1
|
Russo A, Serraino R, Serapide F, Trecarichi EM, Torti C. New advances in management and treatment of cardiac implantable electronic devices infections. Infection 2024; 52:323-336. [PMID: 37996646 PMCID: PMC10955036 DOI: 10.1007/s15010-023-02130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
Cardiac implantable electronic devices (CIED) are increasingly used worldwide, and infection of these devices remains one of the most feared complications.CIED infections (CDIs) represent a challenge for physicians and the healthcare system in general as they require prolonged hospitalization and antibiotic treatment and are burdened by high mortality and high costs, so management of CDIs must be multidisciplinary.The exact incidence of CDIs is difficult to define, considering that it is influenced by various factors mainly represented by the implanted device and the type of procedure. Risk factors for CDIs could be divided into three categories: device related, patient related, and procedural related and the etiology is mainly sustained by Gram-positive bacteria; however, other etiologies cannot be underestimated. As a matter of fact, the two cornerstones in the treatment of these infections are device removal and antimicrobial treatment. Finally, therapeutic drug monitoring and PK/PD correlations should be encouraged in all patients with CDIs receiving antibiotic therapy and may result in a better clinical outcome and a reduction in antibiotic resistance and economic costs.In this narrative review, we look at what is new in the management of these difficult-to-treat infections.
Collapse
Affiliation(s)
- Alessandro Russo
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, 'Magna Graecia' University of Catanzaro, Viale Europa, 88100, Catanzaro, Italy.
| | - Riccardo Serraino
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, 'Magna Graecia' University of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Francesca Serapide
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, 'Magna Graecia' University of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Enrico Maria Trecarichi
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, 'Magna Graecia' University of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Carlo Torti
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, 'Magna Graecia' University of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| |
Collapse
|
2
|
Oliva A, Cogliati Dezza F, Cancelli F, Curtolo A, Falletta A, Volpicelli L, Venditti M. New Antimicrobials and New Therapy Strategies for Endocarditis: Weapons That Should Be Defended. J Clin Med 2023; 12:7693. [PMID: 38137762 PMCID: PMC10743892 DOI: 10.3390/jcm12247693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The overall low-quality evidence concerning the clinical benefits of different antibiotic regimens for the treatment of infective endocarditis (IE), which has made it difficult to strongly support or reject any regimen of antibiotic therapy, has led to a discrepancy between the available guidelines and clinical practice. In this complex scenario, very recently published guidelines have attempted to fill this gap. Indeed, in recent years several antimicrobials have entered the market, including ceftobiprole, ceftaroline, and the long-acting lipoglycopeptides dalbavancin and oritavancin. Despite being approved for different indications, real-world data on their use for the treatment of IE, alone or in combination, has accumulated over time. Furthermore, an old antibiotic, fosfomycin, has gained renewed interest for the treatment of complicated infections such as IE. In this narrative review, we focused on new antimicrobials and therapeutic strategies that we believe may provide important contributions to the advancement of Gram-positive IE treatment, providing a summary of the current in vitro, in vivo, and clinical evidence supporting their use in clinical practice.
Collapse
Affiliation(s)
- Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (F.C.D.); (F.C.); (A.C.); (A.F.); (L.V.); (M.V.)
| | | | | | | | | | | | | |
Collapse
|
3
|
Matsumoto K, Samura M, Tashiro S, Shishido S, Saiki R, Takemura W, Misawa K, Liu X, Enoki Y, Taguchi K. Target Therapeutic Ranges of Anti-MRSA Drugs, Linezolid, Tedizolid and Daptomycin, and the Necessity of TDM. Biol Pharm Bull 2022; 45:824-833. [PMID: 35786589 DOI: 10.1248/bpb.b22-00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The target therapeutic ranges of vancomycin, teicoplanin, and arbekacin have been determined, and therapeutic drug monitoring (TDM) is performed in clinical practice. However, TDM is not obligatory for daptomycin, linezolid, or tedizolid. In this study, we examined whether TDM will be necessary for these 3 drugs in the future. There was no significant difference in therapeutic effects on acute bacterial skin and skin structure infection between linezolid and tedizolid by meta-analysis. Concerning the therapeutic effects on pneumonia, the rate of effectiveness after treatment with tedizolid was significantly lower than with linezolid. With respect to safety, the incidences of gastrointestinal adverse events and blood/lymphatic system disorders related to tedizolid were significantly lower than those related to linezolid. Linezolid exhibits potent therapeutic effects on pneumonia, but the appearance of adverse reactions is indicated as a problem. There was a dose-dependent decrease in the platelet count, and the target trough concentration (Ctrough) was estimated to be 4-6 or 2-7 µg/mL in accordance with the patient's condition. The efficacy of linezolid may be obtained while minimizing the appearance of adverse reactions by performing TDM. The target therapeutic range of tedizolid cannot be achieved in immunocompromised or severe patients. Therefore, we concluded that TDM was unnecessary, considering step-down therapy with oral drugs, use in non-severe patients, and high-level safety. Concerning daptomycin, high-dose administration is necessary to achieve an area under the curve (AUC) of ≥666 as an index of efficacy. To secure its safety, Ctrough (<20 µg/mL) monitoring is important. Therefore, TDM is necessary.
