1
|
Gonzalez-Prada I, Barcelos Ribeiro A, Dion M, Magariños B, Lapoujade C, Rousseau A, Concheiro A, Garcion E, Alvarez-Lorenzo C. Disulfiram-loaded electrospun fibers with antimicrobial and antitumoral properties for glioblastoma treatment. J Control Release 2025; 381:113615. [PMID: 40086760 DOI: 10.1016/j.jconrel.2025.113615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/02/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Glioblastoma (GB) is a malignant brain tumor with low survival rates and a high recurrence ratio due to limited therapeutic arsenal. The repurposed drug disulfiram (DSF), approved for alcoholism treatment, shows promising anticancer and antimicrobial activity, but its poor biopharmaceutical profile hinders its clinical use. This work aimed to develop DSF-loaded silk fibroin (SF) electrospun fibers for controlled release in the postsurgical resection cavity. Incorporating hydroxypropyl-β-cyclodextrin (HPβCD), which formed inclusion complexes with DSF, enhanced drug release rate and antimicrobial activity (>3 logCFUs reduction) against Staphylococcus aureus and Pseudomonas aeruginosa. Addition of CuCl2 enabled in situ formation of Cu(DDC)2 complexes, further boosting antimicrobial and in vitro antitumoral effects of the nanofibers (≤ 500 nm) while maintaining adequate mechanical properties. Selective toxicity of DSF and DSF-loaded fibers against glioblastoma cells, while sparing against astrocytes, highlights the potential of the nanofibers for targeted brain cancer therapy. Increased potency of DSF at low concentrations when combined with SF fibers, HPβCD and copper was remarkable. Thus, DSF delivery and bioavailability can be significantly optimized through electrospun nanofibers, which may also allow for more precise dosing. Combination with radiotherapy was also explored to assess the translational potential of DSF as part of a combination therapy regimen for glioblastoma. In vivo studies in a rat model simulating GB surgery confirmed the safety of selected formulations in healthy brain tissue. However, findings suggest that DSF-loaded fibers alone may be insufficient for complete tumor eradication, indicating the need for combination with existing therapies to target residual tumor cells effectively.
Collapse
Affiliation(s)
- Iago Gonzalez-Prada
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Spain
| | - Arthur Barcelos Ribeiro
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, 49000 Angers, France
| | - Marine Dion
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, 49000 Angers, France
| | - Beatriz Magariños
- Departamento de Microbiología y Parasitología, Facultad de Biología-CIBUS and Aquatic One Health Research Center (iARCUS), Universidade de Santiago de Compostela, Spain
| | - Clémentine Lapoujade
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, 49000 Angers, France
| | - Audrey Rousseau
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, 49000 Angers, France; Department of Pathology, University Hospital of Angers, F-49000 Angers, France
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Spain
| | - Emmanuel Garcion
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, 49000 Angers, France; PACEM (Plateforme d'Analyse Cellulaire et Moléculaire), Université d'Angers, SFR 4208, F-49000 Angers, France; PRIMEX (Plateforme de Radiobiologie et d'Imageries Expérimentales), Université d'Angers, SFR 4208, F-49000 Angers, France.
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Bozhkov A, Bobkov V, Osolodchenko T, Yurchenko O, Ganin V, Ivanov E, Batuieva Y, Minukhin V, Goltvyanskiy A, Kozheshkurt V, Ponomarenko S. The antibacterial activity of the copper for Staphylococcus aureus 124 and Pseudomonas aeruginosa 18 depends on its state: metalized, chelated and ionic. Heliyon 2024; 10:e39098. [PMID: 39640629 PMCID: PMC11620121 DOI: 10.1016/j.heliyon.2024.e39098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024] Open
Abstract
The hypothesis that the antibacterial effect of copper depends on its state was tested. It was studied the antibacterial effect of copper applied to the fabric, copper in chelated and free (ionic) forms on the growth intensity of Staphylococcus aureus 124 and Pseudomonas aeruginosa 18 in the in vitro system after a single or "primary" contact. Classical microbiology methods were used. Copper was applied to the fabric by magnetron and arc planar discharge systems, and the culture of microalgae Dunaliella viridis, resistant to the action of high concentrations of copper, was used to obtain copper in chelated form. It was shown that a thin layer of copper (3 μm) applied to the fabric showed pronounced antibacterial activity against Staphylococcus (85 % compared to the antibiotic meropenem) and less pronounced activity against Pseudomonas, which is resistant to meropenem. Copper in ionic form inhibited the growth of Staphylococcus aureus 124 as well as the antibiotic, and also effectively inhibited the growth of Pseudomonas aeruginosa 18 i.e., copper ions did not have species specificity like the antibiotic. Components of Dunaliella viridis microalgae cells had weakly expressed antibacterial effect to these types of bacteria, and supplementary addition of copper sulfate to the biomass of microalgae led to an increase of their antibacterial activity and this is more pronounced for microalgae culture in which the ratio « chelated/ionic » forms of copper is shifted to the ionic form. It was shown that the antibacterial activity of microalgae biomass after the first introduction into the tested bacterial cultures depends on the amount of free or "weakly bound" with cell components copper ions. It is suggested that the antibacterial effect of fabric with a thin layer of copper may be determined by two mechanisms: the action of copper ions and mechano-bactericidal effects, while chelated forms of copper may have a prolonged effect on bacterial cultures.
Collapse
Affiliation(s)
- A.I. Bozhkov
- V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - V.V. Bobkov
- V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - T.P. Osolodchenko
- I.Mechnikov Institute of Microbiology and Immunology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine
| | - O.I. Yurchenko
- V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - V.Y. Ganin
- V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - E.G. Ivanov
- V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Y.D. Batuieva
- V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - V.V. Minukhin
- V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
- I.Mechnikov Institute of Microbiology and Immunology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine
| | | | | | - S.V. Ponomarenko
- I.Mechnikov Institute of Microbiology and Immunology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine
| |
Collapse
|
3
|
Gaudreau A, Watson DW, Flannagan RS, Roy P, Shen C, Abdelmoneim A, Beavers WN, Gillies ER, El-Halfawy OM, Heinrichs DE. Mechanistic insights and in vivo efficacy of thiosemicarbazones against methicillin-resistant Staphylococcus aureus. J Biol Chem 2024; 300:107689. [PMID: 39159815 PMCID: PMC11492055 DOI: 10.1016/j.jbc.2024.107689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/27/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
Staphylococcus aureus poses a significant threat in both community and hospital settings due to its infective and pathogenic nature combined with its ability to resist the action of chemotherapeutic agents. Methicillin-resistant S. aureus (MRSA) represents a critical challenge. Metal-chelating thiosemicarbazones (TSCs) have shown promise in combating MRSA and while previous studies hinted at the antimicrobial potential of TSCs, their mechanisms of action against MRSA are still under investigation. We screened a chemical library for anti-staphylococcal compounds and identified a potent molecule named R91 that contained the NNSN structural motif found within TSCs. We identified that R91 and several structural analogs exhibited antimicrobial activity against numerous S. aureus isolates as well as other Gram-positive bacteria. RNAseq analysis revealed that R91 induces copper and oxidative stress responses. Checkerboard assays demonstrated synergy of R91 with copper, nickel, and zinc. Mutation of the SrrAB two-component regulatory system sensitizes S. aureus to R91 killing, further linking the oxidative stress response to R91 resistance. Moreover, R91 was found to induce hydrogen peroxide production, which contributed to its antimicrobial activity. Remarkably, no mutants with elevated R91 resistance were identified, despite extensive attempts. We further demonstrate that R91 can be used to effectively treat an intracellular reservoir of S. aureus in cell culture and can reduce bacterial burdens in a murine skin infection model. Combined, these data position R91 as a potent TSC effective against MRSA and other Gram-positive bacteria, with implications for future therapeutic development.
