1
|
Li S, Zhou Y, Yan Y, Qin Y, Weng Q, Sun L. Structure-Based Virtual Screening, ADMET Properties Prediction and Molecular Dynamics Studies Reveal Potential Inhibitors of Mycoplasma pneumoniae HPrK/P. Life (Basel) 2024; 14:657. [PMID: 38929642 PMCID: PMC11204831 DOI: 10.3390/life14060657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Mycoplasma pneumoniae pneumonia (MPP) is a frequent cause of community-acquired pneumonia (CAP) in children. The incidence of childhood pneumonia caused by M. pneumoniae infection has been rapidly increasing worldwide. M. pneumoniae is naturally resistant to beta-lactam antibiotics due to its lack of a cell wall. Macrolides and related antibiotics are considered the optimal drugs for treating M. pneumoniae infection. However, clinical resistance to macrolides has become a global concern in recent years. Therefore, it is imperative to urgently identify new targets and develop new anti-M. pneumoniae drugs to treat MMP. Previous studies have shown that deficiencies in HPrK/P kinase or phosphorylase activity can seriously affect carbon metabolism, growth, morphology, and other cellular functions of M. pneumoniae. To identify potential drug development targets against M. pneumoniae, this study analyzed the sequence homology and 3D structure alignment of M. pneumoniae HPrK/P. Through sequence and structure analysis, we found that HPrK/P lacks homologous proteins in the human, while its functional motifs are highly conserved in bacteria. This renders it a promising candidate for drug development. Structure-based virtual screening was then used to discover potential inhibitors among 2614 FDA-approved drugs and 948 bioactive small molecules for M. pneumoniae HPrK/P. Finally, we identified three candidate drugs (Folic acid, Protokylol and Gluconolactone) as potential HPrK/P inhibitors through molecular docking, molecular dynamics (MDs) simulations, and ADMET predictions. These drugs offer new strategies for the treatment of MPP.
Collapse
Affiliation(s)
- Shen Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China; (S.L.); (Y.Z.); (Y.Y.); (Y.Q.); (Q.W.)
| | - Ying Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China; (S.L.); (Y.Z.); (Y.Y.); (Y.Q.); (Q.W.)
| | - Yujuan Yan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China; (S.L.); (Y.Z.); (Y.Y.); (Y.Q.); (Q.W.)
| | - Yinying Qin
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China; (S.L.); (Y.Z.); (Y.Y.); (Y.Q.); (Q.W.)
| | - Qilu Weng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China; (S.L.); (Y.Z.); (Y.Y.); (Y.Q.); (Q.W.)
| | - Litao Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China; (S.L.); (Y.Z.); (Y.Y.); (Y.Q.); (Q.W.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| |
Collapse
|
2
|
Konaklieva MI, Plotkin BJ. Utilization of Existing Human Kinase Inhibitors as Scaffolds in the Development of New Antimicrobials. Antibiotics (Basel) 2023; 12:1418. [PMID: 37760715 PMCID: PMC10525673 DOI: 10.3390/antibiotics12091418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The prevalence and continuing expansion of drug resistance, both in clinical and community settings represents a major challenge for current antimicrobial therapy. The different approaches for addressing this challenge include (1) identification of novel antibacterials by repurposing of existing drugs originally that historically target host proteins; and (2) effect target switching through modification of existing antimicrobials. The focus of this manuscript is on these drug discovery strategies, with utility for development of new antimicrobials with different modes of action.
Collapse
Affiliation(s)
| | - Balbina J. Plotkin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL 60515, USA;
| |
Collapse
|
3
|
Ferri G, Lauteri C, Festino AR, Vergara A. ARGs Detection in Listeria Monocytogenes Strains Isolated from the Atlantic Salmon ( Salmo salar) Food Industry: A Retrospective Study. Microorganisms 2023; 11:1509. [PMID: 37375010 DOI: 10.3390/microorganisms11061509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Among bacterial foodborne pathogens, Listeria monocytogenes represents one of the most important public health concerns in seafood industries. This study was designed as a retrospective study which aimed to investigate the trend of antibiotic resistance genes (ARGs) circulation in L. monocytogenes isolates identified (in the last 15 years) from Atlantic salmon (Salmo salar) fresh and smoked fillets and environmental samples. For these purposes, biomolecular assays were performed on 120 L. monocytogenes strains collected in certain years and compared to the contemporary scientific literature. A total of 52.50% (95% CI: 43.57-61.43%) of these samples were resistant to at least one antibiotic class, and 20.83% (95% CI: 13.57-28.09%) were classified as multidrug resistant. Concerning ARGs circulation, tetracycline (tetC, tetD, tetK, tetL, tetS), aminoglycoside (aadA, strA, aacC2, aphA1, aphA2), macrolide (cmlA1, catI, catII), and oxazolidinone (cfr, optrA, poxtA) gene determinants were majorly amplified. This study highlights the consistent ARGs circulation from fresh and processed finfish products and environmental samples, discovering resistance to the so-called critical important antimicrobials (CIA) since 2007. The obtained ARGs circulation data highlight the consistent increase in their diffusion when compared to similar contemporary investigations. This scenario emerges as the result of decades of improper antimicrobial administration in human and veterinary medicine.
Collapse
Affiliation(s)
- Gianluigi Ferri
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection "G. Tiecco", University of Teramo, Strada Provinciale 18, Piano d'Accio, 64100 Teramo, Italy
| | - Carlotta Lauteri
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection "G. Tiecco", University of Teramo, Strada Provinciale 18, Piano d'Accio, 64100 Teramo, Italy
| | - Anna Rita Festino
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection "G. Tiecco", University of Teramo, Strada Provinciale 18, Piano d'Accio, 64100 Teramo, Italy
| | - Alberto Vergara
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection "G. Tiecco", University of Teramo, Strada Provinciale 18, Piano d'Accio, 64100 Teramo, Italy
| |
Collapse
|
4
|
Farid N, Waheed A, Motwani S. Synthetic and natural antimicrobials as a control against food borne pathogens: A review. Heliyon 2023; 9:e17021. [PMID: 37484319 PMCID: PMC10361103 DOI: 10.1016/j.heliyon.2023.e17021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 05/28/2023] [Accepted: 06/04/2023] [Indexed: 07/25/2023] Open
Abstract
Food borne pathogens are one of the most common yet concerning cause of illnesses around the globe. These microbes invade the body via food items, through numerous mediums of contamination and it is impossible to completely eradicate these organisms from food. Extensive research has been made regarding their treatment. Unfortunately, the only available treatment currently is by antibiotics. Recent exponential increase in antibiotic resistance and the side effect of synthetic compounds have established a need for alternate therapies that could be utilized either on their own or along with antibiotics to provide protection against food-borne diseases. The aim of this review is to provide information regarding some common food borne diseases, their current and possible natural treatment. It will include details regarding some common foodborne pathogens, the disease they cause, prevalence, manifestations and treatment of the respective disease. Some natural modes of potential treatment will be summarized, which including phytochemicals, derived from plants either as crude extracts or as purified form and Bacteriocins as microbial based treatment, obtained from various types of bacteria. The paper will describe their mechanism of action, classification, susceptible organisms, some antimicrobial compounds and producing organisms, application in food systems and as potential treatment. Along with that, synthetic treatment i.e., antibiotics will be discussed including the first-line treatment of some common food borne infections, prevalence and mechanism of resistance against antibiotics in the pathogens.
Collapse
Affiliation(s)
- Neha Farid
- Corresponding author. Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Pakistan.
| | | | | |
Collapse
|
5
|
The Application of Cinnamon Twig Extract as an Inhibitor of Listeriolysin O against Listeria monocytogenes Infection. Molecules 2023; 28:molecules28041625. [PMID: 36838612 PMCID: PMC9962927 DOI: 10.3390/molecules28041625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
As a major virulence factor of Listeria monocytogenes (L. monocytogenes), listeriolysin O (LLO) can assist in the immune escape of L. monocytogenes, which is critical for the pathogen to evade host immune recognition, leading to various infectious diseases. Cinnamon twig (CT), as a traditional medicine, has been widely used in clinics for multiple functions and it has exhibited excellent safety, efficacy and stability. There are few reports on the effects of the extracts of traditional medicine on bacterial virulence factors. CT has not been reported to be effective in the treatment of L. monocytogenes infection. Therefore, this study aims to explore the preventive effect of CT against L. monocytogenes infection in vivo and in vitro by targeting LLO. Firstly, a hemolysis assay and a cell viability determination are used to detect the effect of CT extract on the inhibition of the cytolytic activity of LLO. The potential mechanism through which CT extract inhibits LLO activity is predicted through network pharmacology, molecular docking assay, real-time polymerase chain reaction (RT-PCR), Western blotting and circular dichroism (CD) analysis. The experimental therapeutic effect of CT extract is examined in a mouse model infected with L. monocytogenes. Then, the ingredients are identified through a high-performance liquid chromatography (HPLC) and thin layer chromatography (TLC) analysis. Here we find that CT extract, containing mainly cinnamic acid, cinnamaldehyde, β-sitosterol, taxifolin, catechin and epicatechin, shows a potential inhibition of LLO-mediated hemolysis without any antimicrobial activity. The results of the mechanism research show that CT extract treatment can simultaneously inhibit LLO expression and oligomerization. Furthermore, the addition of CT extract led to a remarkable alleviation of LLO-induced cytotoxicity. After treatment with CT extract, the mortality, bacterial load, pathological damage and inflammatory responses of infected mice are significantly reduced when compared with the untreated group. This study suggests that CT extract can be a novel and multicomponent inhibitor of LLO with multiple strategies against L. monocytogenes infection, which could be further developed into a novel treatment for infections caused by L. monocytogenes.
Collapse
|
6
|
Thomas P, Deming MA, Sarkar A. β-Lactamase Suppression as a Strategy to Target Methicillin-Resistant Staphylococcus aureus: Proof of Concept. ACS OMEGA 2022; 7:46213-46221. [PMID: 36570253 PMCID: PMC9773349 DOI: 10.1021/acsomega.2c04381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
β-Lactamase (penicillinase) renders early, natural β-lactams like penicillin G useless against methicillin-resistant Staphylococcus aureus (MRSA), which also expresses PBP2a, responsible for resistance to semisynthetic, penicillinase-insensitive β-lactams like oxacillin. Antimicrobial discovery is difficult, and resistance exists against most treatment options. Enhancing β-lactams against MRSA would revive its clinical utility. Most research on antimicrobial enhancement against MRSA focuses on oxacillin due to β-lactamase expression. Yet, Moreillon and others have demonstrated that penicillin G is as potent against a β-lactamase gene knockout strain, as vancomycin is against wild-type MRSA. Penicillin G overcame PBP2a because β-lactamase activity was blocked. Additionally, animals treated with a combination of direct β-lactamase inhibitors like sulbactam and clavulanate with penicillin G developed resistant infections, clearly demonstrating that direct inhibition of β-lactamase is not a good strategy. Here, we show that 50 μM pyrimidine-2-amines (P2As) reduce the minimum inhibitory concentration (MIC) of penicillin G against MRSA strains by up to 16-fold by reducing β-lactamase activity but not by direct inhibition of the enzyme. Oxacillin was not enhanced due to PBP2a expression, demonstrating the advantage of penicillin G over penicillinase-insensitive β-lactams. P2As modulate an unknown global regulator but not established antimicrobial-enhancement targets Stk1 and VraS. P2As are a practical implementation of Moreillon's principle of suppressing β-lactamase activity to make penicillin G useful against MRSA, without employing direct enzyme inhibitors.
