
|
27
|
Kang IJ, Wang LW, Hsu SJ, Lee CC, Lee YC, Wu YS, Yueh A, Wang JC, Hsu TA, Chao YS, Chern JH. Design and efficient synthesis of novel arylthiourea derivatives as potent hepatitis C virus inhibitors. Bioorg Med Chem Lett 2009; 19:6063-8. [DOI: 10.1016/j.bmcl.2009.09.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 02/07/2023]
|
28
|
Kang IJ, Wang LW, Hsu SJ, Lee CC, Lee YC, Wu YS, Hsu TA, Yueh A, Chao YS, Chern JH. Design and synthesis of indole, 2,3-dihydro-indole, and 3,4-dihydro-2H-quinoline-1-carbothioic acid amide derivatives as novel HCV inhibitors. Bioorg Med Chem Lett 2009; 19:4134-8. [PMID: 19539472 DOI: 10.1016/j.bmcl.2009.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/19/2009] [Accepted: 06/01/2009] [Indexed: 02/05/2023]
Abstract
An efficient synthetic methodology to provide indole, 2,3-dihydro-indole, and 3,4-dihydro-2H-quinoline-1-carbothioic acid amide derivatives is described. These conformationally restricted heterobicyclic scaffolds were evaluated as a novel class of HCV inhibitors. Introduction of an acyl group at the NH(2) of the thiourea moiety has been found to enhance inhibitory activity. The chain length and the position of the alkyl group on the indoline aromatic ring markedly influenced anti-HCV activity. The indoline scaffold was more potent than the corresponding indole and tetrahydroquinoline scaffolds and analogue 31 displayed excellent activity (EC(50)=510nM) against HCV without significant cytotoxicity (CC(50) >50microM).
Collapse
Affiliation(s)
- Iou-Jiun Kang
- Division of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Beaulieu PL. Recent advances in the development of NS5B polymerase inhibitors for the treatment of hepatitis C virus infection. Expert Opin Ther Pat 2009; 19:145-64. [PMID: 19441916 DOI: 10.1517/13543770802672598] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND 170 to 200 million people worldwide are believed to suffer from chronic hepatitis C virus (HCV) infection, a blood-born disease that targets the liver and progresses to organ cirrhosis and primary cancer in a significant proportion of patients. The currently available treatment has limited efficacy and suffers from restricting side effects. HCV infection is the principal cause of liver transplant in industrialized nations and between 8000 and 10,000 deaths result annually from the disease in the United States alone. Virus-specific, more efficacious, and better-tolerated anti-HCV therapies are thus required to address the unmet medical need. OBJECTIVE To review progress achieved since 2005 in the development of HCV NS5B polymerase inhibitors as potential therapy for the treatment of HCV infection with a primary focus on available patent and medical literature. RESULTS/CONCLUSION Several classes of small-molecule inhibitors of HCV NS5B have progressed into clinical development and demonstrated efficacy in reducing viral load in infected patients. The results so far provide an encouraging foundation for the development of novel, more tolerable therapies and addressing emergence of resistance through combination of antiviral agents with complementary mechanisms of action.
Collapse
|
30
|
Meier V, Ramadori G. Hepatitis C virus virology and new treatment targets. Expert Rev Anti Infect Ther 2009; 7:329-50. [PMID: 19344246 DOI: 10.1586/eri.09.12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hepatitis C virus (HCV) infection is the leading cause of chronic liver disease. An estimated 130 million people worldwide are persistently infected with HCV. Almost half of patients who have chronic HCV infection cannot be cured with the standard treatment consisting of pegylated IFN-alpha and ribavirin. For those patients who do not respond to this standard antiviral therapy, there is currently no approved treatment option available. Recent progress in structure determination of HCV proteins and development of a subgenomic replicon system enables the development of a specifically targeted antiviral therapy for hepatitis C. Many HCV-specific compounds are now under investigation in preclinical and clinical trials.
