1
|
Saito M, Wilaisrisak P, Pimanpanarak M, Viladpai-Nguen J, Paw MK, Koesukwiwat U, Tarning J, White NJ, Nosten F, McGready R. Comparison of lumefantrine, mefloquine, and piperaquine concentrations between capillary plasma and venous plasma samples in pregnant women with uncomplicated falciparum and vivax malaria. Antimicrob Agents Chemother 2024; 68:e0009324. [PMID: 38597636 PMCID: PMC11064628 DOI: 10.1128/aac.00093-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024] Open
Abstract
Capillary samples offer practical benefits compared with venous samples for the measurement of drug concentrations, but the relationship between the two measures varies between different drugs. We measured the concentrations of lumefantrine, mefloquine, piperaquine in 270 pairs of venous plasma and concurrent capillary plasma samples collected from 270 pregnant women with uncomplicated falciparum or vivax malaria. The median and range of venous plasma concentrations included in this study were 447.5 ng/mL (8.81-3,370) for lumefantrine (day 7, n = 76, median total dose received 96.0 mg/kg), 17.9 ng/mL (1.72-181) for desbutyl-lumefantrine, 1,885 ng/mL (762-4,830) for mefloquine (days 3-21, n = 90, median total dose 24.9 mg/kg), 641 ng/mL (79.9-1,950) for carboxy-mefloquine, and 51.8 ng/mL (3.57-851) for piperaquine (days 3-21, n = 89, median total dose 52.2 mg/kg). Although venous and capillary plasma concentrations showed a high correlation (Pearson's correlation coefficient: 0.90-0.99) for all antimalarials and their primary metabolites, they were not directly interchangeable. Using the concurrent capillary plasma concentrations and other variables, the proportions of venous plasma samples predicted within a ±10% precision range was 34% (26/76) for lumefantrine, 36% (32/89) for desbutyl-lumefantrine, 74% (67/90) for mefloquine, 82% (74/90) for carboxy-mefloquine, and 24% (21/89) for piperaquine. Venous plasma concentrations of mefloquine, but not lumefantrine and piperaquine, could be predicted by capillary plasma samples with an acceptable level of agreement. Capillary plasma samples can be utilized for pharmacokinetic and clinical studies, but caution surrounding cut-off values is required at the individual level.CLINICAL TRIALSThis study is registered with ClinicalTrials.gov as NCT01054248.
Collapse
Affiliation(s)
- Makoto Saito
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Pornpimon Wilaisrisak
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Mupawjay Pimanpanarak
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Jacher Viladpai-Nguen
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Moo Kho Paw
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Urairat Koesukwiwat
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Joel Tarning
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas J. White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rose McGready
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Unger HW, Acharya S, Arnold L, Wu C, van Eijk AM, Gore-Langton GR, Ter Kuile FO, Lufele E, Chico RM, Price RN, Moore BR, Thriemer K, Rogerson SJ. The effect and control of malaria in pregnancy and lactating women in the Asia-Pacific region. Lancet Glob Health 2023; 11:e1805-e1818. [PMID: 37858590 DOI: 10.1016/s2214-109x(23)00415-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 10/21/2023]
Abstract
Half of all pregnancies at risk of malaria worldwide occur in the Asia-Pacific region, where Plasmodium falciparum and Plasmodium vivax co-exist. Despite substantial reductions in transmission, malaria remains an important cause of adverse health outcomes for mothers and offspring, including pre-eclampsia. Malaria transmission is heterogeneous, and infections are commonly subpatent and asymptomatic. High-grade antimalarial resistance poses a formidable challenge to malaria control in pregnancy in the region. Intermittent preventive treatment in pregnancy reduces infection risk in meso-endemic New Guinea, whereas screen-and-treat strategies will require more sensitive point-of-care tests to control malaria in pregnancy. In the first trimester, artemether-lumefantrine is approved, and safety data are accumulating for other artemisinin-based combinations. Safety of novel antimalarials to treat artemisinin-resistant P falciparum during pregnancy, and of 8-aminoquinolines during lactation, needs to be established. A more systematic approach to the prevention of malaria in pregnancy in the Asia-Pacific is required.