Collapse
|
7
|
Identification of serine/threonine kinases that regulate metabolism and sporulation in Clostridium beijerinckii. Appl Microbiol Biotechnol 2022; 106:7563-7575. [DOI: 10.1007/s00253-022-12234-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/17/2022] [Accepted: 10/07/2022] [Indexed: 11/02/2022]
|
8
|
Antimicrobial Resistance of Listeria monocytogenes from Animal Foods to First- and Second-Line Drugs in the Treatment of Listeriosis from 2008 to 2021: A Systematic Review and Meta-Analysis. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:1351983. [PMID: 36249588 PMCID: PMC9568363 DOI: 10.1155/2022/1351983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022]
Abstract
First-line drugs for the treatment of listeriosis are the same around the world, but particular conditions might reduce their efficacy, including antimicrobial resistance. Therefore, this study aimed to verify, based on a systematic review and meta-analysis, whether the prevalence of antimicrobial resistance in Listeria monocytogenes from animal foods is higher for first- or second-line antimicrobials. From the total of 302 identified studies, 16 met all the eligibility criteria from 2008 to 2021 and were included in this meta-analysis. They comprised a dataset of 1152 L. monocytogenes isolates, obtained from different animal food products, food processing environment, and live animals. The included studies were developed in South America (n = 5), Europe (n = 4), Asia (n = 3), Africa (n = 2), and North America (n = 2), testing a total of 35 different antimicrobials, 11 of them classified as first-line drugs. Complete lack of antimicrobial resistance across the studies (all L. monocytogenes isolates tested as susceptible) was only observed for linezolid, while widespread antimicrobial resistance (all L. monocytogenes isolates tested resistant) was described for amoxicillin, benzylpenicillin, cefoxitin, fusidic acid, imipenem, sulfamethoxazole, and vancomycin. Overall, the meta-analysis results indicated no evidence that antimicrobial resistance in L. monocytogenes isolated from animal-based food is higher for first-line antimicrobials compared to second-line compounds (p=0.37). A greater volume of publication, together with better characterization of the isolates, is still needed for a more precise estimate of the real prevalence of antimicrobial resistance in L. monocytogenes.
Collapse
|
9
|
Li H, Li T, Hu Q, Yao Z, Li L, Huang Q, Zhou R. Inhibitors targeting the autophosphorylation of serine/threonine kinase of Streptococcus suis show potent antimicrobial activity. Front Microbiol 2022; 13:990091. [PMID: 36118193 PMCID: PMC9478340 DOI: 10.3389/fmicb.2022.990091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global concern threatening public health. Developing novel antibiotics is one of the effective strategies to tackle AMR. Serine/threonine kinases (STKs) have been recently shown to play critical roles in the physiology and pathogenesis of several important bacterial pathogens which are regarded as a promising antimicrobial drug target. We previously reported the roles of STK in the regulation of bacterial cell division, metabolism, and pathogenesis in Streptococcus suis, an important zoonotic bacterial pathogen. In this study, we firstly identified the Thr167 and Ser175 residues in the activation loop of S. suis STK (ssSTK) as the kinase autophosphorylation sites. Phenotyping results demonstrated that the autophosphorylation deficient strain resembled the stk deletion strain showing essentiality for bacterial growth in minimal medium, abnormal morphology, and decreased virulence when compared with the wild-type S. suis SC19 strain. Based on these findings, we established an ssSTK inhibitor screening approach by measuring the growth of S. suis in a minimal medium and testing the autophosphorylation inhibition by measuring the consumption of ATP in an enzymatic reaction by ssSTK. A series of inhibitors against ssSTK are identified from a commercial kinase inhibitors library, including Staurosporine, K252a, AT9283, and APY29. These inhibitors showed antimicrobial activity in vitro. Moreover, by using Galleria mellonella larvae infection assay, compound APY29 displayed in vivo efficacy against S. suis infection. Additionally, it was predicted by molecular docking that these inhibitors could interact with ssSTK. Collectively, our data illustrated the essential roles of ssSTK autophosphorylation in the physiology and pathogenicity of S. suis and consider these inhibitors as promising antimicrobial lead compounds.
Collapse
Affiliation(s)
- Haotian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tingting Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qiao Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhiming Yao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
- International Research Center for Animal Disease (Ministry of Science & Technology of China), Wuhan, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
- International Research Center for Animal Disease (Ministry of Science & Technology of China), Wuhan, China
- *Correspondence: Qi Huang,
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
- International Research Center for Animal Disease (Ministry of Science & Technology of China), Wuhan, China
- The HZAU-HVSEN Institute, Wuhan, China
- Rui Zhou,
| |
Collapse
|
10
|
Kumar S, Bhadane R, Shandilya S, Salo-Ahen OMH, Kapila S. Identification of HPr kinase/phosphorylase inhibitors: novel antimicrobials against resistant Enterococcus faecalis. J Comput Aided Mol Des 2022; 36:507-520. [PMID: 35809194 PMCID: PMC9399212 DOI: 10.1007/s10822-022-00461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022]
Abstract
Enterococcus faecalis, a gram-positive bacterium, is among the most common nosocomial pathogens due to its limited susceptibility to antibiotics and its reservoir of the genes coding for virulence factors. Bacterial enzymes such as kinases and phosphorylases play important roles in diverse functions of a bacterial cell and, thus, are potential antibacterial drug targets. In Gram-positive bacteria, HPr Kinase/Phosphorylase (HPrK/P), a bifunctional enzyme is involved in the regulation of carbon catabolite repression by phosphorylating/dephosphorylating the histidine-containing phosphocarrier protein (HPr) at Ser46 residue. Deficiencies in HPrK/P function leads to severe defects in bacterial growth. This study aimed at identifying novel inhibitors of E. faecalis HPrK/P from a commercial compound library using structure-based virtual screening. The hit molecules were purchased and their effect on enzyme activity and growth of resistant E. faecalis was evaluated in vitro. Furthermore, docking and molecular dynamics simulations were performed to study the interactions of the hit compounds with HPrK/P. Among the identified hit molecules, two compounds inhibited the phosphorylation of HPr as well as significantly reduced the growth of resistant E. faecalis in vitro. These identified potential HPrK/P inhibitors open new research avenues towards the development of novel antimicrobials against resistant Gram-positive bacteria.
Collapse
Affiliation(s)
- Sandeep Kumar
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Rajendra Bhadane
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, 20520, Turku, Finland
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, 20520, Turku, Finland
| | - Shruti Shandilya
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | - Outi M H Salo-Ahen
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, 20520, Turku, Finland.
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, 20520, Turku, Finland.
| | - Suman Kapila
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India.
| |
Collapse
|
11
|
Wamp S, Rothe P, Stern D, Holland G, Döhling J, Halbedel S. MurA escape mutations uncouple peptidoglycan biosynthesis from PrkA signaling. PLoS Pathog 2022; 18:e1010406. [PMID: 35294506 PMCID: PMC8959180 DOI: 10.1371/journal.ppat.1010406] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/28/2022] [Accepted: 02/28/2022] [Indexed: 01/23/2023] Open
Abstract
Gram-positive bacteria are protected by a thick mesh of peptidoglycan (PG) completely engulfing their cells. This PG network is the main component of the bacterial cell wall, it provides rigidity and acts as foundation for the attachment of other surface molecules. Biosynthesis of PG consumes a high amount of cellular resources and therefore requires careful adjustments to environmental conditions. An important switch in the control of PG biosynthesis of Listeria monocytogenes, a Gram-positive pathogen with a high infection fatality rate, is the serine/threonine protein kinase PrkA. A key substrate of this kinase is the small cytosolic protein ReoM. We have shown previously that ReoM phosphorylation regulates PG formation through control of MurA stability. MurA catalyzes the first step in PG biosynthesis and the current model suggests that phosphorylated ReoM prevents MurA degradation by the ClpCP protease. In contrast, conditions leading to ReoM dephosphorylation stimulate MurA degradation. How ReoM controls degradation of MurA and potential other substrates is not understood. Also, the individual contribution of the ~20 other known PrkA targets to PG biosynthesis regulation is unknown. We here present murA mutants which escape proteolytic degradation. The release of MurA from ClpCP-dependent proteolysis was able to activate PG biosynthesis and further enhanced the intrinsic cephalosporin resistance of L. monocytogenes. This latter effect required the RodA3/PBP B3 transglycosylase/transpeptidase pair. One murA escape mutation not only fully rescued an otherwise non-viable prkA mutant during growth in batch culture and inside macrophages but also overcompensated cephalosporin hypersensitivity. Our data collectively indicate that the main purpose of PrkA-mediated signaling in L. monocytogenes is control of MurA stability during standard laboratory growth conditions and intracellular growth in macrophages. These findings have important implications for the understanding of PG biosynthesis regulation and β-lactam resistance of L. monocytogenes and related Gram-positive bacteria. Peptidoglycan (PG) is the main component of the bacterial cell wall and many of the PG synthesizing enzymes are antibiotic targets. We previously have discovered a new signaling route controlling PG production in the human pathogen Listeria monocytogenes. This route also determines the intrinsic resistance of L. monocytogenes against cephalosporins, a group of β-lactam antibiotics. Signaling involves PrkA, a membrane-embedded protein kinase, that is activated during cell wall stress to phosphorylate its target ReoM. Depending on its phosphorylation, ReoM activates or inactivates PG production by controlling the proteolytic stability of MurA, which catalyzes the first step in PG biosynthesis. MurA degradation depends on the ClpCP protease and we here have isolated murA mutations that escape this degradation. Using these mutants, we could show that regulation of PG biosynthesis through control of MurA stability is an important purpose of PrkA-mediated signaling in L. monocytogenes. Further experiments identified the transglycosylase RodA and the transpeptidase PBP B3 as additional downstream factors. Our results suggest that both proteins act together to translate the signals received by PrkA into adjustment of PG biosynthesis. These findings shed new light on the regulation of PG biosynthesis in Gram-positive bacteria with intrinsic β-lactam resistance.
Collapse
Affiliation(s)
- Sabrina Wamp
- FG11 - Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Patricia Rothe
- FG11 - Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Daniel Stern
- ZBS3 - Biological Toxins, Robert Koch Institute, Berlin, Germany
| | - Gudrun Holland
- ZBS4 - Advanced Light and Electron Microscopy, Robert Koch Institute, Berlin, Germany
| | - Janina Döhling
- FG11 - Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Sven Halbedel
- FG11 - Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
- * E-mail:
| |
Collapse
|
12
|
Berndsen R, Cunningham T, Kaelin L, Callender M, Boldog WD, Viering B, King A, Labban N, Pollock JA, Miller HB, Blackledge MS. Identification and Evaluation of Brominated Carbazoles as a Novel Antibiotic Adjuvant Scaffold in MRSA. ACS Med Chem Lett 2022; 13:483-491. [PMID: 35295086 PMCID: PMC8919279 DOI: 10.1021/acsmedchemlett.1c00680] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/02/2022] [Indexed: 12/23/2022] Open
Abstract
![]()
Antibiotic-resistant
infections are a pressing global concern,
causing millions of deaths each year. Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of nosocomial
infections in healthcare settings and is increasingly responsible
for community-acquired infections that are often more difficult to
treat. Antibiotic adjuvants are small molecules that potentiate antibiotics
through nontoxic mechanisms and show excellent promise as novel therapeutics.