Collapse
Affiliation(s)
- Volker Meier
- Universitätsmedizin Göttingen, Abteilung für Gastroenterologie und Endokrinologie, Göttingen, Germany
| | | |
Collapse
|
31
|
Abstract
As health care providers, we find ourselves on the verge of a new era in the treatment of chronic hepatitis C virus (HCV) infection. A number of directly acting antiviral agents are now in the latter stages of clinical development. The more promising candidates include direct inhibitors of the HCV nonstructural 3 protease, as well as both nucleoside and non-nucleoside inhibitors of the NS5B RNA-dependent RNA polymerase. Although these agents have demonstrated potent antiviral effect, monotherapy has been complicated by rapid virological breakthrough due to the selection of drug-resistant mutants. As for HIV and HBV, combination therapy will therefore be necessary. This brief review summarizes the current literature concerning resistance and directly acting antiviral agents, and identifies key challenges facing this emerging field.
Collapse
Affiliation(s)
- A J V Thompson
- Division of Gastroenterology/Hepatology, Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | | |
Collapse
|
32
|
Vliegen I, Paeshuyse J, De Burghgraeve T, Lehman LS, Paulson M, Shih IH, Mabery E, Boddeker N, De Clercq E, Reiser H, Oare D, Lee WA, Zhong W, Bondy S, Pürstinger G, Neyts J. Substituted imidazopyridines as potent inhibitors of HCV replication. J Hepatol 2009; 50:999-1009. [PMID: 19303654 PMCID: PMC7114863 DOI: 10.1016/j.jhep.2008.12.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 11/17/2008] [Accepted: 12/04/2008] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS Following lead optimization, a set of substituted imidazopyridines was identified as potent and selective inhibitors of in vitro HCV replication. The particular characteristics of one of the most potent compounds in this series (5-[[3-(4-chlorophenyl)-5-isoxazolyl]methyl]-2-(2,3-difluorophenyl)-5H-imidazo[4,5-c]pyridine or GS-327073), were studied. METHODS Antiviral activity of GS-327073 was evaluated in HCV subgenomic replicons (genotypes 1b, 1a and 2a), in the JFH1 (genotype 2a) infectious system and against replicons resistant to various selective HCV inhibitors. Combination studies of GS-327073 with other selective HCV inhibitors were performed. RESULTS Fifty percent effective concentrations for inhibition of HCV subgenomic 1b replicon replication ranged between 2 and 50 nM and were 100-fold higher for HCV genotype 2a virus. The 50% cytostatic concentrations were > or = 17 microM, thus resulting in selectivity indices of > or = 340. GS-327073 retained wild-type activity against HCV replicons that were resistant to either HCV protease inhibitors or several polymerase inhibitors. GS-327073, when combined with either interferon alpha, ribavirin, a nucleoside polymerase or a protease inhibitor resulted in overall additive antiviral activity. Combinations containing GS-327073 proved highly effective in clearing hepatoma cells from HCV. CONCLUSIONS GS-327073 is a potent in vitro inhibitor of HCV replication either alone or in combination with other selective HCV inhibitors.
Collapse
Affiliation(s)
- Inge Vliegen
- Rega Institute for Medical Research, KU Leuven, Minderbroedesstraat 10, 3000 Leuven, Belgium
| | - Jan Paeshuyse
- Rega Institute for Medical Research, KU Leuven, Minderbroedesstraat 10, 3000 Leuven, Belgium
| | - Tine De Burghgraeve
- Rega Institute for Medical Research, KU Leuven, Minderbroedesstraat 10, 3000 Leuven, Belgium
| | | | | | | | | | | | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Minderbroedesstraat 10, 3000 Leuven, Belgium
| | | | | | | | | | | | - Gerhard Pürstinger
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Austria
| | - Johan Neyts
- Rega Institute for Medical Research, KU Leuven, Minderbroedesstraat 10, 3000 Leuven, Belgium,Corresponding author. Tel.: +32 16 337341; fax: +32 16 337340
| |
Collapse
|
33
|
Kang IJ, Wang LW, Lee CC, Lee YC, Chao YS, Hsu TA, Chern JH. Design, synthesis, and anti-HCV activity of thiourea compounds. Bioorg Med Chem Lett 2009; 19:1950-5. [PMID: 19251415 DOI: 10.1016/j.bmcl.2009.02.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 02/09/2009] [Accepted: 02/12/2009] [Indexed: 02/02/2023]
Abstract
A series of thiourea derivatives were synthesized and their antiviral activity was evaluated in a cell-based HCV subgenomic replicon assay. SAR studies revealed that the chain length and the position of the alkyl linker largely influenced the in vitro anti-HCV activity of this class of potent antiviral agents. Among this series of compounds synthesized, the thiourea derivative with a six-carbon alkyl linker at the meta-position of the central phenyl ring (10) was identified as the most potent anti-HCV inhibitor (EC(50) = 0.047 microM) with a selectivity index of 596.
