1
|
Grayson F, Loman L, Nonnenmacher T, Pople D, Pollard J, Patel B, Williams D, Hounsome L, Hopkins KL, Robotham JV, Ledda A. Plasmid conjugation drives within-patient plasmid diversity. Microb Genom 2025; 11. [PMID: 40111255 PMCID: PMC11925198 DOI: 10.1099/mgen.0.001361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Plasmids are well-known vehicles of antimicrobial resistance (AMR) gene dissemination. Through conjugation, plasmid-encoded AMR genes are spread among neighbouring bacteria, irrespective of their strain or even their species. This process is very concerning from a public health perspective, as plasmid-borne AMR gene outbreaks are often not confined to single species or strains and are therefore more difficult to fully uncover. At the moment, the impact of plasmid conjugation on within-patient plasmid diversity is not well understood. In this work, we will tackle the role of conjugation on within-patient plasmid diversity using a dataset of carbapenemase-producing Enterobacterales. The dataset of 256 sequences originates from bacterial isolates cultured from 115 English patients over 30 months. Each patient has more than one sequence, with at least one sequence carrying an OXA-48 gene, a well-known plasmid-borne carbapenemase-encoding gene. If more than one sequence carries the OXA-48 gene, they are carried in different bacterial hosts. Using a hybrid de novo-on-reference assembly pipeline, we were able to reconstruct the full OXA-48 plasmid from short read sequencing data for 232 of the 256 sequences. Of the 115 patients, 83 (72%) patients had an identical OXA-48 plasmid in two or more sequences. Only two patients carried very different (>200 SNPs) alleles of the OXA-48 plasmid, probably from separate acquisitions. Our study shows that when more than one bacterial host carrying an OXA-48 plasmid is found in a patient, it is most likely that the same plasmid has been shared via conjugation. The event of separate acquisition of different plasmids in different bacterial hosts is highly unlikely in our dataset.
Collapse
Affiliation(s)
- Fan Grayson
- Advanced Analytics, Analysis & Intelligence Assessment, Chief Data Officer Group, UK Health Security Agency, London, UK
| | - Leo Loman
- Advanced Analytics, Analysis & Intelligence Assessment, Chief Data Officer Group, UK Health Security Agency, London, UK
| | - Toby Nonnenmacher
- Chief Data Officer Group Private Office, Chief Data Officer Group, UK Health Security Agency, London, UK
| | - Diane Pople
- HCAI & AMR Modelling and Evaluation, AMR & HCAI Division, UK Health Security Agency, London, UK
| | - Jack Pollard
- HCAI & AMR Modelling and Evaluation, AMR & HCAI Division, UK Health Security Agency, London, UK
| | - Bharat Patel
- Public Health Microbiology Division, Science Group, UK Health Security Agency, London, UK
| | - David Williams
- HCAI & AMR Modelling and Evaluation, AMR & HCAI Division, UK Health Security Agency, London, UK
| | - Luke Hounsome
- Advanced Analytics, Analysis & Intelligence Assessment, Chief Data Officer Group, UK Health Security Agency, London, UK
| | - Katie L Hopkins
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, Public Health Microbiology Division, UK Health Security Agency, London, UK
- Antimicrobial Resistance and Prescribing, AMR & HCAI Division, UK Health Security Agency, London, UK
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associate Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Julie V Robotham
- HCAI & AMR Modelling and Evaluation, AMR & HCAI Division, UK Health Security Agency, London, UK
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associate Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Alice Ledda
- HCAI & AMR Modelling and Evaluation, AMR & HCAI Division, UK Health Security Agency, London, UK
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associate Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Bustamante M, Mei S, Daras IM, van Doorn G, Falcao Salles J, de Vos MG. An eco-evolutionary perspective on antimicrobial resistance in the context of One Health. iScience 2025; 28:111534. [PMID: 39801834 PMCID: PMC11719859 DOI: 10.1016/j.isci.2024.111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
The One Health approach musters growing concerns about antimicrobial resistance due to the increased use of antibiotics in healthcare and agriculture, with all of its consequences for human, livestock, and environmental health. In this perspective, we explore the current knowledge on how interactions at different levels of biological organization, from genetic to ecological interactions, affect the evolution of antimicrobial resistance. We discuss their role in different contexts, from natural systems with weak selection, to human-influenced environments that impose a strong pressure toward antimicrobial resistance evolution. We emphasize the need for an eco-evolutionary approach within the One Health framework and highlight the importance of horizontal gene transfer and microbiome interactions for increased understanding of the emergence and spread of antimicrobial resistance.
Collapse
Affiliation(s)
| | - Siyu Mei
- University of Groningen – GELIFES, Groningen, the Netherlands
| | - Ines M. Daras
- University of Groningen – GELIFES, Groningen, the Netherlands
| | - G.S. van Doorn
- University of Groningen – GELIFES, Groningen, the Netherlands
| | | | | |
Collapse
|
3
|
Maugeri G, Calvo M, Bongiorno D, Bivona D, Migliorisi G, Privitera GF, Scalia G, Stefani S. Sequencing Analysis of Invasive Carbapenem-Resistant Klebsiella pneumoniae Isolates Secondary to Gastrointestinal Colonization. Microorganisms 2025; 13:89. [PMID: 39858857 PMCID: PMC11767272 DOI: 10.3390/microorganisms13010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Klebsiella pneumoniae represent a common invasive infection etiological agent, whose potential carbapenem-resistance and hypermucoviscosity complicate the patient's management. Infection development often derives from gastrointestinal colonization; thus, it is fundamental to monitor asymptomatic K. pneumoniae colonization through surveillance protocols, especially for intensive care and immunocompromised patients. We described a six-month routine screening protocol from the Policlinico of Catania (Italy), while blood samples were collected from the same patients only in cases of a systemic infection suspicion. All the patients who had dissemination episodes were furtherly investigated through next-generation sequencing, analyzing both colonizing and disseminating strains. This study documents emerging invasive sequence types such as ST101, ST307, and ST395, mainly revealing blaNDM or blaKPC genes, along with siderophores and hyperproduction capsule markers as virulence factors. Most of the detected factors are presumably related to a specific plasmid content, which are extremely varied and rich. In conclusion, active surveillance through sequencing is essential to enhance awareness of local epidemiology within high-risk multi-drug resistance areas. A random sequencing analysis on the most warning microorganisms could enhance sequence typing (ST) awareness within specific settings, allowing for better prevention control strategies on their eventual persistence or diffusion.
Collapse
Affiliation(s)
- Gaetano Maugeri
- Microbiology Section, Department of Biomedical and Biotechnological Science, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (G.M.); (D.B.); (D.B.); (G.S.); (S.S.)
| | - Maddalena Calvo
- U.O.C. Laboratory Analysis Unit, A.O.U. “Policlinico-San Marco”, Via Santa Sofia 78, 95123 Catania, Italy
| | - Dafne Bongiorno
- Microbiology Section, Department of Biomedical and Biotechnological Science, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (G.M.); (D.B.); (D.B.); (G.S.); (S.S.)
| | - Dalida Bivona
- Microbiology Section, Department of Biomedical and Biotechnological Science, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (G.M.); (D.B.); (D.B.); (G.S.); (S.S.)
| | - Giuseppe Migliorisi
- U.O.C. Laboratory Analysis Unit, A.O. “G.F. Ingrassia”, Corso Calatafimi 1002, 90131 Palermo, Italy;
| | - Grete Francesca Privitera
- Department of Clinical and Experimental Medicine, Bioinformatics Unit, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Guido Scalia
- Microbiology Section, Department of Biomedical and Biotechnological Science, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (G.M.); (D.B.); (D.B.); (G.S.); (S.S.)
- U.O.C. Laboratory Analysis Unit, A.O.U. “Policlinico-San Marco”, Via Santa Sofia 78, 95123 Catania, Italy
| | - Stefania Stefani
- Microbiology Section, Department of Biomedical and Biotechnological Science, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (G.M.); (D.B.); (D.B.); (G.S.); (S.S.)
- U.O.C. Laboratory Analysis Unit, A.O.U. “Policlinico-San Marco”, Via Santa Sofia 78, 95123 Catania, Italy
| |
Collapse
|
4
|
Toribio-Celestino L, Calvo-Villamañán A, Herencias C, Alonso-Del Valle A, Sastre-Dominguez J, Quesada S, Mazel D, Rocha EPC, Fernández-Calvet A, San Millan A. A plasmid-chromosome crosstalk in multidrug resistant enterobacteria. Nat Commun 2024; 15:10859. [PMID: 39738078 DOI: 10.1038/s41467-024-55169-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
Conjugative plasmids promote the dissemination and evolution of antimicrobial resistance in bacterial pathogens. However, plasmid acquisition can produce physiological alterations in the bacterial host, leading to potential fitness costs that determine the clinical success of bacteria-plasmid associations. In this study, we use a transcriptomic approach to characterize the interactions between a globally disseminated carbapenem resistance plasmid, pOXA-48, and a diverse collection of multidrug resistant (MDR) enterobacteria. Although pOXA-48 produces mostly strain-specific transcriptional alterations, it also leads to the common overexpression of a small chromosomal operon present in Klebsiella spp. and Citrobacter freundii strains. This operon includes two genes coding for a pirin and an isochorismatase family proteins (pfp and ifp), and shows evidence of horizontal mobilization across Proteobacteria species. Combining genetic engineering, transcriptomics, and CRISPRi gene silencing, we show that a pOXA-48-encoded LysR regulator is responsible for the plasmid-chromosome crosstalk. Crucially, the operon overexpression produces a fitness benefit in a pOXA-48-carrying MDR K. pneumoniae strain, suggesting that this crosstalk promotes the dissemination of carbapenem resistance in clinical settings.