Screening of low-molecular-weight compounds was employed to identify
novel antibiotic adjuvant scaffolds for further elaboration. Brominated
carbazoles emerged from this screening as lead compounds for further
evaluation. Lead carbazoles were able to potentiate several β-lactam
antibiotics in three medically relevant strains of MRSA. Gene expression
studies determined that these carbazoles were dampening the transcription
of key genes that modulate β-lactam resistance in MRSA. The
lead brominated carbazoles represent novel scaffolds for elaboration
as antibiotic adjuvants.
Collapse
Affiliation(s)
- Rachel Berndsen
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Taylor Cunningham
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Lauren Kaelin
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Makayla Callender
- Department of Chemistry, University of Richmond, Richmond, Virginia 23173, United States
| | - W. Dexter Boldog
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Brianna Viering
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Ashley King
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Najwa Labban
- Department of Chemistry, University of Richmond, Richmond, Virginia 23173, United States
| | - Julie A. Pollock
- Department of Chemistry, University of Richmond, Richmond, Virginia 23173, United States
| | - Heather B. Miller
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Meghan S. Blackledge
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| |
Collapse
|
13
|
King A, Blackledge MS. Evaluation of small molecule kinase inhibitors as novel antimicrobial and antibiofilm agents. Chem Biol Drug Des 2021; 98:1038-1064. [PMID: 34581492 PMCID: PMC8616828 DOI: 10.1111/cbdd.13962] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 12/25/2022]
Abstract
Antibiotic resistance is a global and pressing concern. Our current therapeutic arsenal is increasingly limited as bacteria are developing resistance at a rate that far outpaces our ability to create new treatments. Novel approaches to treating and curing bacterial infections are urgently needed. Bacterial kinases have been increasingly explored as novel drug targets and are poised for development into novel therapeutic agents to combat bacterial infections. This review describes several general classes of bacterial kinases that play important roles in bacterial growth, antibiotic resistance, and biofilm formation. General features of these kinase classes are discussed and areas of particular interest for the development of inhibitors will be highlighted. Small molecule kinase inhibitors are described and organized by phenotypic effect, spotlighting particularly interesting inhibitors with novel functions and potential therapeutic benefit. Finally, we provide our perspective on the future of bacterial kinase inhibition as a viable strategy to combat bacterial infections and overcome the pressures of increasing antibiotic resistance.
Collapse
Affiliation(s)
- Ashley King
- Department of Chemistry, High Point University, One University Parkway, High Point, NC 27268
| | - Meghan S. Blackledge
- Department of Chemistry, High Point University, One University Parkway, High Point, NC 27268
| |
Collapse
|
14
|
Iannetta AA, Minton NE, Uitenbroek AA, Little JL, Stanton CR, Kristich CJ, Hicks LM. IreK-Mediated, Cell Wall-Protective Phosphorylation in Enterococcus faecalis. J Proteome Res 2021; 20:5131-5144. [PMID: 34672600 PMCID: PMC10037947 DOI: 10.1021/acs.jproteome.1c00635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Enterococcus faecalis is a Gram-positive bacterium that is a major cause of hospital-acquired infections due, in part, to its intrinsic resistance to cell wall-active antimicrobials. One critical determinant of this resistance is the transmembrane kinase IreK, which belongs to the penicillin-binding protein and serine/threonine kinase-associated kinase family of bacterial signaling proteins involved with the regulation of cell wall homeostasis. The activity of IreK is enhanced in response to cell wall stress, but direct substrates of IreK phosphorylation, leading to antimicrobial resistance, are largely unknown. To better understand stress-modulated phosphorylation events contributing to antimicrobial resistance, wild type E. faecalis cells treated with cell wall-active antimicrobials, chlorhexidine or ceftriaxone, were examined via phosphoproteomics. Among the most prominent changes was increased phosphorylation of divisome components after both treatments, suggesting that E. faecalis modulates cell division in response to cell wall stress. Phosphorylation mediated by IreK was then determined via a similar analysis with a E. faecalis ΔireK mutant strain, revealing potential IreK substrates involved with the regulation of peptidoglycan biosynthesis and within the E. faecalis CroS/R two-component system, another signal transduction pathway that promotes antimicrobial resistance. These results reveal critical insights into the biological functions of IreK.
Collapse
Affiliation(s)
- Anthony A. Iannetta
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Nicole E. Minton
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Alexis A. Uitenbroek
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Jaime L. Little
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Caroline R. Stanton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Christopher J. Kristich
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Leslie M. Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
15
|
Kelliher JL, Grunenwald CM, Abrahams RR, Daanen ME, Lew CI, Rose WE, Sauer JD. PASTA kinase-dependent control of peptidoglycan synthesis via ReoM is required for cell wall stress responses, cytosolic survival, and virulence in Listeria monocytogenes. PLoS Pathog 2021; 17:e1009881. [PMID: 34624065 PMCID: PMC8528326 DOI: 10.1371/journal.ppat.1009881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/20/2021] [Accepted: 09/27/2021] [Indexed: 02/01/2023] Open
Abstract
Pathogenic bacteria rely on protein phosphorylation to adapt quickly to stress, including that imposed by the host during infection. Penicillin-binding protein and serine/threonine-associated (PASTA) kinases are signal transduction systems that sense cell wall integrity and modulate multiple facets of bacterial physiology in response to cell envelope stress. The PASTA kinase in the cytosolic pathogen Listeria monocytogenes, PrkA, is required for cell wall stress responses, cytosolic survival, and virulence, yet its substrates and downstream signaling pathways remain incompletely defined. We combined orthogonal phosphoproteomic and genetic analyses in the presence of a β-lactam antibiotic to define PrkA phosphotargets and pathways modulated by PrkA. These analyses synergistically highlighted ReoM, which was recently identified as a PrkA target that influences peptidoglycan (PG) synthesis, as an important phosphosubstrate during cell wall stress. We find that deletion of reoM restores cell wall stress sensitivities and cytosolic survival defects of a ΔprkA mutant to nearly wild-type levels. While a ΔprkA mutant is defective for PG synthesis during cell wall stress, a double ΔreoM ΔprkA mutant synthesizes PG at rates similar to wild type. In a mouse model of systemic listeriosis, deletion of reoM in a ΔprkA background almost fully restored virulence to wild-type levels. However, loss of reoM alone also resulted in attenuated virulence, suggesting ReoM is critical at some points during pathogenesis. Finally, we demonstrate that the PASTA kinase/ReoM cell wall stress response pathway is conserved in a related pathogen, methicillin-resistant Staphylococcus aureus. Taken together, our phosphoproteomic analysis provides a comprehensive overview of the PASTA kinase targets of an important model pathogen and suggests that a critical role of PrkA in vivo is modulating PG synthesis through regulation of ReoM to facilitate cytosolic survival and virulence. Many antibiotics target bacterial cell wall biosynthesis, justifying continued study of this process and the ways bacteria respond to cell wall insults during infection. Penicillin-binding protein and serine/threonine-associated (PASTA) kinases are master regulators of cell wall stress responses in bacteria and are conserved in several major pathogens, including Listeria monocytogenes, Staphylococcus aureus, and Mycobacterium tuberculosis. We previously showed that the PASTA kinase in L. monocytogenes, PrkA, is essential for the response to cell wall stress and for virulence. In this work, we combined proteomic and genetic approaches to identify PrkA substrates in L. monocytogenes. We show that regulation of one candidate from both screens, ReoM, increases synthesis of the cell wall component peptidoglycan and that this regulation is required for pathogenesis. We also demonstrate that the PASTA kinase-ReoM pathway regulates cell wall stress responses in another significant pathogen, methicillin-resistant S. aureus. Additionally, we uncover a PrkA-independent role for ReoM in vivo in L. monocytogenes, suggesting a need for nuanced modulation of peptidoglycan synthesis during infection. Cumulatively, this study provides new insight into how bacterial pathogens control cell wall synthesis during infection.
Collapse
Affiliation(s)
- Jessica L. Kelliher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Caroline M. Grunenwald
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rhiannon R. Abrahams
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - McKenzie E. Daanen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Cassandra I. Lew
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Warren E. Rose
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
16
|
Fisher JF, Mobashery S. β-Lactams against the Fortress of the Gram-Positive Staphylococcus aureus Bacterium. Chem Rev 2021; 121:3412-3463. [PMID: 33373523 PMCID: PMC8653850 DOI: 10.1021/acs.chemrev.0c01010] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biological diversity of the unicellular bacteria-whether assessed by shape, food, metabolism, or ecological niche-surely rivals (if not exceeds) that of the multicellular eukaryotes. The relationship between bacteria whose ecological niche is the eukaryote, and the eukaryote, is often symbiosis or stasis. Some bacteria, however, seek advantage in this relationship. One of the most successful-to the disadvantage of the eukaryote-is the small (less than 1 μm diameter) and nearly spherical Staphylococcus aureus bacterium. For decades, successful clinical control of its infection has been accomplished using β-lactam antibiotics such as the penicillins and the cephalosporins. Over these same decades S. aureus has perfected resistance mechanisms against these antibiotics, which are then countered by new generations of β-lactam structure. This review addresses the current breadth of biochemical and microbiological efforts to preserve the future of the β-lactam antibiotics through a better understanding of how S. aureus protects the enzyme targets of the β-lactams, the penicillin-binding proteins. The penicillin-binding proteins are essential enzyme catalysts for the biosynthesis of the cell wall, and understanding how this cell wall is integrated into the protective cell envelope of the bacterium may identify new antibacterials and new adjuvants that preserve the efficacy of the β-lactams.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| |
Collapse
|
17
|
Wlodarchak N, Feltenberger JB, Ye Z, Beczkiewicz J, Procknow R, Yan G, King TM, Golden JE, Striker R. Engineering Selectivity for Reduced Toxicity of Bacterial Kinase Inhibitors Using Structure-Guided Medicinal Chemistry. ACS Med Chem Lett 2021; 12:228-235. [PMID: 35035774 PMCID: PMC8757511 DOI: 10.1021/acsmedchemlett.0c00580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/08/2021] [Indexed: 01/15/2023] Open
Abstract
![]()
Tuberculosis is a
major global public health concern, and new drugs
are needed to combat both the typical form and the increasingly common
drug-resistant form of this disease. The essential tuberculosis kinase
PknB is an attractive drug development target because of its central
importance in several critical signaling cascades. A major hurdle
in kinase inhibitor development is the reduction of toxicity due to
nonspecific kinase activity in host cells. Here a novel class of PknB
inhibitors was developed from hit aminopyrimidine 1 (GW779439X),
which was originally designed for human CDK4 but failed to progress
clinically because of high toxicity and low specificity. Replacing
the pyrazolopyridazine headgroup of the original hit with substituted
pyridine or phenyl headgroups resulted in a reduction of Cdk activity
and a 3-fold improvement in specificity over the human kinome while
maintaining PknB activity. This also resulted in improved microbiological
activity and reduced toxicity in THP-1 cells and zebrafish.