Collapse
Affiliation(s)
| | - Masaru Samura
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy
| | - Sho Tashiro
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy
| | - Shino Shishido
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy
| | - Reika Saiki
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy
| | - Wataru Takemura
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy
| | - Kana Misawa
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy
| | - Xiaoxi Liu
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy
| | - Yuki Enoki
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy
| |
Collapse
|
4
|
Mishra NN, Bayer AS, Baines SL, Hayes AS, Howden BP, Lapitan CK, Lew C, Rose WE. Cell Membrane Adaptations Mediate β-Lactam-Induced Resensitization of Daptomycin-Resistant (DAP-R) Staphylococcus aureus In Vitro. Microorganisms 2021; 9:1028. [PMID: 34064631 PMCID: PMC8150363 DOI: 10.3390/microorganisms9051028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/22/2022] Open
Abstract
The reversal of daptomycin resistance in MRSA to a daptomycin-susceptible phenotype following prolonged passage in selected β-lactams occurs coincident with the accumulation of multiple point mutations in the mprF gene. MprF regulates surface charge by modulating the content and translocation of the positively charged cell membrane phospholipid, lysyl-phosphatidylglycerol (LPG). The precise cell membrane adaptations accompanying such β-lactam-induced mprF perturbations are unknown. This study examined key cell membrane metrics relevant to antimicrobial resistance among three daptomycin-resistant MRSA clinical strains, which became daptomycin-susceptible following prolonged exposure to cloxacillin ('daptomycin-resensitized'). The causal role of such secondary mprF mutations in mediating daptomycin resensitization was confirmed through allelic exchange strategies. The daptomycin-resensitized strains derived either post-cloxacillin passage or via allelic exchange (vs. their respective daptomycin-resistant strains) showed the following cell membrane changes: (i) enhanced BODIPY-DAP binding; (ii) significant reductions in LPG content, accompanied by significant increases in phosphatidylglycerol content (p < 0.05); (iii) no significant changes in positive cell surface charge; (iv) decreased cell membrane fluidity (p < 0.05); (v) enhanced carotenoid content (p < 0.05); and (vi) lower branched chain fatty acid profiles (antiso- vs. iso-), resulting in increases in saturated fatty acid composition (p < 0.05). Overall, the cell membrane characteristics of the daptomycin-resensitized strains resembled those of parental daptomycin-susceptible strains. Daptomycin resensitization with selected β-lactams results in both definable genetic changes (i.e., mprF mutations) and a number of key cell membrane phenotype modifications, which likely facilitate daptomycin activity.
Collapse
Affiliation(s)
- Nagendra N. Mishra
- Division of Infectious Diseases, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA; (A.S.B.); (C.K.L.)
- David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA 90024, USA
| | - Arnold S. Bayer
- Division of Infectious Diseases, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA; (A.S.B.); (C.K.L.)
- David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA 90024, USA
| | - Sarah L. Baines
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3004, Australia; (S.L.B.); (A.S.H.); (B.P.H.)
| | - Ashleigh S. Hayes
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3004, Australia; (S.L.B.); (A.S.H.); (B.P.H.)
| | - Benjamin P. Howden
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3004, Australia; (S.L.B.); (A.S.H.); (B.P.H.)
| | - Christian K. Lapitan
- Division of Infectious Diseases, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA; (A.S.B.); (C.K.L.)
| | - Cassandra Lew
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; (C.L.); (W.E.R.)
| | - Warren E. Rose
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; (C.L.); (W.E.R.)
