1
|
In Vivo Therapeutic Effect of Some Medicinal Plants' Methanolic Extracts on the Growth and Development of Secondary Hydatid Cyst Infection. Acta Parasitol 2022; 67:1521-1534. [PMID: 35960491 DOI: 10.1007/s11686-022-00605-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/21/2022] [Indexed: 11/01/2022]
Abstract
PURPOSE The current study aimed to explore the in vivo therapeutic effects of the methanolic extracts of Citrullus colocynthis, Ruta graveolens, and Peganum harmala against hydatid cyst secondary infection. METHODS Aerial parts of P. harmala and R. graveolens, including leaves and stems, and seeds of C. colocynthis were collected and extracted using absolute methanol. Rats that are infected with secondary infection of hydatid cysts were treated orally and intraperitoneally according to the determined lethal doses for 30 days. Histological, hematological, and biochemical investigations were done 8 months after the infection. RESULTS Compared to Albendazole drug, C. colocynthis, and P. harmala, the methanol extract of R. graveolens showed higher and significant (P < 0.05) therapeutic effects on the secondary hydatid cysts growth. Those effects were represented by the reduction in the cysts' number, size, and weight; as well as the significant changes (P < 0.05) in values of hematological and biochemical parameters, the elevation of IFN-γ levels, and the decline of IL-10 and IL-4 cytokines, compared to the negative control group in both routes of treatment (oral and IP). Moreover, the histological sections showed that R. graveolens has a clear damaging effect on the hydatid cysts GL in the infected rats represented by the detachment of GL from LL and AL. CONCLUSION This study can open an avenue to find new therapeutics for secondary hydatid cyst infections using the studied plant extracts, especially the extract of R. graveolens.
Collapse
|
2
|
Al Qaisi YT, Khleifat KM, Oran SA, Al Tarawneh AA, Qaralleh H, Al-Qaisi TS, Farah HS. Ruta graveolens, Peganum harmala, and Citrullus colocynthis methanolic extracts have in vitro protoscolocidal effects and act against bacteria isolated from echinococcal hydatid cyst fluid. Arch Microbiol 2022; 204:228. [PMID: 35353289 DOI: 10.1007/s00203-022-02844-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022]
Abstract
Echinococcosis is a common and endemic disease that affects both humans and animals. In this study, the in vitro activities of methanolic extracts of Ruta graveolens, Peganum harmala aerial parts, and Citrullus colocynthis seeds against protoscolosis and isolated bacterial strains from hydatid cysts were assessed using disc diffusion methods and Minimum Inhibitory Concentration (MIC). The chemical composition of three methanolic extracts was studied using LC-MS. After 3 h of exposure to 40 mg/mL R. graveolens extract, a tenfold protoscolocidal effect was seen when compared to the convintional medication (ABZ) for the same duration (P < 0.05). The bacteria listed below were isolated from hydatid cyst fluid collected from a variety of sick locations, including the lung and liver. Micrococcus spp., E. coli, Klebsiella oxytoca, Enterobacter aerogenes, Enterobacter amnigenus, Pseudomonas aeruginosa, Staphylococcus xylosus, and Achromobacter xylosoxidans are among the bacteria that have been identified. The most effective extract was R. graveolens, followed by P. harmala and C. colocynthis, according to the results of antibacterial activity using the disc diffusion method. R. graveolens extract had the lowest MIC values (less than 2 mg/mL) against all microorganisms tested. This shows that the R. graveolens extract has additional properties, such as the ability to be both scolocidal and bactericidal. Because these bacteria are among the most prevalent pathogenic bacteria that increase the risk of secondary infection during hydatid cysts, the results of inhibitory zones and MICs of the R. graveolens methanol extract are considered highly promising.