Collapse
Affiliation(s)
- Nathan Wlodarchak
- William S. Middleton Veterans Hospital, 2500 Overlook Terrace, Madison, Wisconsin 53705, United States.,Department of Medicine, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - John B Feltenberger
- University of Wisconsin-Madison Medicinal Chemistry Center, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Zhengqing Ye
- University of Wisconsin-Madison Medicinal Chemistry Center, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Jeffrey Beczkiewicz
- Department of Medicine, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - Rebecca Procknow
- Department of Medicine, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - Gang Yan
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Troy M King
- Department of Medicine, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - Jennifer E Golden
- University of Wisconsin-Madison Medicinal Chemistry Center, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States.,Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Rob Striker
- William S. Middleton Veterans Hospital, 2500 Overlook Terrace, Madison, Wisconsin 53705, United States.,Department of Medicine, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
18
|
Are antibacterial effects of non-antibiotic drugs random or purposeful because of a common evolutionary origin of bacterial and mammalian targets? Infection 2020; 49:569-589. [PMID: 33325009 PMCID: PMC7737717 DOI: 10.1007/s15010-020-01547-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/28/2020] [Indexed: 01/09/2023]
Abstract
Purpose Advances in structural biology, genetics, bioinformatics, etc. resulted in the availability of an enormous pool of information enabling the analysis of the ancestry of pro- and eukaryotic genes and proteins. Methods This review summarizes findings of structural and/or functional homologies of pro- and eukaryotic enzymes catalysing analogous biological reactions because of their highly conserved active centres so that non-antibiotics interacted with bacterial targets. Results Protease inhibitors such as staurosporine or camostat inhibited bacterial serine/threonine or serine/tyrosine protein kinases, serine/threonine phosphatases, and serine/threonine kinases, to which penicillin-binding-proteins are linked, so that these drugs synergized with β-lactams, reverted aminoglycoside-resistance and attenuated bacterial virulence. Calcium antagonists such as nitrendipine or verapamil blocked not only prokaryotic ion channels but interacted with negatively charged bacterial cell membranes thus disrupting membrane energetics and inducing membrane stress response resulting in inhibition of P-glycoprotein such as bacterial pumps thus improving anti-mycobacterial activities of rifampicin, tetracycline, fluoroquinolones, bedaquilin and imipenem-activity against Acinetobacter spp. Ciclosporine and tacrolimus attenuated bacterial virulence. ACE-inhibitors like captopril interacted with metallo-β-lactamases thus reverting carbapenem-resistance; prokaryotic carbonic anhydrases were inhibited as well resulting in growth impairment. In general, non-antibiotics exerted weak antibacterial activities on their own but synergized with antibiotics, and/or reverted resistance and/or attenuated virulence. Conclusions Data summarized in this review support the theory that prokaryotic proteins represent targets for non-antibiotics because of a common evolutionary origin of bacterial- and mammalian targets resulting in highly conserved active centres of both, pro- and eukaryotic proteins with which the non-antibiotics interact and exert antibacterial actions.
Collapse
|
19
|
Greco C, Catania R, Balacco DL, Taresco V, Musumeci F, Alexander C, Huett A, Schenone S. Synthesis and Antibacterial Evaluation of New Pyrazolo[3,4- d]pyrimidines Kinase Inhibitors. Molecules 2020; 25:molecules25225354. [PMID: 33207806 PMCID: PMC7696985 DOI: 10.3390/molecules25225354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
Pyrazolo[3,4-d]pyrimidines represent an important class of heterocyclic compounds well-known for their anticancer activity exerted by the inhibition of eukaryotic protein kinases. Recently, pyrazolo[3,4-d]pyrimidines have become increasingly attractive for their potential antimicrobial properties. Here, we explored the activity of a library of in-house pyrazolo[3,4-d]pyrimidines, targeting human protein kinases, against Staphylococcus aureus and Escherichia coli and their interaction with ampicillin and kanamycin, representing important classes of clinically used antibiotics. Our results represent a first step towards the potential application of dual active pyrazolo[3,4-d]pyrimidine kinase inhibitors in the prevention and treatment of bacterial infections in cancer patients.
Collapse
Affiliation(s)
- Chiara Greco
- Dipartimento di Farmacia, Università di Genova, Viale Benedetto XV 3, 16132 Genova, Italy; (C.G.); (F.M.)
| | - Rosa Catania
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
| | - Dario Leonardo Balacco
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B5 7EG, UK;
| | - Vincenzo Taresco
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK;
| | - Francesca Musumeci
- Dipartimento di Farmacia, Università di Genova, Viale Benedetto XV 3, 16132 Genova, Italy; (C.G.); (F.M.)
| | - Cameron Alexander
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK;
| | - Alan Huett
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
- Correspondence: (A.H.); (S.S.)
| | - Silvia Schenone
- Dipartimento di Farmacia, Università di Genova, Viale Benedetto XV 3, 16132 Genova, Italy; (C.G.); (F.M.)
- Correspondence: (A.H.); (S.S.)
| |
Collapse
|
20
|
Djorić D, Minton NE, Kristich CJ. The enterococcal PASTA kinase: A sentinel for cell envelope stress. Mol Oral Microbiol 2020; 36:132-144. [PMID: 32945615 DOI: 10.1111/omi.12313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
Enterococci are Gram-positive, opportunistic pathogens that reside throughout the gastrointestinal tracts of most terrestrial organisms. Enterococci are resistant to many antibiotics, which makes enterococcal infections difficult to treat. Enterococci are also particularly hardy bacteria that can tolerate a variety of environmental stressors. Understanding how enterococci sense and respond to the extracellular environment to enact adaptive biological responses may identify new targets that can be exploited for development of treatments for enterococcal infections. Bacterial eukaryotic-like serine/threonine kinases (eSTKs) and cognate phosphatases (STPs) are important signaling systems that mediate biological responses to extracellular stimuli. Some bacterial eSTKs are transmembrane proteins that contain a series of extracellular repeats of the penicillin-binding and Ser/Thr kinase-associated (PASTA) domain, leading to their designation as "PASTA kinases." Enterococcal genomes encode a single PASTA kinase and its cognate phosphatase. Investigations of the enterococcal PASTA kinase revealed its importance in resistance to antibiotics and other cell wall stresses, in enterococcal colonization of the mammalian gut, clues about its mechanism of signal transduction, and its integration with other enterococcal signal transduction systems. In this review, we describe the current state of knowledge of PASTA kinase signaling in enterococci and describe important gaps that still need to be addressed to provide a better understanding of this important signaling system.
Collapse
Affiliation(s)
- Dušanka Djorić
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nicole E Minton
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christopher J Kristich
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
21
|
Regulation of virulence and antibiotic resistance in Gram-positive microbes in response to cell wall-active antibiotics. Curr Opin Infect Dis 2020; 32:217-222. [PMID: 31021953 DOI: 10.1097/qco.0000000000000542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Antibiotic stress can evoke considerable genotypic and phenotypic changes in Gram-positive bacteria. Here, we review recent studies describing altered virulence expression in response to cell wall-acting antibiotics and discuss mechanisms that coordinate regulation of the antibiotic response. RECENT FINDINGS Pleiotropic effects induced by antibiotic exposure include alterations to bacterial metabolism, cell wall structure and antibiotic resistance. In addition, subinhibitory concentrations of cell wall-active (CWA) antibiotics have increasingly been shown to induce the production of exotoxins and biofilm formation that may influence virulence. Remarkably, phenotypes associated with comparable antibiotic stresses can vary considerably, emphasizing the need to better understand the response to CWA antibiotics. Recent studies support both direct antibiotic recognition and recognition of antibiotic-induced stress to the bacterial cell wall. Specifically, bacterial two-component systems, penicillin-binding protein and serine/threonine kinase-associated kinases and conserved oxidative-stress sensors each contribute to modulating the antibiotic stress response. SUMMARY Bacterial sensory systems and global regulators coordinate signaling in response to CWA antibiotics. Regulation of the antibiotic response is complex and involves integration of signals from multiple response pathways. A better definition of the antibiotic stress response among Gram-positive pathogens may yield novel therapeutic targets to counter antibiotic resistance and virulence factor expression.
Collapse
|
22
|
Bonne Køhler J, Jers C, Senissar M, Shi L, Derouiche A, Mijakovic I. Importance of protein Ser/Thr/Tyr phosphorylation for bacterial pathogenesis. FEBS Lett 2020; 594:2339-2369. [PMID: 32337704 DOI: 10.1002/1873-3468.13797] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
Protein phosphorylation regulates a large variety of biological processes in all living cells. In pathogenic bacteria, the study of serine, threonine, and tyrosine (Ser/Thr/Tyr) phosphorylation has shed light on the course of infectious diseases, from adherence to host cells to pathogen virulence, replication, and persistence. Mass spectrometry (MS)-based phosphoproteomics has provided global maps of Ser/Thr/Tyr phosphosites in bacterial pathogens. Despite recent developments, a quantitative and dynamic view of phosphorylation events that occur during bacterial pathogenesis is currently lacking. Temporal, spatial, and subpopulation resolution of phosphorylation data is required to identify key regulatory nodes underlying bacterial pathogenesis. Herein, we discuss how technological improvements in sample handling, MS instrumentation, data processing, and machine learning should improve bacterial phosphoproteomic datasets and the information extracted from them. Such information is expected to significantly extend the current knowledge of Ser/Thr/Tyr phosphorylation in pathogenic bacteria and should ultimately contribute to the design of novel strategies to combat bacterial infections.
Collapse
Affiliation(s)
- Julie Bonne Køhler
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Carsten Jers
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Mériem Senissar
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lei Shi
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Abderahmane Derouiche
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
23
|
Wamp S, Rutter ZJ, Rismondo J, Jennings CE, Möller L, Lewis RJ, Halbedel S. PrkA controls peptidoglycan biosynthesis through the essential phosphorylation of ReoM. eLife 2020; 9:56048. [PMID: 32469310 PMCID: PMC7286690 DOI: 10.7554/elife.56048] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
Peptidoglycan (PG) is the main component of bacterial cell walls and the target for many antibiotics. PG biosynthesis is tightly coordinated with cell wall growth and turnover, and many of these control activities depend upon PASTA-domain containing eukaryotic-like serine/threonine protein kinases (PASTA-eSTK) that sense PG fragments. However, only a few PG biosynthetic enzymes are direct kinase substrates. Here, we identify the conserved ReoM protein as a novel PASTA-eSTK substrate in the Gram-positive pathogen Listeria monocytogenes. Our data show that the phosphorylation of ReoM is essential as it controls ClpCP-dependent proteolytic degradation of the essential enzyme MurA, which catalyses the first committed step in PG biosynthesis. We also identify ReoY as a second novel factor required for degradation of ClpCP substrates. Collectively, our data imply that the first committed step of PG biosynthesis is activated through control of ClpCP protease activity in response to signals of PG homeostasis imbalance.