| |
Collapse
|
5
|
New-Generation Antibiotics for Treatment of Gram-Positive Infections: A Review with Focus on Endocarditis and Osteomyelitis. J Clin Med 2021; 10:jcm10081743. [PMID: 33920526 PMCID: PMC8074169 DOI: 10.3390/jcm10081743] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/24/2021] [Accepted: 04/03/2021] [Indexed: 01/03/2023] Open
Abstract
Infective endocarditis, osteomyelitis, and osteosynthesis-associated infections are mostly caused by Gram-positive bacteria. They are often difficult to treat and are associated with a poor prognosis. In the past 20 years, nine antibiotic drugs with predominant activity against Gram-positive bacteria have been introduced and approved by the Food and Drug Administration or the European Medicines Agency: ceftaroline, daptomycin, telavancin, dalbavancin, oritavancin, linezolid, tedizolid, delafloxacin, and omadacycline. This narrative review aims to provide an overview on these antibiotics with a special focus on their use in infective endocarditis, osteomyelitis, and osteosynthesis-associated infections. Although some of these approved antibiotics are promising, they should not be used as first- or second-line therapy, awaiting more clinical data.
Collapse
|
6
|
Schnurr E, Paqué PN, Attin T, Nanni P, Grossmann J, Holtfreter S, Bröker BM, Kohler C, Diep BA, Ribeiro ADA, Thurnheer T. Staphylococcus aureus Interferes with Streptococci Spatial Distribution and with Protein Expression of Species within a Polymicrobial Oral Biofilm. Antibiotics (Basel) 2021; 10:116. [PMID: 33530340 PMCID: PMC7911025 DOI: 10.3390/antibiotics10020116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/21/2022] Open
Abstract
We asked whether transient Staphylococcus aureus in the oral environment synergistically interacts with orally associated bacterial species such as Actinomyces oris, Candida albicans, Fusobacterium nucleatum, Streptococcus oralis, Streptococcus mutans, and Veillonella dispar (six-species control biofilm 6S). For this purpose, four modified biofilms with seven species that contain either the wild type strain of the S. aureus genotype (USA300-MRSA WT), its isogenic mutant with MSCRAMM deficiency (USA300-MRSA ΔMSCRAMM), a methicillin-sensitive S. aureus (ST72-MSSA-) or a methicillin-resistant S. aureus (USA800-MRSA) grown on hydroxyapatite disks were examined. Culture analyses, confocal-laser-scanning microscopy and proteome analyses were performed. S. aureus strains affected the amount of supragingival biofilm-associated species differently. The deletion of MSCRAMM genes disrupted the growth of S. aureus and the distribution of S. mutans and S. oralis within the biofilms. In addition, S. aureus caused shifts in the number of detectable proteins of other species in the 6S biofilm. S. aureus (USA300-MRSA WT), aggregated together with early colonizers such as Actinomyces and streptococci, influenced the number of secondary colonizers such as Fusobacterium nucleatum and was involved in structuring the biofilm architecture that triggered the change from a homeostatic biofilm to a dysbiotic biofilm to the development of oral diseases.
Collapse
Affiliation(s)
- Etyene Schnurr
- Instituto de Saúde de Nova Friburgo, Federal Fluminense University, 28625-650 Nova Friburgo, Brazil
| | - Pune N. Paqué
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (T.T.)
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (T.T.)
| | - Paolo Nanni
- Functional Genomics Center, ETH Zürich and University of Zurich, 8057 Zurich, Switzerland; (P.N.); (J.G.)
| | - Jonas Grossmann
- Functional Genomics Center, ETH Zürich and University of Zurich, 8057 Zurich, Switzerland; (P.N.); (J.G.)
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Silva Holtfreter
- Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.H.); (B.M.B.)
| | - Barbara M. Bröker
- Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.H.); (B.M.B.)
| | - Christian Kohler
- Friedrich-Loeffler Institute for Medical Microbiology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Binh An Diep
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA;
| | | | - Thomas Thurnheer
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (T.T.)