Collapse
Affiliation(s)
- Yaseen T Al Qaisi
- Department of Biological Sciences, Mutah University, Mutah, 61710, Karak, Jordan.
| | - Khaled M Khleifat
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Sawsan A Oran
- Departmentof Biological Sciences, Faculty of Sciences, University of Jordan, Amman, Jordan
| | - Amjad A Al Tarawneh
- Prince Faisal Center for Dead Sea, Environmental and Energy Research, Mutah University, Mutah, 61710, Karak, Jordan
| | - Haitham Qaralleh
- Department of Medical Laboratory Sciences, Faculty of Science, Mutah University, Mutah, 61710, Karak, Jordan
| | - Talal S Al-Qaisi
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Husni S Farah
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| |
Collapse
|
3
|
Wang S, Ma Y, Wang W, Dai Y, Sun H, Li J, Wang S, Li F. Status and prospect of novel treatment options toward alveolar and cystic echinococcosis. Acta Trop 2022; 226:106252. [PMID: 34808118 DOI: 10.1016/j.actatropica.2021.106252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/19/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023]
Abstract
Cystic echinococcosis (CE) and alveolar echinococcosis (AE) are the two most important global parasitic infectious diseases caused by species of Echinococcus granulosus and E. multilocularis, respectively. Although numerous trials have been performed in search of novel therapeutic options to curb the neglected zoonosis, no other nonsurgical options are currently available to replace the licensed anti echinococcal drugs albendazole (ABZ) and mebendazole (MBZ). A safer and more effective treatment plan for echinococcosis is therefore urgently needed to compensate for this therapeutic shortfall. Here, we present a review of the literature for state-of-the-art valuable anti-parasitic compounds and novel strategies that have proved effective against CE and AE, which includes details about the pharmaceutical type, practical approach, experimental plan, model application and protoscolecidal effects in vivo and in vitro. The content includes the current application of traditional clinical chemicals, the preparation of new compounds with various drug loadings, repurposing findings, combined programs, the prospects for Chinese herbal medicines, non-drug administrations and the exploration of target inhibitors based on open-source information for parasitic genes. Next the conventional experimental projects and pharmacodynamic evaluation methods are systematically summarized and evaluated. The demands to optimize the construction of the echinococcosis model and improve the dynamic monitoring method in vivo are also discussed given the shortcomings of in vivo models and monitoring methods.
Collapse
Affiliation(s)
- Sibo Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yibo Ma
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Weishan Wang
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Yi Dai
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Haohao Sun
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Jing Li
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Shan Wang
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Feng Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
4
|
Miles S, Magnone J, García-Luna J, Ancarola ME, Cucher M, Dematteis S, Frischknecht F, Cyrklaff M, Mourglia-Ettlin G. Ultrastructural characterization of the tegument in protoscoleces of Echinococcus ortleppi. Int J Parasitol 2021; 51:989-997. [PMID: 34216624 DOI: 10.1016/j.ijpara.2021.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/27/2022]
Abstract
Cystic echinococcosis is a globally distributed zoonosis caused by cestodes of the Echinococcus granulosus sensu lato (s.l.) complex, with Echinococcus ortleppi mainly involved in cattle infection. Protoscoleces show high developmental plasticity, being able to differentiate into either adult worms or metacestodes within definitive or intermediate hosts, respectively. Their outermost cellular layer is called the tegument, which is important in determining the infection outcome through its immunomodulating activities. Herein, we report an in-depth characterization of the tegument of E. ortleppi protoscoleces performed through a combination of scanning and transmission electron microscopy techniques. Using electron tomography, a three-dimensional reconstruction of the tegumental cellular territories was obtained, revealing a novel structure termed the 'tegumental vesicular body' (TVB). Vesicle-like structures, possibly involved in endocytic/exocytic routes, were found within the TVB as well as in the parasite glycocalyx, distal cytoplasm and close inner structures. Furthermore, parasite antigens (GST-1 and AgB) were unevenly localised within tegumental structures, with both being detected in vesicles found within the TBV. Finally, the presence of host (bovine) IgG was also assessed, suggesting a possible endocytic route in protoscoleces. Our data forms the basis for a better understanding of E. ortleppi and E. granulosus s.l. structural biology.
