1
|
Zhang K, Yang N, Teng D, Mao R, Hao Y, Wang J. Expression and characterization of the new antimicrobial peptide AP138L-arg26 anti Staphylococcus aureus. Appl Microbiol Biotechnol 2024; 108:111. [PMID: 38229298 DOI: 10.1007/s00253-023-12947-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 01/18/2024]
Abstract
The low activity and yield of antimicrobial peptides (AMPs) are pressing problems. The improvement of activity and yield through modification and heterologous expression, a potential way to solve the problem, is a research hot-pot. In this work, a new plectasin-derived variant L-type AP138 (AP138L-arg26) was constructed for the study of recombination expression and druggablity. As a result, the total protein concentration of AP138L-arg26 was 3.1 mg/mL in Pichia pastoris X-33 supernatant after 5 days of induction expression in a 5-L fermenter. The recombinant peptide AP138L-arg26 has potential antibacterial activity against selected standard and clinical Gram-positive bacteria (G+, minimum inhibitory concentration (MIC) 2-16 µg/mL) and high stability under different conditions (temperature, pH, ion concentration) and 2 × MIC of AP138L-arg26 could rapidly kill Staphylococcus aureus (S. aureus) (> 99.99%) within 1.5 h. It showed a high safety in vivo and in vivo and a long post-antibiotic effect (PAE, 1.91 h) compared with vancomycin (1.2 h). Furthermore, the bactericidal mechanism was revealed from two dimensions related to its disruption of the cell membrane resulting in intracellular potassium leakage (2.5-fold higher than control), and an increase in intracellular adenosine triphosphate (ATP), and reactive oxygen species (ROS), the decrease of lactate dehydrogenase (LDH) and further intervening metabolism in S. aureus. These results indicate that AP138L-arg26 as a new peptide candidate could be used for more in-depth development in the future. KEY POINTS: • The AP138L-arg26 was expressed in the P. pastoris expression system with high yield • The AP138 L-arg26 showed high stability and safety in vitro and in vivo • The AP138L-arg26 killed S. aureus by affecting cell membranes and metabolism.
Collapse
Affiliation(s)
- Kun Zhang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China.
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China.
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China.
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China.
| |
Collapse
|
2
|
Sauve K, Watson A, Oh JT, Swift S, Vila-Farres X, Abdelhady W, Xiong YQ, LeHoux D, Woodnutt G, Bayer AS, Schuch R. The Engineered Lysin CF-370 Is Active Against Antibiotic-Resistant Gram-Negative Pathogens In Vitro and Synergizes With Meropenem in Experimental Pseudomonas aeruginosa Pneumonia. J Infect Dis 2024; 230:309-318. [PMID: 38366561 PMCID: PMC11326841 DOI: 10.1093/infdis/jiae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/12/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Lysins (cell wall hydrolases) targeting gram-negative organisms require engineering to permeabilize the outer membrane and access subjacent peptidoglycan to facilitate killing. In the current study, the potential clinical utility for the engineered lysin CF-370 was examined in vitro and in vivo against gram-negative pathogens important in human infections. METHODS Minimum inhibitory concentration (MICs) and bactericidal activity were determined using standard methods. An in vivo proof-of-concept efficacy study was conducted using a rabbit acute pneumonia model caused by Pseudomonas aeruginosa. RESULTS CF-370 exhibited potent antimicrobial activity, with MIC50/90 values (in µg/mL) for: P aeruginosa, 1/2; Acinetobacter baumannii, 1/1; Escherichia coli, 0.25/1; Klebsiella pneumoniae, 2/4; Enterobacter cloacae 1/4; and Stenotrophomonas maltophilia 2/8. CF-370 furthermore demonstrated bactericidal activity, activity in serum, a low propensity for resistance, anti-biofilm activity, and synergy with antibiotics. In the pneumonia model, CF-370 alone decreased bacterial densities in lungs, kidneys, and spleen versus vehicle control, and demonstrated significantly increased efficacy when combined with meropenem (vs either agent alone). CONCLUSIONS CF-370 is the first engineered lysin described with potent broad-spectrum in vitro activity against multiple clinically relevant gram-negative pathogens, as well as potent in vivo efficacy in an animal model of severe invasive multisystem infection.
Collapse
Affiliation(s)
| | | | - Jun T Oh
- ContraFect Corporation, Yonkers, New York
| | | | | | - Wessam Abdelhady
- The Lundquist Institute, Harbor-UCLA Medical Center, Torrance, California
| | - Yan Q Xiong
- The Lundquist Institute, Harbor-UCLA Medical Center, Torrance, California
- Geffen School of Medicine, University of California, Los Angeles
| | | | | | - Arnold S Bayer
- The Lundquist Institute, Harbor-UCLA Medical Center, Torrance, California
- Geffen School of Medicine, University of California, Los Angeles
| | | |
Collapse
|
3
|
Karau MJ, Mandrekar J, Lehoux D, Schuch R, Cassino C, Patel R. In vitro activity of exebacase against methicillin-resistant Staphylococcus aureus biofilms on orthopedic Kirschner wires. BMC Res Notes 2023; 16:209. [PMID: 37697424 PMCID: PMC10496330 DOI: 10.1186/s13104-023-06468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/22/2023] [Indexed: 09/13/2023] Open
Abstract
Orthopedic foreign body-associated infection can be difficult to treat due to the formation of biofilms protecting microorganisms from both antimicrobials and the immune system. Exebacase is an antistaphylococcal lysin (cell wall hydrolase) under consideration for local treatment for biofilm-based infections caused by methicillin-resistant Staphylococcus aureus (MRSA). To determine the activity of exebacase, we formed MRSA biofilms on orthopedic Kirschner wires and exposed them to varying concentrations (0.098, 0.98, 9.8 mg/ml) of exebacase and/or daptomycin over 24 h. The biofilm consisted of 5.49 log10 colony forming units (cfu)/K-wire prior to treatment and remained steady throughout the experiment. Exebacase showed significant biofilm reduction at all timepoints (up to 5.78 log10 cfu/K-wire; P < 0.0495) compared to the controls at all concentrations and all time points with bactericidal activity (> 3 log10 cfu/K-wire reduction) observed for up to 12 h for the 0.098 and 0.98 mg/ml concentrations and at 24 h for 9.8 mg/ml. Daptomycin showed significant biofilm reduction, although non-bactericidal, at all time points for 0.98 and 9.8 mg/ml and at 4 and 8 h with 0.098 mg/ml (P < 0.0495). This study supports further evaluation of local administration of exebacase as a potential treatment for orthopedic implant infections.