Collapse
Affiliation(s)
| | | | - Cristina Herencias
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Susana Quesada
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Didier Mazel
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Bacterial Genome Plasticity, Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| | | | - Alvaro San Millan
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Jean SS, Ko WC, Liu IM, Hsieh PC, Hsueh PR. Geographic differences in susceptibility profiles of potential non-class B carbapenemase-producing Enterobacterales isolates against ceftazidime-avibactam, meropenem-vaborbactam, colistin, amikacin, gentamicin, and tigecycline: Data from the Antimicrobial Testing Leadership and Surveillance, 2018-2022. Int J Antimicrob Agents 2024; 64:107363. [PMID: 39455015 DOI: 10.1016/j.ijantimicag.2024.107363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
To evaluate the susceptibility profiles of regional meropenem-resistant potential non-class B carbapenemase-producing Enterobacterales (CPE) isolates (without confirmation by phenotypic tests) against important antibiotics, we extracted data from the 2018-2022 Antimicrobial Testing Leadership and Surveillance. This data included susceptibility information of meropenem-resistant potential non-class B CPE isolates against indicated antibiotics - amikacin, gentamicin, ceftazidime-avibactam, colistin, meropenem-vaborbactam, and tigecycline - from sepsis patients hospitalized in intensive care units across six major regions. Carbapenemase-encoding genes of the tested CPE isolates, determined by multiplex PCR and Sanger sequencing, were also analyzed. Susceptibility breakpoints recommended by Clinical and Laboratory Standards Institute 2024 and US FDA criteria (for tigecycline only) against Enterobacterales were employed. A total of 1500 potential non-class B CPE isolates (89% of which were Klebsiella pneumoniae) were tested globally. Resistance rates to amikacin and gentamicin against the evaluated isolates were statistically higher in Africa/the Middle East, Europe, and India compared to other regions. A similar pattern was observed in the susceptibility of these potential CPE isolates to ceftazidime-avibactam and meropenem-vaborbactam. High colistin resistance rates were noted in Asia, Latin America, and Europe (29%-35%). Furthermore, the proportions of potential CPE isolates carrying genes encoding blaOXA variants were notably higher among the tested CPE isolates in India, Europe, and Africa/the Middle East regions (99.2%, 53.3%, and 96.7%, respectively) compared to other regions. Trends in resistance to important antibiotics among potential non-class B CPE isolates warrant close monitoring.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan; Departments of Internal Medicine and Critical Care Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Wen-Chien Ko
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Min Liu
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Po-Chuen Hsieh
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; PhD Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan; Department of Laboratory Medicine, School of Medicine, China Medical University, Taichung, Taiwan; Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
6
|
Huang J, Alhejaili AY, Alkherd UH, Milner M, Zhou G, Alzahrani D, Banzhaf M, Alzaidi AA, Rajeh AA, Al-Otaiby MA, Alabbad SS, Bukhari D, Aljurayan AN, Aljasham AT, Alzeyadi ZA, Alajel SM, Hong PY, Alghoribi M, Almutairi MM, Pain A, Salem WA, Moradigaravand D. The dissemination of multidrug-resistant and hypervirulent Klebsiella pneumoniae clones across the Kingdom of Saudi Arabia. Emerg Microbes Infect 2024; 13:2427793. [PMID: 39508718 PMCID: PMC11583321 DOI: 10.1080/22221751.2024.2427793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/14/2024] [Accepted: 11/06/2024] [Indexed: 11/15/2024]
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium associated with a wide range of community- and hospital-acquired infections. The emergence of clonal hypervirulent strains resistant to last-resort antimicrobial agents has become a global concern. The Kingdom of Saudi Arabia (KSA), with its diverse population and high tourism traffic, serves as a platform where the spread of multidrug-resistant (MDR) strains are facilitated. However, the knowledge of epidemiology and population diversity of MDR K. pneumoniae in KSA is scarce. We conducted a comprehensive genomic survey on 352 MDR K. pneumoniae isolates systematically collected from bloodstream and urinary tract infections in 34 hospitals across 15 major cities in KSA during 2022 and 2023. Whole-genome sequencing on the isolates was performed, followed by genomic epidemiology and phylodynamic analysis. Our study revealed a dynamic population characterized by the rapid expansion of several dominant clones, including, ST2096, ST147, and ST231, which were estimated to have emerged within the past decade. These clones exhibited widespread dissemination across hospitals and were genetically linked to global strains, particularly from the Middle East and South Asia. All major clones harboured plasmid-borne ESBLs and carbapenemase genes, with plasmidome analysis identifying multiple IncH, IncA/C and IncL plasmids underlying the MDR-hypervirulent phenotype. These plasmids were shared between major clones and became acquired on the same time scales as the expansion of the dominant clones. Our results report ST2096 as an emerging MDR-hypervirulent clone, emphasizing the need for monitoring of the circulating clones and their plasmid content in the KSA and broader West Asia.
Collapse
Affiliation(s)
- Jiayi Huang
- Laboratory of Infectious Disease Epidemiology, KAUST Center of Excellence for Smart Health and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Ahmed Yousef Alhejaili
- Ministry of Health, Riyadh, Kingdom of Saudi Arabia
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Mathew Milner
- Laboratory of Infectious Disease Epidemiology, KAUST Center of Excellence for Smart Health and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Ge Zhou
- Laboratory of Infectious Disease Epidemiology, KAUST Center of Excellence for Smart Health and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Deema Alzahrani
- Laboratory of Infectious Disease Epidemiology, KAUST Center of Excellence for Smart Health and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Manuel Banzhaf
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | - Doua Bukhari
- Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | | | - Alanoud T. Aljasham
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Zeyad A. Alzeyadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqraa, Saudi Arabia
| | - Sulaiman M. Alajel
- Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority, Riyadh, Saudi Arabia
| | - Pei-Ying Hong
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Arnab Pain
- Pathogen Genomics Laboratory, KAUST Center of Excellence for Smart Health and Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Jeddah Makkah, Saudi Arabia
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | | | - Danesh Moradigaravand
- Laboratory of Infectious Disease Epidemiology, KAUST Center of Excellence for Smart Health and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Zhu J, Chen T, Ju Y, Dai J, Zhuge X. Transmission Dynamics and Novel Treatments of High Risk Carbapenem-Resistant Klebsiella pneumoniae: The Lens of One Health. Pharmaceuticals (Basel) 2024; 17:1206. [PMID: 39338368 PMCID: PMC11434721 DOI: 10.3390/ph17091206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The rise of antibiotic resistance and the dwindling antimicrobial pipeline have emerged as significant threats to public health. The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a global threat, with limited options available for targeted therapy. The CRKP has experienced various changes and discoveries in recent years regarding its frequency, transmission traits, and mechanisms of resistance. In this comprehensive review, we present an in-depth analysis of the global epidemiology of K. pneumoniae, elucidate resistance mechanisms underlying its spread, explore evolutionary dynamics concerning carbapenem-resistant hypervirulent strains as well as KL64 strains of K. pneumoniae, and discuss recent therapeutic advancements and effective control strategies while providing insights into future directions. By going through up-to-date reports, we found that the ST11 KL64 CRKP subclone with high risk demonstrated significant potential for expansion and survival benefits, likely due to genetic influences. In addition, it should be noted that phage and nanoparticle treatments still pose significant risks for resistance development; hence, innovative infection prevention and control initiatives rooted in One Health principles are advocated as effective measures against K. pneumoniae transmission. In the future, further imperative research is warranted to comprehend bacterial resistance mechanisms by focusing particularly on microbiome studies' application and implementation of the One Health strategy.
Collapse
Affiliation(s)
- Jiaying Zhu
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Taoyu Chen
- Department of Orthopaedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jianjun Dai
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangkai Zhuge
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| |
Collapse
|
8
|
Raro OHF, Nordmann P, Poirel L. Complete genome sequence of the OXA-48-producing Klebsiella pneumoniae strain 11978. Microbiol Resour Announc 2024; 13:e0034124. [PMID: 39162464 PMCID: PMC11390037 DOI: 10.1128/mra.00341-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/28/2024] [Indexed: 08/21/2024] Open
Abstract
We announce the complete genome sequence of Klebsiella pneumoniae strain 11978 isolated from a patient hospitalized in Turkey in 2001. The genome belongs to sequence type 14 and includes three plasmids. Notably, it presents an IncL plasmid carrying blaOXA-48, which demonstrated global success in terms of dissemination.
Collapse
Affiliation(s)
- Otávio Hallal Ferreira Raro
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Patrice Nordmann
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | - Laurent Poirel
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
9
|
Bustamante M, Koopman F, Martens J, Brons JK, DelaFuente J, Hackl T, Kuipers OP, van Doorn GS, de Vos MGJ. Community context influences the conjugation efficiency of Escherichia coli. FEMS MICROBES 2024; 5:xtae023. [PMID: 39170752 PMCID: PMC11338288 DOI: 10.1093/femsmc/xtae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
In urinary tract infections (UTIs), different bacteria can live in a polymicrobial community consisting of different species. It is unknown how community members affect the conjugation efficiency of uropathogenic Escherichia coli. We investigated the influence of individual species often coisolated from urinary infections (UTI) on the conjugation efficiency of E. coli isolates in artificial urine medium. Pairwise conjugation rate experiments were conducted between a donor E. coli strain containing the pOXA-48 plasmid and six uropathogenic E. coli isolates, in the presence and absence of five different species commonly coisolated in polymicrobial UTIs to elucidate their effect on the conjugation efficiency of E. coli. We found that the basal conjugation rates of pOXA-48, in the absence of other species, are dependent on the bacterial host genetic background. Additionally, we found that bacterial interactions have an overall positive effect on the conjugation rate of pOXA-48. Particularly, Gram-positive enterococcal species were found to enhance the conjugation rates towards uropathogenic E. coli isolates. We hypothesize that the nature of the coculture and physical interactions are important for these increased conjugation rates in an artificial urine medium environment.
Collapse
Affiliation(s)
| | - Floor Koopman
- GELIFES, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Jesper Martens
- GELIFES, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Jolanda K Brons
- GELIFES, University of Groningen, 9747 AG Groningen, The Netherlands
| | | | - Thomas Hackl
- GELIFES, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Oscar P Kuipers
- GBB, University of Groningen, 9747 AG Groningen, The Netherlands
| | | | - Marjon G J de Vos
- GELIFES, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
10
|
Sobh G, Araj GF, Finianos M, Sourenian T, Hrabak J, Papagiannitsis CC, Chaar ME, Bitar I. Molecular characterization of carbapenem and ceftazidime-avibactam-resistant Enterobacterales and horizontal spread of bla NDM-5 gene at a Lebanese medical center. Front Cell Infect Microbiol 2024; 14:1407246. [PMID: 38962322 PMCID: PMC11219574 DOI: 10.3389/fcimb.2024.1407246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/28/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction In the battle against multidrug-resistant bacterial infections, ceftazidime- avibactam (CZA) stands as a pivotal defense, particularly against carbapenemresistant (CR) Gram-negative pathogens. However, the rise in resistance against this drug poses a significant threat to its effectiveness, highlighting the critical need for in-depth studies about its resistance mechanisms. Methods This research focuses on the genomic characterization of CR- and CZA-resistant Escherichia coli (n=26) and Klebsiella pneumoniae (n=34) strains, harboring the blaNDM and/or blaOXA-48-like genes, at a major Lebanese tertiary care medical center, using whole genome sequencing (WGS). Results Our findings revealed a notable prevalence of blaNDM in all K. pneumoniae strains isolates, with 27 of these also harboring blaOXA-48. On the other hand, E. coli strains predominantly carried the blaNDM-5 gene. Whole genome sequencing (WGS) identified a predominance of ST383 among K. pneumoniae strains, which possessed a multi-replicon IncFIB-IncHI1B plasmid harboring the blaNDM-5. Additionally, various Inc group plasmids in K. pneumoniae across multiple sequence types were found to carry the blaNDM. Similarly, diverse STs of E. coli were observed to carry blaNDM-5 on different plasmids. Discussion The study underscores NDM carbapenemases as a paramount resistance mechanism in Lebanon,jeopardizing critical last-resort treatments. It also illuminates the role of varied sequence types and mobile genetic elements in the spread of NDM resistance,stressing the urgent need for strategies to mitigate this threat, especially in nosocomial infections.