Collapse
Affiliation(s)
- Sabrina Wamp
- FG11 - Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Zoe J Rutter
- Institute for Cell and Molecular Biosciences, Medical School, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Jeanine Rismondo
- FG11 - Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany.,Department of General Microbiology, GZMB, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Claire E Jennings
- Newcastle Drug Discovery, Northern Institute for Cancer Research, Newcastle upon Tyne, United Kingdom
| | - Lars Möller
- ZBS 4 - Advanced Light and Electron Microscopy, Robert Koch Institute, Berlin, Germany
| | - Richard J Lewis
- Institute for Cell and Molecular Biosciences, Medical School, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Sven Halbedel
- FG11 - Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|
24
|
Li G, Wang G, Li M, Li L, Liu H, Sun M, Wen Z. Morin inhibits Listeria monocytogenes virulence in vivo and in vitro by targeting listeriolysin O and inflammation. BMC Microbiol 2020; 20:112. [PMID: 32398085 PMCID: PMC7216731 DOI: 10.1186/s12866-020-01807-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/29/2020] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Listeria monocytogenes (L. monocytogenes) is a global opportunistic intracellular pathogen that can cause many infections, including meningitis and abortion in humans and animals; thus, L. monocytogenes poses a great threat to public safety and the development of the aquaculture industry. The isolation rate of Listeria monocytogenes in fishery products has always been high. And the pore-forming toxin listeriolysin O (LLO) is one of the most important virulence factors of L. monocytogenes. LLO can promote cytosolic bacterial proliferation and help the pathogen evade attacks from the host immune system. In addition, L. monocytogenes infection can trigger a series of severe inflammatory reactions. RESULTS Here, we further confirmed that morin lacking anti-Listeria activity could inhibit LLO oligomerization. We also found that morin can effectively alleviate the inflammation induced by Listeria in vivo and in vitro and exerted an obvious protective effect on infected cells and mice. CONCLUSIONS Morin does not possess anti-Listeria activity, neither does it interfere with secretion of LLO. However, morin inhibits oligomerisation of LLO and morin does reduce the inflammation caused during Listeria infection.
Collapse
Affiliation(s)
- Gen Li
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China.,Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Guizhen Wang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.,College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Meng Li
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China.,Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Li Li
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Hongtao Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Meiyang Sun
- Department of Breast Surgery, Jilin Provincial Cancer Hospital, Changchun, China
| | - Zhongmei Wen
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
25
|
Zeng J, Platig J, Cheng TY, Ahmed S, Skaf Y, Potluri LP, Schwartz D, Steen H, Moody DB, Husson RN. Protein kinases PknA and PknB independently and coordinately regulate essential Mycobacterium tuberculosis physiologies and antimicrobial susceptibility. PLoS Pathog 2020; 16:e1008452. [PMID: 32255801 PMCID: PMC7164672 DOI: 10.1371/journal.ppat.1008452] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 04/17/2020] [Accepted: 03/03/2020] [Indexed: 01/28/2023] Open
Abstract
The Mycobacterium tuberculosis Ser/Thr protein kinases PknA and PknB are essential for growth and have been proposed as possible drug targets. We used a titratable conditional depletion system to investigate the functions of these kinases. Depletion of PknA or PknB or both kinases resulted in growth arrest, shortening of cells, and time-dependent loss of acid-fast staining with a concomitant decrease in mycolate synthesis and accumulation of trehalose monomycolate. Depletion of PknA and/or PknB resulted in markedly increased susceptibility to β-lactam antibiotics, and to the key tuberculosis drug rifampin. Phosphoproteomic analysis showed extensive changes in protein phosphorylation in response to PknA depletion and comparatively fewer changes with PknB depletion. These results identify candidate substrates of each kinase and suggest specific and coordinate roles for PknA and PknB in regulating multiple essential physiologies. These findings support these kinases as targets for new antituberculosis drugs and provide a valuable resource for targeted investigation of mechanisms by which protein phosphorylation regulates pathways required for growth and virulence in M. tuberculosis.
Collapse
Affiliation(s)
- Jumei Zeng
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - John Platig
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Tan-Yun Cheng
- Division of Rheumatology, Immunity and Inflammation, Brigham & Women’s Hospital, Harvard Medical School, Boston MA, United States of America
| | - Saima Ahmed
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Yara Skaf
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States of America
| | - Lakshmi-Prasad Potluri
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Daniel Schwartz
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States of America
| | - Hanno Steen
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - D. Branch Moody
- Division of Rheumatology, Immunity and Inflammation, Brigham & Women’s Hospital, Harvard Medical School, Boston MA, United States of America
| | - Robert N. Husson
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
26
|
Wang CH, Hsieh YH, Powers ZM, Kao CY. Defeating Antibiotic-Resistant Bacteria: Exploring Alternative Therapies for a Post-Antibiotic Era. Int J Mol Sci 2020; 21:E1061. [PMID: 32033477 PMCID: PMC7037027 DOI: 10.3390/ijms21031061] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Antibiotics are one of the greatest medical advances of the 20th century, however, they are quickly becoming useless due to antibiotic resistance that has been augmented by poor antibiotic stewardship and a void in novel antibiotic discovery. Few novel classes of antibiotics have been discovered since 1960, and the pipeline of antibiotics under development is limited. We therefore are heading for a post-antibiotic era in which common infections become untreatable and once again deadly. There is thus an emergent need for both novel classes of antibiotics and novel approaches to treatment, including the repurposing of existing drugs or preclinical compounds and expanded implementation of combination therapies. In this review, we highlight to utilize alternative drug targets/therapies such as combinational therapy, anti-regulator, anti-signal transduction, anti-virulence, anti-toxin, engineered bacteriophages, and microbiome, to defeat antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Chih-Hung Wang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Zachary M. Powers
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei 11221, Taiwan
| |
Collapse
|
27
|
Chen GY, Kao CY, Smith HB, Rust DP, Powers ZM, Li AY, Sauer JD. Mutation of the Transcriptional Regulator YtoI Rescues Listeria monocytogenes Mutants Deficient in the Essential Shared Metabolite 1,4-Dihydroxy-2-Naphthoate (DHNA). Infect Immun 2019; 88:e00366-19. [PMID: 31685546 PMCID: PMC6921671 DOI: 10.1128/iai.00366-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/17/2019] [Indexed: 12/30/2022] Open
Abstract
Listeria monocytogenes, a Gram-positive, facultative intracellular pathogen, survives and replicates in the cytosol of host cells. Synthesis of 1,4-dihydroxy-2-naphthoate (DHNA), an intermediate of menaquinone biosynthesis, is essential for cytosolic survival of L. monocytogenes independent from its role in respiration. Here, we demonstrate that DHNA is essential for virulence in a murine model of listeriosis due to both respiration-dependent and -independent functions. In addition, DHNA can be both secreted and utilized as an extracellular shared metabolite to promote cytosolic survival inside host macrophages. To understand the role(s) of DHNA in L. monocytogenes intracellular survival and virulence, we isolated DHNA-deficient (ΔmenD strain) suppressor mutants that formed plaques in monolayers of fibroblasts. Five ΔmenD suppressor (mds) mutants additionally rescued at least 50% of the cytosolic survival defect of the parent ΔmenD mutant. Whole-genome sequencing revealed that four of the five suppressor mutants had independent missense mutations in a putative transcriptional regulator, ytoI (lmo1576). Clean deletion and complementation in trans confirmed that loss of ytoI could restore plaquing and cytosolic survival of DHNA-deficient L. monocytogenes RNA-seq transcriptome analysis revealed five genes (lmo0944, lmo1575, lmo1577, lmo2005, and lmo2006) expressed at a higher level in the ΔytoI strain than in the wild-type strain, whereas two genes (lmo1917 and lmo2103) demonstrated lower expression in the ΔytoI mutant. Intriguingly, the majority of these genes are involved in controlling pyruvate flux. Metabolic analysis confirmed that acetoin, acetate, and lactate flux were altered in a ΔytoI mutant, suggesting a critical role for regulating these metabolic programs. In conclusion, we have demonstrated that, similar to findings in select other bacteria, DHNA can act as a shared resource, and it is essential for cytosolic survival and virulence of L. monocytogenes Furthermore, we have identified a novel transcriptional regulator in L. monocytogenes and determined that its metabolic regulation is implicated in cytosolic survival of L. monocytogenes.
Collapse
Affiliation(s)
- Grischa Y Chen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison Wisconsin, USA
| | - Cheng-Yen Kao
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison Wisconsin, USA
| | - Hans B Smith
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison Wisconsin, USA
| | - Drew P Rust
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison Wisconsin, USA
| | - Zachary M Powers
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison Wisconsin, USA
| | - Alexandria Y Li
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison Wisconsin, USA
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison Wisconsin, USA
| |
Collapse
|
28
|
Betulin efficiently suppresses the process of an experimental Listeria monocytogenes infection as an antagonist against listeriolysin O. Fitoterapia 2019; 139:104409. [PMID: 31698059 DOI: 10.1016/j.fitote.2019.104409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 12/30/2022]
Abstract
Listeria monocytogenes (Lm) is a widespread foodborne intracellular pathogen that invades a variety of cells, causing abortions and severe human diseases. After internalization into host cells, pore-forming cytolysin listeriolysin O (LLO) disrupts the phagosome, which allows the bacterium to survive and colonize the cytoplasm, providing the bacterium the chance to infect neighboring cells. Betulin is an extracted natural compound from birch bark with diverse pharmacological activities. Here, we showed that LLO-induced rabbit red blood cell lysis in vitro was inhibited by preincubation with betulin, which suppressed the oligomerization process. Infectious assays performed with human monocyte macrophages indicated that betulin significantly protected cells against Lm-induced cell injury. In addition, Balb/c mice were used to perform a general infection, and betulin administration obviously inhibited organ damage and bacterial burden in livers and spleens of infected mice. In conclusion, betulin obviously inhibited Lm-induced cell injury in vitro and protected against infection in vivo through an antivirulence effect. Our results showed betulin as a new candidate against listeriosis by targeting LLO and highlight the potential of natural product-based medicine to be applied in the treatment of pathogenic infections.
Collapse
|
29
|
Speri E, Kim C, De Benedetti S, Qian Y, Lastochkin E, Fishovitz J, Fisher JF, Mobashery S. Cinnamonitrile Adjuvants Restore Susceptibility to β-Lactams against Methicillin-Resistant Staphylococcus aureus. ACS Med Chem Lett 2019; 10:1148-1153. [PMID: 31413798 PMCID: PMC6691485 DOI: 10.1021/acsmedchemlett.9b00169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/01/2019] [Indexed: 11/28/2022] Open
Abstract
β-Lactams are used routinely to treat Staphylococcus aureus infections. However, the emergence of methicillin-resistant S. aureus (MRSA) renders them clinically precarious. We describe a class of cinnamonitrile adjuvants that restore the activity of oxacillin (a penicillin member of the β-lactams) against MRSA. The lead adjuvants were tested against six important strains of MRSA, one vancomycin-intermediate S. aureus (VISA) strain, and one linezolid-resistant S. aureus strain. Five compounds out of 84 total compounds showed broad potentiation. At 8 μM (E)-3-(5-(3,4-dichlorobenzyl)-2-(trifluoromethoxy)phenyl)-2-(methylsulfonyl)acrylonitrile (26) potentiated oxacillin with a >4000-fold reduction of its MIC (from 256 to 0.06 mg·L-1). This class of adjuvants holds promise for reversal of the resistance phenotype of MRSA.