Collapse
Affiliation(s)
- Iou-Jiun Kang
- Division of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
34
|
Meanwell NA, Kadow JF, Scola PM. Chapter 20 Progress towards the Discovery and Development of Specifically Targeted Inhibitors of Hepatitis C Virus. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2009. [DOI: 10.1016/s0065-7743(09)04420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
35
|
Kuntzen T, Timm J, Berical A, Lennon N, Berlin AM, Young SK, Lee B, Heckerman D, Carlson J, Reyor LL, Kleyman M, McMahon CM, Birch C, Schulze Zur Wiesch J, Ledlie T, Koehrsen M, Kodira C, Roberts AD, Lauer GM, Rosen HR, Bihl F, Cerny A, Spengler U, Liu Z, Kim AY, Xing Y, Schneidewind A, Madey MA, Fleckenstein JF, Park VM, Galagan JE, Nusbaum C, Walker BD, Lake-Bakaar GV, Daar ES, Jacobson IM, Gomperts ED, Edlin BR, Donfield SM, Chung RT, Talal AH, Marion T, Birren BW, Henn MR, Allen TM. Naturally occurring dominant resistance mutations to hepatitis C virus protease and polymerase inhibitors in treatment-naïve patients. Hepatology 2008; 48:1769-78. [PMID: 19026009 PMCID: PMC2645896 DOI: 10.1002/hep.22549] [Citation(s) in RCA: 284] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
UNLABELLED Resistance mutations to hepatitis C virus (HCV) nonstructural protein 3 (NS3) protease inhibitors in <1% of the viral quasispecies may still allow >1000-fold viral load reductions upon treatment, consistent with their reported reduced replicative fitness in vitro. Recently, however, an R155K protease mutation was reported as the dominant quasispecies in a treatment-naïve individual, raising concerns about possible full drug resistance. To investigate the prevalence of dominant resistance mutations against specifically targeted antiviral therapy for HCV (STAT-C) in the population, we analyzed HCV genome sequences from 507 treatment-naïve patients infected with HCV genotype 1 from the United States, Germany, and Switzerland. Phylogenetic sequence analysis and viral load data were used to identify the possible spread of replication-competent, drug-resistant viral strains in the population and to infer the consequences of these mutations upon viral replication in vivo. Mutations described to confer resistance to the protease inhibitors Telaprevir, BILN2061, ITMN-191, SCH6 and Boceprevir; the NS5B polymerase inhibitor AG-021541; and to the NS4A antagonist ACH-806 were observed mostly as sporadic, unrelated cases, at frequencies between 0.3% and 2.8% in the population, including two patients with possible multidrug resistance. Collectively, however, 8.6% of the patients infected with genotype 1a and 1.4% of those infected with genotype 1b carried at least one dominant resistance mutation. Viral loads were high in the majority of these patients, suggesting that drug-resistant viral strains might achieve replication levels comparable to nonresistant viruses in vivo. CONCLUSION Naturally occurring dominant STAT-C resistance mutations are common in treatment-naïve patients infected with HCV genotype 1. Their influence on treatment outcome should further be characterized to evaluate possible benefits of drug resistance testing for individual tailoring of drug combinations when treatment options are limited due to previous nonresponse to peginterferon and ribavirin.
Collapse
Affiliation(s)
- Thomas Kuntzen
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Ludmerer SW, Graham DJ, Patel M, Gilbert K, Stahlhut M, Olsen DB. A transient cell-based phenotype assay for hepatitis C NS3/4A protease: Application to potency determinations of a novel macrocyclic inhibitor against diverse protease sequences isolated from plasma infected with HCV. J Virol Methods 2008; 151:301-307. [DOI: 10.1016/j.jviromet.2008.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/30/2008] [Accepted: 05/15/2008] [Indexed: 10/21/2022]
|