Collapse
Affiliation(s)
- Ghena Sobh
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - George F. Araj
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Marc Finianos
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia
| | - Tsolaire Sourenian
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia
| | - Jaroslav Hrabak
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia
| | | | - Mira El Chaar
- Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Ibrahim Bitar
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia
| |
Collapse
|
11
|
Lerminiaux N, Mitchell R, Katz K, Fakharuddin K, McGill E, Mataseje L. Plasmid genomic epidemiology of carbapenem-hydrolysing class D β-lactamase (CDHL)-producing Enterobacterales in Canada, 2010-2021. Microb Genom 2024; 10:001257. [PMID: 38896471 PMCID: PMC11261825 DOI: 10.1099/mgen.0.001257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Carbapenems are last-resort antibiotics for treatment of infections caused by multidrug-resistant Enterobacterales, but carbapenem resistance is a rising global threat due to the acquisition of carbapenemase genes. Oxacillinase-48 (bla OXA-48)-type carbapenemases are increasing in abundance in Canada and elsewhere; these genes are frequently found on mobile genetic elements and are associated with specific transposons. This means that alongside clonal dissemination, bla OXA-48-type genes can spread through plasmid-mediated horizontal gene transfer. We applied whole genome sequencing to characterize 249 bla OXA-48-type-producing Enterobacterales isolates collected by the Canadian Nosocomial Infection Surveillance Program from 2010 to 2021. Using a combination of short- and long-read sequencing, we obtained 70 complete and circular bla OXA-48-type-encoding plasmids. Using MOB-suite, four major plasmids clustered were identified, and we further estimated a plasmid cluster for 91.9 % (147/160) of incomplete bla OXA-48-type-encoding contigs. We identified different patterns of carbapenemase mobilization across Canada, including horizontal transmission of bla OXA-181/IncX3 plasmids (75/249, 30.1 %) and bla OXA-48/IncL/M plasmids (47/249, 18.9 %), and both horizontal transmission and clonal transmission of bla OXA-232 for Klebsiella pneumoniae ST231 on ColE2-type/ColKP3 plasmids (25/249, 10.0 %). Our findings highlight the diversity of OXA-48-type plasmids and indicate that multiple plasmid clusters and clonal transmission have contributed to bla OXA-48-type spread and persistence in Canada.
Collapse
Affiliation(s)
- Nicole Lerminiaux
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | | | - Kevin Katz
- North York General Hospital, Toronto, Ontario, Canada
| | - Ken Fakharuddin
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Erin McGill
- Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Laura Mataseje
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
12
|
Zongo PD, Cabanel N, Royer G, Depardieu F, Hartmann A, Naas T, Glaser P, Rosinski-Chupin I. An antiplasmid system drives antibiotic resistance gene integration in carbapenemase-producing Escherichia coli lineages. Nat Commun 2024; 15:4093. [PMID: 38750030 PMCID: PMC11096173 DOI: 10.1038/s41467-024-48219-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
Plasmids carrying antibiotic resistance genes (ARG) are the main mechanism of resistance dissemination in Enterobacterales. However, the fitness-resistance trade-off may result in their elimination. Chromosomal integration of ARGs preserves resistance advantage while relieving the selective pressure for keeping costly plasmids. In some bacterial lineages, such as carbapenemase producing sequence type ST38 Escherichia coli, most ARGs are chromosomally integrated. Here we reproduce by experimental evolution the mobilisation of the carbapenemase blaOXA-48 gene from the pOXA-48 plasmid into the chromosome. We demonstrate that this integration depends on a plasmid-induced fitness cost, a mobile genetic structure embedding the ARG and a novel antiplasmid system ApsAB actively involved in pOXA-48 destabilization. We show that ApsAB targets high and low-copy number plasmids. ApsAB combines a nuclease/helicase protein and a novel type of Argonaute-like protein. It belongs to a family of defense systems broadly distributed among bacteria, which might have a strong ecological impact on plasmid diffusion.
Collapse
Affiliation(s)
- Pengdbamba Dieudonné Zongo
- Ecology and Evolution of Antibiotic Resistance Unit, Institut Pasteur, Paris, France
- Sorbonne Université, Paris, France
- Université Paris Cité, Paris, France
| | - Nicolas Cabanel
- Ecology and Evolution of Antibiotic Resistance Unit, Institut Pasteur, Paris, France
- Université Paris Cité, Paris, France
| | - Guilhem Royer
- Ecology and Evolution of Antibiotic Resistance Unit, Institut Pasteur, Paris, France
- Université Paris Cité, Paris, France
| | - Florence Depardieu
- Université Paris Cité, Paris, France
- Synthetic Biology Unit, Institut Pasteur, Paris, France
| | - Alain Hartmann
- UMR AgroEcologie 1347, INRAe, Université Bourgogne Franche-Comté, Dijon, France
| | - Thierry Naas
- Team ReSIST, INSERM UMR 1184, Paris-Saclay University, Le Kremlin-Bicêtre, France
- Department of Bacteriology-Hygiene, Bicêtre Hospital, APHP, Le Kremlin-Bicêtre, France
- Associated French National Reference Center for Antibiotic Resistance, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Philippe Glaser
- Ecology and Evolution of Antibiotic Resistance Unit, Institut Pasteur, Paris, France
- Université Paris Cité, Paris, France
| | - Isabelle Rosinski-Chupin
- Ecology and Evolution of Antibiotic Resistance Unit, Institut Pasteur, Paris, France.
- Université Paris Cité, Paris, France.
| |
Collapse
|
13
|
Rima M, Oueslati S, Cotelon G, Creton E, Bonnin RA, Dortet L, Iorga BI, Naas T. Role of amino acid 159 in carbapenem and temocillin hydrolysis of OXA-933, a novel OXA-48 variant. Antimicrob Agents Chemother 2024; 68:e0018024. [PMID: 38526049 PMCID: PMC11064584 DOI: 10.1128/aac.00180-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
OXA-48 has rapidly disseminated worldwide and become one of the most common carbapenemases in many countries with more than 45 variants reported with, in some cases, significant differences in their hydrolysis profiles. The R214 residue, located in the ß5-ß6 loop, is crucial for the carbapenemase activity, as it stabilizes carbapenems in the active site and maintains the shape of the active site through interactions with D159. In this study, we have characterized a novel variant of OXA-48, OXA-933 with a single D159N change. To evaluate the importance of this residue, point mutations were generated (D159A, D159G, D159K, and D159W), kinetic parameters of OXA-933, OXA-48 D159G, and OXA-48 D159K were determined and compared to those of OXA-48 and OXA-244. The blaOXA-933 gene was borne on Tn2208, a 2,696-bp composite transposon made of two IS1 elements surrounded by 9 bp target site duplications and inserted into a non-self-transmissible plasmid pOXA-933 of 7,872 bp in size. Minimal inhibitory concentration values of E. coli expressing the blaOXA-933 gene or of its point mutant derivatives were lower for carbapenems (except for D159G) as compared to those expressing the blaOXA-48 gene. Steady-state kinetic parameters revealed lower catalytic efficiencies for expanded spectrum cephalosporins and carbapenems. A detailed structural analysis confirmed the crucial role of D159 in shaping the active site of OXA-48 enzymes by interacting with R214. Our work further illustrates the remarkable propensity of OXA-48-like carbapenemases to evolve through mutations at positions outside the β5-β6 loop, but interacting with key residues of it.
Collapse
Affiliation(s)
- Mariam Rima
- Team ReSIST, INSERM U1184, School of Medicine Université Paris-Saclay, LabEx LERMIT, Le Kremlin-Bicêtre, France
| | - Saoussen Oueslati
- Team ReSIST, INSERM U1184, School of Medicine Université Paris-Saclay, LabEx LERMIT, Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Garance Cotelon
- French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacterales, Le Kremlin-Bicêtre, France
| | - Elodie Creton
- French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacterales, Le Kremlin-Bicêtre, France
| | - Rémy A. Bonnin
- Team ReSIST, INSERM U1184, School of Medicine Université Paris-Saclay, LabEx LERMIT, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacterales, Le Kremlin-Bicêtre, France
| | - Laurent Dortet
- Team ReSIST, INSERM U1184, School of Medicine Université Paris-Saclay, LabEx LERMIT, Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacterales, Le Kremlin-Bicêtre, France
| | - Bogdan I. Iorga
- Université Paris-Saclay, CNRS UPR 2301, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | - Thierry Naas
- Team ReSIST, INSERM U1184, School of Medicine Université Paris-Saclay, LabEx LERMIT, Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacterales, Le Kremlin-Bicêtre, France
| |
Collapse
|
14
|
Sommer J, Reiter H, Sattler J, Cacace E, Eisfeld J, Gatermann S, Hamprecht A, Göttig S. Emergence of OXA-48-like producing Citrobacter species, Germany, 2011 to 2022. Euro Surveill 2024; 29:2300528. [PMID: 38606571 PMCID: PMC11010590 DOI: 10.2807/1560-7917.es.2024.29.15.2300528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/10/2024] [Indexed: 04/13/2024] Open
Abstract
BackgroundCarbapenemase-producing Enterobacterales are a public health threat worldwide and OXA-48 is the most prevalent carbapenemase in Germany and western Europe. However, the molecular epidemiology of OXA-48 in species other than Escherichia coli and Klebsiella pneumoniae remains poorly understood.AimTo analyse the molecular epidemiology of OXA-48 and OXA-48-like carbapenemases in Citrobacter species (spp.) in Germany between 2011 and 2022.MethodsData of 26,822 Enterobacterales isolates sent to the National Reference Centre (NRC) for Gram-negative bacteria were evaluated. Ninety-one Citrobacter isolates from 40 German hospitals harbouring bla OXA-48/OXA-48‑like were analysed by whole genome sequencing and conjugation experiments.ResultsThe frequency of OXA-48 in Citrobacter freundii (CF) has increased steadily since 2011 and is now the most prevalent carbapenemase in this species in Germany. Among 91 in-depth analysed Citrobacter spp. isolates, CF (n = 73) and C. koseri (n = 8) were the most common species and OXA-48 was the most common variant (n = 77), followed by OXA-162 (n = 11) and OXA‑181 (n = 3). Forty percent of the isolates belonged to only two sequence types (ST19 and ST22), while most other STs were singletons. The plasmids harbouring bla OXA‑48 and bla OXA-162 belonged to the plasmid types IncL (n = 85) or IncF (n = 3), and plasmids harbouring bla OXA‑181 to IncX3 (n = 3). Three IncL plasmid clusters (57/85 IncL plasmids) were identified, which were highly transferable in contrast to sporadic plasmids.ConclusionIn CF in Germany, OXA-48 is the predominant carbapenemase. Dissemination is likely due to distinct highly transmissible plasmids harbouring bla OXA‑48 or bla OXA-48-like and the spread of the high-risk clonal lineages ST19 and ST22.