Collapse
Affiliation(s)
- Sebastián Miles
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Integrative Parasitology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany
| | - Javier Magnone
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Joaquín García-Luna
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - María Eugenia Ancarola
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcela Cucher
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sylvia Dematteis
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany; German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Marek Cyrklaff
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany.
| | - Gustavo Mourglia-Ettlin
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
5
|
Yang J, Wu J, Fu Y, Yan L, Li Y, Guo X, Zhang Y, Wang X, Shen Y, Cho WC, Zheng Y. Identification of Different Extracellular Vesicles in the Hydatid Fluid of Echinococcus granulosus and Immunomodulatory Effects of 110 K EVs on Sheep PBMCs. Front Immunol 2021; 12:602717. [PMID: 33708201 PMCID: PMC7940240 DOI: 10.3389/fimmu.2021.602717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Echinococcosis, mainly caused by Echinococcus granulosus, is one of the 17 neglected tropical diseases. Extracellular vesicles (EVs) play an essential role in the host-parasite interplay. However, the EVs in the hydatid fluid (HF) of E. granulosus are not fully characterized. Herein, three different types of HF EVs, designated as 2 K, 10 K, and 110 K EVs based on the centrifugal force used, were morphologically identified. A total of 97, 80, and 581 proteins were identified in 2 K, 10 K, and 110 K EVs, respectively, 39 of which were commonly shared. Moreover, 11, 8, and 25 miRNAs were detected, respectively, and all of the 7 selected miRNAs were validated by qPCR to be significantly lower abundant than that in protoscoleces. It was further deemed that 110 K EVs were internalized by sheep peripheral blood mononuclear cells (PBMCs) in a time-dependent manner and thus induced interleukin (IL)-10, tumor necrosis factor-α (TNF-α), and IRF5 were significantly upregulated and IL-1β, IL-17, and CD14 were significantly downregulated (p < 0.05). These data demonstrate the physical discrepancy of three HF EVs and an immunomodulatory effect of 110 K EVs on sheep PMBCs, suggesting a role in immune responses during E. granulosus infection.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jin'en Wu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yong Fu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Lujun Yan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yating Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaola Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yong'e Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoqiang Wang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,National Center for International Research on Tropical Diseases, Shanghai, China.,World Health Organization Collaborating Center for Tropical Diseases, Shanghai, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
6
|
Ma R, Qin W, Xie Y, Han Z, Li S, Jiang Y, Lv H. Dihydroartemisinin induces ER stress-dependent apoptosis of Echinococcus protoscoleces in vitro. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1140-1147. [PMID: 33085744 DOI: 10.1093/abbs/gmaa101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 07/30/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022] Open
Abstract
In this study, we investigated the effect of dihydroartemisinin on Echinococcus protoscoleces and explored the role of endoplasmic reticulum stress in this process. Echinococcus protoscoleces were collected and cultured in RPMI 1640 medium. Changes in the expressions of glucose-regulated protein 78 (GRP-78), caspase-12, and C/EBP homologous protein (CHOP) were assessed through confocal immunofluorescence and western blot analysis. Cell viability and morphological changes were observed under a light microscope. The ultrastructure of protoscoleces was observed by scanning electron microscopy and transmission electron microscopy. Caspase-3 activity was detected using an enzyme assay kit. After dihydroartemisinin treatment, the protoscoleces showed loss of viability, and morphological changes including soma contraction, blebs formation, hooks loss, microtrichia destruction, and development of lipid droplets was observed. The levels of caspase-12 and CHOP were increased within 2 days of dihydroartemisinin treatment. However, the levels of GRP-78, caspase-12, and CHOP were decreased in 4 days. Furthermore, caspase-3 activity was increased after treatment with different concentrations of dihydroartemisinin. Dihydroartemisinin can induce apoptosis in protoscoleces via the ER stress-caspase-3 apoptotic pathway in vitro. These results indicate that dihydroartemisinin is a potentially valuable therapeutic agent against echinococcosis.