Collapse
Affiliation(s)
- Holger W Unger
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Department of Obstetrics and Gynaecology, Royal Darwin Hospital, Tiwi, NT, Australia; Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Sanjaya Acharya
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Lachlan Arnold
- Royal Melbourne Hospital Clinical School, The University of Melbourne, Parkville, VIC, Australia
| | - Connie Wu
- Royal Melbourne Hospital Clinical School, The University of Melbourne, Parkville, VIC, Australia
| | - Anna Maria van Eijk
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Georgia R Gore-Langton
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Feiko O Ter Kuile
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Elvin Lufele
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - R Matthew Chico
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Brioni R Moore
- Curtin Medical School, Curtin University, Bentley, WA, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia; Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA, Australia
| | - Kamala Thriemer
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Stephen J Rogerson
- Department of Infectious Diseases, University of Melbourne, The Doherty Institute, Melbourne, VIC, Australia; Department of Medicine, University of Melbourne, The Doherty Institute, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Saadeh K, Nantha Kumar N, Fazmin IT, Edling CE, Jeevaratnam K. Anti-malarial drugs: Mechanisms underlying their proarrhythmic effects. Br J Pharmacol 2022; 179:5237-5258. [PMID: 36165125 PMCID: PMC9828855 DOI: 10.1111/bph.15959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 01/12/2023] Open
Abstract
Malaria remains the leading cause of parasitic death in the world. Artemisinin resistance is an emerging threat indicating an imminent need for novel combination therapy. Given the key role of mass drug administration, it is pivotal that the safety of anti-malarial drugs is investigated thoroughly prior to widespread use. Cardiotoxicity, most prominently arrhythmic risk, has been a concern for anti-malarial drugs. We clarify the likely underlying mechanisms by which anti-malarial drugs predispose to arrhythmias. These relate to disruption of (1) action potential upstroke due to effects on the sodium currents, (2) action potential repolarisation due to effects on the potassium currents, (3) cellular calcium homeostasis, (4) mitochondrial function and reactive oxygen species production and (5) cardiac fibrosis. Together, these alterations promote arrhythmic triggers and substrates. Understanding these mechanisms is essential to assess the safety of these drugs, stratify patients based on arrhythmic risk and guide future anti-malarial drug development.
Collapse
Affiliation(s)
- Khalil Saadeh
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK,School of Clinical Medicine, Addenbrooke's HospitalUniversity of CambridgeCambridgeUK
| | | | - Ibrahim Talal Fazmin
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK,School of Clinical Medicine, Addenbrooke's HospitalUniversity of CambridgeCambridgeUK
| | | | | |
Collapse
|
4
|
Hughes E, Wallender E, Kajubi R, Jagannathan P, Ochieng T, Kakuru A, Kamya MR, Clark TD, Rosenthal PJ, Dorsey G, Aweeka F, Savic RM. Piperaquine-Induced QTc Prolongation Decreases With Repeated Monthly Dihydroartemisinin-Piperaquine Dosing in Pregnant Ugandan Women. Clin Infect Dis 2022; 75:406-415. [PMID: 34864925 PMCID: PMC9427153 DOI: 10.1093/cid/ciab965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Intermittent preventive treatment with monthly dihydroartemisinin-piperaquine (DHA-PQ) is highly effective at preventing both malaria during pregnancy and placental malaria. Piperaquine prolongs the corrected QT interval (QTc), and it is possible that repeated monthly dosing could lead to progressive QTc prolongation. Intensive characterization of the relationship between piperaquine concentration and QTc interval throughout pregnancy can inform effective, safe prevention guidelines. METHODS Data were collected from a randomized controlled trial, where pregnant Ugandan women received malaria chemoprevention with monthly DHA-PQ (120/960 mg DHA/PQ; n = 373) or sulfadoxine-pyrimethamine (SP; 1500/75 mg; n = 375) during the second and third trimesters of pregnancy. Monthly trough piperaquine samples were collected throughout pregnancy, and pre- and postdose electrocardiograms were recorded at 20, 28, and 36 weeks' gestation in each woman. The pharmacokinetics-QTc relationship for piperaquine and QTc for SP were assessed using nonlinear mixed-effects modeling. RESULTS A positive linear relationship between piperaquine concentration and Fridericia corrected QTc interval was identified. This relationship progressively decreased from a 4.42 to 3.28 to 2.13 millisecond increase per 100 ng/mL increase in piperaquine concentration at 20, 28, and 36 weeks' gestation, respectively. Furthermore, 61% (n = 183) of women had a smaller change in QTc at week 36 than week 20. Nine women given DHA-PQ had grade 3-4 cardiac adverse events. SP was not associated with any change in QTc. CONCLUSIONS Repeated DHA-PQ dosing did not result in increased risk of QTc prolongation and the postdose QTc intervals progressively decreased. Monthly dosing of DHA-PQ in pregnant women carries minimal risk of QTc prolongation. CLINICAL TRIALS REGISTRATION NCT02793622.