Collapse
Affiliation(s)
- Julian Sommer
- Goethe University Frankfurt, University Hospital, Institute of Medical Microbiology and Infection Control, Frankfurt am Main, Germany
| | - Hannah Reiter
- Goethe University Frankfurt, University Hospital, Institute of Medical Microbiology and Infection Control, Frankfurt am Main, Germany
| | - Janko Sattler
- University Hospital Cologne and Faculty of Medicine, University of Cologne, Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Elisabetta Cacace
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Goethe University Frankfurt, University Hospital, Institute of Medical Microbiology and Infection Control, Frankfurt am Main, Germany
| | - Jessica Eisfeld
- German National Reference Centre for Multidrug-resistant Gram-negative Bacteria, Department of Medical Microbiology, Ruhr-University Bochum, Bochum, Germany
| | - Sören Gatermann
- German National Reference Centre for Multidrug-resistant Gram-negative Bacteria, Department of Medical Microbiology, Ruhr-University Bochum, Bochum, Germany
| | - Axel Hamprecht
- University of Oldenburg and Klinikum Oldenburg, Institute for Medical Microbiology and Virology, Oldenburg, Germany
- University Hospital Cologne and Faculty of Medicine, University of Cologne, Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Stephan Göttig
- Goethe University Frankfurt, University Hospital, Institute of Medical Microbiology and Infection Control, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Addis E, Unali I, Bertoncelli A, Ventura A, Cecchetto R, Mazzariol A. Different OXA-Carbapenemases in Genetically Unrelated Klebsiella pneumoniae Strains Isolated in a North Italian Hospital During Multidrug Resistance Screening. Microb Drug Resist 2024; 30:127-133. [PMID: 38165645 DOI: 10.1089/mdr.2023.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024] Open
Abstract
Klebsiella pneumoniae is one of the main opportunistic pathogens that cause a broad spectrum of diseases with increasingly frequent acquisition of resistance to antibiotics, namely carbapenems. This study focused on the characterization of 23 OXA-48-like carbapenemase-producing K. pneumoniae isolates using phenotypic and molecular tests. Phenotypic determination of the presence of β-lactamases was performed using the extended-spectrum beta-lactamase (ESBL) NP test, and phenotypic determination of the presence of carbapenemase was based on the Carba NP test. Antimicrobial susceptibility tests were performed to assess the resistance against carbapenems. Molecular characterization of ESBL genes and carbapenemase genes (blaOXA-48, blaKPC, blaVIM, and blaNDM) was performed using polymerase chain reaction (PCR) techniques. In addition, K. pneumoniae strains were analyzed for their relatedness using multilocus sequence typing PCR analysis based on the Institut Pasteur protocol, which produces allelic profiles that contain their evolutionary and geographic pattern. Following further Sanger sequencing of the blaOXA-48 genes, no genetic mutations were found. Some OXA-48-producing K. pneumoniae isolates coharbored blaKPC, blaNDM, and blaVIM genes, which encode other carbapenemases that can hydrolyze carbapenem antibiotics. The final part of the study focused on the characterization of the plasmid profiles of all isolates to better understand the spreading of the IncL/M blaOXA-48 plasmid gene. The plasmid profile also revealed other incompatibility groups, suggesting that other plasmid genes are spreading in K. pneumoniae isolates, which can coharbor and spread different carbapenemases simultaneously.
Collapse
Affiliation(s)
- Elena Addis
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Ilaria Unali
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Anna Bertoncelli
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Anna Ventura
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Riccardo Cecchetto
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Annarita Mazzariol
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| |
Collapse
|
16
|
Karaman E, Çiçek AÇ, Şemen V, Şaban Beriş F. Characterization of resistance genes and replicon typing in Carbapenem-resistant Klebsiella pneumoniae strains. Ann Clin Microbiol Antimicrob 2024; 23:19. [PMID: 38402160 PMCID: PMC10893597 DOI: 10.1186/s12941-024-00672-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/26/2024] [Indexed: 02/26/2024] Open
Abstract
OBJECTIVE In our study, K. pneumoniae strains (non-susceptible to carbapenem) (n = 60) were obtained from various clinical samples from Rize State Hospital between 2015 and 2017 and it is aimed to identify antibiotic resistance genes and replicon typing. METHODS Antibiotic susceptibility tests of the strains were performed with Kirby-Bauer disk diffusion test and the Vitek-2 automated system (BioMerieux, France). Antibiotic resistance genes and replicon typing was characterized by PCR method. RESULTS It was determined that K. pneumaniae isolates were mostly isolated from the samples of the intensive care unit. All of the K. pneumoniae strains examined in this study were found to be ampicillin/sulbactam and ertapenem resistant but colistin susceptible. Amoxacillin/clavulonic acid resistance was detected at 98.14% of strains. The blaOXA-48 gene was mostly detected in isolates. The most common type of plasmid was I1 and 3 different plasmid types were found in five different strains together. CONCLUSION This study also shows that the distribution of NDM-1 and OXA-48 carbapenemases has increased since the first co-display in Türkiye and that IncHI1 is the first record in our country. This study provides an overview of the major plasmid families occurring in multiple antibiotic-resistant strains of K. pneumoniae. To our knowledge, this study represents the first report of IncHI1 record in Türkiye.
Collapse
Affiliation(s)
- Esin Karaman
- Faculty of Arts&Sciences, Department of Biology, Recep Tayyip Erdogan University, Rize, Turkey
| | - Ayşegül Çopur Çiçek
- Faculty of Medicine, Department of Medical Microbiology, İstanbul Medipol University, İstanbul, Turkey
| | - Vicdan Şemen
- Department of Microbiology, Sakarya Yenikent State Hospital, Sakarya, Turkey
| | - Fatih Şaban Beriş
- Faculty of Arts&Sciences, Department of Biology, Recep Tayyip Erdogan University, Rize, Turkey.
| |
Collapse
|
17
|
Lin YT, Chuang C, Chou SH, Juan CH, Yang TC, Kreiswirth BN, Chen L. Emergence of OXA-48-producing hypervirulent Klebsiella pneumoniae strains in Taiwan. Eur J Clin Microbiol Infect Dis 2024; 43:389-393. [PMID: 38062176 DOI: 10.1007/s10096-023-04733-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/01/2023] [Indexed: 01/28/2024]
Abstract
The OXA-48-producing hypervirulent Klebsiella pneumoniae (hvKP) strains were rarely reported. In this study, we characterized three carbapenem-resistant hvKP strains (KP2185, NCRE61, and KP2683-1) isolated from renal abscess, scrotal abscess, and blood samples in a Taiwan hospital. The three strains belonged to two different clones: ST23 K1 (KP2683-1) and ST11 KL64 (KP2185 and NCRE61). KP2683-1 exhibited the highest virulence in an in vivo model. Whole-genome sequencing analysis showed that KP2185 and NCRE61 acquired IncFIB type plasmids containing a set of virulence genes (iroBCDN, iucABCD, rmpA, rmpA2, and iutA), while KP2683-1 acquired an IncL type plasmid harboring blaOXA-48.
Collapse
Affiliation(s)
- Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Chien Chuang
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Hua Chou
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Han Juan
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsuey-Ching Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Barry N Kreiswirth
- Hackensack-Meridian Health Center for Discovery and Innovation, Nutley, NJ, USA
| | - Liang Chen
- Hackensack-Meridian Health Center for Discovery and Innovation, Nutley, NJ, USA.
| |
Collapse
|
18
|
Li YT, Wang YC, Chen CM, Tang HL, Chen BH, Teng RH, Chiou CS, Lu MC, Lai YC. Distinct evolution of ST11 KL64 Klebsiella pneumoniae in Taiwan. Front Microbiol 2023; 14:1291540. [PMID: 38143864 PMCID: PMC10748404 DOI: 10.3389/fmicb.2023.1291540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Carbapenem-resistant ST11_KL64 Klebsiella pneumoniae emerged as a significant public health concern in Taiwan, peaking between 2013 and 2015, with the majority of isolates exhibiting OXA-48 as the sole carbapenemase. In this study, we employed whole-genome sequencing to investigate the molecular underpinnings of ST11_KL64 isolates collected from 2013 to 2021. Phylogenomic analysis revealed a notable genetic divergence between the ST11_KL64 strains in Taiwan and those in China, suggesting an independent evolutionary trajectory. Our findings indicated that the ST11_KL64_Taiwan lineage originated from the ST11_KL64 lineage in Brazil, with recombination events leading to the integration of ICEKp11 and a 27-kb fragment at the tRNAASN sites, shaping its unique genomic landscape. To further elucidate this unique sublineage, we examined the plasmid contents. In contrast to ST11_KL64_Brazil strains, which predominantly carried blaKPC-2, ST11_KL64_Taiwan strains exhibited the acquisition of an epidemic blaOXA-48-carrying IncL plasmid. Additionally, ST11_KL64_Taiwan strains consistently harbored a multi-drug resistance IncC plasmid, along with a collection of gene clusters that conferred resistance to heavy metals and the phage shock protein system via various Inc-type plasmids. Although few, there were still rare ST11_KL64_Taiwan strains that have evolved into hypervirulent CRKP through the horizontal acquisition of pLVPK variants. Comprehensive characterization of the high-risk ST11_KL64 lineage in Taiwan not only sheds light on its epidemic success but also provides essential data for ongoing surveillance efforts aimed at tracking the spread and evolution of ST11_KL64 across different geographical regions. Understanding the molecular underpinnings of CRKP evolution is crucial for developing effective strategies to combat its emergence and dissemination.