Collapse
Affiliation(s)
- Rongji Ma
- Emergency Department of the First Affiliated Hospital of the Medical College of Shihezi University, Shihezi 832002, China
| | - Wenjuan Qin
- Department of Ultrasound Diagnosis, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Yuanmao Xie
- Department of Gastroenterology of the First Affiliated Hospital of Medical College of Shihezi University, Shihezi 832000, China
| | - Ziwei Han
- Emergency Department of the First Affiliated Hospital of the Medical College of Shihezi University, Shihezi 832002, China
| | - Shuojie Li
- Shihezi University School of Medicine, Clinical Pathology Department of the First Affiliated Hospital of the Medical College of Shihezi University, Shihezi 832000, China
| | - Yufeng Jiang
- Emergency Department of the First Affiliated Hospital of the Medical College of Shihezi University, Shihezi 832002, China
- School of Basic Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Hailong Lv
- Hepatological Surgery Department, The Third People’s Hospital of Chengdu, Chengdu 610500, China
| |
Collapse
|
7
|
In Vitro Antigenotoxic, Antihelminthic and Antioxidant Potentials Based on the Extracted Metabolites from Lichen, Candelariella vitellina. Pharmaceutics 2020; 12:pharmaceutics12050477. [PMID: 32456266 PMCID: PMC7285106 DOI: 10.3390/pharmaceutics12050477] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 01/22/2023] Open
Abstract
Lichens have recently received great attention due to their pharmacological potentials. The antigenotoxic potential of C. vitellina extract (25 and 50 µg/mL) was assessed in normal human peripheral blood lymphocytes (HPBL) against Mitomycin C (MMC) co-treatments. Flow cytometric analyses of cell cycle distribution, as well as apoptosis (Annexin V/PI), revealed that the extract had significantly (p ≤ 0.05) ameliorated the MMC toxicity by reducing the apoptotic cells and normalized the cell cycle phases. C. vitellina exhibited antigenotoxicity by ameliorating the diminished mitotic index and DNA single-strand breaks caused by MMC. Herein, the hydromethanolic extract (80%) of Candelariella vitellina (Japan) lichen, exhibited very low cytotoxicity towards normal human peripheral lymphocytes (HPBL) with IC50 >1000 µg/mL. In order to explore the antihelminthic effect, Echinococcus granulosus protoscoleces were used in vitro. Eosin staining revealed significant (p ≤ 0.05) dose and time-dependent scolicidal effects of the extract confirmed by degenerative alterations as observed by electron scan microscopy. Furthermore, primary and secondary metabolites were investigated using GC-MS and qualitative HPLC, revealing the presence of sugars, alcohols, different phenolic acids and light flavonoids. Significant antioxidant capacities were also demonstrated by DPPH radical-scavenging assay. In conclusion, the promising antigenotoxic, antihelminthic and antioxidant potentials of C. vitellina extract encourage further studies to evaluate its possible therapeutic potency.
Collapse
|
8
|
Xing G, Zhang H, Liu C, Guo Z, Yang X, Wang Z, Wang B, Lei Y, Yang R, Jiang Y, Lv H. Sodium arsenite augments sensitivity of Echinococcus granulosus protoscoleces to albendazole. Exp Parasitol 2019; 200:55-60. [PMID: 30790573 DOI: 10.1016/j.exppara.2019.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/17/2018] [Accepted: 02/16/2019] [Indexed: 01/22/2023]
Abstract
This study aimed to observe the effects of sodium arsenite (NaAsO2) on apoptosis of Echinococcus granulosus protoscoleces induced by albendazole (ABZ), and to explore the potential mechanism of NaAsO2. According to the following final concentrations, the experimental groups were divided into 10 μM NaAsO2, 20 μM NaAsO2, 80 μM ABZ, 10 μM NaAsO2+80 μM ABZ, and 20 μM NaAsO2+80 μM ABZ. Viability was detected with 0.1% eosin staining. The ultrastructural alterations were visualized by scanning electron microscopy. Caspase-3 activity was assessed with colorimetric assay. Meanwhile, ELISA or WST were applied to detect the activities of antioxidases in NaAsO2 treatment groups. The maximum protoscolicidal effect was seen with the combination 20 μM NaAsO2+80 μM ABZ. The ultrastructural damage detected after NaAsO2+ABZ incubation were greater than those caused by ABZ alone and its primary damage site was the tegument of the parasite. The caspase-3 activity was clearly higher in protoscoleces treated with the combination of NaAsO2+ABZ than when drugs were used separately. The activities of NQO-1, HO-1, GST, and SOD were significantly lower in protoscoleces incubated with NaAsO2 than the untreated controls (P < 0.05). According to our results, ABZ could induce protoscoleces apoptosis, and NaAsO2 could significantly augment sensitivity of protoscoleces to ABZ.