Collapse
Affiliation(s)
- Melissa J Karau
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jay Mandrekar
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | | | | | - Cara Cassino
- Stony Point Life Sciences Consulting, LLC, Benson, VT, 05743, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
4
|
Vila-Farres X, Sauve K, Oh J, Swift S, DeJonge B, Ambler JE, Schuch R. Rapid bacteriolysis of Staphylococcus aureus by lysin exebacase. Microbiol Spectr 2023; 11:e0190623. [PMID: 37561151 PMCID: PMC10580946 DOI: 10.1128/spectrum.01906-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023] Open
Abstract
Lysins (peptidoglycan hydrolases) are promising new protein-based antimicrobial candidates under development to address rising antibiotic resistance encountered among pathogenic bacteria. Exebacase is an antistaphylococcal lysin and the first member of the lysin class to have entered clinical trials in the United States. In this study, the bacteriolytic activity of exebacase was characterized with time-kill assays, turbidity reduction assays, and microscopy. Three methicillin-susceptible Staphylococcus aureus and three methicillin-resistant S. aureus isolates were tested in time-kill assays over a range of concentrations from 0.25 to 8 × MIC. Exebacase demonstrated a concentration-dependent killing and showed bactericidal activity (≥3 log10 kill achieved relative to the starting inoculum) within 3 h at 1 × MIC against all strains tested. Dose-dependent lysis by exebacase was, furthermore, observed in the turbidity reduction assay, wherein decreases in initial OD600 of 50% were observed within ~15 min at concentrations as low as 4 µg/mL. Membrane dissolution, loss of cytoplasmic material, and lysis were confirmed by video and electron microscopy. The demonstrated rapid bacteriolytic effect of exebacase is an important distinguishing feature of this novel modality. IMPORTANCE To guide the development of an investigational new antibacterial entity, microbiological data are required to evaluate the killing kinetics against target organism(s). Exebacase is a lysin (peptidoglycan hydrolase) that represents a novel antimicrobial modality based on degradation of the cell wall of Staphylococcus aureus. Killing by exebacase was determined in multiple assay formats including time-kill assays, wherein reductions of viability of ≥3 log10 colony-forming units/mL were observed within 3 h for multiple different isolates tested, consistent with very rapid bactericidal activity. Rapid reductions in optical density were likewise observed in exebacase-treated cultures, which were visually consistent with microscopic observations of rapid lysis. Overall, exebacase provides a novel antimicrobial modality against S. aureus, characterized by a rapid cidal and lytic activity.
Collapse
Affiliation(s)
| | - Karen Sauve
- ContraFect Corporation, Yonkers, New York, USA
| | - Jun Oh
- Janssen Pharmaceuticals, Brisbane, California, USA
| | | | | | | | | |
Collapse
|
5
|
Oh J, Warner M, Ambler JE, Schuch R. The Lysin Exebacase Has a Low Propensity for Resistance Development in Staphylococcus aureus and Suppresses the Emergence of Resistance to Antistaphylococcal Antibiotics. Microbiol Spectr 2023; 11:e0526122. [PMID: 36862002 PMCID: PMC10100934 DOI: 10.1128/spectrum.05261-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
Exebacase (CF-301) belongs to a novel class of protein-based antibacterial agents, called lysins (peptidoglycan hydrolases). Exebacase exhibits potent antistaphylococcal activity and is the first lysin to initiate clinical trials in the United States. To support clinical development, the potential for resistance development to exebacase was assessed over 28 days of serial daily subculture in the presence of increasing concentrations of the lysin performed in its reference broth medium. Exebacase MICs remained unchanged over serial subculture for three replicates each of methicillin-susceptible Staphylococcus aureus (MSSA) strain ATCC 29213 and methicillin-resistant S. aureus (MRSA) strain MW2. For comparator antibiotics also tested, oxacillin MICs increased by 32-fold with ATCC 29213 and daptomycin and vancomycin MICs increased by 16- and 8-fold, respectively, with MW2. Serial passage was also used to examine the capacity of exebacase to suppress selection for increased oxacillin, daptomycin, and vancomycin MICs when used together in combination, wherein daily exposures to increasing concentrations of antibiotic were performed over 28 days with the added presence of fixed sub-MIC amounts of exebacase. Exebacase suppressed increases in antibiotic MICs over this period. These findings are consistent with a low propensity for resistance to exebacase and an added benefit of reducing the potential for development of antibiotic resistance. IMPORTANCE To guide development of an investigational new antibacterial drug, microbiological data are required to understand the potential for development of resistance to the drug in the target organism(s). Exebacase is a lysin (peptidoglycan hydrolase) that represents a novel antimicrobial modality based on degradation of the cell wall of Staphylococcus aureus. Exebacase resistance was examined here using an in vitro serial passage method that assesses the impact of daily exposures to increasing concentrations of exebacase over 28 days in medium approved for use in exebacase antimicrobial susceptibility testing (AST) by the Clinical and Laboratory Standards Institute (CLSI). No changes in susceptibility to exebacase were observed over the 28-day period for multiple replicates of two S. aureus strains, indicating a low propensity for resistance development. Interestingly, while high-level resistance to commonly used antistaphylococcal antibiotics was readily obtained using the same method, the added presence of exebacase acted to suppress antibiotic resistance development.
Collapse
Affiliation(s)
- Jun Oh
- ContraFect Corporation, Yonkers, New York, USA
| | | | | | | |
Collapse
|
6
|
Liu S, She P, Li Z, Li Y, Li L, Yang Y, Zhou L, Wu Y. Drug synergy discovery of tavaborole and aminoglycosides against Escherichia coli using high throughput screening. AMB Express 2022; 12:151. [PMID: 36454354 PMCID: PMC9715904 DOI: 10.1186/s13568-022-01488-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 12/05/2022] Open
Abstract
High incidences of urinary tract infection (UTI) of aminoglycosides-resistant E.coli causes a severe burden for public health. A new therapeutic strategy to ease this crisis is to repurpose non-antibacterial compounds to increase aminoglycosides sensibility against multidrug resistant E.coli pathogens. Based on high throughput screening technology, we profile the antimicrobial activity of tavaborole, a first antifungal benzoxaborole drug for onychomycosis treatment, and investigate the synergistic interaction between tavaborole and aminoglycosides, especially tobramycin and amikacin. Most importantly, by resistance accumulation assay, we found that, tavaborole not only slowed resistance occurrence of aminoglycosides, but also reduced invasiveness of E.coli in combination with tobramycin. Mechanistic studies preliminary explored that tavaborole and aminoglycosides lead to mistranslation, but would be still necessary to investigate more details for further research. In addition, tavaborole exhibited low systematic toxicity in vitro and in vivo, and enhanced aminoglycoside bactericidal activity in mice peritonitis model. Collectively, these results suggest the potential of tavaborole as a novel aminoglycosides adjuvant to tackle the clinically relevant drug resistant E. coli and encourages us to discover more benzoxaborole analogues for circumvention of recalcitrant infections.