Collapse
Affiliation(s)
- Avery Gaudreau
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - David W Watson
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Ronald S Flannagan
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Paroma Roy
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Chenfangfei Shen
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| | - Ahmed Abdelmoneim
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA; Louisiana Animal Disease Diagnostic Laboratory, Louisiana State University, Baton Rouge, Louisiana, USA
| | - William N Beavers
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Elizabeth R Gillies
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada; Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, Canada
| | - Omar M El-Halfawy
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan, Canada; Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - David E Heinrichs
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
4
|
Hanson BS, Hailemariam A, Yang Y, Mohamed F, Donati GL, Baker D, Sacchettini J, Cai JJ, Subashchandrabose S. Identification of a copper-responsive small molecule inhibitor of uropathogenic Escherichia coli. J Bacteriol 2024; 206:e0011224. [PMID: 38856220 PMCID: PMC11270900 DOI: 10.1128/jb.00112-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/10/2024] [Indexed: 06/11/2024] Open
Abstract
Urinary tract infections (UTIs) are a major global health problem and are caused predominantly by uropathogenic Escherichia coli (UPEC). UTIs are a leading cause of prescription antimicrobial use. Incessant increase in antimicrobial resistance in UPEC and other uropathogens poses a serious threat to the current treatment practices. Copper is an effector of nutritional immunity that impedes the growth of pathogens during infection. We hypothesized that copper would augment the toxicity of select small molecules against bacterial pathogens. We conducted a small molecule screening campaign with a library of 51,098 molecules to detect hits that inhibit a UPEC ΔtolC mutant in a copper-dependent manner. A molecule, denoted as E. coli inhibitor or ECIN, was identified as a copper-responsive inhibitor of wild-type UPEC strains. Our gene expression and metal content analysis results demonstrate that ECIN works in concert with copper to exacerbate Cu toxicity in UPEC. ECIN has a broad spectrum of activity against pathogens of medical and veterinary significance including Acinetobacter baumannii, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus. Subinhibitory levels of ECIN eliminate UPEC biofilm formation. Transcriptome analysis of UPEC treated with ECIN reveals induction of multiple stress response systems. Furthermore, we demonstrate that L-cysteine rescues the growth of UPEC exposed to ECIN. In summary, we report the identification and characterization of a novel copper-responsive small molecule inhibitor of UPEC.IMPORTANCEUrinary tract infection (UTI) is a ubiquitous infectious condition affecting millions of people annually. Uropathogenic Escherichia coli (UPEC) is the predominant etiological agent of UTI. However, UTIs are becoming increasingly difficult to resolve with antimicrobials due to increased antimicrobial resistance in UPEC and other uropathogens. Here, we report the identification and characterization of a novel copper-responsive small molecule inhibitor of UPEC. In addition to E. coli, this small molecule also inhibits pathogens of medical and veterinary significance including Acinetobacter baumannii, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- Braden S Hanson
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Amanuel Hailemariam
- Department of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| | - Yongjian Yang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Faras Mohamed
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - George L Donati
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Dwight Baker
- Department of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| | - James Sacchettini
- Department of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| | - James J Cai
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Sargurunathan Subashchandrabose
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
5
|
Torrez CZ, Easley A, Bouamar H, Zheng G, Gu X, Yang J, Chiu YC, Chen Y, Halff GA, Cigarroa FG, Sun LZ. STEAP2 promotes hepatocellular carcinoma progression via increased copper levels and stress-activated MAP kinase activity. Sci Rep 2024; 14:12753. [PMID: 38830975 PMCID: PMC11148201 DOI: 10.1038/s41598-024-63368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
Six Transmembrane Epithelial Antigen of Prostate 2 (STEAP2) belongs to a family of metalloreductases, which indirectly aid in uptake of iron and copper ions. Its role in hepatocellular carcinoma (HCC) remains to be characterized. Here, we report that STEAP2 expression was upregulated in HCC tumors compared with paired adjacent non-tumor tissues by RNA sequencing, RT-qPCR, Western blotting, and immunostaining. Public HCC datasets demonstrated upregulated STEAP2 expression in HCC and positive association with tumor grade. Transient and stable knockdown (KD) of STEAP2 in HCC cell lines abrogated their malignant phenotypes in vitro and in vivo, while STEAP2 overexpression showed opposite effects. STEAP2 KD in HCC cells led to significant alteration of genes associated with extracellular matrix organization, cell adhesion/chemotaxis, negative enrichment of an invasiveness signature gene set, and inhibition of cell migration/invasion. STEAP2 KD reduced intracellular copper levels and activation of stress-activated MAP kinases including p38 and JNK. Treatment with copper rescued the reduced HCC cell migration due to STEAP2 KD and activated p38 and JNK. Furthermore, treatment with p38 or JNK inhibitors significantly inhibited copper-mediated cell migration. Thus, STEAP2 plays a malignant-promoting role in HCC cells by driving migration/invasion via increased copper levels and MAP kinase activities. Our study uncovered a novel molecular mechanism contributing to HCC malignancy and a potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Carla Zeballos Torrez
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Acarizia Easley
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hakim Bouamar
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Guixi Zheng
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Xiang Gu
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Junhua Yang
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yu-Chiao Chiu
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yidong Chen
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Glenn A Halff
- Transplant Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Francisco G Cigarroa
- Transplant Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Lu-Zhe Sun
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
6
|
Jiménez-Pérez A, Fernández-Fariña S, Pedrido R, García-Tojal J. Desulfurization of thiosemicarbazones: the role of metal ions and biological implications. J Biol Inorg Chem 2024; 29:3-31. [PMID: 38148423 DOI: 10.1007/s00775-023-02037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/26/2023] [Indexed: 12/28/2023]
Abstract
Thiosemicarbazones are biologically active substances whose structural formula is formed by an azomethine, an hydrazine, and a thioamide fragments, to generate a R2C=N-NR-C(=S)-NR2 backbone. These compounds often act as ligands to generate highly stable metal-organic complexes. In certain experimental conditions, however, thiosemicarbazones undergo reactions leading to the cleavage of the chain. Sometimes, the breakage involves desulfurization processes. The present work summarizes the different chemical factors that influence the desulfurization reactions of thiosemicarbazones, such as pH, the presence of oxidant reactants or the establishment of redox processes as those electrochemically induced, the effects of the solvent, the temperature, and the electromagnetic radiation. Many of these reactions require coordination of thiosemicarbazones to metal ions, even those present in the intracellular environment. The nature of the products generated in these reactions, their detection in vivo and in vitro, together with the relevance for the biological activity of these compounds, mainly as antineoplastic agents, is discussed.
Collapse
Affiliation(s)
- Alondra Jiménez-Pérez
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Sandra Fernández-Fariña
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Rosa Pedrido
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Javier García-Tojal
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain.
| |
Collapse
|
7
|
O'Brien H, Davoodian T, Johnson MDL. The promise of copper ionophores as antimicrobials. Curr Opin Microbiol 2023; 75:102355. [PMID: 37406562 PMCID: PMC10529258 DOI: 10.1016/j.mib.2023.102355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/07/2023]
Abstract
Antibiotic-resistant microbe-mediated deaths are a major worldwide health issue. Unfortunately, due to microbial adaptation to develop resistance, some antibiotics are nullified early in their usage, and worse, resistance is detected before they can even be prescribed. Copper's toxicity since antiquity against microbes at the host-pathogen interface offers a fascinating weapon to fight antimicrobial resistance. Here, we briefly review why copper is so effective, how drugs that work with copper are effective antimicrobials, and how compounds such as these could reinvigorate investment in antimicrobial development.
Collapse
Affiliation(s)
- Henrik O'Brien
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA
| | - Talish Davoodian
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA
| | - Michael D L Johnson
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA; Valley Fever Center for Excellence, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA; BIO5 Institute, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA; Asthma and Airway Disease Research Center, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA.
| |
Collapse
|
8
|
Božić Cvijan B, Korać Jačić J, Bajčetić M. The Impact of Copper Ions on the Activity of Antibiotic Drugs. Molecules 2023; 28:5133. [PMID: 37446795 DOI: 10.3390/molecules28135133] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 07/15/2023] Open
Abstract
Copper (Cu) is an essential trace metal and its concentration in body plasma is tightly regulated. An increase in Cu concentration in body fluids is observed in numerous pathological conditions, including infections caused by microorganisms. Evidence shows that Cu ions can impact the activity of antibiotics by increasing efficiency or diminishing/neutralizing antibiotic activity, forming complexes which may lead to antibiotic structure degradation. Herein, we represent the evidence available on Cu-antibiotic interactions and their possible impact on antimicrobial therapy efficiency. So far, in vitro studies described interactions between Cu ions and the majority of antibiotics in clinical use: penicillins, cephalosporins, carbapenems, macrolides, aminoglycosides, tetracyclines, fluoroquinolones, isoniazid, metronidazole. In vitro-described degradation or lower antimicrobial activity of amoxicillin, ampicillin, cefaclor, ceftriaxone, and meropenem in the presence of Cu ions suggest caution when using prescribed antibiotics in patients with altered Cu levels. On the other hand, several Cu-dependent compounds with antibacterial activity including the drug-resistant bacteria were discovered, such as thiosemicarbazones, disulfiram, dithiocarbamates, 8-hydroxiquinoline, phenanthrolines, pyrithione. Having in mind that the development of new antibiotics is already marked as inadequate and does not meet global needs, the potential of Cu-antibiotic interactions to change the efficiency of antimicrobial therapy requires further investigation.
Collapse
Affiliation(s)
- Bojana Božić Cvijan
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Korać Jačić
- Life Sciences Department, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Milica Bajčetić
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Clinical Pharmacology Unit, University Children's Hospital, 11000 Belgrade, Serbia
| |
Collapse
|
9
|
Mishra A, Djoko KY, Lee YH, Lord RM, Kaul G, Akhir A, Saxena D, Chopra S, Walton JW. Water-soluble copper pyrithione complexes with cytotoxic and antibacterial activity. Org Biomol Chem 2023; 21:2539-2544. [PMID: 36877005 DOI: 10.1039/d2ob01224c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Copper Pyrithione, [Cu(PyS)2] has shown excellent biological activity against cancer cells and bacterial cells, however, it has extremely low aqueous solubility, limiting its applicability. Herein, we report a series of PEG-substituted pyrithione copper(II) complexes with significantly increased aqueous solubility. While long PEG chains lead to a decrease in bioactivity, the addition of short PEG chains leads to improved aqueous solubility with retention of activity. One novel complex, [Cu(PyS1)2], has particularly impressive anticancer activity, surpassing that of the parent complex.
Collapse
Affiliation(s)
- Atreyee Mishra
- Durham University, Department of Chemistry, Lower Mountjoy, Durham, DH1 3LE, UK.
| | - Karrera Y Djoko
- Durham University, Department of Biosciences, Upper Mountjoy, Durham, DH1 3LE, UK
| | - Yi-Hsuan Lee
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| | - Rianne M Lord
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| | - Grace Kaul
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow-226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abdul Akhir
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow-226031, Uttar Pradesh, India
| | - Deepanshi Saxena
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow-226031, Uttar Pradesh, India
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow-226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - James W Walton
- Durham University, Department of Chemistry, Lower Mountjoy, Durham, DH1 3LE, UK.
| |
Collapse
|
10
|
Villa-Pérez C, Cadavid-Vargas JF, Medina JJM, Echeverría GA, Camí GE, Virgilio ALD, Soria DB. Physicochemical and biological studies of Ni(II), Cu(II) and Zn(II) ternary complexes of sulfaquinoxaline and 2,2’-bipyrimidine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Lekhan A, Fiore C, Shemchuk O, Grepioni F, Braga D, Turner RJ. Comparison of Antimicrobial and Antibiofilm Activity of Proflavine Co-crystallized with Silver, Copper, Zinc, and Gallium Salts. ACS APPLIED BIO MATERIALS 2022; 5:4203-4212. [PMID: 35970511 PMCID: PMC9491326 DOI: 10.1021/acsabm.2c00404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022]
Abstract
Here, we exploit our mechanochemical synthesis for co-crystallization of an organic antiseptic, proflavine, with metal-based antimicrobials (silver, copper, zinc, and gallium). Our previous studies have looked for general antimicrobial activity for the co-crystals: proflavine·AgNO3, proflavine·CuCl, ZnCl3[Proflavinium], [Proflavinium]2[ZnCl4]·H2O, and [Proflavinium]3[Ga(oxalate)3]·4H2O. Here, we explore and compare more precisely the bacteriostatic (minimal inhibitory concentrations) and antibiofilm (prevention of cell attachment and propagation) activities of the co-crystals. For this, we choose three prominent "ESKAPE" bacterial pathogens of Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. The antimicrobial behavior of the co-crystals was compared to that of the separate components of the polycrystalline samples to ascertain whether the proflavine-metal complex association in the solid state provided effective antimicrobial performance. We were particularly interested to see if the co-crystals were effective in preventing bacteria from initiating and propagating the biofilm mode of growth, as this growth form provides high antimicrobial resistance properties. We found that for the planktonic lifestyle of growth of the three bacterial strains, different co-crystal formulations gave selectivity for best performance. For the biofilm state of growth, we see that the silver proflavine co-crystal has the best overall antibiofilm activity against all three organisms. However, other proflavine-metal co-crystals also show practical antimicrobial efficacy against E. coli and S. aureus. While not all proflavine-metal co-crystals demonstrated enhanced antimicrobial efficacy over their constituents alone, all possessed acceptable antimicrobial properties while trapped in the co-crystal form. We also demonstrate that the metal-proflavine crystals retain antimicrobial activity in storage. This work defines that co-crystallization of metal compounds and organic antimicrobials has a potential role in the quest for antimicrobials/antiseptics in the defense against bacteria in our antimicrobial resistance era.