Collapse
Affiliation(s)
- Yia-Ting Li
- Division of Respiratory Therapy, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yao-Chen Wang
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chih-Ming Chen
- Department of Internal Medicine, Tungs’ Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Hui-Ling Tang
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Bo-Han Chen
- Central Region Laboratory, Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Ru-Hsiou Teng
- Central Region Laboratory, Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Chien-Shun Chiou
- Central Region Laboratory, Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Min-Chi Lu
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Chyi Lai
- Department of Microbiology and Immunology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
19
|
Gato E, Rodiño-Janeiro BK, Gude MJ, Fernández-Cuenca F, Pascual Á, Fernández A, Pérez A, Bou G. Diagnostic tool for surveillance, detection and monitoring of the high-risk clone K. pneumoniae ST15. J Hosp Infect 2023; 142:18-25. [PMID: 37802237 DOI: 10.1016/j.jhin.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND The global spread of Klebsiella pneumoniae ST15, causing multi-continental outbreaks, contributes to the movement of resistance genes between clones increasing the antimicrobial resistance crisis. The genomic traits providing it with the ability to outcompete other bacteria and cause epidemics remain unclear. AIM To identify the specific genomic traits of K. pneumoniae ST15 to develop a diagnostic test. METHODS An outbreak caused by K. pneumoniae occurred in Hospital A Coruña, Spain. Antimicrobial susceptibility analysis and molecular typing (PGFE and MLST) were performed. One isolate of each sequence type was selected for whole-genome sequencing analysis. Comparative analysis of genomes was performed using RAST. BLASTn was used to evaluate the presence of the fhaC and kpiD genes. Two hundred and ninety-four K. pneumoniae from a Spanish nationwide collection were analysed by PCR. FINDINGS Genotyping showed that 87.5% of the isolates tested belonged to a clone with a unique PFGE pattern which corresponded to ST15. Comparative genomic analysis of the different STs enabled us to determine the specific genomic traits of K. pneumoniae ST15. Two adherence-related systems (Kpi and KpFhaB/FhaC) were specific markers of this clone. Multiplex-PCR analysis with kpiD and fhaC oligonucleotides revealed that K. pneumoniae ST15 is specifically detected with a sensitivity of 100% and a specificity of 97.76%. The PCR results showed 100% concordance with the MLST and whole-genome sequencing data. CONCLUSION K. pneumoniae ST15 possesses specific genomic traits that could favour its dissemination. They could be used as targets to detect K. pneumoniae ST15 with high sensitivity and specificity.
Collapse
Affiliation(s)
- E Gato
- Institute for Biomedical Research of A Coruña (INIBIC), A Coruña, Spain; Carlos III Health Institute (ISCIII), Madrid, Spain
| | | | - M J Gude
- University Hospital Lucus Augusti (HULA), Lugo, Spain
| | - F Fernández-Cuenca
- University Hospital Virgen Macarena, Seville, Spain; Institute of Biomedicine of Sevilla, Seville, Spain; University of Sevilla, Seville, Spain
| | - Á Pascual
- University Hospital Virgen Macarena, Seville, Spain; Institute of Biomedicine of Sevilla, Seville, Spain; University of Sevilla, Seville, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - A Fernández
- University Hospital of A Coruña (HUAC), A Coruña, Spain
| | - A Pérez
- Institute for Biomedical Research of A Coruña (INIBIC), A Coruña, Spain; Carlos III Health Institute (ISCIII), Madrid, Spain.
| | - G Bou
- University Hospital of A Coruña (HUAC), A Coruña, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
20
|
Donà V, Nordmann P, Kittl S, Schuller S, Bouvier M, Poirel L, Endimiani A, Perreten V. Emergence of OXA-48-producing Enterobacter hormaechei in a Swiss companion animal clinic and their genetic relationship to clinical human isolates. J Antimicrob Chemother 2023; 78:2950-2960. [PMID: 37923369 DOI: 10.1093/jac/dkad337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Enterobacter hormaechei producing the carbapenemase OXA-48 was identified repeatedly in infections in companion animals hospitalized at a Swiss veterinary clinic where OXA-48-producing Klebsiella pneumoniae was previously reported. OBJECTIVES To determine the genetic relatedness of animal and human E. hormaechei strains collected in Switzerland during 2017-22 and their mobile genetic elements. METHODS Hybrid assemblies for phylogenetic and comparative analysis of animal (n = 9) and human (n = 25) isolates were obtained by sequencing with Illumina, PacBio and Oxford Nanopore Technologies. Antimicrobial susceptibility was tested by broth microdilution. RESULTS The animal strains were identified as E. hormaechei subsp. xiangfangensis ST114 (n = 6) and ST418 (n = 2), and E. hormaechei subsp. hoffmannii ST78 (n = 1). Human E. hormaechei belonged to subspecies steigerwaltii (n = 10), xiangfangensis (n = 13), hoffmannii (n = 1) and hormaechei (n = 1), with a heterogeneous ST distribution differing from the animal strains, except for two ST114. Core-gene SNP analysis confirmed the clonality of the animal ST114 and ST418 isolates (0 to 10 SNPs), and close relatedness of animal and human ST114 strains (80-120 SNPs). The strains harboured the blaOXA-48 gene on ca. 63 kb IncL-type plasmids (n = 27); on ca. 72 kb IncL plasmids co-harbouring blaCTX-M-14 (n = 2); and on ca. 150-180 kb IncFIB (n = 4) or hybrid IncFIB/IncL (n = 1) plasmids. The blaOXA-48-harbouring plasmids and the blaDHA-1-carrying ISCR1 element in one animal ST114 and both ST418 clones were likely acquired from previously spreading K. pneumoniae strains. CONCLUSIONS Common ecological niches favour the spread of plasmid-borne carbapenemases among Enterobacterales and the emergence of MDR E. hormaechei clones.
Collapse
Affiliation(s)
- Valentina Donà
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Längassstrasse 122, CH-3012 Bern, Switzerland
| | - Patrice Nordmann
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
- Medical and Molecular Microbiology, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Sonja Kittl
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Längassstrasse 122, CH-3012 Bern, Switzerland
| | - Simone Schuller
- Department of Clinical Veterinary Medicine, University of Bern, Bern, Switzerland
| | - Maxime Bouvier
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
- Medical and Molecular Microbiology, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Laurent Poirel
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
- Medical and Molecular Microbiology, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Andrea Endimiani
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Vincent Perreten
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Längassstrasse 122, CH-3012 Bern, Switzerland
| |
Collapse
|
21
|
Del Rio A, Fox V, Muresu N, Sechi I, Cossu A, Palmieri A, Scutari R, Alteri C, Sotgiu G, Castiglia P, Piana A. A Whole-Genome Sequencing-Based Approach for the Characterization of Klebsiella pneumoniae Co-Producing KPC and OXA-48-like Carbapenemases Circulating in Sardinia, Italy. Microorganisms 2023; 11:2354. [PMID: 37764198 PMCID: PMC10535212 DOI: 10.3390/microorganisms11092354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Whole-genome sequencing (WGS) provides important information for the characterization, surveillance, and monitoring of antimicrobial resistance (AMR) determinants, particularly in cases of multi- and extensively drug-resistant microorganisms. We reported the results of a WGS analysis carried out on carbapenemases-producing Klebsiella pneumoniae, which causes hospital-acquired infections (HAIs) and is characterized by a marked resistance profile. METHODS Clinical, phenotypic, and genotypic data were collected for the AMR surveillance screening program of the University Hospital of Sassari (Italy) during 2020-2021. Genomic DNA was sequenced using the Illumina Nova Seq 6000 platform. Final assemblies were manually curated and carefully verified for the detection of antimicrobial resistance genes, porin mutations, and virulence factors. A phylogenetic analysis was performed using the maximum likelihood method. RESULTS All 17 strains analyzed belonged to ST512, and most of them carried the blaKPC-31 variant blaOXA-48-like, an OmpK35 truncation, and an OmpK36 mutation. Phenotypic analysis showed a marked resistance profile to all antibiotic classes, including β-lactams, carbapenems, aminoglycosides, fluoroquinolone, sulphonamides, and novel β-lactam/β-lactamase inhibitors (BL/BLI). CONCLUSION WGS characterization revealed the presence of several antibiotic resistance determinants and porin mutations in highly resistant K. pneumoniae strains responsible for HAIs. The detection of blaKPC-31 in our hospital wards highlights the importance of genomic surveillance in hospital settings to monitor the emergence of new clones and the need to improve control and preventive strategies to efficiently contrast AMR.