Collapse
Affiliation(s)
- Shasha Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Pengfei She
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Zehao Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Yimin Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Linhui Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Yifan Yang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Linying Zhou
- Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Yong Wu
- Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, Hunan, China.
| |
Collapse
|
7
|
Activity of Exebacase (CF-301) against Biofilms Formed by Staphylococcus epidermidis Strains Isolated from Prosthetic Joint Infections. Antimicrob Agents Chemother 2022; 66:e0058822. [PMID: 35861539 PMCID: PMC9380561 DOI: 10.1128/aac.00588-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus epidermidis
is one of the main pathogens responsible for bone and joint infections, especially those involving prosthetic materials, due to its ability to form biofilms. In these cases, biofilm formation, combined with increased antimicrobial resistance, often results in therapeutic failures.
Collapse
|
8
|
Schuch R, Cassino C, Vila-Farres X. Direct Lytic Agents: Novel, Rapidly Acting Potential Antimicrobial Treatment Modalities for Systemic Use in the Era of Rising Antibiotic Resistance. Front Microbiol 2022; 13:841905. [PMID: 35308352 PMCID: PMC8928733 DOI: 10.3389/fmicb.2022.841905] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/28/2022] [Indexed: 12/19/2022] Open
Abstract
Direct lytic agents (DLAs) are novel antimicrobial compounds with unique mechanisms of action based on rapid cell wall destabilization and bacteriolysis. DLAs include two classes of purified polypeptides—lysins (peptidoglycan hydrolase enzymes) and amurins (outer membrane targeting peptides). Their intended use is to kill bacteria in a manner that is complimentary to and synergistic with traditional antibiotics without selection for DLA resistance. Lysins were originally described as having activity against Gram-positive pathogens and of those, exebacase, is the first to have advanced into Phase 3 of clinical development. Recently, both engineered and native DLAs have now been described with potent bactericidal activity against a range of Gram-negative pathogens, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii. Importantly, novel DLAs targeting Gram-negatives, including the lysin CF-370 and the amurin peptides, are active in biological matrices (blood/serum) and, as such, offer promise for therapeutic use as systemically administered agents for the treatment of life-threatening invasive infections. In this review, DLAs are discussed as potential new classes of antimicrobial biologics that can be used to treat serious systemic infections.
Collapse
|
9
|
Exebacase: A Novel Approach to the Treatment of Staphylococcal Infections. Drugs R D 2022; 22:113-117. [PMID: 35175568 PMCID: PMC9167414 DOI: 10.1007/s40268-022-00383-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2022] [Indexed: 11/04/2022] Open
Abstract
Lysins are bacteriophage-derived enzymes that degrade essential components of bacteria. Exebacase (Lysin CF-301) is an attractive antimicrobial agent because it demonstrates rapid bacteriolytic activity against staphylococcal species, including Staphylococcus aureus, has a low resistance profile, eradicates biofilms, and acts synergistically with other antibiotics. Combinations including exebacase and standard of care antibiotics represent an alternative to antibiotic monotherapies currently used to treat invasive staphylococcal infections. This manuscript reviews what is known about exebacase and explores how this novel agent may be used in the future to treat human bacterial pathogens.
Collapse
|
10
|
Danis-Wlodarczyk KM, Wozniak DJ, Abedon ST. Treating Bacterial Infections with Bacteriophage-Based Enzybiotics: In Vitro, In Vivo and Clinical Application. Antibiotics (Basel) 2021; 10:1497. [PMID: 34943709 PMCID: PMC8698926 DOI: 10.3390/antibiotics10121497] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Over the past few decades, we have witnessed a surge around the world in the emergence of antibiotic-resistant bacteria. This global health threat arose mainly due to the overuse and misuse of antibiotics as well as a relative lack of new drug classes in development pipelines. Innovative antibacterial therapeutics and strategies are, therefore, in grave need. For the last twenty years, antimicrobial enzymes encoded by bacteriophages, viruses that can lyse and kill bacteria, have gained tremendous interest. There are two classes of these phage-derived enzymes, referred to also as enzybiotics: peptidoglycan hydrolases (lysins), which degrade the bacterial peptidoglycan layer, and polysaccharide depolymerases, which target extracellular or surface polysaccharides, i.e., bacterial capsules, slime layers, biofilm matrix, or lipopolysaccharides. Their features include distinctive modes of action, high efficiency, pathogen specificity, diversity in structure and activity, low possibility of bacterial resistance development, and no observed cross-resistance with currently used antibiotics. Additionally, and unlike antibiotics, enzybiotics can target metabolically inactive persister cells. These phage-derived enzymes have been tested in various animal models to combat both Gram-positive and Gram-negative bacteria, and in recent years peptidoglycan hydrolases have entered clinical trials. Here, we review the testing and clinical use of these enzymes.
Collapse
Affiliation(s)
| | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA;
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
11
|
Exebacase Is Active In Vitro in Pulmonary Surfactant and Is Efficacious Alone and Synergistic with Daptomycin in a Mouse Model of Lethal Staphylococcus aureus Lung Infection. Antimicrob Agents Chemother 2021; 65:e0272320. [PMID: 34228536 PMCID: PMC8370210 DOI: 10.1128/aac.02723-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Exebacase (CF-301) is a novel antistaphylococcal lysin (cell wall hydrolase) in phase 3 of clinical development for the treatment of Staphylococcus aureus bacteremia, including right-sided endocarditis, used in addition to standard-of-care antibiotics. In the current study, the potential for exebacase to treat S. aureus pneumonia was explored in vitro using bovine pulmonary surfactant (Survanta) and in vivo using a lethal murine pneumonia model. Exebacase was active against a set of methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) strains, with an MIC90 of 2 μg/ml (n = 18 strains), in the presence of a surfactant concentration (7.5%) inhibitory to the antistaphylococcal antibiotic daptomycin, which is inactive in pulmonary environments due to specific inhibition by surfactant. In a rigorous test of the ability of exebacase to synergize with antistaphylococcal antibiotics, exebacase synergized with daptomycin in the presence of surfactant in vitro, resulting in daptomycin MIC reductions of up to 64-fold against 9 MRSA and 9 MSSA strains. Exebacase was also observed to facilitate the binding of daptomycin to S. aureus and the elimination of biofilm-like structures formed in the presence of surfactant. Exebacase (5 mg/kg of body weight 1 time every 24 h [q24h], administered intravenously for 3 days) was efficacious in a murine model of staphylococcal pneumonia, resulting in 50% survival, compared to 0% survival with the vehicle control; exebacase in addition to daptomycin (50 mg/kg q24h for 3 days) resulted in 70% survival, compared to 0% survival in the daptomycin-alone control group. Overall, exebacase is active in pulmonary environments and may be appropriate for development as a treatment for staphylococcal pneumonia.