| |
Collapse
|
7
|
Carena AA, Stryjewski ME. Tedizolid (torezolid) for the treatment of complicated skin and skin structure infections. Expert Rev Clin Pharmacol 2020; 13:577-592. [PMID: 32449440 DOI: 10.1080/17512433.2020.1774362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Acute bacterial skin and skin structure infections (ABSSSI) are among the most frequent infectious diseases. Recently, several new antibiotics with activity against MRSA have been approved. Tedizolid, a second-generation oxazolidinone approved for ABSSSI offers theoretical advantages over first-generation oxazolidinones. AREAS COVERED A comprehensive online search of Medline, ClinicalTrials.gov, and conference presentations was made, selecting articles between January 2000 and April 2020. In this review, the authors discuss the chemical and microbiological properties of tedizolid, summarize its efficacy, safety, and potential role in the treatment of ABSSSI as well as the potential for future indications. EXPERT OPINION Tedizolid has proven to be non-inferior compared to linezolid for the treatment of ABSSSI in two registrational phase III clinical trials, being well tolerated. Tedizolid exhibits antibacterial activity against the most important ABSSSI pathogens (including multidrug-resistant strains of MRSA), as well as mycobacteria and Nocardia. It appears to have a safe profile, including decreased myelotoxicity and no significant drug interactions. Preliminary studies with longer duration of therapy seem to confirm these potential benefits. Overall, tedizolid expands the newly acquired armamentarium to treat ABSSSI. The role of tedizolid for other indications is under investigation and has yet to be determined.
Collapse
Affiliation(s)
- Alberto A Carena
- Division of Infectious Diseases, Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC) , Buenos Aires, Argentina.,Department of Medicine, Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC) , Buenos Aires, Argentina
| | - Martin E Stryjewski
- Division of Infectious Diseases, Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC) , Buenos Aires, Argentina.,Department of Medicine, Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC) , Buenos Aires, Argentina
| |
Collapse
|
8
|
Tedizolid as Step-Down Therapy following Daptomycin versus Continuation of Daptomycin against Enterococci and Methicillin- and Vancomycin-Resistant Staphylococcus aureus in a Rat Endocarditis Model. Antimicrob Agents Chemother 2020; 64:AAC.02303-19. [PMID: 32122892 DOI: 10.1128/aac.02303-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/23/2020] [Indexed: 12/23/2022] Open
Abstract
Tedizolid (TZD) and daptomycin (DAP) were assessed in a rat endocarditis model against Enterococcus faecalis, Enterococcus faecium (resistant to vancomycin and ampicillin), and Staphylococcus aureus As a monotherapy, TZD for 5 days was not effective in a comparison with no-treatment controls, while DAP for 5 days was significantly effective against these bacteria. Step-down therapy (DAP for 3 days followed by TZD for 2 days) was as effective as DAP for 5 days and was comparable to 3 days of DAP plus ceftriaxone against all bacteria and to 3 days of DAP plus gentamicin against E. faecalis OG1RF.
Collapse
|
9
|
An update on Staphylococcus aureus infective endocarditis from the International Society of Antimicrobial Chemotherapy (ISAC). Int J Antimicrob Agents 2018; 53:9-15. [PMID: 30240836 DOI: 10.1016/j.ijantimicag.2018.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/13/2018] [Accepted: 09/16/2018] [Indexed: 12/18/2022]
|
10
|
Hall RG, Smith WJ, Putnam WC, Pass SE. An evaluation of tedizolid for the treatment of MRSA infections. Expert Opin Pharmacother 2018; 19:1489-1494. [DOI: 10.1080/14656566.2018.1519021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ronald G. Hall
- Department of Pharmacy Practice, Texas Tech University Health Sciences Center, Dallas, TX, USA
- North Texas Veterans Health Care System, Dallas, TX, USA
- Clinical Pharmacology and Experimental Therapeutic Center, Dallas, TX, USA
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Dose Optimization and Outcomes Research (DOOR) program, Dallas, TX, USA
| | - Winter J. Smith
- Department of Pharmacy Practice, Texas Tech University Health Sciences Center, Dallas, TX, USA
- North Texas Veterans Health Care System, Dallas, TX, USA
| | - William C. Putnam
- Department of Pharmacy Practice, Texas Tech University Health Sciences Center, Dallas, TX, USA
- Clinical Pharmacology and Experimental Therapeutic Center, Dallas, TX, USA
| | - Steven E. Pass
- Department of Pharmacy Practice, Texas Tech University Health Sciences Center, Dallas, TX, USA
- North Texas Veterans Health Care System, Dallas, TX, USA
| |
Collapse
|
11
|