Collapse
Affiliation(s)
- Arcadia Del Rio
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy;
| | - Valeria Fox
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (V.F.); (R.S.); (C.A.)
| | - Narcisa Muresu
- Department of Humanities and Social Sciences, University of Sassari, 07100 Sassari, Italy
| | - Illari Sechi
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, 07100 Sassari, Italy; (I.S.); (A.C.); (A.P.); (P.C.); (A.P.)
| | - Andrea Cossu
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, 07100 Sassari, Italy; (I.S.); (A.C.); (A.P.); (P.C.); (A.P.)
| | - Alessandra Palmieri
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, 07100 Sassari, Italy; (I.S.); (A.C.); (A.P.); (P.C.); (A.P.)
| | - Rossana Scutari
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (V.F.); (R.S.); (C.A.)
| | - Claudia Alteri
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (V.F.); (R.S.); (C.A.)
| | - Giovanni Sotgiu
- Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical and Experimental Medicine, University of Sassari, 07100 Sassari, Italy;
| | - Paolo Castiglia
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, 07100 Sassari, Italy; (I.S.); (A.C.); (A.P.); (P.C.); (A.P.)
| | - Andrea Piana
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, 07100 Sassari, Italy; (I.S.); (A.C.); (A.P.); (P.C.); (A.P.)
| |
Collapse
|
22
|
El Khoury M, Salloum T, Al Kodsi I, Jisr T, El Chaar M, Tokajian S. Whole-genome sequence analysis of carbapenem-resistant Enterobacteriaceae recovered from hospitalized patients. J Glob Antimicrob Resist 2023; 34:150-160. [PMID: 37437842 DOI: 10.1016/j.jgar.2023.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/29/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
OBJECTIVES Carbapenems are among the few effective antibiotics against multidrug-resistant Enterobacteriaceae. This study aimed at characterizing the plasmid content and resistome of clinical carbapenem-resistant Enterobacteriaceae (CRE) recovered from 2016 to 2019 from hospitalized patients in Lebanon. METHODS Plasmid typing and whole-genome sequencing were used to study the genomic characteristics of 65 clinical CREs including 27 Escherichia coli, 24 Klebsiella pneumoniae, one Klebsiella quasipneumoniae, three Morganella morganii, three Citrobacter freundii, five Enterobacter hormaechei, and two Serratia marcescens. RESULTS blaOXA-48 (33.8%; n = 22) and blaOXA-48-like genes were among the detected resistance determinants, with two isolates co-harbouring blaNDM-5. Various blaNDM variants, blaNDM-1 (16.9%; n = 11), blaNDM-5 (9.2%; n = 6), blaNDM-7 (9.2%; n = 6), and blaNDM-19 (4.6%; n = 3), different ESBLs, and AmpC β-lactamases were detected. Carbapenem resistance determinants were linked to a variety of incompatibility groups with IncFIB(K) (43.1%; n = 28) being the most prevalent, followed by IncFIA (40.0%), IncL (35.4%), IncX3 (32.3%), IncI1 (32.3%), and IncFIIK (29.2%). CONCLUSIONS We analysed the clonality and resistance determinants of 65 multidrug-resistant (MDR) Enterobacteriaceae recovered in the period from 2016 to 2019 from a large tertiary hospital in Lebanon. NDM variants, OXA-48, and OXA-181 were the most prevalent detected carbapenemases and were mostly linked to the dissemination of IncL, IncX3, and IncF. This study reinforces the need to track the spread and dominance of clinically relevant carbapenemase-encoding plasmids in healthcare settings.
Collapse
Affiliation(s)
- Maria El Khoury
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Tamara Salloum
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Ibrahim Al Kodsi
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Tamima Jisr
- Makassed General Hospital, Hopital Makassed Street, Beirut, Lebanon
| | - Mira El Chaar
- Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Sima Tokajian
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
23
|
Pathak A, Angst DC, León-Sampedro R, Hall AR. Antibiotic-degrading resistance changes bacterial community structure via species-specific responses. THE ISME JOURNAL 2023; 17:1495-1503. [PMID: 37380830 PMCID: PMC10432403 DOI: 10.1038/s41396-023-01465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Some bacterial resistance mechanisms degrade antibiotics, potentially protecting neighbouring susceptible cells from antibiotic exposure. We do not yet understand how such effects influence bacterial communities of more than two species, which are typical in nature. Here, we used experimental multispecies communities to test the effects of clinically important pOXA-48-plasmid-encoded resistance on community-level responses to antibiotics. We found that resistance in one community member reduced antibiotic inhibition of other species, but some benefitted more than others. Further experiments with supernatants and pure-culture growth assays showed the susceptible species profiting most from detoxification were those that grew best at degraded antibiotic concentrations (greater than zero, but lower than the starting concentration). This pattern was also observed on agar surfaces, and the same species also showed relatively high survival compared to most other species during the initial high-antibiotic phase. By contrast, we found no evidence of a role for higher-order interactions or horizontal plasmid transfer in community-level responses to detoxification in our experimental communities. Our findings suggest carriage of an antibiotic-degrading resistance mechanism by one species can drastically alter community-level responses to antibiotics, and the identities of the species that profit most from antibiotic detoxification are predicted by their intrinsic ability to survive and grow at changing antibiotic concentrations.
Collapse
Affiliation(s)
- Ayush Pathak
- Institute of Integrative Biology, Department of Environmental Systems Science (D-USYS), ETH Zurich, Zurich, Switzerland.
| | - Daniel C Angst
- Institute of Integrative Biology, Department of Environmental Systems Science (D-USYS), ETH Zurich, Zurich, Switzerland
| | - Ricardo León-Sampedro
- Institute of Integrative Biology, Department of Environmental Systems Science (D-USYS), ETH Zurich, Zurich, Switzerland
| | - Alex R Hall
- Institute of Integrative Biology, Department of Environmental Systems Science (D-USYS), ETH Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Kubota H, Nakayama T, Ariyoshi T, Uehara S, Uchitani Y, Tsuchida S, Nishiyama H, Morioka I, Koshinaga T, Kusabuka A, Nakatsubo N, Yamagishi T, Tabuchi Y, Okuno R, Kobayashi K, Mitobe M, Yokoyama K, Shinkai T, Suzuki J, Sadamasu K. Emergence of Phytobacter diazotrophicus carrying an IncA/C 2 plasmid harboring bla NDM-1 in Tokyo, Japan. mSphere 2023; 8:e0014723. [PMID: 37449846 PMCID: PMC10449528 DOI: 10.1128/msphere.00147-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023] Open
Abstract
Phytobacter diazotrophicus is an Enterobacterales species that was originally identified as a plant growth-promoting, Gram-negative bacterium. Recently, this species has been recognized as relevant to opportunistic human and nosocomial infections in clinical settings. Its frequent misidentification as other Enterobacterales species from clinical examination occasionally causes a delay in the identification of nosocomial outbreaks. Here, we report the emergence of New Delhi metallo-β-lactamase (NDM)-producing P. diazotrophicus isolated from hospitalized pediatric patients and hospital environments in Tokyo, Japan. In our case, these isolates were found during an investigation of carbapenem-resistant Enterobacterales in relation to nosocomial infections. Whole-genome sequencing is useful for overcoming the difficulty of species identification. Furthermore, we found that bla NDM-1 was carried by an IncA/C2 plasmid (approximately 170 kbp), which was transferrable from the clinical isolates to the recipient strain Escherichia coli J53. Our study demonstrated that P. diazotrophicus behaves as a carrier of bla NDM-harboring plasmids, potentially disseminating resistance to carbapenems among Enterobacterales. IMPORTANCE Early detection of nosocomial outbreaks is important to minimize the spread of bacteria. When an outbreak is caused by multidrug-resistant bacteria such as carbapenem-resistant Enterobacterales, a delay in findings makes it difficult to control it because such bacteria often spread not only among human patients but also in hospital environments. Phytobacter diazotrophicus, an Enterobacterales species that has recently been found to be relevant to clinical settings, is often misidentified as other bacteria in clinical laboratories. Here, we found NDM-producing P. diazotrophicus in hospitalized pediatric patients and their environment in Tokyo, Japan. Given that the isolates carried bla NDM-1-harboring transferrable plasmids, the influence of such bacteria could be greater with the mediation of horizontal transfer of carbapenem resistance. Our findings suggest that P. diazotrophicus should be recognized as an NDM-carrier, for which more attention should be paid in clinical settings.
Collapse
Affiliation(s)
- Hiroaki Kubota
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Tomohiro Nakayama
- Division of Laboratory Medicine and Companion Diagnostics, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Tsukasa Ariyoshi
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Satomi Uehara
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Yumi Uchitani
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Sachio Tsuchida
- Division of Laboratory Medicine and Companion Diagnostics, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Hiroyuki Nishiyama
- Clinical Laboratory Department, Surugadai Nihon University Hospital, Chiyoda-ku, Tokyo, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Oyaguchi, Itabashi-ku, Tokyo, Japan
| | - Tsugumichi Koshinaga
- Department of Pediatric Surgery, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Akiko Kusabuka
- Department of Planning and Coordination, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Naoki Nakatsubo
- Department of Planning and Coordination, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Takuya Yamagishi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yuri Tabuchi
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Rumi Okuno
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Kai Kobayashi
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Morika Mitobe
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Keiko Yokoyama
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Takayuki Shinkai
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Jun Suzuki
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Kenji Sadamasu
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
25
|
Overmeyer AJ, Prentice E, Brink A, Lennard K, Moodley C. The genomic characterization of carbapenem-resistant Serratia marcescens at a tertiary hospital in South Africa. JAC Antimicrob Resist 2023; 5:dlad089. [PMID: 37497336 PMCID: PMC10368080 DOI: 10.1093/jacamr/dlad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Background Serratia marcescens is an opportunistic nosocomial pathogen, and recent reports have highlighted the rapid increase in multidrug resistance in this organism. There is a paucity in genomic data for carbapenem-resistant S. marcescens (CRSM). Methods A retrospective cohort study describing laboratory-confirmed CRSM from a tertiary academic hospital in Cape Town, South Africa, for the period 2015-20, was performed. Stored CRSM and contemporary isolates were submitted for WGS using Illumina MiSeq, with the Nextera DNA Flex Library Preparation Kit. Sequence data were analysed in-house using srst2 and Tychus, and CRSM and contemporary isolates were compared. Results Twenty-one CRSM and four contemporary isolates were sequenced and analysed. Twenty-four different resistance genes were identified, with all isolates having at least two resistance genes, and seventeen isolates harbouring three or more genes. This correlated well with phenotypic results. The blaOXA-48-like carbapenemase was the most common carbapenemase identified, in 86% (18/21) of CRSM. A core SNP difference tree indicated that the CRSM could be grouped into three clusters. Eleven isolates had shared plasmids. Several genes and SNPs were identified in the CRSM, which may putatively augment virulence, but this requires further functional characterization. Conclusions A diverse resistome was observed in CRSM, which was also reflected phenotypically, with blaOXA-48-like the most commonly carbapenemase. Though distinct clusters were observed, no clonality was noted, and a limited number of isolates shared plasmids. This study provides genomic data for emerging CRSM and highlights the importance of ongoing genomic surveillance to inform infection prevention control and antimicrobial stewardship initiatives.