Collapse
|
12
|
Abstract
Exebacase is a lysin (cell wall hydrolase) with direct lytic activity against Staphylococcus aureus including methicillin-resistant S. aureus (MRSA). Time kill analysis experiments illustrated bactericidal activity of exebacase-daptomycin, against MRSA strains MW2 and 494. Furthermore, exebacase in addition to daptomycin (10, 6 and 4 mg/kg/d) in a two-compartment ex-vivo pharmacokinetic/pharmacodynamic simulated endocardial vegetation model with humanized doses resulted in reductions of 6.01, 4.99 and 2.81 log10 CFU/g (from initial inoculum) against MRSA strain MW2.
Collapse
|
13
|
Asempa TE, DeRosa NA, Cassino C, Lehoux D, Schuch R, Nicolau DP. Efficacy assessment of lysin CF-296 in addition to daptomycin or vancomycin against Staphylococcus aureus in the murine thigh infection model. J Antimicrob Chemother 2021; 76:2622-2628. [PMID: 34223628 DOI: 10.1093/jac/dkab206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/24/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES CF-296 is a lysin in pre-clinical development for the treatment of MSSA and MRSA infections, used in addition to standard-of-care (SOC) antibiotics. We evaluated the efficacy of CF-296 alone and in addition to daptomycin or vancomycin against Staphylococcus aureus in the neutropenic mouse thigh infection model. METHODS Eight isolates (one MSSA and seven MRSA) were studied. Mice were administered five CF-296 monotherapy doses ranging from 0.5 to 50 mg/kg intravenously. To assess adjunctive therapy, mice received sub-therapeutic daptomycin alone, sub-therapeutic vancomycin alone, or the five CF-296 doses in addition to either daptomycin or vancomycin. RESULTS Relative to starting inoculum (5.80 ± 0.31 log10 cfu/thigh), bacterial density in vehicle controls increased by +2.49 ± 0.98 across all eight strains. Relative to 24 h controls, a dose-response in bacterial killing (range -0.22 ± 0.87 to -2.01 ± 1.71 log10 cfu/thigh) was observed with increasing CF-296 monotherapy against the eight isolates. Daptomycin and vancomycin resulted in -1.36 ± 0.77 and -1.37 ± 1.01 log10 cfu/thigh bacteria reduction, respectively, relative to 24 h controls. Escalating CF-296 exposures (0.5-50 mg/kg) in addition to daptomycin resulted in an enhanced dose-response, ranging from bacterial killing of -0.69 to -2.13 log10 cfu/thigh, relative to daptomycin alone. Similarly, in addition to vancomycin, escalating CF-296 exposures resulted in bacterial reduction ranging from -1.37 to -2.29 log10 cfu/thigh, relative to vancomycin alone. CONCLUSIONS Relative to SOC antibiotics (daptomycin or vancomycin), addition of CF-296 resulted in robust and enhanced antibacterial dose-response, achieving ≥1 log10 cfu/thigh decrease across most doses, highlighting a potential role for CF-296 adjunctive therapy against MSSA and MRSA isolates.
Collapse
Affiliation(s)
- Tomefa E Asempa
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Nicole A DeRosa
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | | | | | | | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA.,Division of Infectious Diseases, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
14
|
Determination of MIC Quality Control Parameters for Exebacase, a Novel Lysin with Antistaphylococcal Activity. J Clin Microbiol 2021; 59:e0311720. [PMID: 33910968 PMCID: PMC8218745 DOI: 10.1128/jcm.03117-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Exebacase (CF-301), a novel, antistaphylococcal lysin (cell wall hydrolase) is the first agent of this class to enter late-stage clinical development (phase 3, NCT04160468) for the treatment of Staphylococcus aureus bacteremia, including right-sided endocarditis. A multilaboratory Clinical and Laboratory Standards Institute (CLSI) M23-defined tier 2 quality control (QC) study was conducted to establish exebacase QC ranges for a new reference broth microdilution method. S. aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 were selected as reference QC strains. Broth microdilution MIC QC ranges for exebacase spanned 4 log2 dilutions and contained 99.2% of the MIC results generated for the two reference strains. The QC ranges for exebacase were defined as 0.25 to 2 μg/ml and 8 to 64 μg/ml against S. aureus ATCC 29213 and E. faecalis ATCC 29212, respectively, and were approved by the CLSI Subcommittee on Antimicrobial Susceptibility Testing. These QC ranges established for use with the reference broth microdilution method developed for exebacase susceptibility testing will ensure the test performance and accuracy of results generated during clinical development.
Collapse
|
15
|
Development of a Broth Microdilution Method for Exebacase Susceptibility Testing. Antimicrob Agents Chemother 2021; 65:e0258720. [PMID: 33903102 PMCID: PMC8218677 DOI: 10.1128/aac.02587-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exebacase (CF-301) belongs to a new class of protein-based antibacterial agents, known as lysins (peptidoglycan hydrolases). Exebacase, a novel lysin with antistaphylococcal activity, is in phase 3 of clinical development. To advance into the clinic, it was necessary to develop an accurate and reproducible method for exebacase MIC determination. The Clinical and Laboratory Standards Institute (CLSI) reference broth microdilution (BMD) method using cation-adjusted Mueller-Hinton broth (CAMHB) produced trailing MIC endpoints, and exebacase activity was diminished when frozen BMD panels were used. A modified BMD method was developed using CAMHB supplemented with 25% horse serum and 0.5 mM dl-dithiothreitol (CAMHB-HSD). Preliminary quality control (QC) ranges for Staphylococcus aureus ATCC 29213 of 0.25 to 1 μg/ml and for Enterococcus faecalis ATCC 29212 of 16 to 64 μg/ml were determined based on the results of a CLSI M23-defined MIC QC tier 1 study. These preliminary QC ranges validated the MIC data generated from a systematic study testing a discrete S. aureus strain collection using CAMHB-HSD to investigate the impact of parameters known to influence susceptibility test results and to evaluate the exebacase MIC distribution against clinical S. aureus isolates. Presentation of these data led to the CLSI Subcommittee on Antimicrobial Susceptibility Testing (AST) approval of the use of CAMHB-HSD to determine exebacase susceptibility and commencement of a multilaboratory (tier 2) QC study. Use of a standard BMD method and concomitant QC testing provides confidence in the assessment of test performance to generate accurate and reproducible susceptibility data during antibacterial drug development.