Collapse
Affiliation(s)
- Andrii Lekhan
- Department
of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Cecilia Fiore
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Oleksii Shemchuk
- Institute
of Condensed Matter and Nanosciences, Université
Catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Fabrizia Grepioni
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Dario Braga
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Raymond J. Turner
- Department
of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
12
|
Custodio MM, Sparks J, Long TE. Disulfiram: A Repurposed Drug in Preclinical and Clinical Development for the Treatment of Infectious Diseases. ANTI-INFECTIVE AGENTS 2022; 20:e040122199856. [PMID: 35782673 PMCID: PMC9245773 DOI: 10.2174/2211352520666220104104747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 06/01/2023]
Abstract
This article reviews preclinical and clinical studies on the repurposed use of disulfiram (Antabuse) as an antimicrobial agent. Preclinical research covered on the alcohol sobriety aid includes uses as an anti-MRSA agent, a carbapenamase inhibitor, antifungal drug for candidiasis, and treatment for parasitic diseases due to protozoa (e.g., giardiasis, leishmaniasis, malaria) and helminthes (e.g., schistosomiasis, trichuriasis). Past, current, and pending clinical studies on disulfiram as a post-Lyme disease syndrome (PTLDS) therapy, an HIV latency reversal agent, and intervention for COVID-19 infections are also reviewed..
Collapse
Affiliation(s)
- Marco M. Custodio
- Chesapeake Regional Medical Center, 736 Battlefield Blvd. N Chesapeake, VA 23320, USA
| | - Jennifer Sparks
- Department of Pharmacy Practice, Administration and Research, Marshall University School of Pharmacy, One John Marshall Drive, Huntington WV 24755-0001, USA
| | - Timothy E. Long
- Department of Pharmaceutical Science and Research, Marshall University School of Pharmacy, One John Marshall, Drive Huntington WV 24755-0001, USA
| |
Collapse
|
13
|
Falkievich DB, Martínez Medina JJ, Alegre WS, López Tévez LL, Franca CA, Ferrer EG, Williams PAM. Computational studies, antimicrobial activity, inhibition of biofilm production and safety profile of the cadmium complex of 1,10‐phenanthroline and cyanoguanidine. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | - Carlos A. Franca
- CEQUINOR, CONICET/UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata La Plata Argentina
| | - Evelina G. Ferrer
- CEQUINOR, CONICET/UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata La Plata Argentina
| | - Patricia A. M. Williams
- CEQUINOR, CONICET/UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata La Plata Argentina
| |
Collapse
|
14
|
A Nanostructured Cu(II) Coordination Polymer Based on Alanine as a Trifunctional Mimic Enzyme and Efficient Composite in the Detection of Sphingobacteria. Bioinorg Chem Appl 2022; 2022:8788221. [PMID: 35449715 PMCID: PMC9017554 DOI: 10.1155/2022/8788221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/29/2022] [Indexed: 11/18/2022] Open
Abstract
This research raises the potential use of coordination polymers as new useful materials in two essential research fields, allowing the obtaining of a new multiartificial enzyme with the capacity to inhibit the growth of bacteria resistance. The fine selection of the ligands allows the design of a new 2D coordination polymer (CP), with the formula [Cu2(IBA)2(OH2)4]n·6nH2O, by the combination of Cu (II) as the metal center with a pseudoamino acid (H2IBA = isophthaloyl bis β-alanine). Quantitative total X-ray fluorescence (TXRF) analyses show that the obtained CP can gradually release Cu (II) ions. Additionally, this CP can be nanoprocessed and transformed into a metal-organic gel (MOG) by using different Cu (II) salt concentrations and the application of ultrasounds. Considering its nanometric dimensions, the slow Cu (II) release and its simple processability, its performance as an artificial enzyme, and its antibacterial ability were explored. The results obtained show the first nanocoordination polymer acting as an artificial multienzyme (peroxidase, catalase, and superoxodismutase) exhibiting antibacterial activity in the presence of hydrogen peroxide, with selective behavior for three bacterium strains (S. spiritovirum, A. faecales, and B. cereus). Indeed, this CP shows a more robust inhibition capacity for Sphingobacterium. Going beyond that, as there are no comfortable and practically clinical tests capable of detecting the presence of Sphingobacteria, the compound can be easily embedded to form moldable gelatin that will facilitate the handling and low-cost commercial kits.
Collapse
|
15
|
A systematic review of disulfiram as an antibacterial agent: What is the evidence? Int J Antimicrob Agents 2022; 59:106578. [DOI: 10.1016/j.ijantimicag.2022.106578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/24/2022] [Accepted: 03/20/2022] [Indexed: 11/18/2022]
|
16
|
From the Physicochemical Characteristic of Novel Hesperetin Hydrazone to Its In Vitro Antimicrobial Aspects. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030845. [PMID: 35164110 PMCID: PMC8839478 DOI: 10.3390/molecules27030845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
Abstract
Microorganisms are able to give rise to biofilm formation on food matrixes and along food industry infrastructures or medical equipment. This growth may be reduced by the application of molecules preventing bacterial adhesion on these surfaces. A new Schiff base ligand, derivative of hesperetin, HABH (2-amino-N'-(2,3-dihydro-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chromen-4-ylidene)benzohydrazide), and its copper complex, CuHABH [CuLH2(OAc)], were designed, synthesized and analyzed in terms of their structure and physicochemical properties, and tested as antibacterial agents. Their structures both in a solid state and in solution were established using several methods: FT-IR, 1H NMR, 13C NMR, UV-Vis, FAB MS, EPR, ESI-MS and potentiometry. Coordination binding of the copper(II) complex dominating at the physiological pH region in the solution was found to be the same as that detected in the solid state. Furthermore, the interaction between the HABH and CuHABH with calf-thymus DNA (CT-DNA) were investigated. These interactions were tracked by UV-Vis, CD (circular dichroism) and spectrofluorimetry. The results indicate a stronger interaction of the CuHABH with the CT-DNA than the HABH. It can be assumed that the nature of the interactions is of the intercalating type, but in the high concentration range, the complex can bind to the DNA externally to phosphate residues or to a minor/major groove. The prepared compounds possess antibacterial and antibiofilm activities against Gram-positive and Gram-negative bacteria. Their antagonistic activity depends on the factor-strain test system. The glass was selected as a model surface for the experiments on antibiofilm activity. The adhesion of bacterial cells to the glass surface in the presence of the compounds was traced by luminometry and the best antiadhesive action against both bacterial strains was detected for the CuHABH complex. This molecule may play a crucial role in disrupting exopolymers (DNA/proteins) in biofilm formation and can be used to prevent bacterial adhesion especially on glass equipment.
Collapse
|
17
|
Ahmed M, Ward S, McCann M, Kavanagh K, Heaney F, Devereux M, Twamley B, Rooney D. Synthesis and characterisation of phenanthroline-oxazine ligands and their Ag(I), Mn(II) and Cu(II) complexes and their evaluation as antibacterial agents. Biometals 2022; 35:173-185. [PMID: 35037171 DOI: 10.1007/s10534-021-00358-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/03/2021] [Indexed: 11/02/2022]
Abstract
A series of phenanthroline-oxazine ligands were formed by a cyclisation reaction between L-tyrosine amino acid esters and 1,10-phenanthroline-5,6-dione (phendione). The methyl derivative of the phenanthroline-oxazine ligand 1 was complexed with Ag(I), Mn(II) and Cu(II) to form [Ag(1)2]ClO4, [Mn(1)3](ClO4)2 and [Cu(1)3](ClO4)2. The activity of these metal complexes was tested against the bacteria Escherichia coli and Staphylococcus aureus. Each of the metal complexes was more active than 1 against S. aureus and the Mn(II) and Cu(II) complexes also showed greater activity than 1 towards E. coli. The effect of increasing the length of the alkyl moiety on the phenanthroline-oxazine ligands and their corresponding tris homoleptic Cu(II) complexes was investigated. In all cases both the ligands and their complexes were more active against Gram-positive S. aureus than against Gram-negative E. coli. Differences in the lipophilicity of the ligands and their corresponding Cu(II) complexes did alter the antibacterial activity, with the hexyl and octyl derivatives and their complexes showing the greatest activity and comparing well with clinically used antibiotics. The most active Cu(II) complexes and their respective ligands were also active against Methicillin-resistant S. aureus (MRSA). In vivo toxicity studies, conducted using the Galleria mellonella model, showed that all of the compounds were well tolerated by the insect larvae.
Collapse
Affiliation(s)
- Muhib Ahmed
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Sinead Ward
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Malachy McCann
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Kevin Kavanagh
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland.,Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Frances Heaney
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Michael Devereux
- The Centre for Biomimetic & Therapeutic Research, Focas Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Denise Rooney
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland. .,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
18
|
Giachino A, Focarelli F, Marles-Wright J, Waldron KJ. Synthetic biology approaches to copper remediation: bioleaching, accumulation and recycling. FEMS Microbiol Ecol 2021; 97:6021318. [PMID: 33501489 DOI: 10.1093/femsec/fiaa249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022] Open
Abstract
One of the current aims of synthetic biology is the development of novel microorganisms that can mine economically important elements from the environment or remediate toxic waste compounds. Copper, in particular, is a high-priority target for bioremediation owing to its extensive use in the food, metal and electronic industries and its resulting common presence as an environmental pollutant. Even though microbe-aided copper biomining is a mature technology, its application to waste treatment and remediation of contaminated sites still requires further research and development. Crucially, any engineered copper-remediating chassis must survive in copper-rich environments and adapt to copper toxicity; they also require bespoke adaptations to specifically extract copper and safely accumulate it as a human-recoverable deposit to enable biorecycling. Here, we review current strategies in copper bioremediation, biomining and biorecycling, as well as strategies that extant bacteria use to enhance copper tolerance, accumulation and mineralization in the native environment. By describing the existing toolbox of copper homeostasis proteins from naturally occurring bacteria, we show how these modular systems can be exploited through synthetic biology to enhance the properties of engineered microbes for biotechnological copper recovery applications.