Combination of Tedizolid and Daptomycin against Methicillin-Resistant Staphylococcus aureus in an In Vitro Model of Simulated Endocardial Vegetations. Antimicrob Agents Chemother 2018. [PMID: 29530843 DOI: 10.1128/aac.00101-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major pathogen responsible for health care-associated infections, and treatment options are limited. Tedizolid (TZD) is a novel oxazolidinone antibiotic with activity against MRSA. Previously, daptomycin (DAP) has demonstrated synergy with other antibiotics against MRSA. We sought to determine the efficacy of the combination of TZD and DAP against MRSA in an in vitro model of simulated endocardial vegetations (SEVs). TZD simulations of 200 mg once daily and DAP simulations of 6 mg/kg of body weight and 10 mg/kg once daily were tested alone and in the combinations TZD plus DAP at 6 mg/kg or DAP at 10 mg/kg against two clinical strains of MRSA, 494 and 67. These regimens were tested in SEV models over 8 days to determine the antibacterial activity of the regimens and whether synergy or antagonism might be present between the agents. Against both strains 494 and 67 and at both DAP dose regimens, the combination of TZD and DAP was antagonistic at 192 h. In all cases, DAP alone was statistically superior to DAP plus TZD. When the combination was stopped after 96 h, transitioning to DAP at 6 mg/kg or DAP at 10 mg/kg alone resulted in better antibacterial activity than either of the TZD-plus-DAP combinations, further demonstrating antagonistic effects. Against MRSA, we demonstrated that TZD and DAP have antagonistic activity that hinders their overall antimicrobial efficacy. The exact nature of this antagonistic relationship is still undetermined, but its presence warrants further study of the potentially harmful grouping of the two antibiotics in clinical use.
Collapse
|
12
|
Betts JW, Abdul Momin HF, Phee LM, Wareham DW. Comparative activity of tedizolid and glycopeptide combination therapies for the treatment of Staphylococcus aureus infections: an in vitro and in vivo evaluation against strains with reduced susceptibility to glycopeptides. J Med Microbiol 2018; 67:265-271. [DOI: 10.1099/jmm.0.000671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- J. W. Betts
- Antimicrobial Research Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - H. F. Abdul Momin
- Antimicrobial Research Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - L. M. Phee
- Antimicrobial Research Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Division of Infection, Barts Healthcare NHS Trust, London, UK
| | - D. W. Wareham
- Antimicrobial Research Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Division of Infection, Barts Healthcare NHS Trust, London, UK
| |
Collapse
|
13
|
Vanegas Múnera JM, Ocampo Ríos AM, Urrego DM, Jiménez Quiceno JN. In vitro susceptibility of methicillin-resistant Staphylococcus aureus isolates from skin and soft tissue infections to vancomycin, daptomycin, linezolid and tedizolid. Braz J Infect Dis 2017; 21:493-499. [PMID: 28432878 PMCID: PMC9425527 DOI: 10.1016/j.bjid.2017.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 01/12/2023] Open
|
14
|
Le VTM, Le HN, Pinheiro MG, Hahn KJ, Dinh ML, Larson KB, Flanagan SD, Badiou C, Lina G, Tkaczyk C, Sellman BR, Diep BA. Effects of Tedizolid Phosphate on Survival Outcomes and Suppression of Production of Staphylococcal Toxins in a Rabbit Model of Methicillin-Resistant Staphylococcus aureus Necrotizing Pneumonia. Antimicrob Agents Chemother 2017; 61:e02734-16. [PMID: 28137816 PMCID: PMC5365717 DOI: 10.1128/aac.02734-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 01/24/2017] [Indexed: 01/30/2023] Open
Abstract
The protective efficacy of tedizolid phosphate, a novel oxazolidinone that potently inhibits bacterial protein synthesis, was compared to those of linezolid, vancomycin, and saline in a rabbit model of Staphylococcus aureus necrotizing pneumonia. Tedizolid phosphate was administered to rabbits at 6 mg/kg of body weight intravenously twice daily, which yielded values of the 24-h area under the concentration-time curve approximating those found in humans. The overall survival rate was 83% for rabbits treated with 6 mg/kg tedizolid phosphate twice daily and 83% for those treated with 50 mg/kg linezolid thrice daily (P = 0.66 by the log-rank test versus the results obtained with tedizolid phosphate). These survival rates were significantly greater than the survival rates of 17% for rabbits treated with 30 mg/kg vancomycin twice daily (P = 0.003) and 17% for rabbits treated with saline (P = 0.002). The bacterial count in the lungs of rabbits treated with tedizolid phosphate was significantly decreased compared to that in the lungs of rabbits treated with saline, although it was not significantly different from that in the lungs of rabbits treated with vancomycin or linezolid. The in vivo bacterial production of alpha-toxin and Panton-Valentine leukocidin, two key S. aureus-secreted toxins that play critical roles in the pathogenesis of necrotizing pneumonia, in the lungs of rabbits treated with tedizolid phosphate and linezolid was significantly inhibited compared to that in the lungs of rabbits treated with vancomycin or saline. Taken together, these results indicate that tedizolid phosphate is superior to vancomycin for the treatment of S. aureus necrotizing pneumonia because it inhibits the bacterial production of lung-damaging toxins at the site of infection.