Collapse
Affiliation(s)
- Enrico Speri
- Department Chemistry and
Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Choon Kim
- Department Chemistry and
Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Stefania De Benedetti
- Department Chemistry and
Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yuanyuan Qian
- Department Chemistry and
Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Elena Lastochkin
- Department Chemistry and
Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jennifer Fishovitz
- Department Chemistry and
Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jed F. Fisher
- Department Chemistry and
Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Shahriar Mobashery
- Department Chemistry and
Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
30
|
The Ser/Thr Kinase PrkC Participates in Cell Wall Homeostasis and Antimicrobial Resistance in Clostridium difficile. Infect Immun 2019; 87:IAI.00005-19. [PMID: 31085703 DOI: 10.1128/iai.00005-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/26/2019] [Indexed: 12/15/2022] Open
Abstract
Clostridium difficile is the leading cause of antibiotic-associated diarrhea in adults. During infection, C. difficile must detect the host environment and induce an appropriate survival strategy. Signal transduction networks involving serine/threonine kinases (STKs) play key roles in adaptation, as they regulate numerous physiological processes. PrkC of C. difficile is an STK with two PASTA domains. We showed that PrkC is membrane associated and is found at the septum. We observed that deletion of prkC affects cell morphology with an increase in mean size, cell length heterogeneity, and presence of abnormal septa. A ΔprkC mutant was able to sporulate and germinate but was less motile and formed more biofilm than the wild-type strain. Moreover, a ΔprkC mutant was more sensitive to antimicrobial compounds that target the cell envelope, such as the secondary bile salt deoxycholate, cephalosporins, cationic antimicrobial peptides, and lysozyme. This increased susceptibility was not associated with differences in peptidoglycan or polysaccharide II composition. However, the ΔprkC mutant had less peptidoglycan and released more polysaccharide II into the supernatant. A proteomic analysis showed that the majority of C. difficile proteins associated with the cell wall were less abundant in the ΔprkC mutant than the wild-type strain. Finally, in a hamster model of infection, the ΔprkC mutant had a colonization delay that did not significantly affect overall virulence.
Collapse
|
31
|
Labbe BD, Hall CL, Kellogg SL, Chen Y, Koehn O, Pickrum AM, Mirza SP, Kristich CJ. Reciprocal Regulation of PASTA Kinase Signaling by Differential Modification. J Bacteriol 2019; 201:e00016-19. [PMID: 30858297 PMCID: PMC6482931 DOI: 10.1128/jb.00016-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/01/2019] [Indexed: 12/20/2022] Open
Abstract
Transmembrane Ser/Thr kinases containing extracellular PASTA (penicillin-binding protein [PBP] and Ser/Thr-associated) domains are ubiquitous among Actinobacteria and Firmicutes species. Such PASTA kinases regulate critical bacterial processes, including antibiotic resistance, cell division, cell envelope homeostasis, and virulence, and are sometimes essential for viability. Previous studies of purified PASTA kinase fragments revealed they are capable of autophosphorylation in vitro, typically at multiple sites on the kinase domain. Autophosphorylation of a specific structural element of the kinase known as the activation loop is thought to enhance kinase activity in response to stimuli. However, the role of kinase phosphorylation at other sites is largely unknown. Moreover, the mechanisms by which PASTA kinases are deactivated once their stimulus has diminished are poorly understood. Enterococcus faecalis is a Gram-positive intestinal bacterium and a major antibiotic-resistant opportunistic pathogen. In E. faecalis, the PASTA kinase IreK drives intrinsic resistance to cell wall-active antimicrobials, and such antimicrobials trigger enhanced phosphorylation of IreK in vivo Here we identify multiple sites of phosphorylation on IreK and evaluate their function in vivo and in vitro While phosphorylation of the IreK activation loop is required for kinase activity, we found that phosphorylation at a site distinct from the activation loop reciprocally modulates IreK activity in vivo, leading to diminished activity (and diminished antimicrobial resistance). Moreover, this site is important for deactivation of IreK in vivo upon removal of an activating stimulus. Our results are consistent with a model in which phosphorylation of IreK at distinct sites reciprocally regulates IreK activity in vivo to promote adaptation to cell wall stresses.IMPORTANCE Transmembrane Ser/Thr kinases containing extracellular PASTA domains are ubiquitous among Actinobacteria and Firmicutes species and regulate critical processes, including antibiotic resistance, cell division, and cell envelope homeostasis. Previous studies of PASTA kinase fragments revealed autophosphorylation at multiple sites. However, the functional role of autophosphorylation and the relative impacts of phosphorylation at distinct sites are poorly understood. The PASTA kinase of Enterococcus faecalis, IreK, regulates intrinsic resistance to antimicrobials. Here we identify multiple sites of phosphorylation on IreK and show that modification of IreK at distinct sites reciprocally regulates IreK activity and antimicrobial resistance in vivo Thus, these results provide new insights into the mechanisms by which PASTA kinases can regulate critical physiological processes in a wide variety of bacterial species.
Collapse
Affiliation(s)
- Benjamin D Labbe
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Cherisse L Hall
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Stephanie L Kellogg
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Yao Chen
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Olivia Koehn
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Adam M Pickrum
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Shama P Mirza
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Christopher J Kristich
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
32
|
Wlodarchak N, Teachout N, Beczkiewicz J, Procknow R, Schaenzer AJ, Satyshur K, Pavelka M, Zuercher W, Drewry D, Sauer JD, Striker R. In Silico Screen and Structural Analysis Identifies Bacterial Kinase Inhibitors which Act with β-Lactams To Inhibit Mycobacterial Growth. Mol Pharm 2018; 15:5410-5426. [PMID: 30285456 PMCID: PMC6648700 DOI: 10.1021/acs.molpharmaceut.8b00905] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
New tools and concepts are needed to combat antimicrobial resistance. Actinomycetes and firmicutes share several eukaryotic-like Ser/Thr kinases (eSTK) that offer antibiotic development opportunities, including PknB, an essential mycobacterial eSTK. Despite successful development of potent biochemical PknB inhibitors by many groups, clinically useful microbiologic activity has been elusive. Additionally, PknB kinetics are not fully described, nor are structures with specific inhibitors available to inform inhibitor design. We used computational modeling with available structural information to identify human kinase inhibitors predicted to bind PknB, and we selected hits based on drug-like characteristics intended to increase the likelihood of cell entry. The computational model suggested a family of inhibitors, the imidazopyridine aminofurazans (IPAs), bind PknB with high affinity. We performed an in-depth characterization of PknB and found that these inhibitors biochemically inhibit PknB, with potency roughly following the predicted models. A novel X-ray structure confirmed that the inhibitors bound as predicted and made favorable protein contacts with the target. These inhibitors also have antimicrobial activity toward mycobacteria and nocardia. We demonstrated that the inhibitors are uniquely potentiated by β-lactams but not antibiotics traditionally used to treat mycobacteria, consistent with PknB's role in sensing cell wall stress. This is the first demonstration in the phylum actinobacteria that some β-lactam antibiotics could be more effective if paired with a PknB inhibitor. Collectively, our data show that in silico modeling can be used as a tool to discover promising drug leads, and the inhibitors we discovered can act with clinically relevant antibiotics to restore their efficacy against bacteria with limited treatment options.
Collapse
Affiliation(s)
- Nathan Wlodarchak
- Department of Medicine, University of Wisconsin-Madison, 3341 Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706
| | - Nathan Teachout
- Department of Medicine, University of Wisconsin-Madison, 3341 Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706
| | - Jeffrey Beczkiewicz
- Department of Medicine, University of Wisconsin-Madison, 3341 Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706
| | - Rebecca Procknow
- Department of Medicine, University of Wisconsin-Madison, 3341 Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706
| | - Adam J. Schaenzer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 4203 Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706
| | - Kenneth Satyshur
- Small Molecule Screening Facility, Carbone Cancer Center, University of Wisconsin-Madison, 1111Highland Ave., Madison, WI 53705
| | - Martin Pavelka
- School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY 14620
| | - William Zuercher
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, SGC Center for Chemical Biology, 120 Mason Farm Rd., Chapel Hill, NC 27599
| | - David Drewry
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, SGC Center for Chemical Biology, 120 Mason Farm Rd., Chapel Hill, NC 27599
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 4203 Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706
| | - Rob Striker
- Department of Medicine, University of Wisconsin-Madison, 3341 Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706,William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terr., Madison, WI 53705,To whom correspondence should be addressed Rob Striker, Department of Medicine, University of Wisconsin-Madison, 3301 Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706, 608-263-2994,
| |
Collapse
|
33
|
Schaenzer AJ, Wlodarchak N, Drewry DH, Zuercher WJ, Rose WE, Ferrer CA, Sauer JD, Striker R. GW779439X and Its Pyrazolopyridazine Derivatives Inhibit the Serine/Threonine Kinase Stk1 and Act As Antibiotic Adjuvants against β-Lactam-Resistant Staphylococcus aureus. ACS Infect Dis 2018; 4:1508-1518. [PMID: 30059625 PMCID: PMC6779124 DOI: 10.1021/acsinfecdis.8b00136] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As antibiotic resistance rises, there is a need for strategies such as antibiotic adjuvants to conserve already-established antibiotics. A family of bacterial kinases known as the penicillin-binding-protein and serine/threonine kinase-associated (PASTA) kinases has attracted attention as targets for antibiotic adjuvants for β-lactams. Here, we report that the pyrazolopyridazine GW779439X sensitizes methicillin-resistant Staphylococcus aureus (MRSA) to various β-lactams through inhibition of the PASTA kinase Stk1. GW779439X potentiates β-lactam activity against multiple MRSA and MSSA isolates, including the sensitization of a ceftaroline-resistant isolate to ceftaroline. In silico modeling was used to guide the synthesis of GW779439X derivatives. The presence and orientation of GW779439X's methylpiperazine moiety was crucial for robust biochemical and microbiologic activity. Taken together, our data provide a proof of concept for developing the pyrazolopyridazines as selective Stk1 inhibitors which act across S. aureus isolates.
Collapse
Affiliation(s)
- Adam J. Schaenzer
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
- Department of Medicine, University of Wisconsin–Madison, 1685 Highland Avenue, Madison, Wisconsin 53706, United States
| | - Nathan Wlodarchak
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
- Department of Medicine, University of Wisconsin–Madison, 1685 Highland Avenue, Madison, Wisconsin 53706, United States
| | - David H. Drewry
- UNC Eshelman School of Pharmacy, SGC Center for Chemical Biology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - William J. Zuercher
- UNC Eshelman School of Pharmacy, SGC Center for Chemical Biology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Warren E. Rose
- Department of Medicine, University of Wisconsin–Madison, 1685 Highland Avenue, Madison, Wisconsin 53706, United States
- School of Pharmacy, University of Wisconsin–Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Carla A. Ferrer
- UNC Eshelman School of Pharmacy, SGC Center for Chemical Biology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - Rob Striker
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
- Department of Medicine, University of Wisconsin–Madison, 1685 Highland Avenue, Madison, Wisconsin 53706, United States
- Department of Medicine, W. S. Middleton Memorial Veteran’s Hospital, 2500 Overlook Terrace, Madison, Wisconsin 53705, United States
| |
Collapse
|
34
|
Schaenzer AJ, Wlodarchak N, Drewry DH, Zuercher WJ, Rose WE, Striker R, Sauer JD. A screen for kinase inhibitors identifies antimicrobial imidazopyridine aminofurazans as specific inhibitors of the Listeria monocytogenes PASTA kinase PrkA. J Biol Chem 2017; 292:17037-17045. [PMID: 28821610 PMCID: PMC5641865 DOI: 10.1074/jbc.m117.808600] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/14/2017] [Indexed: 01/17/2023] Open
Abstract
Bacterial signaling systems such as protein kinases and quorum sensing have become increasingly attractive targets for the development of novel antimicrobial agents in a time of rising antibiotic resistance. The family of bacterial Penicillin-binding-protein And Serine/Threonine kinase-Associated (PASTA) kinases is of particular interest due to the role of these kinases in regulating resistance to β-lactam antibiotics. As such, small-molecule kinase inhibitors that target PASTA kinases may prove beneficial as treatments adjunctive to β-lactam therapy. Despite this interest, only limited progress has been made in identifying functional inhibitors of the PASTA kinases that have both activity against the intact microbe and high kinase specificity. Here, we report the results of a small-molecule screen that identified GSK690693, an imidazopyridine aminofurazan-type kinase inhibitor that increases the sensitivity of the intracellular pathogen Listeria monocytogenes to various β-lactams by inhibiting the PASTA kinase PrkA. GSK690693 potently inhibited PrkA kinase activity biochemically and exhibited significant selectivity for PrkA relative to the Staphylococcus aureus PASTA kinase Stk1. Furthermore, other imidazopyridine aminofurazans could effectively inhibit PrkA and potentiate β-lactam antibiotic activity to varying degrees. The presence of the 2-methyl-3-butyn-2-ol (alkynol) moiety was important for both biochemical and antimicrobial activity. Finally, mutagenesis studies demonstrated residues in the back pocket of the active site are important for GSK690693 selectivity. These data suggest that targeted screens can successfully identify PASTA kinase inhibitors with both biochemical and antimicrobial specificity. Moreover, the imidazopyridine aminofurazans represent a family of PASTA kinase inhibitors that have the potential to be optimized for selective PASTA kinase inhibition.