Collapse
Affiliation(s)
- Andrea Giachino
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Francesca Focarelli
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Jon Marles-Wright
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Kevin J Waldron
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
19
|
Delpe-Acharige A, Zhang M, Eschliman K, Dalecki A, Covarrubias-Zambrano O, Minjarez-Almeida A, Shrestha T, Lewis T, Al-Ibrahim F, Leonard S, Roberts R, Tebeje A, Malalasekera AP, Wang H, Kalubowilage M, Wolschendorf F, Kutsch O, Bossmann SH. Pyrazolyl Thioureas and Carbothioamides with an NNSN Motif against MSSA and MRSA. ACS OMEGA 2021; 6:6088-6099. [PMID: 33718700 PMCID: PMC7948249 DOI: 10.1021/acsomega.0c04513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/20/2021] [Indexed: 05/27/2023]
Abstract
A novel series of copper-activatable drugs intended for use against methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) were synthesized, characterized, and tested against the MSSA strain Newman and the MRSA Lac strain (a USA300 strain), respectively. These drugs feature an NNSN structural motif, which enables the binding of copper. In the absence of copper, no activity against MSSA and MRSA at realistic drug concentrations was observed. Although none of the novel drug candidates exhibits a stereocenter, sub-micromolar activities against SA Newman and micromolar activities against SA Lac were observed in the presence, but not in the absence, of bioavailable copper. Copper influx is a component of cellular response to bacterial infections, which is often described as nutritional immunity.
Collapse
Affiliation(s)
- Anjana Delpe-Acharige
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Man Zhang
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Kayla Eschliman
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Alex Dalecki
- Department
of Medicine, University of Alabama at Birmingham, 845 19th Street S, Birmingham, Alabama 35294, United States
| | | | | | - Tejaswi Shrestha
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Tanji Lewis
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Fatimah Al-Ibrahim
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Sophia Leonard
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Riana Roberts
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Anteneh Tebeje
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Aruni P. Malalasekera
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Hongwang Wang
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Madumali Kalubowilage
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Frank Wolschendorf
- Department
of Medicine, University of Alabama at Birmingham, 845 19th Street S, Birmingham, Alabama 35294, United States
| | - Olaf Kutsch
- Department
of Medicine, University of Alabama at Birmingham, 845 19th Street S, Birmingham, Alabama 35294, United States
| | - Stefan H. Bossmann
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
- Department
of Cancer Biology, The University of Kansas
Cancer Center, 3901 Rainbow
Blvd, Kansas City, Kansas 66160, United States
| |
Collapse
|
20
|
Bossmann SH, Delpe Acharige A, Neri R, Hodgson J. A Catalyst-Free, Temperature-Driven One-Pot Synthesis of 1-Adamantylhydrazine Hydrochloride. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
1-Adamantylhydrazine can be a versatile intermediate for many biologically active compounds as adamantyl possesses a wide spectrum of medicinal properties. Described here is a detailed one-pot synthesis of 1-adamantylhydrazine, carried out on a milligram to gram scale, that steadily delivers a highly stable product used to carry out the synthesis of 1-(adamantan-1-yl)-1H-pyrazol-3-amine for bacterial studies. The reaction employs inexpensive, catalyst free, readily available starting materials. In the synthesis of 1-(adamantan-1-yl)-1H-pyrazol-3-amine, the use of a continuous extraction method allows for complete extraction of the target product into the organic layer and increases the overall percentage yield.
Collapse
|
21
|
|
22
|
Chuprun S, Dar’in D, Rogacheva E, Kraeva L, Levin O, Manicheva O, Dogonadze M, Vinogradova T, Bakulina O, Krasavin M. Mutually Isomeric 2- and 4-(3-nitro-1,2,4-triazol-1-yl)pyrimidines Inspired by an Antimycobacterial Screening Hit: Synthesis and Biological Activity against the ESKAPE Panel of Pathogens. Antibiotics (Basel) 2020; 9:antibiotics9100666. [PMID: 33019787 PMCID: PMC7601023 DOI: 10.3390/antibiotics9100666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022] Open
Abstract
Starting from the structure of antimycobacterial screening hit OTB-021 which was devoid of activity against ESKAPE pathogens, we designed, synthesized and tested two mutually isomeric series of novel simplified analogs, 2- and 4-(3-nitro-1,2,4-triazol-1-yl)pyrimidines, bearing various amino side chains. These compounds demonstrated a reverse bioactivity profile being inactive against M. tuberculosis while inhibiting the growth of all ESKAPE pathogens (with variable potency patterns) except for Gram-negative P. aeruginosa. Reduction potentials (E1/2, V) measured for selected compounds by cyclic voltammetry were tightly grouped in the -1.3--1.1 V range for a reversible single-electron reduction. No apparent correlation between the E1/2 values and the ESKAPE minimum inhibitory concentrations was established, suggesting possible significance of other factors, besides the compounds' reduction potential, which determine the observed antibacterial activity. Generally, more negative E1/2 values were displayed by 2-(3-nitro-1,2,4-triazol-1-yl)pyrimidines, which is in line with the frequently observed activity loss on moving the 3-nitro-1,2,4-triazol-1-yl moiety from position 4 to position 2 of the pyrimidine nucleus.
Collapse
Affiliation(s)
- Sergey Chuprun
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (S.C.); (D.D.); (O.L.); (O.B.)
| | - Dmitry Dar’in
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (S.C.); (D.D.); (O.L.); (O.B.)
| | - Elizaveta Rogacheva
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, 197101 Saint Petersburg, Russia; (E.R.); (L.K.)
| | - Liudmila Kraeva
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, 197101 Saint Petersburg, Russia; (E.R.); (L.K.)
| | - Oleg Levin
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (S.C.); (D.D.); (O.L.); (O.B.)
| | - Olga Manicheva
- Saint Petersburg Research Institute of Phthisiopulmonology, 2-4 Ligovsky Prospekt, 191036 Saint Petersburg, Russia; (O.M.); (M.D.); (T.V.)
| | - Marine Dogonadze
- Saint Petersburg Research Institute of Phthisiopulmonology, 2-4 Ligovsky Prospekt, 191036 Saint Petersburg, Russia; (O.M.); (M.D.); (T.V.)
| | - Tatiana Vinogradova
- Saint Petersburg Research Institute of Phthisiopulmonology, 2-4 Ligovsky Prospekt, 191036 Saint Petersburg, Russia; (O.M.); (M.D.); (T.V.)
| | - Olga Bakulina
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (S.C.); (D.D.); (O.L.); (O.B.)
| | - Mikhail Krasavin
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (S.C.); (D.D.); (O.L.); (O.B.)
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
- Correspondence: ; Tel.: +7-931-3617-872; Fax: +7-812-428-6939
| |
Collapse
|
23
|
Loginova NV, Harbatsevich HI, Osipovich NP, Ksendzova GA, Koval’chuk TV, Polozov GI. Metal Complexes as Promising Agents for Biomedical Applications. Curr Med Chem 2020; 27:5213-5249. [DOI: 10.2174/0929867326666190417143533] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/02/2019] [Accepted: 03/29/2019] [Indexed: 12/24/2022]
Abstract
Background::
In this review article, a brief overview of novel metallotherapeutic agents
(with an emphasis on the complexes of essential biometals) promising for medical application is
presented. We have also focused on the recent work carried out by our research team, specifically
the development of redox-active antimicrobial complexes of sterically hindered diphenols with some
essential biometals (copper, zinc, nickel).
Results::
The complexes of essential metals (manganese, iron, cobalt, nickel, copper, zinc) described
in the review show diverse in vitro biological activities, ranging from antimicrobial and antiinflammatory
to antiproliferative and enzyme inhibitory. It is necessary to emphasize that the type of
organic ligands in these metal complexes seems to be responsible for their pharmacological
activities. In the last decades, there has been a significant interest in synthesis and biological
evaluation of metal complexes with redox-active ligands. A substantial step in the development of
these redox-active agents is the study of their physicochemical and biological properties, including
investigations in vitro of model enzyme systems, which can provide evidence on a plausible
mechanism underlying the pharmacological activity. When considering the peculiarities of the
pharmacological activity of the sterically hindered diphenol derivatives and their nickel(II),
copper(II) and zinc(II) complexes synthesized, we took into account the following: (i) all these
compounds are potential antioxidants and (ii) their antimicrobial activity possibly results from their
ability to affect the electron-transport chain.
Conclusion::
We obtained novel data demonstrating that the level of antibacterial and antifungal
activity in the series of the above-mentioned metal-based antimicrobials depends not only on the
nature of the phenolic ligands and complexing metal ions, but also on the lipophilicity and reducing
ability of the ligands and metal complexes, specifically regarding the potential biotargets of their
antimicrobial action – ferricytochrome c and the superoxide anion radical. The combination of
antibacterial, antifungal and antioxidant activity allows one to consider these compounds as
promising substances for developing therapeutic agents with a broad spectrum of activities.