Collapse
Affiliation(s)
- Vien T M Le
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Hoan N Le
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Marcos Gabriel Pinheiro
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Kenneth J Hahn
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Mary L Dinh
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | | | | | - Cedric Badiou
- INSERM U1111, Université Lyon 1, CNRS UMR5308, ENS Lyon, Lyon, France
- Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, Bron, France
| | - Gerard Lina
- INSERM U1111, Université Lyon 1, CNRS UMR5308, ENS Lyon, Lyon, France
- Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, Bron, France
| | - Christine Tkaczyk
- Department of Infectious Diseases, MedImmune, Gaithersburg, Maryland, USA
| | - Bret R Sellman
- Department of Infectious Diseases, MedImmune, Gaithersburg, Maryland, USA
| | - Binh An Diep
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
15
|
Activity of Tedizolid in Methicillin-Resistant Staphylococcus epidermidis Experimental Foreign Body-Associated Osteomyelitis. Antimicrob Agents Chemother 2017; 61:AAC.01644-16. [PMID: 27855069 DOI: 10.1128/aac.01644-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/22/2016] [Indexed: 12/19/2022] Open
Abstract
We developed a rat model of methicillin-resistant Staphylococcus epidermidis (MRSE) foreign body-associated osteomyelitis and used it to compare tedizolid alone and in combination with rifampin against rifampin alone, vancomycin plus rifampin, and vancomycin alone. A clinical strain of MRSE was inoculated into the proximal tibia, and a stainless steel wire with a precolonized MRSE biofilm was implanted. Following a 1-week infection period, 92 rats received either no treatment (n = 17) or 14 days of intraperitoneal tedizolid (n = 15), tedizolid plus rifampin (n = 15), rifampin (n = 15), vancomycin plus rifampin (n = 15), or vancomycin (n = 15). Quantitative bone and wire cultures were performed after treatment completion and also 1 week after infection in a separate group of five rats. The median quantity of staphylococci in bone after the 1-week infection period was 4.89 log10 CFU/g bone (interquartile range, 3.83 to 5.33 log10 CFU/g bone); staphylococci were recovered from all associated wires. A median quantity of staphylococci of 3.70 log10 CFU/g bone was detected in bones of untreated control rats after 3 weeks. Quantities of staphylococci in bones of all treatment groups except the group receiving vancomycin alone (2.78 log10 CFU/g) were significantly lower than those for untreated controls, with no staphylococci being detected in the groups receiving rifampin monotherapy, tedizolid-plus-rifampin combination therapy, and vancomycin-plus-rifampin combination therapy. Quantities of staphylococci on wires from all treatment groups that included rifampin were significantly lower than those for untreated controls. No resistance to rifampin, tedizolid, or vancomycin was detected. Tedizolid combined with rifampin was active in a rat model of MRSE foreign body-associated osteomyelitis.