Collapse
|
16
|
Ferry T, Batailler C, Souche A, Cassino C, Chidiac C, Perpoint T, le Corvaisier C, Josse J, Gaillard R, Roger J, Kolenda C, Lustig S, Laurent F. Arthroscopic "Debridement and Implant Retention" With Local Administration of Exebacase (Lysin CF-301) Followed by Suppressive Tedizolid as Salvage Therapy in Elderly Patients for Relapsing Multidrug-Resistant S. epidermidis Prosthetic Knee Infection. Front Med (Lausanne) 2021; 8:550853. [PMID: 34055817 PMCID: PMC8163228 DOI: 10.3389/fmed.2021.550853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
Exebacase, a recombinantly produced lysin has recently (i) reported proof-of-concept data from a phase II study in S. aureus bacteremia and (ii) demonstrated antibiofilm activity in vitro against S. epidermidis. In patients with relapsing multidrug-resistant (MDR) S. epidermidis prosthetic knee infection (PKI), the only surgical option is prosthesis exchange. In elderly patients who have undergone several revisions, prosthesis explantation could be associated with definitive loss of function and mortality. In our BJI reference regional center, arthroscopic debridement and implant retention with local administration of exebacase (LysinDAIR) followed by suppressive tedizolid as salvage therapy is proposed for elderly patients with recurrent MDR S. epidermidis PKI with no therapeutic option or therapeutic dead end (for whom revision or transfemoral amputation is not feasible and no other oral option is available). Each use was decided in agreement with the French health authority and in accordance with the local ethics committee. A written consent was obtained for each patient. Exebacase (75 mg/mL; 30 mL) was administered directly into the joint during arthroscopy. Four patients (79-89 years old) were treated with the LysinDAIR procedure. All had several previous prosthetic knee revisions without prosthesis loosening. Three had relapsing PKI despite suppressive antibiotics following open DAIR. Two had clinical signs of septic arthritis; the two others had sinus tract. After the LysinDAIR procedure, no adverse events occurred during arthroscopy; all patients received daptomycin 8 mg/kg and linezolid 600 mg bid (4-6 weeks) as primary therapy, followed by tedizolid 200 mg/day as suppressive therapy. At 6 months, recurrence of the sinus tract occurred in the two patients with sinus tract at baseline. After >1 year follow up, the clinical outcome was favorable in the last two patients with total disappearance of clinical signs of septic arthritis even if microbiological persistence was detected in one of them. Exebacase has the potential to be used in patients with staphylococci PKI during arthroscopic DAIR as salvage therapy to improve the efficacy of suppressive antibiotics and to prevent major loss of function.
Collapse
Affiliation(s)
- Tristan Ferry
- Service des Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,CIRI - Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Cécile Batailler
- Université Claude Bernard Lyon 1, Lyon, France.,Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,Service de Chirurgie Orthopédique, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Aubin Souche
- Université Claude Bernard Lyon 1, Lyon, France.,Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,CIRI - Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France.,Institut des Agents Infectieux, Laboratoire de Bactériologie, Centre National de Référence des Staphylocoques, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Cara Cassino
- ContraFect Corporation, Yonkers, NY, United States
| | - Christian Chidiac
- Service des Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France
| | - Thomas Perpoint
- Service des Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France.,Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France
| | | | - Jérôme Josse
- Université Claude Bernard Lyon 1, Lyon, France.,Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,CIRI - Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France.,Institut des Agents Infectieux, Laboratoire de Bactériologie, Centre National de Référence des Staphylocoques, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Romain Gaillard
- Service de Chirurgie Orthopédique, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Julien Roger
- Service de Chirurgie Orthopédique, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Camille Kolenda
- Université Claude Bernard Lyon 1, Lyon, France.,Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,CIRI - Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France.,Institut des Agents Infectieux, Laboratoire de Bactériologie, Centre National de Référence des Staphylocoques, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Sébastien Lustig
- Université Claude Bernard Lyon 1, Lyon, France.,Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,Service de Chirurgie Orthopédique, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Frédéric Laurent
- Université Claude Bernard Lyon 1, Lyon, France.,Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,CIRI - Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France.,Institut des Agents Infectieux, Laboratoire de Bactériologie, Centre National de Référence des Staphylocoques, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | | |
Collapse
|
17
|
Li X, Wang S, Nyaruaba R, Liu H, Yang H, Wei H. A Highly Active Chimeric Lysin with a Calcium-Enhanced Bactericidal Activity against Staphylococcus aureus In Vitro and In Vivo. Antibiotics (Basel) 2021; 10:antibiotics10040461. [PMID: 33921682 PMCID: PMC8074178 DOI: 10.3390/antibiotics10040461] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 01/21/2023] Open
Abstract
Lysins, including chimeric lysins, have recently been explored as novel promising alternatives to failing antibiotics in treating multi-drug resistant (MDR) pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). Herein, by fusing the CHAP (cysteine, histidine-dependent amidohydrolase/peptidase) catalytic domain from the Ply187 lysin with the non-SH3b cell-wall binding domain from the LysSA97 lysin, a new chimeric lysin ClyC was constructed with Ca2+-enhanced bactericidal activity against all S. aureus strains tested, including MRSA. Notably, treating S. aureus with 50 μg/mL of ClyC in the presence of 100 μM Ca2+ lead to a reduction of 9 Log10 (CFU/mL) in viable bacterial number, which was the first time to observe a lysin showing such a high activity. In addition, the effective concentration of ClyC could be decreased dramatically from 12 to 1 μg/mL by combination with 0.3 μg/mL of penicillin G. In a mouse model of S. aureus bacteremia, a single intraperitoneal administration of 0.1 mg/mouse of ClyC significantly improved the survival rates and reduced 2 Log10 (CFU/mL) of the bacterial burdens in the organs of the infected mice. ClyC was also found stable after lyophilization without cryoprotectants. Based on the above observations, ClyC could be a promising candidate against S. aureus infections.
Collapse
Affiliation(s)
- Xiaohong Li
- CAS Key Laboratory of Emerging Pathogens and Biosafety, Centre for Biosafety Mega-Sciences, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (X.L.); (S.W.); (R.N.); (H.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujuan Wang
- CAS Key Laboratory of Emerging Pathogens and Biosafety, Centre for Biosafety Mega-Sciences, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (X.L.); (S.W.); (R.N.); (H.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Raphael Nyaruaba
- CAS Key Laboratory of Emerging Pathogens and Biosafety, Centre for Biosafety Mega-Sciences, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (X.L.); (S.W.); (R.N.); (H.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Huan Liu
- CAS Key Laboratory of Emerging Pathogens and Biosafety, Centre for Biosafety Mega-Sciences, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (X.L.); (S.W.); (R.N.); (H.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hang Yang
- CAS Key Laboratory of Emerging Pathogens and Biosafety, Centre for Biosafety Mega-Sciences, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (X.L.); (S.W.); (R.N.); (H.L.)
- Correspondence: (H.Y.); (H.W.); Tel.: +86-27-51861078 (H.Y.); +86-27-51861077 (H.W.)
| | - Hongping Wei
- CAS Key Laboratory of Emerging Pathogens and Biosafety, Centre for Biosafety Mega-Sciences, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (X.L.); (S.W.); (R.N.); (H.L.)