Collapse
Affiliation(s)
| | | | - Nikolai P. Osipovich
- Research Institute for Physico-Chemical Problems of the Belarusian State University, Minsk, Belarus
| | - Galina A. Ksendzova
- Research Institute for Physico-Chemical Problems of the Belarusian State University, Minsk, Belarus
| | | | | |
Collapse
|
24
|
Pietsch F, O'Neill AJ, Ivask A, Jenssen H, Inkinen J, Kahru A, Ahonen M, Schreiber F. Selection of resistance by antimicrobial coatings in the healthcare setting. J Hosp Infect 2020; 106:115-125. [PMID: 32535196 DOI: 10.1016/j.jhin.2020.06.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022]
Abstract
Antimicrobial touch surfaces have been introduced in healthcare settings with the aim of supporting existing hygiene procedures, and to help combat the increasing threat of antimicrobial resistance. However, concerns have been raised over the potential selection pressure exerted by such surfaces, which may drive the evolution and spread of antimicrobial resistance. This review highlights studies that indicate risks associated with resistance on antimicrobial surfaces by different processes, including evolution by de-novo mutation and horizontal gene transfer, and species sorting of inherently resistant bacteria dispersed on to antimicrobial surfaces. The review focuses on antimicrobial surfaces made of copper, silver and antimicrobial peptides because of the practical application of copper and silver, and the promising characteristics of antimicrobial peptides. The available data point to a potential for resistance selection and a subsequent increase in resistant strains via cross-resistance and co-resistance conferred by metal and antibiotic resistance traits. However, translational studies describing the development of resistance to antimicrobial touch surfaces in healthcare-related environments are rare, and will be needed to assess whether and how antimicrobial surfaces lead to resistance selection in these settings. Such studies will need to consider numerous variables, including the antimicrobial concentrations present in coatings, the occurrence of biofilms on surfaces, and the humidity relevant to dry-surface environments. On-site tests on the efficacy of antimicrobial coatings should routinely evaluate the risk of selection associated with their use.
Collapse
Affiliation(s)
- F Pietsch
- Federal Institute for Materials Research and Testing, Department of Materials and Environment, Division of Biodeterioration and Reference Organisms, Berlin, Germany
| | - A J O'Neill
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - A Ivask
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia; Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - H Jenssen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - J Inkinen
- Finnish Institute for Health and Welfare, Department of Health Security, Helsinki, Finland
| | - A Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - M Ahonen
- Satakunta University of Applied Sciences, Faculty of Technology, WANDER Nordic Water and Materials Institute, Rauma, Finland.
| | - F Schreiber
- Federal Institute for Materials Research and Testing, Department of Materials and Environment, Division of Biodeterioration and Reference Organisms, Berlin, Germany.
| |
Collapse
|
25
|
Crawford CL, Dalecki AG, Perez MD, Schaaf K, Wolschendorf F, Kutsch O. A copper-dependent compound restores ampicillin sensitivity in multidrug-resistant Staphylococcus aureus. Sci Rep 2020; 10:8955. [PMID: 32488067 PMCID: PMC7265353 DOI: 10.1038/s41598-020-65978-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Multi-drug resistant Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), has become a worldwide, major health care problem. While initially restricted to clinical settings, drug resistant S. aureus is now one of the key causative agents of community-acquired infections. We have previously demonstrated that copper dependent inhibitors (CDIs), a class of antibiotics that are only active in the presence of copper ions, are effective bactericidal agents against MRSA. A second-generation CDI, APT-6K, exerted bactericidal activity at nanomolar concentrations. At sub-bactericidal concentrations, it effectively synergized with ampicillin to reverse drug resistance in multiple MRSA strains. APT-6K had a favorable therapeutic index when tested on eukaryotic cells (TI: > 30) and, unlike some previously reported CDIs, did not affect mitochondrial activity. These results further establish inhibitors that are activated by the binding of transition metal ions as a promising class of antibiotics, and for the first time, describe their ability to reverse existing drug resistance against clinically relevant antibiotics.
Collapse
Affiliation(s)
- Cameron L Crawford
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alex G Dalecki
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mildred D Perez
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kaitlyn Schaaf
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Frank Wolschendorf
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Olaf Kutsch
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
26
|
Dalecki AG, Zorn KM, Clark AM, Ekins S, Narmore WT, Tower N, Rasmussen L, Bostwick R, Kutsch O, Wolschendorf F. High-throughput screening and Bayesian machine learning for copper-dependent inhibitors of Staphylococcus aureus. Metallomics 2020; 11:696-706. [PMID: 30839007 DOI: 10.1039/c8mt00342d] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
One potential source of new antibacterials is through probing existing chemical libraries for copper-dependent inhibitors (CDIs), i.e., molecules with antibiotic activity only in the presence of copper. Recently, our group demonstrated that previously unknown staphylococcal CDIs were frequently present in a small pilot screen. Here, we report the outcome of a larger industrial anti-staphylococcal screen consisting of 40 771 compounds assayed in parallel, both in standard and in copper-supplemented media. Ultimately, 483 had confirmed copper-dependent IC50 values under 50 μM. Sphere-exclusion clustering revealed that these hits were largely dominated by sulfur-containing motifs, including benzimidazole-2-thiones, thiadiazines, thiazoline formamides, triazino-benzimidazoles, and pyridinyl thieno-pyrimidines. Structure-activity relationship analysis of the pyridinyl thieno-pyrimidines generated multiple improved CDIs, with activity likely dependent on ligand/ion coordination. Molecular fingerprint-based Bayesian classification models were built using Discovery Studio and Assay Central, a new platform for sharing and distributing cheminformatic models in a portable format, based on open-source tools. Finally, we used the latter model to evaluate a library of FDA-approved drugs for copper-dependent activity in silico. Two anti-helminths, albendazole and thiabendazole, scored highly and are known to coordinate copper ions, further validating the model's applicability.
Collapse
Affiliation(s)
- Alex G Dalecki
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, BBRB 562, 845 19th St S, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Trautmann A, Gascan H, Ghozzi R. Potential Patient-Reported Toxicities With Disulfiram Treatment in Late Disseminated Lyme Disease. Front Med (Lausanne) 2020; 7:133. [PMID: 32373619 PMCID: PMC7184924 DOI: 10.3389/fmed.2020.00133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, disulfiram has been proposed as a promising treatment for people suffering from persistent symptoms of Lyme Disease. Disulfiram has several distinct molecular targets. The most well-known is alcohol dehydrogenase, a key enzyme for detoxifying the organism after alcohol ingestion. Other targets and modes of action of disulfiram, that may present problematic side effects, are less commonly mentioned. The French Federation against Tick Borne Diseases (French acronym, FFMVT), which associates three main Lyme patient organizations, MDs and PhDs, has recently been alerted to severe and persistent toxic events in a patient suffering from a late disseminated form of Lyme Disease following disulfiram intake. FFMVT reacted by launching a national call to examine whether other patients in France following a similar treatment could be identified, and what benefits, or side effects could be reported. The statements of 16 patients taking disulfiram have been collected and are presented here. Thirteen out of 16 patients reported toxic events, and seven out of 16 reported benefits for at least part of their symptoms. Based on the collected observations, it seems too early to promote disulfiram as a promising new treatment until the reasons underlying the reported toxicities have been explored, and the results of a well-conducted double blind clinical trial published. The importance of taking into account patient-reported outcomes in Lyme Disease is underlined by the present study.
Collapse
Affiliation(s)
- Alain Trautmann
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
| | - Hugues Gascan
- Institut de Génétique et Développement de Rennes (IGDR), Rennes, France
| | - Raouf Ghozzi
- Centre Hospitalier de Lannemezan, Lannemezan, France
| |
Collapse
|
28
|
Andres SA, Bajaj K, Vishnosky NS, Peterson MA, Mashuta MS, Buchanan RM, Bates PJ, Grapperhaus CA. Synthesis, Characterization, and Biological Activity of Hybrid Thiosemicarbazone–Alkylthiocarbamate Metal Complexes. Inorg Chem 2020; 59:4924-4935. [DOI: 10.1021/acs.inorgchem.0c00182] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sarah A. Andres
- Department of Medicine and James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, United States
| | - Kritika Bajaj
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Nicholas S. Vishnosky
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Megan A. Peterson
- Department of Medicine and James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, United States
| | - Mark S. Mashuta
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Robert M. Buchanan
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Paula J. Bates
- Department of Medicine and James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, United States
| | - Craig A. Grapperhaus
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
29
|
Raman N, Utthra PP, Chellapandi T. Insight into the in vitro anticancer screening, molecular docking and biological efficiency of pyridine-based transition metal(II) complexes. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1716218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Natarajan Raman
- Research Department of Chemistry, VHNSN College, Virudhunagar, India
| | | | | |
Collapse
|
30
|
Covarrubias-Zambrano O, Yu J, Bossmann SH. Nano-Inspired Technologies for Peptide Delivery. Curr Protein Pept Sci 2019; 21:379-400. [PMID: 31793426 DOI: 10.2174/1389203720666191202112429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/26/2019] [Accepted: 10/02/2019] [Indexed: 12/15/2022]
Abstract
Nano-inspired technologies offer unique opportunities to treat numerous diseases by using therapeutic peptides. Therapeutic peptides have attractive pharmacological profiles and can be manufactured at relatively low costs. The major advantages of using a nanodelivery approach comprises significantly lower required dosages compared to systemic delivery, and thus reduced toxicity and immunogenicity. The combination of therapeutic peptides with delivery peptides and nanoparticles or small molecule drugs offers systemic treatment approaches, instead of aiming for single biological targets or pathways. This review article discusses exemplary state-of-the-art nanosized delivery systems for therapeutic peptides and antibodies, as well as their biochemical and biophysical foundations and emphasizes still remaining challenges. The competition between using different nanoplatforms, such as liposome-, hydrogel-, polymer-, silica nanosphere-, or nanosponge-based delivery systems is still "on" and no clear frontrunner has emerged to date.