Collapse
|
16
|
Activity of Tedizolid in Methicillin-Resistant Staphylococcus aureus Experimental Foreign Body-Associated Osteomyelitis. Antimicrob Agents Chemother 2016; 60:6568-6572. [PMID: 27550347 DOI: 10.1128/aac.01248-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/12/2016] [Indexed: 01/24/2023] Open
Abstract
We compared tedizolid alone and tedizolid with rifampin to rifampin and vancomycin plus rifampin in a rat model of methicillin-resistant Staphylococcus aureus (MRSA) foreign body-associated osteomyelitis. The study strain was a prosthetic joint infection-associated isolate. Steady-state pharmacokinetics for intraperitoneal administration of tedizolid, vancomycin, and rifampin were determined in uninfected rats. MRSA was inoculated into the proximal tibia, and a wire was implanted. Four weeks later, the rats were treated intraperitoneally for 21 days with tedizolid (n = 14), tedizolid plus rifampin (n = 11), rifampin (n = 16), or vancomycin plus rifampin (n = 13). Seventeen rats received no treatment. After treatment, quantitative bone cultures were performed. Blood was obtained for determination of drug trough concentrations in the tedizolid and tedizolid plus rifampin groups. The mean peak plasma concentration and mean area under the concentration-time curve from time zero to 24 h for tedizolid were 12 μg/ml and 60 μg · h/ml, respectively. The bacterial loads in all treatment groups were significantly lower than those in the control group; those in the tedizolid- plus rifampin-treated animals were not significantly different from those in the vancomycin- plus rifampin-treated animals. The range of mean plasma trough concentrations in the tedizolid group was 0.44 to 0.73 μg/ml. Although neither tedizolid nor vancomycin resistance was detected in isolates recovered from bones, rifampin resistance was detected in 10 animals (63%) in the rifampin group, 8 animals (73%) in the tedizolid plus rifampin group, and a single animal (8%) in the vancomycin plus rifampin group. Tedizolid alone or tedizolid combined with rifampin was active in a rat model of MRSA foreign body-associated osteomyelitis. The emergence of rifampin resistance was noted in animals receiving tedizolid plus rifampin.
Collapse
|
17
|
Abstract
After some years of stagnation there have been several new successful developments in the field of antibacterial agents. Most of these new developments have been in conventional antibacterial classes. New drugs among the beta-lactam agents are methicillin-resistant Staphylococcus aureus (MRSA) active cephalosporins (ceftaroline and ceftobiprole) and new combinations of beta-lactam with beta-lactamase inhibitors (ceftolozane/tazobactam, ceftazidime/avibactam, imipenem/relebactam and meropenem/RPX7009). New developments can also be observed among oxazolidinones (tedizolid, radezolid, cadazolid and MRX-I), macrolides/ketolides (modithromycin and solithromycin), aminoglycosides (plazomicin), quinolones (nemonoxacin, delafloxacin and avarofloxacin), tetracyclines (omadacycline and eravacycline) as well as among glycopeptides and lipopeptides (oritavancin, telavancin, dalbavancin and surotomycin). New agents in a very early developmental phase are FabI inhibitors, endolysines, peptidomimetics, lipid A inhibitors, methionyl-tRNA synthetase inhibitors and teixobactin.
Collapse
|
18
|
Holubar M, Meng L, Deresinski S. Bacteremia due to Methicillin-Resistant Staphylococcus aureus: New Therapeutic Approaches. Infect Dis Clin North Am 2016; 30:491-507. [PMID: 27208769 DOI: 10.1016/j.idc.2016.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This article reviews recent clinical evidence for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) bacteremia. Vancomycin remains the initial antibiotic of choice for the treatment of patients with MRSA bacteremia and endocarditis due to isolates with vancomycin minimum inhibitory concentration ≤2 μg/mL, whereas daptomycin is an effective alternative, and ceftaroline seems promising. Treatment options for persistent MRSA bacteremia or bacteremia due to vancomycin-intermediate or vancomycin-resistant strains include daptomycin, ceftaroline, and combination therapies. There is a critical need for high-level evidence from clinical trials to allow optimally informed decisions in the treatment of MRSA bacteremia and endocarditis.
Collapse
Affiliation(s)
- Marisa Holubar
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Room L-134, Stanford, CA 94305-5105, USA.
| | - Lina Meng
- Department of Pharmacy, Stanford Health Care, 300 Pasteur Drive, M/C 5616 Room H0301, Stanford, CA 94305-5105, USA
| | - Stan Deresinski
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Room L-134, Stanford, CA 94305-5105, USA
| |
Collapse
|
19
|
Choo EJ, Chambers HF. Treatment of Methicillin-Resistant Staphylococcus aureus Bacteremia. Infect Chemother 2016; 48:267-273. [PMID: 28032484 PMCID: PMC5204005 DOI: 10.3947/ic.2016.48.4.267] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Indexed: 01/08/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a significant cause of health care-associated infections. Vancomycin remains an acceptable treatment option. There has been a welcome increase in the number of agents available for the treatment of MRSA infection. These drugs have certain differentiating attributes and may offer some advantages over vancomycin, but they also have significant limitations. These agents provide some alternative when no other options are available.
Collapse
Affiliation(s)
- Eun Ju Choo
- Division of Infectious Diseases, Department of Medicine, Soonchunhyang University Hospital, Bucheon, Korea
| | - Henry F Chambers
- Division of Infectious Diseases, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|