Collapse
Affiliation(s)
| | - Elizabeth Prentice
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Microbiology Laboratory, National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| | - Adrian Brink
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Microbiology Laboratory, National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Katie Lennard
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Clinton Moodley
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Microbiology Laboratory, National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
26
|
Roberts LW, Enoch DA, Khokhar F, Blackwell GA, Wilson H, Warne B, Gouliouris T, Iqbal Z, Török ME. Long-read sequencing reveals genomic diversity and associated plasmid movement of carbapenemase-producing bacteria in a UK hospital over 6 years. Microb Genom 2023; 9:mgen001048. [PMID: 37405394 PMCID: PMC10438816 DOI: 10.1099/mgen.0.001048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/22/2023] [Indexed: 07/06/2023] Open
Abstract
Healthcare-associated infections (HCAIs) affect the most vulnerable people in society and are increasingly difficult to treat in the face of mounting antimicrobial resistance (AMR). Routine surveillance represents an effective way of understanding the circulation and burden of bacterial resistance and transmission in hospital settings. Here, we used whole-genome sequencing (WGS) to retrospectively analyse carbapenemase-producing Gram-negative bacteria from a single hospital in the UK over 6 years (n=165). We found that the vast majority of isolates were either hospital-onset (HAI) or HCAI. Most carbapenemase-producing organisms were carriage isolates, with 71 % isolated from screening (rectal) swabs. Using WGS, we identified 15 species, the most common being Escherichia coli and Klebsiella pneumoniae. Only one significant clonal outbreak occurred during the study period and involved a sequence type (ST)78 K. pneumoniae carrying bla NDM-1 on an IncFIB/IncHI1B plasmid. Contextualization with public data revealed little evidence of this ST outside of the study hospital, warranting ongoing surveillance. Carbapenemase genes were found on plasmids in 86 % of isolates, the most common types being bla NDM- and bla OXA-type alleles. Using long-read sequencing, we determined that approximately 30 % of isolates with carbapenemase genes on plasmids had acquired them via horizontal transmission. Overall, a national framework to collate more contextual genomic data, particularly for plasmids and resistant bacteria in the community, is needed to better understand how carbapenemase genes are transmitted in the UK.
Collapse
Affiliation(s)
- Leah W. Roberts
- European Molecular Biology Laboratory's European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Department of Medicine, University of Cambridge, England, UK
| | - David A. Enoch
- Clinical Microbiology & Public Health Laboratory, UK Health Security Agency, Cambridge, UK
| | - Fahad Khokhar
- Centre for Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| | | | - Hayley Wilson
- Department of Medicine, University of Cambridge, England, UK
| | - Ben Warne
- Department of Medicine, University of Cambridge, England, UK
- Department of Infectious Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Theodore Gouliouris
- Department of Medicine, University of Cambridge, England, UK
- Clinical Microbiology & Public Health Laboratory, UK Health Security Agency, Cambridge, UK
- Department of Infectious Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Zamin Iqbal
- European Molecular Biology Laboratory's European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - M. Estée Török
- Department of Medicine, University of Cambridge, England, UK
- Clinical Microbiology & Public Health Laboratory, UK Health Security Agency, Cambridge, UK
- Department of Infectious Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
27
|
Golikova MV, Strukova EN, Alieva KN, Ageevets VA, Avdeeva AA, Sulian OS, Zinner SH. Meropenem MICs at Standard and High Inocula and Mutant Prevention Concentration Inter-Relations: Comparative Study with Non-Carbapenemase-Producing and OXA-48-, KPC- and NDM-Producing Klebsiella pneumoniae. Antibiotics (Basel) 2023; 12:antibiotics12050872. [PMID: 37237775 DOI: 10.3390/antibiotics12050872] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
The minimal inhibitory concentration (MIC) is conventionally used to define in vitro levels of susceptibility or resistance of a specific bacterial strain to an antibiotic and to predict its clinical efficacy. Along with MIC, other measures of bacteria resistance exist: the MIC determined at high bacterial inocula (MICHI) that allow the estimation of the occurrence of inoculum effect (IE) and the mutant prevention concentration, MPC. Together, MIC, MICHI and MPC represent the bacterial "resistance profile". In this paper, we provide a comprehensive analysis of such profiles of K. pneumoniae strains that differ by meropenem susceptibility, ability to produce carbapenemases and specific carbapenemase types. In addition, we have analyzed inter-relations between the MIC, MICHI and MPC for each tested K. pneumoniae strain. Low IE probability was detected with carbapenemase-non-producing K. pneumoniae, and high IE probability was detected with those that were carbapenemase-producing. MICs did not correlate with the MPCs; significant correlation was observed between the MICHIs and the MPCs, indicating that these bacteria/antibiotic characteristics display similar resistance properties of a given bacterial strain. To determine the possible resistance-related risk due to a given K. pneumoniae strain, we propose determining the MICHI. This can more or less predict the MPC value of the particular strain.
Collapse
Affiliation(s)
- Maria V Golikova
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya Street, 119021 Moscow, Russia
| | - Elena N Strukova
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya Street, 119021 Moscow, Russia
| | - Kamilla N Alieva
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya Street, 119021 Moscow, Russia
| | - Vladimir A Ageevets
- Pediatric Research and Clinical Center for Infectious Diseases, 9 Prof. Popov Street, 197022 St. Petersburg, Russia
| | - Alisa A Avdeeva
- Pediatric Research and Clinical Center for Infectious Diseases, 9 Prof. Popov Street, 197022 St. Petersburg, Russia
| | - Ofeliia S Sulian
- Pediatric Research and Clinical Center for Infectious Diseases, 9 Prof. Popov Street, 197022 St. Petersburg, Russia
| | - Stephen H Zinner
- Department of Medicine, Harvard Medical School, Mount Auburn Hospital, 330 Mount Auburn St., Cambridge, MA 02138, USA
| |
Collapse
|
28
|
El-Sawalhi S, Revol O, Chamieh A, Lacoste A, Annessi A, La Scola B, Rolain JM, Pagnier I. Epidemiological Description and Detection of Antimicrobial Resistance in Various Aquatic Sites in Marseille, France. Microbiol Spectr 2023; 11:e0142622. [PMID: 36976002 PMCID: PMC10101087 DOI: 10.1128/spectrum.01426-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/22/2022] [Indexed: 03/29/2023] Open
Abstract
Antibiotic resistance is a worldwide public health concern and has been associated with reports of elevated mortality. According to the One Health concept, antibiotic resistance genes are transferrable to organisms, and organisms are shared among humans, animals, and the environment. Consequently, aquatic environments are a possible reservoir of bacteria harboring antibiotic resistance genes. In our study, we screened water and wastewater samples for antibiotic resistance genes by culturing samples on different types of agar media. Then, we performed real-time PCR to detect the presence of genes conferring resistance to beta lactams and colistin, followed by standard PCR and gene sequencing for verification. We mainly isolated Enterobacteriaceae from all samples. In water samples, 36 Gram-negative bacterial strains were isolated and identified. We found three extended-spectrum β-lactamase (ESBL)-producing bacteria-Escherichia coli and Enterobacter cloacae strains-harboring the CTX-M and TEM groups. In wastewater samples, we isolated 114 Gram-negative bacterial strains, mainly E. coli, Klebsiella pneumoniae, Citrobacter freundii and Proteus mirabilis strains. Forty-two bacterial strains were ESBL-producing bacteria, and they harbored at least one gene belonging to the CTX-M, SHV, and TEM groups. We also detected carbapenem-resistant genes, including NDM, KPC, and OXA-48, in four isolates of E. coli. This short epidemiological study allowed us to identify new antibiotic resistance genes present in bacterial strains isolated from water in Marseille. This type of surveillance shows the importance of tracking bacterial resistance in aquatic environments. IMPORTANCE Antibiotic-resistant bacteria are involved in serious infections in humans. The dissemination of these bacteria in water, which is in close contact with human activities, is a serious problem, especially under the concept of One Health. This study was done to survey and localize the circulation of bacterial strains, along with their antibiotic resistance genes, in the aquatic environment in Marseille, France. The importance of this study is to monitor the frequency of these circulating bacteria by creating and surveying water treatments.
Collapse
Affiliation(s)
- Sabah El-Sawalhi
- Aix-Marseille Université, IRD, APHM, MEPHI, Faculté de Médecine et de Pharmacie, Marseille CEDEX 05, France
- IHU Méditerranée Infection, Marseille CEDEX 05, France
| | - Océane Revol
- Aix-Marseille Université, IRD, APHM, MEPHI, Faculté de Médecine et de Pharmacie, Marseille CEDEX 05, France
- IHU Méditerranée Infection, Marseille CEDEX 05, France
| | - Amanda Chamieh
- Aix-Marseille Université, IRD, APHM, MEPHI, Faculté de Médecine et de Pharmacie, Marseille CEDEX 05, France
- IHU Méditerranée Infection, Marseille CEDEX 05, France
| | - Alexandre Lacoste
- Bataillon des Marins Pompiers de Marseille, CIS BMPM, Marseille, France
| | - Alexandre Annessi
- Bataillon des Marins Pompiers de Marseille, CIS BMPM, Marseille, France
| | - Bernard La Scola
- Aix-Marseille Université, IRD, APHM, MEPHI, Faculté de Médecine et de Pharmacie, Marseille CEDEX 05, France
- IHU Méditerranée Infection, Marseille CEDEX 05, France
| | - Jean-Marc Rolain
- Aix-Marseille Université, IRD, APHM, MEPHI, Faculté de Médecine et de Pharmacie, Marseille CEDEX 05, France
- IHU Méditerranée Infection, Marseille CEDEX 05, France
| | - Isabelle Pagnier
- Aix-Marseille Université, IRD, APHM, MEPHI, Faculté de Médecine et de Pharmacie, Marseille CEDEX 05, France
- IHU Méditerranée Infection, Marseille CEDEX 05, France
| |
Collapse
|
29
|
Drk S, Puljko A, Dželalija M, Udiković-Kolić N. Characterization of Third Generation Cephalosporin- and Carbapenem-Resistant Aeromonas Isolates from Municipal and Hospital Wastewater. Antibiotics (Basel) 2023; 12:antibiotics12030513. [PMID: 36978380 PMCID: PMC10044312 DOI: 10.3390/antibiotics12030513] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Antibiotic resistance (AR) remains one of the greatest threats to global health, and Aeromonas species have the potential to spread AR in the aquatic environment. The spread of resistance to antibiotics important to human health, such as third-generation cephalosporins (3GCs) and carbapenems, is of great concern. We isolated and identified 15 cefotaxime (3GC)- and 51 carbapenem-resistant Aeromonas spp. from untreated hospital and treated municipal wastewater in January 2020. The most common species were Aeromonas caviae (58%), A. hydrophila (17%), A. media (11%), and A. veronii (11%). Almost all isolates exhibited a multidrug-resistant phenotype and harboured a diverse plasmidome, with the plasmid replicons ColE, IncU, and IncR being the most frequently detected. The most prevalent carbapenemase gene was the plasmid-associated blaKPC-2 and, for the first time, the blaVIM-2, blaOXA-48, and blaIMP-13 genes were identified in Aeromonas spp. Among the 3GC-resistant isolates, the blaGES-5 and blaMOX genes were the most prevalent. Of the 10 isolates examined, three were capable of transferring carbapenem resistance to susceptible recipient E. coli. Our results suggest that conventionally treated municipal and untreated hospital wastewater is a reservoir for 3GC- and carbapenem-resistant, potentially harmful Aeromonas spp. that can be introduced into aquatic systems and pose a threat to both the environment and public health.