Collapse
Affiliation(s)
| | - Jing Yu
- Department of Chemistry, Kansas State University, 419 CBC Building, Manhattan, KS 66506-0401, United States.,Johns Hopkins University, Department of Radiology, Baltimore, MD, United States
| | - Stefan H Bossmann
- Department of Chemistry, Kansas State University, 419 CBC Building, Manhattan, KS 66506-0401, United States
| |
Collapse
|
31
|
Namiecińska E, Sobiesiak M, Małecka M, Guga P, Rozalska B, Budzisz E. Antimicrobial and Structural Properties of Metal Ions Complexes with Thiosemicarbazide Motif and Related Heterocyclic Compounds. Curr Med Chem 2019; 26:664-693. [PMID: 29493443 DOI: 10.2174/0929867325666180228164656] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 01/31/2018] [Accepted: 02/15/2018] [Indexed: 01/25/2023]
Abstract
Antibiotic resistance acquired by various bacterial fungal and viral pathogens poses therapeutic problems of increasing severity. Among the infections that are very difficult to treat, biofilm-associated cases are one of the most hazardous. Complex structure of a biofilm and unique physiology of the biofilm cells contribute to their extremely high resistance to environmental conditions, antimicrobial agents and the mechanisms of host immune response. Therefore, the biofilm formation, especially by multidrugresistant pathogens, is a serious medical problem, playing a pivotal role in the development of chronic and recurrent infections. These factors create a limitation for using traditional chemiotherapeutics and contribute to a request for development of new approaches for treatment of infectious diseases. Therefore, early reports on antimicrobial activity of several complexes of metal ions, bearing thiosemicarbazide or thiosemicarbazones as the ligands, gave a boost to worldwide search for new, more efficient compounds of this class, to be used as alternatives to commonly known drugs. In general, depending on the presence of other heteroatoms, these ligands may function in a di-, tri- or tetradentate forms (e.g., of N,S,-, N,N,S-, N,N,N,S-, N,N,S,S-, or N,S,O-type), which impose different coordination geometries to the resultant complexes. In the first part of this review, we describe the ways of synthesis and the structures of the ligands based on the thiosemicarbazone motif, while the second part deals with the antimicrobial activity of their complexes with selected metal ions.
Collapse
Affiliation(s)
- Ewelina Namiecińska
- Department of Cosmetic Raw Materials Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Marta Sobiesiak
- Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Faculty of Pharmacy, Department of Inorganic and Analytical Chemistry, 85-094 Bydgoszcz, Poland
| | - Magdalena Małecka
- Department of Theoretical and Structural Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163/165, 90-236 Lodz, Poland
| | - Piotr Guga
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Bioorganic Chemistry, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Barbara Rozalska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Elzbieta Budzisz
- Department of Cosmetic Raw Materials Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
32
|
Totten AH, Crawford CL, Dalecki AG, Xiao L, Wolschendorf F, Atkinson TP. Differential Susceptibility of Mycoplasma and Ureaplasma Species to Compound-Enhanced Copper Toxicity. Front Microbiol 2019; 10:1720. [PMID: 31417517 PMCID: PMC6682632 DOI: 10.3389/fmicb.2019.01720] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/12/2019] [Indexed: 12/04/2022] Open
Abstract
Rationale Mycoplasmas represent important etiologic agents of many human diseases. Due to increasing antimicrobial resistance and slow rate of novel discovery, unconventional methods of drug discovery are necessary. Copper ions are utilized in host microbial killing, and bacteria must regulate intracellular Cu concentrations to avoid toxicity. We hypothesized that human mollicutes may have susceptibility to Cu-induced toxicity, and compounds that augment copper-dependent killing. Methods Mycoplasma pneumoniae (Mpn), Ureaplasma parvum (Up), Ureaplasma urealyticum (Uu), and Mycoplasma hominis (Mh) were exposed to CuSO4 to determine minimal inhibitory concentrations (MICs). Once inhibitory concentrations had been determined, bacteria were treated with an FDA-approved drug disulfiram (DSF), glyoxal bis(4-methyl-3-thiosemicarbazone) (GTSM), and 2,9-dimethyl-1,10-phenanthroline (neocuproine), with or without Cu2+, to determine compound MICs. Results Ureaplasma species and Mh were able to tolerate 30–60 μM CuSO4, while Mpn tolerated over 10-fold higher concentrations (>1 mM). GTSM inhibited growth of all four organisms, but was unaffected by Cu2+ addition. Inhibition by GTSM was reduced by addition of the cell-impermeant Cu chelator, bathocuproine disulfonate (BCS). Neocuproine exhibited Cu-dependent growth inhibition of all organisms. DSF exhibited Cu-dependent growth inhibition against Mh at low micromolar concentrations, and at intermediate concentrations for Mpn. Conclusion MICs for CuSO4 differ widely among human mollicutes, with higher MICs for Mpn compared to Mh, Uu, and Up. DSF and Neocuproine exhibit Cu-dependent inhibition of mollicutes with copper concentrations between 25 and 50 μM. GTSM has copper-dependent anti-microbial activity at low levels of copper. Drug enhanced copper toxicity is a promising avenue for novel therapeutic development research with Mycoplasma and Ureaplasma species.
Collapse
Affiliation(s)
- Arthur H Totten
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Cameron L Crawford
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alex G Dalecki
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Li Xiao
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Frank Wolschendorf
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Thomas P Atkinson
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
33
|
Leung AWY, Amador C, Wang LC, Mody UV, Bally MB. What Drives Innovation: The Canadian Touch on Liposomal Therapeutics. Pharmaceutics 2019; 11:pharmaceutics11030124. [PMID: 30884782 PMCID: PMC6471263 DOI: 10.3390/pharmaceutics11030124] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 01/09/2023] Open
Abstract
Liposomes are considered one of the most successful drug delivery systems (DDS) given their established utility and success in the clinic. In the past 40–50 years, Canadian scientists have made ground-breaking discoveries, many of which were successfully translated to the clinic, leading to the formation of biotech companies, the creation of research tools, such as the Lipex Extruder and the NanoAssemblr™, as well as contributing significantly to the development of pharmaceutical products, such as Abelcet®, MyoCet®, Marqibo®, Vyxeos®, and Onpattro™, which are making positive impacts on patients’ health. This review highlights the Canadian contribution to the development of these and other important liposomal technologies that have touched patients. In this review, we try to address the question of what drives innovation: Is it the individual, the teams, the funding, and/or an entrepreneurial spirit that leads to success? From this perspective, it is possible to define how innovation will translate to meaningful commercial ventures and products with impact in the future. We begin with a brief history followed by descriptions of drug delivery technologies influenced by Canadian researchers. We will discuss recent advances in liposomal technologies, including the Metaplex technology from the author’s lab. The latter exemplifies how a nanotechnology platform can be designed based on multidisciplinary groups with expertise in coordination chemistry, nanomedicines, disease, and business to create new therapeutics that can effect better outcomes in patient populations. We conclude that the team is central to the effort; arguing if the team is entrepreneurial and well positioned, the funds needed will be found, but likely not solely in Canada.
Collapse
Affiliation(s)
- Ada W Y Leung
- Cuprous Pharmaceuticals Inc., Vancouver, BC V6T 1Z4, Canada.
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
| | - Carolyn Amador
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
| | - Lin Chuan Wang
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
| | - Urmi V Mody
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
| | - Marcel B Bally
- Cuprous Pharmaceuticals Inc., Vancouver, BC V6T 1Z4, Canada.
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
- Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
34
|
Flores-García M, Fernández-G JM, Busqueta-Griera C, Gómez E, Hernández-Ortega S, Lamothe-Flores JCD, Gómez-Vidales V, Mejía-Domínguez AM, Anglés-Cano E, de la Peña-Díaz A. New Copper Compounds with Antiplatelet Aggregation Activity. Med Chem 2019; 15:850-862. [PMID: 30799791 DOI: 10.2174/1573406415666190222123207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 01/26/2019] [Accepted: 02/07/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ischemic heart disease, cerebrovascular accident, and venous thromboembolism have the presence of a thrombotic event in common and represent the most common causes of death within the population. OBJECTIVE Since Schiff base copper(II) complexes are able to interact with polyphosphates (PolyP), a procoagulant and potentially prothrombotic platelet agent, we investigated the antiplatelet aggregating properties of two novel tridentate Schiff base ligands and their corresponding copper( II) complexes. METHODS The Schiff base ligands (L1) and (L2), as well as their corresponding copper(II) complexes (C1) and (C2), were synthesized and characterized by chemical analysis, X-ray diffraction, mass spectrometry, and UV-Visible, IR and far IR spectroscopy. In addition, EPR studies were carried out for (C1) and (C2), while (L1) and (L2) were further analyzed by 1H and 13C NMR. Tests for antiplatelet aggregation activities of all of the four compounds were conducted. RESULTS X-ray diffraction studies show that (L1) and (L2) exist in the enol-imine tautomeric form with a strong intramolecular hydrogen bond. NMR studies show that both ligands are found as enol-imine tautomers in CDCl3 solution. In the solid state, the geometry around the copper(II) ion in both (C1) and (C2) is square planar. EPR spectra suggest that the geometry of the complexes is similar to that observed in the solid state by X-ray crystallography. Compound (C2) exhibited the strongest antiplatelet aggregation activity. CONCLUSION Schiff base copper(II) complexes, which are attracting increasing interest, could represent a new approach to treat thrombosis by blocking the activity of PolyP with a potential anticoagulant activity and, most importantly, demonstrating no adverse bleeding events.
Collapse
Affiliation(s)
- Mirthala Flores-García
- Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Tlalpan 14080, Ciudad de México, Mexico
| | - Juan Manuel Fernández-G
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, Mexico
| | - Cristina Busqueta-Griera
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, Mexico
| | - Elizabeth Gómez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, Mexico
| | - Simón Hernández-Ortega
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, Mexico
| | | | - Virginia Gómez-Vidales
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, Mexico
| | - Ana María Mejía-Domínguez
- Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Tlalpan 14080, Ciudad de México, Mexico
| | - Eduardo Anglés-Cano
- INSERM UMR-S1140, Faculty of Sciences, Pharmaceutiques & Biologiques, Avenue de l'Observatoire, 75270 Paris, Cedex 06, France
| | - Aurora de la Peña-Díaz
- Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Tlalpan 14080, Ciudad de México, Mexico.,Facultad de Medicina, Departamento de Farmacología, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, México
| |
Collapse
|
35
|
Crawford CL, Dalecki AG, Narmore WT, Hoff J, Hargett AA, Renfrow MB, Zhang M, Kalubowilage M, Bossmann SH, Queern SL, Lapi SE, Hunter RN, Bao D, Augelli-Szafran CE, Kutsch O, Wolschendorf F. Pyrazolopyrimidinones, a novel class of copper-dependent bactericidal antibiotics against multi-drug resistant S. aureus. Metallomics 2019; 11:784-798. [DOI: 10.1039/c8mt00316e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pyrazolopyrimidinones traffic copper into S. aureus, depleting ATP and altering essential ion concentrations, resulting in the death of the bacteria.