Collapse
Affiliation(s)
- Adam J Schaenzer
- From the Departments of Medical Microbiology and Immunology and
- Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Nathan Wlodarchak
- From the Departments of Medical Microbiology and Immunology and
- Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - David H Drewry
- the Structural Genomics Consortium-University of North Carolina at Chapel Hill (SGC-UNC), University of North Carolina at Chapel Hill Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - William J Zuercher
- the Structural Genomics Consortium-University of North Carolina at Chapel Hill (SGC-UNC), University of North Carolina at Chapel Hill Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Warren E Rose
- Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
- the School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, and
| | - Rob Striker
- From the Departments of Medical Microbiology and Immunology and
- Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
- the Department of Molecular and Cell Biology, W. S. Middleton Memorial Veteran's Hospital, Madison, Wisconsin 53705
| | | |
Collapse
|
35
|
Growth- and Stress-Induced PASTA Kinase Phosphorylation in Enterococcus faecalis. J Bacteriol 2017; 199:JB.00363-17. [PMID: 28808126 DOI: 10.1128/jb.00363-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/04/2017] [Indexed: 12/22/2022] Open
Abstract
Transmembrane Ser/Thr kinases containing extracellular PASTA domains are ubiquitous among Actinobacteria and Firmicutes Such PASTA kinases regulate critical processes, including antibiotic resistance, cell division, toxin production, and virulence, and are essential for viability in certain organisms. Based on in vitro studies with purified extracellular and intracellular fragments of PASTA kinases, a model for signaling has been proposed, in which the extracellular PASTA domains bind currently undefined ligands (typically thought to be peptidoglycan, or fragments thereof) to drive kinase dimerization, which leads to enhanced kinase autophosphorylation and enhanced phosphorylation of substrates. However, this model has not been rigorously tested in vivoEnterococcus faecalis is a Gram-positive intestinal commensal and major antibiotic-resistant opportunistic pathogen. In E. faecalis, the PASTA kinase IreK drives intrinsic resistance to cell wall-active antimicrobials, suggesting that such antimicrobials may trigger IreK signaling. Here we show that IreK responds to cell wall stress in vivo by enhancing its phosphorylation and that of a downstream substrate. This response requires both the extracellular PASTA domains and specific phosphorylatable residues in the kinase domain. Thus, our results provide in vivo evidence, with an intact full-length PASTA kinase in its native physiological environment, that supports the prevailing model of PASTA kinase signaling. In addition, we show that IreK responds to a signal associated with growth and/or cell division, in the absence of cell wall-active antimicrobials. Surprisingly, the ability of IreK to respond to growth and/or division does not require the extracellular PASTA domains, suggesting that IreK monitors multiple parameters for sensory input in vivoIMPORTANCE Transmembrane Ser/Thr kinases containing extracellular PASTA domains are ubiquitous among Actinobacteria and Firmicutes and regulate critical processes. The prevailing model for signaling by PASTA kinases proposes that the extracellular PASTA domains bind ligands to drive kinase dimerization, enhanced autophosphorylation, and enhanced phosphorylation of substrates. However, this model has not been rigorously tested in vivo We show that the PASTA kinase IreK of Enterococcus faecalis responds to cell wall stress in vivo by enhancing its phosphorylation and that of a downstream substrate. This response requires the PASTA domains and phosphorylatable residues in the kinase domain. Thus, our results provide in vivo evidence, with an intact full-length PASTA kinase in its native physiological environment, that supports the prevailing model of PASTA kinase signaling.
Collapse
|
36
|
Pensinger DA, Schaenzer AJ, Sauer JD. Do Shoot the Messenger: PASTA Kinases as Virulence Determinants and Antibiotic Targets. Trends Microbiol 2017; 26:56-69. [PMID: 28734616 DOI: 10.1016/j.tim.2017.06.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/15/2017] [Accepted: 06/27/2017] [Indexed: 01/14/2023]
Abstract
All domains of life utilize protein phosphorylation as a mechanism of signal transduction. In bacteria, protein phosphorylation was classically thought to be mediated exclusively by histidine kinases as part of two-component signaling systems. However, it is now well appreciated that eukaryotic-like serine/threonine kinases (eSTKs) control essential processes in bacteria. A subset of eSTKs are single-pass transmembrane proteins that have extracellular penicillin-binding-protein and serine/threonine kinase-associated (PASTA) domains which bind muropeptides. In a variety of important pathogens, PASTA kinases have been implicated in regulating biofilms, antibiotic resistance, and ultimately virulence. Although there are limited examples of direct regulation of virulence factors, PASTA kinases are critical for virulence due to their roles in regulating bacterial physiology in the context of stress. This review focuses on the role of PASTA kinases in virulence for a variety of important Gram-positive pathogens and concludes with a discussion of current efforts to develop kinase inhibitors as novel antimicrobials.
Collapse
Affiliation(s)
- Daniel A Pensinger
- Microbiology Doctoral Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Adam J Schaenzer
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Cellular Pharmacology Doctoral Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John-Demian Sauer
- Microbiology Doctoral Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Cellular Pharmacology Doctoral Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
37
|
Zhou X, Zhang B, Cui Y, Chen S, Teng Z, Lu G, Wang J, Deng X. Curcumin Promotes the Clearance of Listeria monocytogenes both In Vitro and In Vivo by Reducing Listeriolysin O Oligomers. Front Immunol 2017; 8:574. [PMID: 28567044 PMCID: PMC5434164 DOI: 10.3389/fimmu.2017.00574] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 04/28/2017] [Indexed: 01/28/2023] Open
Abstract
The pore-forming toxin listeriolysin O (LLO), an essential virulence factor that is secreted by Listeria monocytogenes (L. monocytogenes), is responsible for bacterial breaching at the phagosomal membranes and subsequent release into the cytoplasm; it cannot be recognized by the host immune system. The vital role that LLO plays in bacterial pathogenicity and evading host immune clearance makes this virulence a promising target for addressing L. monocytogenes infection. In this study, we hypothesized that curcumin, a polyphenol derived from turmeric that could effectively inhibit LLO pore-forming activity, might be useful in the prevention or treatment of L. monocytogenes infection. Thus, the in vitro protective effects of curcumin against L. monocytogenes infection by targeting LLO were assessed via hemolytic activity assays, cytotoxicity tests, intracellular growth assays, and confocal microscopy. Our results revealed that treating infected macrophages with curcumin can lead to a decrease in LLO-mediated bacteria phagosomal escape and limit the intracellular growth of L. monocytogenes. Moreover, results from animal experiments show that this natural compound effectively increases protection against bacterial infection and helps the host to clear the invading pathogen completely from an animal model, establishing it as a potent antagonist of L. monocytogenes. The results from our molecular modeling and mutational analysis demonstrated that curcumin directly engages with domains 2 and 4 of LLO, thereby decreasing the hemolytic activity of LLO by influencing its oligomerization. Taken together, these results suggest that, as an antitoxin agent, curcumin can be further developed into a novel therapy against L. monocytogenes infections by targeting LLO.
Collapse
Affiliation(s)
- Xuan Zhou
- Center of Infection and Immunity, The First Hospital, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bing Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yumei Cui
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shuiye Chen
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zihao Teng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Gejin Lu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianfeng Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- Center of Infection and Immunity, The First Hospital, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
38
|
A Genetic Screen Reveals that Synthesis of 1,4-Dihydroxy-2-Naphthoate (DHNA), but Not Full-Length Menaquinone, Is Required for Listeria monocytogenes Cytosolic Survival. mBio 2017; 8:mBio.00119-17. [PMID: 28325762 PMCID: PMC5362031 DOI: 10.1128/mbio.00119-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Through unknown mechanisms, the host cytosol restricts bacterial colonization; therefore, only professional cytosolic pathogens are adapted to colonize this host environment. Listeria monocytogenes is a Gram-positive intracellular pathogen that is highly adapted to colonize the cytosol of both phagocytic and nonphagocytic cells. To identify L. monocytogenes determinants of cytosolic survival, we designed and executed a novel screen to isolate L. monocytogenes mutants with cytosolic survival defects. Multiple mutants identified in the screen were defective for synthesis of menaquinone (MK), an essential molecule in the electron transport chain. Analysis of an extensive set of MK biosynthesis and respiratory chain mutants revealed that cellular respiration was not required for cytosolic survival of L. monocytogenes but that, instead, synthesis of 1,4-dihydroxy-2-naphthoate (DHNA), an MK biosynthesis intermediate, was essential. Recent discoveries showed that modulation of the central metabolism of both host and pathogen can influence the outcome of host-pathogen interactions. Our results identify a potentially novel function of the MK biosynthetic intermediate DHNA and specifically highlight how L. monocytogenes metabolic adaptations promote cytosolic survival and evasion of host immunity. Cytosolic bacterial pathogens, such as Listeria monocytogenes and Francisella tularensis, are exquisitely evolved to colonize the host cytosol in a variety of cell types. Establishing an intracellular niche shields these pathogens from effectors of humoral immunity, grants access to host nutrients, and is essential for pathogenesis. Through yet-to-be-defined mechanisms, the host cytosol restricts replication of non-cytosol-adapted bacteria, likely through a combination of cell autonomous defenses (CADs) and nutritional immunity. Utilizing a novel genetic screen, we identified determinants of L. monocytogenes cytosolic survival and virulence and identified a role for the synthesis of the menaquinone precursor 1,4-dihydroxy-2-naphthoate (DHNA) in cytosolic survival. Together, these data begin to elucidate adaptations that allow cytosolic pathogens to survive in their intracellular niches.