Collapse
Affiliation(s)
- Emma Hughes
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Erika Wallender
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, California, USA
| | - Richard Kajubi
- Infectious Disease Research Collaboration, Kampala, Uganda
| | | | - Teddy Ochieng
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Abel Kakuru
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Moses R Kamya
- Infectious Disease Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Tamara D Clark
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Philip J Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Francesca Aweeka
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, California, USA
| | - Radojka M Savic
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
5
|
Assefa DG, Zeleke ED, Molla W, Mengistu N, Sefa A, Mebratu A, Bate AF, Bekele E, Yesmaw G, Makonnen E. Safety of dihydroartemisinin-piperaquine versus artemether-lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria among children in Africa: a systematic review and meta-analysis of randomized control trials. Malar J 2022; 21:4. [PMID: 34983552 PMCID: PMC8725395 DOI: 10.1186/s12936-021-04032-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The efficacies of artemisinin based combinations have been excellent in Africa, but also comprehensive evidence regarding their safety would be important. The aim of this review was to synthesize available evidence on the safety of dihydroartemisinin-piperaquine (DHA-PQ) compared to artemether-lumefantrine (AL) for the treatment of uncomplicated Plasmodium falciparum malaria among children in Africa. METHODS A systematic literature search was done to identify relevant articles from online databases PubMed/ MEDLINE, Embase, and Cochrane Center for Clinical Trial database (CENTRAL) for retrieving randomized control trials comparing safety of DHA-PQ and AL for treatment of uncomplicated P. falciparum malaria among children in Africa. The search was performed from August 2020 to 30 April 2021. Using Rev-Man software (V5.4.1), the extracted data from eligible studies were pooled as risk ratio (RR) with 95% confidence interval (CI). RESULTS In this review, 18 studies were included, which involved 10,498 participants were included. Compared to AL, DHA-PQ was associated with a slightly higher frequency of early vomiting (RR 2.26, 95% CI 1.46 to 3.50; participants = 7796; studies = 10; I2 = 0%, high quality of evidence), cough (RR 1.06, 95% CI 1.01 to 1.11; participants = 8013; studies = 13; I2 = 0%, high quality of evidence), and diarrhoea (RR 1.16, 95% CI 1.03 to 1.31; participants = 6841; studies = 11; I2 = 8%, high quality of evidence) were more frequent in DHA-PQ treatment arm. CONCLUSION From this review, it can be concluded that early vomiting, diarrhoea, and cough were common were significantly more frequent in patients who were treated with the DHA-PQ than that of AL, and both drugs are well tolerated. More studies comparing AL with DHA-PQ are needed to determine the comparative safety of these drugs.
Collapse
Affiliation(s)
- Dawit Getachew Assefa
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
- School of Public Health, College of Health Science and Medicine, Dilla University, Dilla, Ethiopia.