Collapse
Affiliation(s)
| | - Alex G. Dalecki
- Department of Medicine
- University of Alabama at Birmingham
- Birmingham
- USA
| | | | - Jessica Hoff
- Department of Medicine
- University of Alabama at Birmingham
- Birmingham
- USA
| | - Audra A. Hargett
- Department of Biochemistry and Molecular Genetics
- University of Alabama at Birmingham
- Birmingham
- USA
| | - Matthew B. Renfrow
- Department of Biochemistry and Molecular Genetics
- University of Alabama at Birmingham
- Birmingham
- USA
| | - Man Zhang
- Department of Chemistry
- Kansas State University
- Manhattan
- USA
| | | | | | - Stacy L. Queern
- Department of Radiology
- University of Alabama at Birmingham
- Birmingham
- USA
- Department of Chemistry
| | - Suzanne E. Lapi
- Department of Radiology
- University of Alabama at Birmingham
- Birmingham
- USA
- Department of Chemistry
| | - Robert N. Hunter
- Department of Chemistry
- Drug Discovery Division
- Southern Research
- Birmingham
- USA
| | - Donghui Bao
- Department of Chemistry
- Drug Discovery Division
- Southern Research
- Birmingham
- USA
| | | | - Olaf Kutsch
- Department of Medicine
- University of Alabama at Birmingham
- Birmingham
- USA
| | | |
Collapse
|
36
|
Utthra PP, Raman N. Probing the potency of triazole tethered Schiff base complexes and the effect of substituents on their biological attributes. Int J Biol Macromol 2018; 116:194-207. [DOI: 10.1016/j.ijbiomac.2018.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/21/2018] [Accepted: 05/02/2018] [Indexed: 01/14/2023]
|
37
|
Wehbe M, Leung AWY, Abrams MJ, Orvig C, Bally MB. A Perspective - can copper complexes be developed as a novel class of therapeutics? Dalton Trans 2018; 46:10758-10773. [PMID: 28702645 DOI: 10.1039/c7dt01955f] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although copper-ligand complexes appear to be promising as a new class of therapeutics, other than the family of copper(ii) coordination compounds referred to as casiopeínas these compounds have yet to reach the clinic for human use. The pharmaceutical challenges associated with developing copper-based therapeutics will be presented in this article along with a discussion of the potential for high-throughput chemistry, computer-aided drug design, and nanotechnology to address the development of this important class of drug candidates.
Collapse
Affiliation(s)
- Mohamed Wehbe
- Experimental Therapeutics, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada.
| | | | | | | | | |
Collapse
|
38
|
Marsh JW, Djoko KY, McEwan AG, Huston WM. Copper(II)-bis(thiosemicarbazonato) complexes as anti-chlamydial agents. Pathog Dis 2018; 75:4033033. [PMID: 28830076 DOI: 10.1093/femspd/ftx084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/20/2017] [Indexed: 11/14/2022] Open
Abstract
Lipophilic copper (Cu)-containing complexes have shown promising antibacterial activity against a range of bacterial pathogens. To examine the susceptibility of the intracellular human pathogen Chlamydia trachomatis to copper complexes containing bis(thiosemicarbazone) ligands [Cu(btsc)], we tested the in vitro effect of CuII-diacetyl- and CuII-glyoxal-bis[N(4)-methylthiosemicarbazonato] (Cu(atsm) and Cu(gtsm), respectively) on C. trachomatis. Cu(atsm) and to a greater extent, Cu(gtsm), prevented the formation of infectious chlamydial progeny. Impacts on host cell viability and respiration were also observed in addition to the Chlamydia impacts. This work suggests that copper-based complexes may represent a new lead approach for future development of new therapeutics against chlamydial infections, although host cell impacts need to be fully explored.
Collapse
Affiliation(s)
- James W Marsh
- The iThree Institute, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Karrera Y Djoko
- School of Chemistry and Molecular Biosciences and Australian Centre for Infectious Disease Research, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Alastair G McEwan
- School of Chemistry and Molecular Biosciences and Australian Centre for Infectious Disease Research, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Wilhelmina M Huston
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| |
Collapse
|
39
|
Copper Ions and Coordination Complexes as Novel Carbapenem Adjuvants. Antimicrob Agents Chemother 2018; 62:AAC.02280-17. [PMID: 29133551 DOI: 10.1128/aac.02280-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae are urgent threats to global human health. These organisms produce β-lactamases with carbapenemase activity, such as the metallo-β-lactamase NDM-1, which is notable due to its association with mobile genetic elements and the lack of a clinically useful inhibitor. Here we examined the ability of copper to inhibit the activity of NDM-1 and explored the potential of a copper coordination complex as a mechanism to efficiently deliver copper as an adjuvant in clinical therapeutics. An NDM-positive Escherichia coli isolate, MS6192, was cultured from the urine of a patient with a urinary tract infection. MS6192 was resistant to antibiotics from multiple classes, including diverse β-lactams (penicillins, cephalosporins, and carbapenems), aminoglycosides, and fluoroquinolones. In the presence of copper (range, 0 to 2 mM), however, the susceptibility of MS6192 to the carbapenems ertapenem and meropenem increased markedly. In standard checkerboard assays, copper decreased the MICs of ertapenem and meropenem against MS6192 in a dose-dependent manner, suggesting a synergistic mode of action. To examine the inhibitory effect of copper in the absence of other β-lactamases, the blaNDM-1 gene from MS6192 was cloned and expressed in a recombinant E. coli K-12 strain. Analysis of cell extracts prepared from this strain revealed that copper directly inhibited NDM-1 activity, which was confirmed using purified recombinant NDM-1. Finally, delivery of copper at a low concentration of 10 μM by using the FDA-approved coordination complex copper-pyrithione sensitized MS6192 to ertapenem and meropenem in a synergistic manner. Overall, this work demonstrates the potential use of copper coordination complexes as novel carbapenemase adjuvants.
Collapse
|
40
|
|
41
|
Poole K. At the Nexus of Antibiotics and Metals: The Impact of Cu and Zn on Antibiotic Activity and Resistance. Trends Microbiol 2017; 25:820-832. [PMID: 28526548 DOI: 10.1016/j.tim.2017.04.010] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/18/2017] [Accepted: 04/26/2017] [Indexed: 12/14/2022]
Abstract
Environmental influences on antibiotic activity and resistance can wreak havoc with in vivo antibiotic efficacy and, ultimately, antimicrobial chemotherapy. In nature, bacteria encounter a variety of metal ions, particularly copper (Cu) and zinc (Zn), as contaminants in soil and water, as feed additives in agriculture, as clinically-used antimicrobials, and as components of human antibacterial responses. Importantly, there is a growing body of evidence for Cu/Zn driving antibiotic resistance development in metal-exposed bacteria, owing to metal selection of genetic elements harbouring both metal and antibiotic resistance genes, and metal recruitment of antibiotic resistance mechanisms. Many classes of antibiotics also form complexes with metal cations, including Cu and Zn, and this can hinder (or enhance) antibiotic activity. This review highlights the ways in which Cu/Zn influence antibiotic resistance development and antibiotic activity, and in so doing impact in vivo antibiotic efficacy.
Collapse
Affiliation(s)
- Keith Poole
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada, K7L 3N6.
| |
Collapse
|
42
|
Dalecki AG, Crawford CL, Wolschendorf F. Copper and Antibiotics: Discovery, Modes of Action, and Opportunities for Medicinal Applications. Adv Microb Physiol 2017; 70:193-260. [PMID: 28528648 DOI: 10.1016/bs.ampbs.2017.01.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Copper is a ubiquitous element in the environment as well as living organisms, with its redox capabilities and complexation potential making it indispensable for many cellular functions. However, these same properties can be highly detrimental to prokaryotes and eukaryotes when not properly controlled, damaging many biomolecules including DNA, lipids, and proteins. To restrict free copper concentrations, all bacteria have developed mechanisms of resistance, sequestering and effluxing labile copper to minimize its deleterious effects. This weakness is actively exploited by phagocytes, which utilize a copper burst to destroy pathogens. Though administration of free copper is an unreasonable therapeutic antimicrobial itself, due to insufficient selectivity between host and pathogen, small-molecule ligands may provide an opportunity for therapeutic mimicry of the immune system. By modulating cellular entry, complex stability, resistance evasion, and target selectivity, ligand/metal coordination complexes can synergistically result in high levels of antibacterial activity. Several established therapeutic drugs, such as disulfiram and pyrithione, display remarkable copper-dependent inhibitory activity. These findings have led to development of new drug discovery techniques, using copper ions as the focal point. High-throughput screens for copper-dependent inhibitors against Mycobacterium tuberculosis and Staphylococcus aureus uncovered several new compounds, including a new class of inhibitors, the NNSNs. In this review, we highlight the microbial biology of copper, its antibacterial activities, and mechanisms to discover new inhibitors that synergize with copper.
Collapse
Affiliation(s)
- Alex G Dalecki
- The University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | |
Collapse
|
43
|
Brodowska K, Correia I, Garribba E, Marques F, Klewicka E, Łodyga-Chruscińska E, Pessoa JC, Dzeikala A, Chrusciński L. Coordination ability and biological activity of a naringenin thiosemicarbazone. J Inorg Biochem 2016; 165:36-48. [DOI: 10.1016/j.jinorgbio.2016.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/18/2016] [Accepted: 09/29/2016] [Indexed: 12/15/2022]
|
44
|
8-Hydroxyquinolines Are Boosting Agents of Copper-Related Toxicity in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2016; 60:5765-76. [PMID: 27431227 DOI: 10.1128/aac.00325-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/06/2016] [Indexed: 12/13/2022] Open
Abstract
Copper (Cu) ions are likely the most important immunological metal-related toxin utilized in controlling bacterial infections. Impairment of bacterial Cu resistance reduces viability within the host. Thus, pharmacological enhancement of Cu-mediated antibacterial toxicity may lead to novel strategies in drug discovery and development. Screening for Cu toxicity-enhancing antibacterial molecules identified 8-hydroxyquinoline (8HQ) to be a potent Cu-dependent bactericidal inhibitor of Mycobacterium tuberculosis The MIC of 8HQ in the presence of Cu was 0.16 μM for replicating and nonreplicating M. tuberculosis cells. We found 8HQ's activity to be dependent on the presence of extracellular Cu and to be related to an increase in cell-associated labile Cu ions. Both findings are consistent with 8HQ acting as a Cu ionophore. Accordingly, we identified the 1:1 complex of 8HQ and Cu to be its active form, with Zn, Fe, or Mn neither enhancing nor reducing its Cu-specific action. This is remarkable, considering that the respective metal complexes have nearly identical structures and geometries. Finally, we found 8HQ to kill M. tuberculosis selectively within infected primary macrophages. Given the stark Cu-dependent nature of 8HQ activity, this is the first piece of evidence that Cu ions within macrophages may bestow antibacterial properties to a Cu-dependent inhibitor of M. tuberculosis In conclusion, our findings highlight the metal-binding ability of the 8-hydroxyquinoline scaffold to be a potential focus for future medicinal chemistry and highlight the potential of innate immunity-inspired screening platforms to reveal molecules with novel modes of action against M. tuberculosis.