- Correspondence: (H.Y.); (H.W.); Tel.: +86-27-51861078 (H.Y.); +86-27-51861077 (H.W.)
| |
Collapse
|
18
|
Han H, Teng D, Mao R, Hao Y, Yang N, Wang Z, Li T, Wang X, Wang J. Marine Peptide-N6NH2 and Its Derivative-GUON6NH2 Have Potent Antimicrobial Activity Against Intracellular Edwardsiella tarda in vitro and in vivo. Front Microbiol 2021; 12:637427. [PMID: 33767681 PMCID: PMC7985170 DOI: 10.3389/fmicb.2021.637427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/10/2021] [Indexed: 12/03/2022] Open
Abstract
Edwardsiella tarda is a facultative intracellular pathogen in humans and animals. There is no effective way except vaccine candidates to eradicate intracellular E. tarda. In this study, four derivatives of marine peptide-N6NH2 were designed by an introduction of unnatural residues or substitution of natural ones, and their intracellular activities against E. tarda were evaluated in macrophages and in mice, respectively. The minimum inhibitory concentration (MIC) value of N6NH2 and GUON6NH2 against E. tarda was 8 μg/mL. GUON6NH2 showed higher stability to trypsin, lower toxicity (<1%) and longer post-antibiotic effect (PAE) than N6NH2 and other derivatives. Antibacterial mechanism results showed that GUON6NH2 could bind to LPS and destroyed outer/inner cell membranes of E. tarda, superior to N6NH2 and norfloxacin. Both N6NH2 and GUON6NH2 were internalized into macrophages mainly via lipid rafts, micropinocytosis, and microtubule polymerization, respectively, and distributed in the cytoplasm. The intracellular inhibition rate of GUON6NH2 against E. tarda was 97.05–100%, higher than that in case of N6NH2 (96.82–100%). In the E. tarda-induced peritonitis mouse model, after treatment with of 1 μmol/kg N6NH2 and GUON6NH2, intracellular bacterial numbers were reduced by 1.54- and 1.97-Log10 CFU, respectively, higher than norfloxacin (0.35-Log10 CFU). These results suggest that GUON6NH2 may be an excellent candidate for novel antimicrobial agents to treat infectious diseases caused by intracellular E. tarda.
Collapse
Affiliation(s)
- Huihui Han
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhenlong Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ting Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China.,Chinese Herbal Medicine Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
19
|
Fowler VG, Das AF, Lipka-Diamond J, Schuch R, Pomerantz R, Jáuregui-Peredo L, Bressler A, Evans D, Moran GJ, Rupp ME, Wise R, Corey GR, Zervos M, Douglas PS, Cassino C. Exebacase for patients with Staphylococcus aureus bloodstream infection and endocarditis. J Clin Invest 2021; 130:3750-3760. [PMID: 32271718 DOI: 10.1172/jci136577] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUNDNovel therapeutic approaches are critically needed for Staphylococcus aureus bloodstream infections (BSIs), particularly for methicillin-resistant S. aureus (MRSA). Exebacase, a first-in-class antistaphylococcal lysin, is a direct lytic agent that is rapidly bacteriolytic, eradicates biofilms, and synergizes with antibiotics.METHODSIn this superiority-design study, we randomly assigned 121 patients with S. aureus BSI/endocarditis to receive a single dose of exebacase or placebo. All patients received standard-of-care antibiotics. The primary efficacy endpoint was clinical outcome (responder rate) on day 14.RESULTSClinical responder rates on day 14 were 70.4% and 60.0% in the exebacase + antibiotics and antibiotics-alone groups, respectively (difference = 10.4, 90% CI [-6.3, 27.2], P = 0.31), and were 42.8 percentage points higher in the prespecified exploratory MRSA subgroup (74.1% vs. 31.3%, difference = 42.8, 90% CI [14.3, 71.4], ad hoc P = 0.01). Rates of adverse events (AEs) were similar in both groups. No AEs of hypersensitivity to exebacase were reported. Thirty-day all-cause mortality rates were 9.7% and 12.8% in the exebacase + antibiotics and antibiotics-alone groups, respectively, with a notable difference in MRSA patients (3.7% vs. 25.0%, difference = -21.3, 90% CI [-45.1, 2.5], ad hoc P = 0.06). Among MRSA patients in the United States, median length of stay was 4 days shorter and 30-day hospital readmission rates were 48% lower in the exebacase-treated group compared with antibiotics alone.CONCLUSIONThis study establishes proof of concept for exebacase and direct lytic agents as potential therapeutics and supports conduct of a confirmatory study focused on exebacase to treat MRSA BSIs.TRIAL REGISTRATIONClinicaltrials.gov NCT03163446.FUNDINGContraFect Corporation.
Collapse
Affiliation(s)
- Vance G Fowler
- Duke University Medical Center, Durham, North Carolina, USA.,Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Anita F Das
- AD Stat Consulting, Guerneville, California, USA
| | | | | | | | | | - Adam Bressler
- Infectious Disease Specialists of Atlanta, Georgia, USA
| | - David Evans
- The Ohio State University, Columbus, Ohio, USA
| | | | - Mark E Rupp
- University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Robert Wise
- Johns Hopkins Bayview Medical Center, Baltimore, Maryland, USA
| | - G Ralph Corey
- Duke University Medical Center, Durham, North Carolina, USA
| | | | - Pamela S Douglas
- Duke University Medical Center, Durham, North Carolina, USA.,Duke Clinical Research Institute, Durham, North Carolina, USA
| | | |
Collapse
|
20
|
Schmelcher M, Loessner MJ. Bacteriophage endolysins - extending their application to tissues and the bloodstream. Curr Opin Biotechnol 2020; 68:51-59. [PMID: 33126104 DOI: 10.1016/j.copbio.2020.09.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 12/25/2022]
Abstract
The rapid emergence of antibiotic-resistant bacteria and the lack of novel antibacterial agents pose a serious threat for patients and healthcare systems. Bacteriophage-encoded peptidoglycan hydrolases (endolysins) represent a promising new class of antimicrobials. Over the past two decades, research on these enzymes has evolved from basic in vitro characterization to sophisticated protein engineering approaches, including advanced preclinical and clinical testing. In recent years, increasingly specific animal models have shown efficacy of endolysins against bacterial infections of various different organs and tissues of the body. Despite these advances, some challenges with regard to systemic application of endolysins remain to be addressed. These include immunogenicity, circulation half-life, and cell and tissue-specific targeting and penetration properties.
Collapse
Affiliation(s)
- Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland.