Collapse
Affiliation(s)
| | - Hui Zhang
- Taian City Central Hospital, Taian, Shandong, China
| | - Chunli Liu
- Taian City Central Hospital, Taian, Shandong, China
| | - Zhengyi Guo
- Taian City Central Hospital, Taian, Shandong, China
| | - Xiaoli Yang
- Taian City Central Hospital, Taian, Shandong, China
| | - Zhuo Wang
- School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Bo Wang
- School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Ying Lei
- School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Rentan Yang
- School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yufeng Jiang
- School of Preclinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China.
| | - Hailong Lv
- Department of General Surgery, The Third People's Hospital of Chengdu, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Farhadi M, Haniloo A, Rostamizadeh K, Faghihzadeh S. Efficiency of flubendazole-loaded mPEG-PCL nanoparticles: A promising formulation against the protoscoleces and cysts of Echinococcus granulosus. Acta Trop 2018; 187:190-200. [PMID: 30098942 DOI: 10.1016/j.actatropica.2018.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/07/2018] [Accepted: 08/08/2018] [Indexed: 11/18/2022]
Abstract
None of the existing drugs can effectively treat the human cystic echinococcosis. This study aimed to improve the efficacy of flubendazole (FLBZ) against the protoscoleces and cysts of Echinococcus granulosus by preparing polymeric FLBZ-loaded methoxy polyethylene glycol-polycaprolactone (mPEG-PCL) nanoparticles. The protoscoleces and microcysts were treated with FLBZ-loaded mPEG-PCL nanoparticles (FLBZ-loaded nanoparticles) and free FLBZ at the final concentrations of 1, 5, and 10 μg/mL for 27 and 14 days, respectively. The chemoprophylactic efficacy of the drugs was evaluated in experimentally infected mice. The nanoparticles were stable for 1 month, with an average size of 101.41 ± 5.14 nm and a zeta potential of -19.13 ± 2.56 mV. The drug-loading and entrapment efficiency of the FLBZ-loaded nanoparticles were calculated to be 3.08 ± 0.15% and 89.16 ± 2.93%, respectively. The incubation of the protoscoleces with the 10 μg/mL nano-formulation for 15 days resulted in 100% mortality, while after incubation with the 10 μg/mL free FLBZ, the viability rate of the protoscoleces was only 44.0% ± 5.22%. Destruction of the microcysts was observed after 7 days' exposure to the FLBZ-loaded nanoparticles at a concentration of 10 μg/mL. The in vivo challenge showed a significant reduction in the weight and number of the cysts (P < 0.05) in the mice treated with the FLBZ-loaded nanoparticles, yielding efficacy rates of 94.64% and 70.21%, correspondingly. Transmission electron microscopy revealed extensive ultrastructural damage to the cysts treated with the FLBZ-loaded nanoparticles. The results indicated that the FLBZ-loaded nanoparticles were more effective than the free FLBZ against the protoscoleces and cysts of E. granulosus both in vitro and in vivo.
Collapse
Affiliation(s)
- Mehdi Farhadi
- Department of Parasitology and Mycology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Haniloo
- Department of Parasitology and Mycology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Kobra Rostamizadeh
- Zanjan Pharmaceutical Nanotechnology Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Soghrat Faghihzadeh
- Department of Biological statistics and Epidemiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
10
|
Li J, Tang G, Qin W, Yang R, Ma R, Ma B, Wei J, Lv H, Jiang Y. Toxic effects of arsenic trioxide on Echinococcus granulosus protoscoleces through ROS production, and Ca2+-ER stress-dependent apoptosis. Acta Biochim Biophys Sin (Shanghai) 2018; 50:579-585. [PMID: 29684096 DOI: 10.1093/abbs/gmy041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 11/14/2022] Open
Abstract
Cystic echinococcosis is a severe parasitic disease that commonly affects the liver and causes abscesses or rupture into the surrounding tissues, leading to multiple complications, such as shock, severe abdominal pain, and post-treatment abscess recurrence. Currently, there are no efficient measures to prevent these complications. We previously confirmed that arsenic trioxide (As2O3) exhibited in vitro cytotoxicity against Echinococcus granulosus protoscoleces. In the present study, we aimed to explore the mechanism of As2O3-induced E. granulosus protoscoleces apoptosis. After exposing E. granulosus protoscoleces to 0, 4, 6, and 8 μM As2O3, reactive oxygen species (ROS) level was detected by fluorescence microscopy; superoxide dismutase (SOD), and caspase-3 activities were measured; intracellular Ca2+ was detected by flow cytometry; GRP-78 and caspase-12 protein levels were measured by western blot analysis. Our results showed that the expression of caspase-3 was gradually increased and the expression of SOD was gradually decreased in As2O3-treated groups of protoscoleces. Simultaneously, fluorescence microscopy and flow cytometry showed that the ROS level and the intracellular Ca2+ level were increased in a time- and dose-dependent manner. Western blot analysis showed that the expressions of GRP-78 and caspase-12 were higher in As2O3-treated groups than in the control group. These results suggest that As2O3-induced apoptosis in E. granulosus protoscoleces is related to elevation of ROS level, disruption of intracellular Ca2+ homeostasis, and endoplasmic reticulum stress. These mechanisms can be targeted in the future by safer and more effective drugs to prevent recurrence of cystic echinococcosis.