Collapse
|
45
|
Ligand and Structure-Based Approaches for the Identification of Peptide Deformylase Inhibitors as Antibacterial Drugs. Int J Mol Sci 2016; 17:ijms17071141. [PMID: 27428963 PMCID: PMC4964514 DOI: 10.3390/ijms17071141] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/29/2016] [Accepted: 07/09/2016] [Indexed: 01/02/2023] Open
Abstract
Peptide deformylase (PDF) is a metalloprotease catalyzing the removal of a formyl group from newly synthesized proteins, which makes it an important antibacterial drug target. Given the importance of PDF inhibitors like actinonin in antibacterial drug discovery, several reported potent PDF inhibitors were used to develop pharmacophore models using the Galahad module of Sybyl 7.1 software. Generated pharmacophore models were composed of two donor atom centers, four acceptor atom centers and two hydrophobic groups. Model-1 was screened against the Zinc database and several compounds were retrieved as hits. Compounds with Qfit values of more than 60 were employed to perform a molecular docking study with the receptor Escherichia coli PDF, then compounds with docking score values of more than 6 were used to predict the in silico pharmacokinetic and toxicity risk via OSIRIS property explorer. Two known PDF inhibitors were also used to perform a molecular docking study with E. coli PDF as reference molecules. The results of the molecular docking study were validated by reproducing the crystal structure of actinonin. Molecular docking and in silico pharmacokinetic and toxicity prediction studies suggested that ZINC08740166 has a relatively high docking score of 7.44 and a drug score of 0.78.
Collapse
|
46
|
Dalecki AG, Crawford CL, Wolschendorf F. Targeting Biofilm Associated Staphylococcus aureus Using Resazurin Based Drug-susceptibility Assay. J Vis Exp 2016. [PMID: 27214174 DOI: 10.3791/53925] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Most pathogenic bacteria are able to form biofilms during infection, but due to the difficulty of manipulating and assessing biofilms, the vast majority of laboratory work is conducted with planktonic cells. Here, we describe a peg plate biofilm assay as performed with Staphylococcus aureus. Bacterial biofilms are grown on pegs attached to a 96-well microtiter plate lid, washed through gentle submersion in buffer, and placed in a drug challenge plate. After subsequent incubation they are again washed and moved to a final recovery plate, in which the fluorescent dye resazurin serves as a viability indicator. This assay offers greatly increased ease-of-use, reliability, and reproducibility, as well as a wealth of data when conducted as a kinetic read. Moreover, this assay can be adapted to a medium-throughput drug screening approach by which an endpoint fluorescent readout is taken instead, offering a path for drug discovery efforts.
Collapse
Affiliation(s)
- Alex G Dalecki
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham
| | - Cameron L Crawford
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham
| | - Frank Wolschendorf
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham;
| |
Collapse
|
47
|
Dalecki AG, Wolschendorf F. Development of a web-based tool for automated processing and cataloging of a unique combinatorial drug screen. J Microbiol Methods 2016; 126:30-4. [PMID: 27117032 DOI: 10.1016/j.mimet.2016.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/29/2022]
Abstract
Facing totally resistant bacteria, traditional drug discovery efforts have proven to be of limited use in replenishing our depleted arsenal of therapeutic antibiotics. Recently, the natural anti-bacterial properties of metal ions in synergy with metal-coordinating ligands have shown potential for generating new molecule candidates with potential therapeutic downstream applications. We recently developed a novel combinatorial screening approach to identify compounds with copper-dependent anti-bacterial properties. Through a parallel screening technique, the assay distinguishes between copper-dependent and independent activities against Mycobacterium tuberculosis with hits being defined as compounds with copper-dependent activities. These activities must then be linked to a compound master list to process and analyze the data and to identify the hit molecules, a labor intensive and mistake-prone analysis. Here, we describe a software program built to automate this analysis in order to streamline our workflow significantly. We conducted a small, 1440 compound screen against M. tuberculosis and used it as an example framework to build and optimize the software. Though specifically adapted to our own needs, it can be readily expanded for any small- to medium-throughput screening effort, parallel or conventional. Further, by virtue of the underlying Linux server, it can be easily adapted for chemoinformatic analysis of screens through packages such as OpenBabel. Overall, this setup represents an easy-to-use solution for streamlining processing and analysis of biological screening data, as well as offering a scaffold for ready functionality expansion.
Collapse
Affiliation(s)
- Alex G Dalecki
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, 845 19th St S, Birmingham, AL 35294, United States.
| | - Frank Wolschendorf
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, 845 19th St S, Birmingham, AL 35294, United States.
| |
Collapse
|
48
|
Dalecki AG, Malalasekera AP, Schaaf K, Kutsch O, Bossmann SH, Wolschendorf F. Combinatorial phenotypic screen uncovers unrecognized family of extended thiourea inhibitors with copper-dependent anti-staphylococcal activity. Metallomics 2016; 8:412-21. [PMID: 26935206 PMCID: PMC4838501 DOI: 10.1039/c6mt00003g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The continuous rise of multi-drug resistant pathogenic bacteria has become a significant challenge for the health care system. In particular, novel drugs to treat infections of methicillin-resistant Staphylococcus aureus strains (MRSA) are needed, but traditional drug discovery campaigns have largely failed to deliver clinically suitable antibiotics. More than simply new drugs, new drug discovery approaches are needed to combat bacterial resistance. The recently described phenomenon of copper-dependent inhibitors has galvanized research exploring the use of metal-coordinating molecules to harness copper's natural antibacterial properties for therapeutic purposes. Here, we describe the results of the first concerted screening effort to identify copper-dependent inhibitors of Staphylococcus aureus. A standard library of 10 000 compounds was assayed for anti-staphylococcal activity, with hits defined as those compounds with a strict copper-dependent inhibitory activity. A total of 53 copper-dependent hit molecules were uncovered, similar to the copper independent hit rate of a traditionally executed campaign conducted in parallel on the same library. Most prominent was a hit family with an extended thiourea core structure, termed the NNSN motif. This motif resulted in copper-dependent and copper-specific S. aureus inhibition, while simultaneously being well tolerated by eukaryotic cells. Importantly, we could demonstrate that copper binding by the NNSN motif is highly unusual and likely responsible for the promising biological qualities of these compounds. A subsequent chemoinformatic meta-analysis of the ChEMBL chemical database confirmed the NNSNs as an unrecognized staphylococcal inhibitor, despite the family's presence in many chemical screening libraries. Thus, our copper-biased screen has proven able to discover inhibitors within previously screened libraries, offering a mechanism to reinvigorate exhausted molecular collections.
Collapse
Affiliation(s)
- Alex G Dalecki
- Department of Medicine, University of Alabama at Birmingham, 845 19th Street S, Birmingham, AL 35294, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Neyrolles O, Wolschendorf F, Mitra A, Niederweis M. Mycobacteria, metals, and the macrophage. Immunol Rev 2015; 264:249-63. [PMID: 25703564 DOI: 10.1111/imr.12265] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mycobacterium tuberculosis is a facultative intracellular pathogen that thrives inside host macrophages. A key trait of M. tuberculosis is to exploit and manipulate metal cation trafficking inside infected macrophages to ensure survival and replication inside the phagosome. Here, we describe the recent fascinating discoveries that the mammalian immune system responds to infections with M. tuberculosis by overloading the phagosome with copper and zinc, two metals which are essential nutrients in small quantities but are toxic in excess. M. tuberculosis has developed multi-faceted resistance mechanisms to protect itself from metal toxicity including control of uptake, sequestration inside the cell, oxidation, and efflux. The host response to infections combines this metal poisoning strategy with nutritional immunity mechanisms that deprive M. tuberculosis from metals such as iron and manganese to prevent bacterial replication. Both immune mechanisms rely on the translocation of metal transporter proteins to the phagosomal membrane during the maturation process of the phagosome. This review summarizes these recent findings and discusses how metal-targeted approaches might complement existing TB chemotherapeutic regimens with novel anti-infective therapies.
Collapse
Affiliation(s)
- Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, Univer-sité Paul Sabatier, Université de Toulouse, Toulouse, France
| | | | | | | |
Collapse
|
50
|
Copper(II)-Bis(Thiosemicarbazonato) Complexes as Antibacterial Agents: Insights into Their Mode of Action and Potential as Therapeutics. Antimicrob Agents Chemother 2015; 59:6444-53. [PMID: 26239980 DOI: 10.1128/aac.01289-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/23/2015] [Indexed: 12/21/2022] Open
Abstract
There is increasing interest in the use of lipophilic copper (Cu)-containing complexes to combat bacterial infections. In this work, we showed that Cu complexes with bis(thiosemicarbazone) ligands [Cu(btsc)] exert antibacterial activity against a range of medically significant pathogens. Previous work using Neisseria gonorrhoeae showed that Cu(btsc) complexes may act as inhibitors of respiratory dehydrogenases in the electron transport chain. We now show that these complexes are also toxic against pathogens that lack a respiratory chain. Respiration in Escherichia coli was slightly affected by Cu(btsc) complexes, but our results indicate that, in this model bacterium, the complexes act primarily as agents that deliver toxic Cu ions efficiently into the cytoplasm. Although the chemistry of Cu(btsc) complexes may dictate their mechanism of action, their efficacy depends heavily on bacterial physiology. This is linked to the ability of the target bacterium to tolerate Cu and, additionally, the susceptibility of the respiratory chain to direct inhibition by Cu(btsc) complexes. The physiology of N. gonorrhoeae, including multidrug-resistant strains, makes it highly susceptible to damage by Cu ions and Cu(btsc) complexes, highlighting the potential of Cu(btsc) complexes (and Cu-based therapeutics) as a promising treatment against this important bacterial pathogen.
Collapse
|