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Ferry T, Batailler C, Brosset S, Kolenda C, Goutelle S, Sappey-Marinier E, Josse J, Laurent F, Lustig S. Medical innovations to maintain the function in patients with chronic PJI for whom explantation is not desirable: a pathophysiology-, multidisciplinary-, and experience-based approach. SICOT J 2020; 6:26. [PMID: 32633714 PMCID: PMC7339926 DOI: 10.1051/sicotj/2020021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION PJI is the most dramatic complication after joint arthroplasty. In patients with chronic infection, prosthesis exchange is in theory the rule. However, this surgical approach is sometimes not desirable especially in elderly patients with multiple comorbidities, as it could be associated with a dramatic loss of function, reduction of the bone stock, fracture, or peroperative death. We propose here to report different approaches that can help to maintain the function in such patients based on a pathophysiology-, multidisciplinary-, and an experience-based approach. METHODS We describe the different points that are needed to treat such patients: (i) the multidisciplinary care management; (ii) understanding the mechanism of bacterial persistence; (iii) optimization of the conservative surgical approach; (iv) use of suppressive antimicrobial therapy (SAT); (v) implementation of innovative agents that could be used locally to target the biofilm. RESULTS In France, a nation-wide network called CRIOAc has been created and funded by the French Health ministry to manage complex bone and joint infection. Based on the understanding of the complex pathophysiology of PJI, it seems to be feasible to propose conservative surgical treatment such as "debridement antibiotics and implant retention" (with or without soft-tissue coverage) followed by SAT to control the disease progression. Finally, there is a rational for the use of particular agents that have the ability to target the bacteria embedded in biofilm such as bacteriophages and phage lysins. DISCUSSION This multistep approach is probably a key determinant to propose innovative management in patients with complex PJI, to improve the outcome. CONCLUSION Conservative treatment has a high potential in patients with chronic PJI for whom explantation is not desirable. The next step will be to evaluate such practices in nation-wide clinical trials.
Collapse
Affiliation(s)
- Tristan Ferry
- Service des Maladies Infectieuses et Tropicales, Hospices Civils de Lyon, Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France - Université Claude Bernard Lyon 1, 69100 Villeurbanne, France - Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France - CIRI - Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 69007 Lyon, France
| | - Cécile Batailler
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France - Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France - Service de Chirurgie Orthopédique, Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France
| | - Sophie Brosset
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France - Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France - Service de Chirurgie Plastique et Reconstructrice, Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France
| | - Camille Kolenda
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France - Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France - CIRI - Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 69007 Lyon, France - Institut des Agents Infectieux, Laboratoire de Bactériologie, Centre National de Référence des Staphylocoques, Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France
| | - Sylvain Goutelle
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France - Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France - Service de Pharmacie, Hospices Civils de Lyon, Groupement Hospitalier Nord, Hôpital Pierre Garraud, 136 Rue du Commandant Charcot, 69005 Lyon, France - UMR CNRS 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Elliot Sappey-Marinier
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France - Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France - Service de Chirurgie Orthopédique, Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France
| | - Jérôme Josse
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France - Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France - CIRI - Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 69007 Lyon, France - Institut des Agents Infectieux, Laboratoire de Bactériologie, Centre National de Référence des Staphylocoques, Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France
| | - Frédéric Laurent
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France - Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France - CIRI - Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 69007 Lyon, France - Institut des Agents Infectieux, Laboratoire de Bactériologie, Centre National de Référence des Staphylocoques, Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France
| | - Sébastien Lustig
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France - Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France - Service de Chirurgie Orthopédique, Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France
| | | |
Collapse
|
22
|
Li B, Yang N, Wang X, Hao Y, Mao R, Li Z, Wang Z, Teng D, Wang J. An Enhanced Variant Designed From DLP4 Cationic Peptide Against Staphylococcus aureus CVCC 546. Front Microbiol 2020; 11:1057. [PMID: 32582062 PMCID: PMC7291858 DOI: 10.3389/fmicb.2020.01057] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Insect defensins are promising candidates for the development of potent antimicrobials against antibiotic-resistant Staphylococcus aureus (S. aureus). An insect defensin, DLP4, isolated from the hemolymph of Hermetia illucens larvae, showed low antimicrobial activity against Gram-positive (G+) pathogens and high cytotoxicity, which limited its effective therapeutic application. To obtain more potent and low cytotoxicity molecules, a series of peptides was designed based on the DLP4 template by changing the conservative site, secondary structure, charge, or hydrophobicity. Among them, a variant designated as ID13 exhibited strong antibacterial activity at low MIC values of 4-8 μg/mL to G+ pathogens (S. aureus: 4 μg/mL; Staphylococcus epidermidis: 8 μg/mL; Streptococcus pneumoniae: 4 μg/mL; Streptococcus suis: 4 μg/mL), which were lower than those of DLP4 (S. aureus: 16 μg/mL; S. epidermidis: 64 μg/mL; S. pneumoniae: 32 μg/mL; S. suis: 16 μg/mL), and cytotoxicity of ID13 (71.4% viability) was less than that of DLP4 (63.8% viability). ID13 could penetrate and destroy the cell membrane of S. aureus CVCC 546, resulting in an increase in potassium ion leakage; it bound to genomic DNA (gDNA) and led to the change of gDNA conformation. After treatment with ID13, perforated, wrinkled, and collapsed S. aureus CVCC 546 cells were observed in electron microscopy. Additionally, ID13 killed over 99.99% of S. aureus within 1 h, 2 × MIC of ID13 induced a post-antibiotic effect (PAE) of 12.78 ± 0.28 h, and 10 mg/kg ID13 caused a 1.8 log10 (CFU/g) (CFU: colony-forming units) reduction of S. aureus in infected mouse thigh muscles and a downregulation of TNF-α, IL-6, and IL-10 levels, which were superior to those of DLP4 or vancomycin. These findings indicate that ID13 may be a promising peptide antimicrobial agent for therapeutic application.
Collapse
Affiliation(s)
- Bing Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiumin Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhanzhan Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhenlong Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
23
|
Auranofin Rapidly Eradicates Methicillin-resistant Staphylococcus aureus (MRSA) in an Infected Pressure Ulcer Mouse Model. Sci Rep 2020; 10:7251. [PMID: 32350417 PMCID: PMC7190694 DOI: 10.1038/s41598-020-64352-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022] Open
Abstract
Pressure ulcers (PUs) frequently occur in individuals with limited mobility including patients that are hospitalized or obese. PUs are challenging to resolve when infected by antibiotic-resistant bacteria, particularly methicillin-resistant Staphylococcus aureus (MRSA). In this study, we investigated the potential of repurposing auranofin to treat pressure ulcers infected with MRSA. Auranofin’s in vitro activity against strains of S. aureus (including MRSA) was not affected in the presence of higher bacterial inoculum (107 CFU/mL) or by lowering the pH in standard media to simulate the environment present on the surface of the skin. Additionally, S. aureus did not develop resistance to auranofin after repeated exposure for two weeks via a multi-step resistance selection experiment. In contrast, S. aureus resistance to mupirocin emerged rapidly. Moreover, auranofin exhibited a long postantibiotic effect (PAE) in vitro against three strains of S. aureus tested. Remarkably, topical auranofin completely eradicated MRSA (8-log10 reduction) in infected PUs of obese mice after just four days of treatment. This was superior to both topical mupirocin (1.96-log10 reduction) and oral clindamycin (1.24-log10 reduction), which are used to treat infected PUs clinically. The present study highlights auranofin’s potential to be investigated further as a treatment for mild-to-moderate PUs infected with S. aureus.