| | - Eden Dagnachew Zeleke
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Midwifery, College of Health Science, Bule Hora University, Bule Hora, Ethiopia
| | - Wondwosen Molla
- Department of Midwifery, College of Health Science and Medicine, Dilla University, Dilla, Ethiopia
| | - Nebiyu Mengistu
- Department of Psychiatry, College of Health Science and Medicine, Dilla University, Dilla, Ethiopia
| | - Ahmedin Sefa
- Department of Nursing, College of Health Science and Medicine, Dilla University, Dilla, Ethiopia
| | - Andualem Mebratu
- Department of Midwifery, College of Health Science and Medicine, Dilla University, Dilla, Ethiopia
| | - Asresu Feleke Bate
- Department of Nursing, College of Health Science and Medicine, Dilla University, Dilla, Ethiopia
| | - Etaferaw Bekele
- Department of Nursing, College of Health Science and Medicine, Dilla University, Dilla, Ethiopia
| | - Gizachew Yesmaw
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Eyasu Makonnen
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Pharmacology and Clinical Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Saito M, Carrara VI, Gilder ME, Min AM, Tun NW, Pimanpanarak M, Viladpai-Nguen J, Paw MK, Haohankhunnatham W, Konghahong K, Phyo AP, Chu C, Turner C, Lee SJ, Duanguppama J, Imwong M, Bancone G, Proux S, Singhasivanon P, White NJ, Nosten F, McGready R. A randomized controlled trial of dihydroartemisinin-piperaquine, artesunate-mefloquine and extended artemether-lumefantrine treatments for malaria in pregnancy on the Thailand-Myanmar border. BMC Med 2021; 19:132. [PMID: 34107963 PMCID: PMC8191049 DOI: 10.1186/s12916-021-02002-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/06/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Artemisinin and artemisinin-based combination therapy (ACT) partner drug resistance in Plasmodium falciparum have spread across the Greater Mekong Subregion compromising antimalarial treatment. The current 3-day artemether-lumefantrine regimen has been associated with high treatment failure rates in pregnant women. Although ACTs are recommended for treating Plasmodium vivax malaria, no clinical trials in pregnancy have been reported. METHODS Pregnant women with uncomplicated malaria on the Thailand-Myanmar border participated in an open-label randomized controlled trial comparing dihydroartemisinin-piperaquine (DP), artesunate-mefloquine (ASMQ) and a 4-day artemether-lumefantrine regimen (AL+). The primary endpoint for P. falciparum infections was the PCR-corrected cure rate and for P. vivax infections was recurrent parasitaemia, before delivery or day 63, whichever was longer, assessed by Kaplan-Meier estimate. RESULTS Between February 2010 and August 2016, 511 pregnant women with malaria (353 P. vivax, 142 P. falciparum, 15 co-infections, 1 Plasmodium malariae) were randomized to either DP (n=170), ASMQ (n=169) or AL+ (n=172) treatments. Successful malaria elimination efforts in the region resulted in premature termination of the trial. The majority of women had recurrent malaria (mainly P. vivax relapses, which are not prevented by these treatments). Recurrence-free proportions (95% confidence interval [95% CI]) for vivax malaria were 20.6% (5.1-43.4) for DP (n=125), 46.0% (30.9-60.0) for ASMQ (n=117) and 28.7% (10.0-50.8) for AL+ (n=126). DP and ASMQ provided longer recurrence-free intervals. PCR-corrected cure rates (95% CI) for falciparum malaria were 93.7% (81.6-97.9) for DP (n=49), 79.6% (66.1-88.1) for AMSQ (n=55) and 87.5% (74.3-94.2) for AL+ (n=50). Overall 65% (85/130) of P. falciparum infections had Pfkelch13 propeller mutations which increased over time and recrudescence occurred almost exclusively in them; risk ratio 9.42 (95% CI 1.30-68.29). Among the women with falciparum malaria, 24.0% (95% CI 16.8-33.6) had P. vivax parasitaemia within 4 months. Nausea, vomiting, dizziness and sleep disturbance were more frequent with ASMQ. Miscarriage, small-for-gestational-age and preterm birth did not differ significantly among the treatment groups, including first trimester exposures (n=46). CONCLUSIONS DP was well tolerated and safe, and was the only drug providing satisfactory efficacy for P. falciparum-infected pregnant woman in this area of widespread artemisinin resistance. Vivax malaria recurrences are very common and warrant chloroquine prophylaxis after antimalarial treatment in this area. TRIAL REGISTRATION ClinicalTrials.gov identifier NCT01054248 , registered on 22 January 2010.
Collapse
Affiliation(s)
- Makoto Saito
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Verena I Carrara
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mary Ellen Gilder
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Department of Family Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Aung Myat Min
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nay Win Tun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Mupawjay Pimanpanarak
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Jacher Viladpai-Nguen
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Moo Kho Paw
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Warat Haohankhunnatham
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Kamonchanok Konghahong
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Cindy Chu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Claudia Turner
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sue J Lee
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jureeporn Duanguppama
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Germana Bancone
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Stephane Proux
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Pratap Singhasivanon
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rose McGready
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|