Collapse
|
39
|
Pensinger DA, Boldon KM, Chen GY, Vincent WJB, Sherman K, Xiong M, Schaenzer AJ, Forster ER, Coers J, Striker R, Sauer JD. The Listeria monocytogenes PASTA Kinase PrkA and Its Substrate YvcK Are Required for Cell Wall Homeostasis, Metabolism, and Virulence. PLoS Pathog 2016; 12:e1006001. [PMID: 27806131 PMCID: PMC5091766 DOI: 10.1371/journal.ppat.1006001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/14/2016] [Indexed: 12/02/2022] Open
Abstract
Obstacles to bacterial survival and replication in the cytosol of host cells, and the mechanisms used by bacterial pathogens to adapt to this niche are not well understood. Listeria monocytogenes is a well-studied Gram-positive foodborne pathogen that has evolved to invade and replicate within the host cell cytosol; yet the mechanisms by which it senses and responds to stress to survive in the cytosol are largely unknown. To assess the role of the L. monocytogenes penicillin-binding-protein and serine/threonine associated (PASTA) kinase PrkA in stress responses, cytosolic survival and virulence, we constructed a ΔprkA deletion mutant. PrkA was required for resistance to cell wall stress, growth on cytosolic carbon sources, intracellular replication, cytosolic survival, inflammasome avoidance and ultimately virulence in a murine model of Listeriosis. In Bacillus subtilis and Mycobacterium tuberculosis, homologues of PrkA phosphorylate a highly conserved protein of unknown function, YvcK. We found that, similar to PrkA, YvcK is also required for cell wall stress responses, metabolism of glycerol, cytosolic survival, inflammasome avoidance and virulence. We further demonstrate that similar to other organisms, YvcK is directly phosphorylated by PrkA, although the specific site(s) of phosphorylation are not highly conserved. Finally, analysis of phosphoablative and phosphomimetic mutants of YvcK in vitro and in vivo demonstrate that while phosphorylation of YvcK is irrelevant to metabolism and cell wall stress responses, surprisingly, a phosphomimetic, nonreversible negative charge of YvcK is detrimental to cytosolic survival and virulence in vivo. Taken together our data identify two novel virulence factors essential for cytosolic survival and virulence of L. monocytogenes. Furthermore, our data demonstrate that regulation of YvcK phosphorylation is tightly controlled and is critical for virulence. Finally, our data suggest that yet to be identified substrates of PrkA are essential for cytosolic survival and virulence of L. monocytogenes and illustrate the importance of studying protein phosphorylation in the context of infection.
Collapse
Affiliation(s)
- Daniel A. Pensinger
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Kyle M. Boldon
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Grischa Y. Chen
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - William J. B. Vincent
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Kyle Sherman
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Meng Xiong
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Adam J. Schaenzer
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Emily R. Forster
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina
| | - Rob Striker
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
- W. S. Middleton Memorial Veteran’s Hospital, Madison, Wisconsin
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
40
|
Turapov O, Loraine J, Jenkins CH, Barthe P, McFeely D, Forti F, Ghisotti D, Hesek D, Lee M, Bottrill AR, Vollmer W, Mobashery S, Cohen-Gonsaud M, Mukamolova GV. The external PASTA domain of the essential serine/threonine protein kinase PknB regulates mycobacterial growth. Open Biol 2016; 5:150025. [PMID: 26136255 PMCID: PMC4632501 DOI: 10.1098/rsob.150025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PknB is an essential serine/threonine protein kinase required for mycobacterial cell division and cell-wall biosynthesis. Here we demonstrate that overexpression of the external PknB_PASTA domain in mycobacteria results in delayed regrowth, accumulation of elongated bacteria and increased sensitivity to β-lactam antibiotics. These changes are accompanied by altered production of certain enzymes involved in cell-wall biosynthesis as revealed by proteomics studies. The growth inhibition caused by overexpression of the PknB_PASTA domain is completely abolished by enhanced concentration of magnesium ions, but not muropeptides. Finally, we show that the addition of recombinant PASTA domain could prevent regrowth of Mycobacterium tuberculosis, and therefore offers an alternative opportunity to control replication of this pathogen. These results suggest that the PknB_PASTA domain is involved in regulation of peptidoglycan biosynthesis and maintenance of cell-wall architecture.
Collapse
Affiliation(s)
- Obolbek Turapov
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK
| | - Jessica Loraine
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK
| | - Christopher H Jenkins
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK
| | - Philippe Barthe
- Centre de Biochimie Structurale, CNRS UMR 5048, 29, rue de Navacelles, Montpellier 34090, France INSERM U1054, Université Montpellier I et II, Montpellier, France
| | - Daniel McFeely
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK
| | - Francesca Forti
- Dipartimento di BioScienze, Università degli Studi di Milano, Milan, Italy
| | - Daniela Ghisotti
- Dipartimento di BioScienze, Università degli Studi di Milano, Milan, Italy
| | - Dusan Hesek
- Department of Chemistry and Biochemistry, 423 Nieuwland Science Center, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, 423 Nieuwland Science Center, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Andrew R Bottrill
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, 423 Nieuwland Science Center, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Martin Cohen-Gonsaud
- Centre de Biochimie Structurale, CNRS UMR 5048, 29, rue de Navacelles, Montpellier 34090, France INSERM U1054, Université Montpellier I et II, Montpellier, France
| | - Galina V Mukamolova
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK
| |
Collapse
|
41
|
Distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases of Actinobacteria. J Antibiot (Tokyo) 2016; 69:660-85. [DOI: 10.1038/ja.2015.138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 11/15/2015] [Accepted: 11/25/2015] [Indexed: 01/25/2023]
|
42
|
Kinase Inhibitors that Increase the Sensitivity of Methicillin Resistant Staphylococcus aureus to β-Lactam Antibiotics. Pathogens 2015; 4:708-21. [PMID: 26506394 PMCID: PMC4693160 DOI: 10.3390/pathogens4040708] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 01/30/2023] Open
Abstract
Staphylococcus aureus are Gram-positive bacteria that are the leading cause of recurrent infections in humans that include pneumonia, bacteremia, osteomyelitis, arthritis, endocarditis, and toxic shock syndrome. The emergence of methicillin resistant S. aureus strains (MRSA) has imposed a significant concern in sustained measures of treatment against these infections. Recently, MRSA strains deficient in expression of a serine/threonine kinase (Stk1 or PknB) were described to exhibit increased sensitivity to β-lactam antibiotics. In this study, we screened a library consisting of 280 drug-like, low-molecular-weight compounds with the ability to inhibit protein kinases for those that increased the sensitivity of wild-type MRSA to β-lactams and then evaluated their toxicity in mice. We report the identification of four kinase inhibitors, the sulfonamides ST085384, ST085404, ST085405, and ST085399 that increased sensitivity of WT MRSA to sub-lethal concentrations of β-lactams. Furthermore, these inhibitors lacked alerting structures commonly associated with toxic effects, and toxicity was not observed with ST085384 or ST085405 in vivo in a murine model. These results suggest that kinase inhibitors may be useful in therapeutic strategies against MRSA infections.
Collapse
|
43
|
Wright DP, Ulijasz AT. Regulation of transcription by eukaryotic-like serine-threonine kinases and phosphatases in Gram-positive bacterial pathogens. Virulence 2015; 5:863-85. [PMID: 25603430 PMCID: PMC4601284 DOI: 10.4161/21505594.2014.983404] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bacterial eukaryotic-like serine threonine kinases (eSTKs) and serine threonine phosphatases (eSTPs) have emerged as important signaling elements that are indispensable for pathogenesis. Differing considerably from their histidine kinase counterparts, few eSTK genes are encoded within the average bacterial genome, and their targets are pleiotropic in nature instead of exclusive. The growing list of important eSTK/P substrates includes proteins involved in translation, cell division, peptidoglycan synthesis, antibiotic tolerance, resistance to innate immunity and control of virulence factors. Recently it has come to light that eSTK/Ps also directly modulate transcriptional machinery in many microbial pathogens. This novel form of regulation is now emerging as an additional means by which bacteria can alter their transcriptomes in response to host-specific environmental stimuli. Here we focus on the ability of eSTKs and eSTPs in Gram-positive bacterial pathogens to directly modulate transcription, the known mechanistic outcomes of these modifications, and their roles as an added layer of complexity in controlling targeted RNA synthesis to enhance virulence potential.
Collapse
Key Words
- OCS, one-component signaling
- PASTA, penicillin-binding protein and Ser/Thr kinase associated
- PPM, protein phosphatase metal binding
- PTM, posttranslational modification
- REC, receiver
- ROS, reactive oxygen species
- TCS, two-component signaling
- bacteria
- eSTK, eukaryotic-like serine-threonine kinase
- eSTP, eukaryotic-like serine-threonine phosphatase
- infection
- phosphorylation
- serine threonine kinase
- serine threonine phosphatase
- transcription
- wHTH, winged helix-turn-helix
Collapse
Affiliation(s)
- David P Wright
- a MRC Centre for Molecular Bacteriology and Infection (CMBI); Imperial College London ; London , UK
| | | |
Collapse
|
44
|
Herbst FA, Danielsen HN, Wimmer R, Nielsen PH, Dueholm MS. Label-free quantification reveals major proteomic changes in Pseudomonas putida F1 during the exponential growth phase. Proteomics 2015; 15:3244-52. [PMID: 26122999 DOI: 10.1002/pmic.201400482] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 04/30/2015] [Accepted: 06/26/2015] [Indexed: 01/12/2023]
Abstract
The physiological adaptation to stationary growth by Pseudomonas putida F1, a model organism for the degradation of aromatic compounds, was investigated by proteome-wide label-free quantification.The data unveiled that entrance to the stationary phase did not involve an abrupt switch within the P. putida F1 proteome, but rather an ongoing adaptation that started already during the mid-exponential growth phase. The proteomic adaptations involved a clear increase in amino acid degradation capabilities and a loss of transcriptional as well as translational capacity. The final entrance to the stationary phase was accompanied by increased oxidative stress protection, although the stress and stationary sigma factor RpoS increased in abundance already during mid-exponential growth. The results show that it is important to consider significant sample variations when exponentially growing cultures are studied alone or compared across proteomic or transcriptomic literature. All MS data have been deposited in the ProteomeXchange with identifier PXD001219 (http://proteomecentral.proteomexchange.org/dataset/PXD001219).
Collapse
Affiliation(s)
- Florian-Alexander Herbst
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Heidi Nolsøe Danielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Reinhard Wimmer
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per Halkjaer Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Morten Simonsen Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
45
|
Dworkin J. Ser/Thr phosphorylation as a regulatory mechanism in bacteria. Curr Opin Microbiol 2015; 24:47-52. [PMID: 25625314 DOI: 10.1016/j.mib.2015.01.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/31/2014] [Accepted: 01/10/2015] [Indexed: 11/30/2022]
Abstract
This review will discuss some recent work describing the role of Ser/Thr phosphorylation as a post-translational mechanism of regulation in bacteria. I will discuss the interaction between bacterial eukaryotic-like Ser/Thr kinases (eSTKs) and two-component systems as well as hints as to physiological function of eSTKs and their cognate eukaryotic-like phosphatases (eSTPs). In particular, I will highlight the role of eSTKs and eSTPs in the regulation of peptidoglycan metabolism and protein synthesis. In addition, I will discuss how data from phosphoproteomic surveys suggest that Ser/Thr phosphorylation plays a much more significant physiological role than would be predicted simply based on in vivo and in vitro analyses of individual kinases.
Collapse
Affiliation(s)
- Jonathan Dworkin
- Department of Microbiology & Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|