Collapse
Affiliation(s)
- Jiajie Li
- Department of Histology and Embryology, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Guangyao Tang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Wenjuan Qin
- Department of Ultrasound Diagnosis, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Rentan Yang
- The First People's Hospital of Jining City, Jining 272000, China
| | - Rongji Ma
- Department of Histology and Embryology, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Bin Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Jianfeng Wei
- Department of Histology and Embryology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou 221004, China
| | - Hailong Lv
- Department of General Surgery, The Third People's Hospital of Chengdu, Chengdu 610031, China
| | - Yufeng Jiang
- Department of Histology and Embryology, School of Medicine, Shihezi University, Shihezi 832000, China
- School of Preclinical Medicine, Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|
11
|
Qin W, Guan D, Ma R, Yang R, Xing G, Shi H, Tang G, Li J, Lv H, Jiang Y. Effects of trigonelline inhibition of the Nrf2 transcription factor in vitro on Echinococcus granulosus. Acta Biochim Biophys Sin (Shanghai) 2017; 49:696-705. [PMID: 28810706 DOI: 10.1093/abbs/gmx067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Indexed: 01/08/2023] Open
Abstract
The aim of this study was to investigate the impact of trigonelline (TRG) on Echinococcus granulosus, and to explore the inhibition impact of nuclear factor erythroid-2-related factor 2 (Nrf2) signaling pathway on E. granulosus protoscoleces. Echinococcus granulosus protoscoleces were incubated with various concentrations of TRG, and then Nrf2 protein expression and its localization in protoscoleces were detected by western blot analysis and immunofluorescence assay, respectively. Reactive oxygen species (ROS) level in protoscoleces was measured using ROS detection kit. Caspase-3 activity was measured using a caspase-3 activity assay kit, and NAD(P)H quinone oxidoreductase (NQO)-1 and heme oxygenase (HO)-1 activities in protoscoleces were measured by ELISA. The effect of TRG on protoscoleces viability was investigated using 0.1% eosin staining, and ultrastructural alterations in protoscoleces were examined by scanning electron microscopy (SEM). Immunolocalization experiment clearly showed that Nrf2 protein was predominantly present in cells of protoscoleces. TRG treatment reduced NQO-1 and HO-1 activities in protoscoleces, but could increase ROS level at early time. Protoscoleces could not survive when treated with 250 μM TRG for 12 days. SEM results showed that TRG-treated protoscoleces presented damage in the protoscoleces region, including hook deformation, lesions, and digitiform protuberance. Nrf2 protein expression was significantly decreased and caspase-3 activity was clearly increased in protoscoleces treated with TRG for 24 and 48 h, respectively, when compared with that in controls (P < 0.05). Our results demonstrated that TRG had scolicidal activity against E. granulosus protoscoleces. Nrf2 protein was mainly expressed in the cells and TRG could efficiently inhibit the Nrf2 signaling pathway in E. granulosus.
Collapse
Affiliation(s)
- Wenjuan Qin
- Department of Histology and Embryology, School of Medicine, Shihezi University, Shihezi 832000, China
- Department of Ultrasound Diagnosis, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Dongfang Guan
- Department of Histology and Embryology, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Rongji Ma
- Department of Histology and Embryology, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Rentan Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Guoqiang Xing
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Hongjuan Shi
- Department of Histology and Embryology, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Guangyao Tang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Jiajie Li
- Department of Histology and Embryology, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Hailong Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Yufeng Jiang
- Department of Histology and Embryology, School of Medicine, Shihezi University, Shihezi 832000, China
| |
Collapse
|