Collapse
|
24
|
Synergistic Activity of Exebacase (CF-301) in Addition to Daptomycin against Staphylococcus aureus in a Neutropenic Murine Thigh Infection Model. Antimicrob Agents Chemother 2020; 64:AAC.02176-19. [PMID: 31818816 DOI: 10.1128/aac.02176-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/02/2019] [Indexed: 01/09/2023] Open
Abstract
We evaluated the efficacy of escalating doses of exebacase administered with subtherapeutic daptomycin exposures against 8 Staphylococcus aureus isolates in a neutropenic murine thigh infection model. Daptomycin alone resulted in mean growth of 0.39 ± 1.19 log10 CFU/thigh. When administered with daptomycin, exebacase resulted in a mean log10 CFU/thigh reduction of -1.03 ± 0.72 (range, -0.77 ± 0.98 to -1.20 ± 0.59) across evaluated doses (15 to 90 mg/kg), indicative of potential in vivo synergy.
Collapse
|
25
|
Gram-Negative Bacterial Lysins. Antibiotics (Basel) 2020; 9:antibiotics9020074. [PMID: 32054067 PMCID: PMC7168136 DOI: 10.3390/antibiotics9020074] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
Antibiotics have had a profound impact on human society by enabling the eradication of otherwise deadly infections. Unfortunately, antibiotic use and overuse has led to the rapid spread of acquired antibiotic resistance, creating a major threat to public health. Novel therapeutic agents called bacteriophage endolysins (lysins) provide a solution to the worldwide epidemic of antibiotic resistance. Lysins are a class of enzymes produced by bacteriophages during the lytic cycle, which are capable of cleaving bonds in the bacterial cell wall, resulting in the death of the bacteria within seconds after contact. Through evolutionary selection of the phage progeny to be released and spread, these lysins target different critical components in the cell wall, making resistance to these molecules orders of magnitude less likely than conventional antibiotics. Such properties make lysins uniquely suitable for the treatment of multidrug resistant bacterial pathogens. Lysins, either naturally occurring or engineered, have the potential of being developed into fast-acting, narrow-spectrum, biofilm-disrupting antimicrobials that act synergistically with standard of care antibiotics. This review focuses on newly discovered classes of Gram-negative lysins with emphasis on prototypical enzymes that have been evaluated for efficacy against the major antibiotic resistant organisms causing nosocomial infections.
Collapse
|
26
|
Exebacase Demonstrates In Vitro Synergy with a Broad Range of Antibiotics against both Methicillin-Resistant and Methicillin-Susceptible Staphylococcus aureus. Antimicrob Agents Chemother 2020; 64:AAC.01885-19. [PMID: 31712212 DOI: 10.1128/aac.01885-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022] Open
Abstract
In vitro synergy between an antimicrobial protein lysin (cell wall hydrolase) called exebacase and each of 12 different antibiotics was examined against Staphylococcus aureus isolates using a nonstandard medium approved for exebacase susceptibility testing by the Clinical and Laboratory Standards Institute. In the checkerboard assay format, fractional inhibitory concentration index values of ≤0.5, consistent with synergy, were observed for the majority of interactions tested. Synergy was further confirmed in time-kill assays.
Collapse
|
27
|
Antimicrobial Activity of Exebacase (Lysin CF-301) against the Most Common Causes of Infective Endocarditis. Antimicrob Agents Chemother 2019; 63:AAC.01078-19. [PMID: 31332073 DOI: 10.1128/aac.01078-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022] Open
Abstract
Exebacase, a recombinantly produced lysin (cell wall hydrolase), and comparator antibiotics were tested by the broth microdilution method against strain sets of Staphylococcus and Streptococcus spp., which are the most common causes of infective endocarditis in humans. Exebacase was active against all Staphylococcus spp. tested, including S. aureus and coagulase-negative staphylococci (MIC50/90, 0.5/1 μg/ml). Activity against Streptococcus spp. was variable, with S. pyogenes, S. agalactiae, and S. dysgalactiae (MIC50/90, 1/2 μg/ml) among the most susceptible.
Collapse
|
28
|
Traczewski M, Oh J, Cassino C, Schuch R. In vitro activity of Exebacase (CF-301) against clinical Staphylococcus aureus surveillance isolates from the United States, Europe, and Latin America, 2015-2017. Diagn Microbiol Infect Dis 2019; 95:114879. [PMID: 31466875 DOI: 10.1016/j.diagmicrobio.2019.114879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/16/2019] [Accepted: 07/29/2019] [Indexed: 01/21/2023]
Abstract
Lysins are direct lytic agents which act through enzymatic cell-wall-hydrolysis and represent a potential new class of antimicrobial agents in development to treat antibiotic-resistant bacterial infections. Exebacase (CF-301) is a first-in-class lysin now in clinical development for the treatment of Staphylococcus aureus (S. aureus) bacteremia and infective endocarditis (IE) when used in addition to conventional antibiotics. Exebacase and comparator antibiotics were tested by broth microdilution against a set of 535 clinical MSSA and MRSA isolates collected from 2015 to 2017 throughout the United States, Europe and South America. All S. aureus isolates were inhibited by ≤1 mg/L exebacase (MIC50/90, 0.5/1 mg/L) with a range of 0.25-1 mg/L. No difference in susceptibility was observed between the MSSA and MRSA isolates. Exebacase was uniformly and equivalently active against all recent clinical MSSA and MRSA surveillance isolates from a broad survey across 3 continents.
Collapse
Affiliation(s)
- Maria Traczewski
- The Clinical Microbiology Institute, 9725 SW Commerce Circle, Wilsonville, OR, 97070, USA
| | - Jun Oh
- ContraFect Corporation, 28 Wells Avenue, Yonkers, New York 10701, USA
| | - Cara Cassino
- ContraFect Corporation, 28 Wells Avenue, Yonkers, New York 10701, USA
| | - Raymond Schuch
- ContraFect Corporation, 28 Wells Avenue, Yonkers, New York 10701, USA.
| |
Collapse
|
29
|
Caflisch KM, Patel R. Implications of Bacteriophage- and Bacteriophage Component-Based Therapies for the Clinical Microbiology Laboratory. J Clin Microbiol 2019; 57:e00229-19. [PMID: 31092596 PMCID: PMC6663902 DOI: 10.1128/jcm.00229-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment of bacterial infections is increasingly challenged by resistance to currently available antibacterial agents. Not only are such agents less likely to be active today than they were in the past, but their very use has selected for and continues to select for further resistance. Additional strategies for the management of bacterial illnesses must be identified. In this review, bacteriophage-based therapies are presented as one promising approach. In anticipation of their potential expansion into clinical medicine, clinical microbiologists may wish to acquaint themselves with bacteriophages and their antibacterial components and, specifically, with methods for testing them. Here, we reviewed the literature spanning January 2007 to March 2019 on bacteriophage and phage-encoded protein therapies of relevance to clinical microbiology.
Collapse
Affiliation(s)
- Katherine M Caflisch
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|