Collapse
Affiliation(s)
- Sara Drk
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10 002 Zagreb, Croatia
| | - Ana Puljko
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10 002 Zagreb, Croatia
| | - Mia Dželalija
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21 000 Split, Croatia
| | - Nikolina Udiković-Kolić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10 002 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
30
|
Jousset AB, Bernabeu S, Emeraud C, Bonnin RA, Lomont A, Zahar JR, Merens A, Isnard C, Soismier N, Farfour E, Fihman V, Yin N, Barraud O, Jacquier H, Ranc AG, Laurent F, Corvec S, d'Epenoux LR, Bille E, Degand N, Plouzeau C, Guillard T, Cattoir V, Mizrahi A, Grillon A, Janvier F, Brun CL, Amara M, Bastide M, Lemonnier A, Dortet L. Evaluation of ceftolozane-tazobactam susceptibility on a French nationwide collection of Enterobacterales. J Glob Antimicrob Resist 2023; 32:78-84. [PMID: 36708769 DOI: 10.1016/j.jgar.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/22/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVES Ceftolozane-tazobactam (C/T) proved its efficacy for the treatment of infections caused by non-carbapenemase producing Pseudomonas aeruginosa and Enterobacterales. Here, we aimed to provide susceptibility data on a large series of Enterobacterales since the revision of EUCAST categorization breakpoints in 2020. METHODS First, C/T susceptibility was determined on characterized Enterobacterales resistant to third generation cephalosporins (3GCs) (extended spectrum β-lactamase [ESBL] production or different levels of AmpC overexpression) (n = 213) and carbapenem-resistant Enterobacterales (CRE) (n = 259), including 170 carbapenemase producers (CPE). Then, 1632 consecutive clinical Enterobacterales responsible for infection were prospectively collected in 23 French hospitals. C/T susceptibility was determined by E-test® (biomérieux) and broth microdilution (BMD) (Sensititre™, Thermo Scientific) to perform method comparison. RESULTS Within the collection isolates, 88% of 3GC resistant strains were susceptible to C/T, with important variation depending on the resistance mechanism: 93% vs. 13% susceptibility for CTX-M and SHV-ESBL producers, respectively. Only 20% of the CRE were susceptible to C/T. Among CPE, 80% of OXA-48-like producers were susceptible to C/T, whereas all metallo-β-lactamase producers were resistant. The prospective study revealed that 95.6% of clinical isolates were susceptible to C/T. Method comparison performed on these 1632 clinical isolates demonstrated 99% of categorization agreement between MIC to C/T determined by E-test® in comparison with the BMD (reference) and only 74% of essential agreement. CONCLUSION Overall, C/T showed good activity against wild-type Enterobacterales, AmpC producers, and ESBL-producing Escherichia coli but is less active against ESBL-producing Klebsiella pneumoniae, and CRE. E-test® led to an underestimation of the MICs in comparison to the BMD reference.
Collapse
Affiliation(s)
- Agnès B Jousset
- INSERM UMR1184 Team 'Resist', Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; Centre National de Référence Associé de la Résistance aux Antibiotiques, Le Kremlin-Bicêtre, France
| | - Sandrine Bernabeu
- INSERM UMR1184 Team 'Resist', Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; Centre National de Référence Associé de la Résistance aux Antibiotiques, Le Kremlin-Bicêtre, France
| | - Cécile Emeraud
- INSERM UMR1184 Team 'Resist', Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; Centre National de Référence Associé de la Résistance aux Antibiotiques, Le Kremlin-Bicêtre, France; CHU de Bicêtre, Service de Bactériologie-Hygiène, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Rémy A Bonnin
- INSERM UMR1184 Team 'Resist', Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; Centre National de Référence Associé de la Résistance aux Antibiotiques, Le Kremlin-Bicêtre, France
| | - Alexandra Lomont
- CHU Avicenne, Service de microbiologie clinique, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Jean Ralph Zahar
- CHU Avicenne, Service de microbiologie clinique, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Audrey Merens
- Hôpital d'Instruction des Armées Begin, Département de Biologie Médicale, Saint Mandé, France
| | - Christophe Isnard
- Normandie Université, UNICAEN/UNIROUEN, DYNAMICURE U1311, CHU de Caen, laboratoire de microbiologie, Caen, France
| | | | - Eric Farfour
- Hôpital Foch, service de Biologie Clinique, Suresnes, France
| | - Vincent Fihman
- CHU Henri Mondor, Unité de Bactériologie-Hygiène, Département de Prévention, Diagnostic et Traitement des infections, Créteil, France
| | - Nicolas Yin
- Institut Gustave Roussy, Service de Bactériologie, Villejuif, France
| | - Olivier Barraud
- CHU Limoges, Service de Bactériologie-Virologie-Hygiène, CIC1435, INSERM 1092, Université de Limoges, UMR, Limoges, France
| | - Hervé Jacquier
- Hôpitaux Universitaires Saint-Louis Lariboisière-Fernand Widal, Service de microbiologie, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Anne-Gaëlle Ranc
- Hospices Civils de Lyon, Département de Bactériologie, Institut des Agents infectieux, Lyon, France
| | - Frédéric Laurent
- Hospices Civils de Lyon, Département de Bactériologie, Institut des Agents infectieux, Lyon, France
| | - Stéphane Corvec
- CHU de Nantes, Service de Bactériologie et des Contrôles Microbiologiques, Université de Nantes, Inserm, INCIT U1302, Nantes, France
| | - Louise Ruffier d'Epenoux
- CHU de Nantes, Service de Bactériologie et des Contrôles Microbiologiques, Université de Nantes, Inserm, INCIT U1302, Nantes, France
| | - Emmanuelle Bille
- CHU Necker-Enfants Malades, Laboratoire de Microbiologie, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Nicolas Degand
- CHU Nice, Laboratoire de Bactériologie, Hôpital L'archet 2, Nice, France
| | - Chloé Plouzeau
- CHU de Poitiers, service de Bactériologie et d'Hygiène hospitalière, Unité de microbiologie moléculaire et séquençage, Poitiers, France
| | - Thomas Guillard
- CHU Reims, Hôpital Robert Debré, laboratoire de Bactériologie-Virologie-Hygiène Hospitalière-Parasitologie-Mycologie, Université de Reims-Champagne-Ardenne, Inserm UMR-S 1250 P3Cell, SFR CAP-Santé; Reims, France
| | - Vincent Cattoir
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France
| | - Asaf Mizrahi
- Groupe Hospitalier Paris Saint-Joseph, service de Microbiologie Clinique, Paris, France; Institut Micalis UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, Châtenay Malabry, France
| | - Antoine Grillon
- CHU de Strasbourg, Plateau Technique de Microbiologie, Laboratoire de Bactériologie, Université de Strasbourg, EA7290, Strasbourg, France
| | - Frédéric Janvier
- Hôpital d'Instruction des Armées Sainte-Anne, Service de microbiologie et hygiène hospitalière, Toulon, France
| | - Cécile Le Brun
- CHRU de Tours, Hôpital Bretonneau, Service de Bactériologie-Virologie-Hygiène, Tours, France
| | - Marlène Amara
- CH Versailles-Site André Mignot, Service de Biologie, Unité de microbiologie, Le Chesnay, France
| | - Mathilda Bastide
- CH Versailles-Site André Mignot, Service de Biologie, Unité de microbiologie, Le Chesnay, France
| | - Alban Lemonnier
- Groupe Hospitalier Paris Saint-Joseph, service de Microbiologie Clinique, Paris, France
| | - Laurent Dortet
- INSERM UMR1184 Team 'Resist', Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; Centre National de Référence Associé de la Résistance aux Antibiotiques, Le Kremlin-Bicêtre, France; CHU de Bicêtre, Service de Bactériologie-Hygiène, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France.
| | | |
Collapse
|
31
|
Structural and Biochemical Features of OXA-517: a Carbapenem and Expanded-Spectrum Cephalosporin Hydrolyzing OXA-48 Variant. Antimicrob Agents Chemother 2023; 67:e0109522. [PMID: 36648230 PMCID: PMC9933634 DOI: 10.1128/aac.01095-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
OXA-48-producing Enterobacterales have now widely disseminated throughout the world. Several variants have now been reported, differing by just a few amino-acid substitutions or deletions, mostly in the region of the loop β5-β6. As OXA-48 hydrolyzes carbapenems but lacks significant expanded-spectrum cephalosporin (ESC) hydrolytic activity, ESCs were suggested as a therapeutic option. Here, we have characterized OXA-517, a natural variant of OXA-48- with an Arg214Lys substitution and a deletion of Ile215 and Glu216 in the β5-β6 loop, capable of hydrolyzing at the same time ESC and carbapenems. MICs values of E. coli expressing blaOXA-517 gene revealed reduced susceptibility to carbapenems (similarly to OXA-48) and resistance to ESCs. Steady-state kinetic parameters revealed high catalytic efficiencies for ESCs and carbapenems. The blaOXA-517 gene was located on a ca. 31-kb plasmid identical to the prototypical IncL blaOXA-48-carrying plasmid except for an IS1R-mediated deletion of 30.7-kb in the tra operon. The crystal structure of OXA-517, determined to 1.86 Å resolution, revealed an expanded active site compared to that of OXA-48, which allows for accommodation of the bulky ceftazidime substrate. Our work illustrates the remarkable propensity of OXA-48-like carbapenemases to evolve through mutation/deletion in the β5-β6 loop to extend its hydrolysis profile to encompass most β-lactam substrates.
Collapse
|
32
|
Kuzina ES, Kislichkina AA, Sizova AA, Skryabin YP, Novikova TS, Ershova ON, Savin IA, Khokhlova OE, Bogun AG, Fursova NK. High-Molecular-Weight Plasmids Carrying Carbapenemase Genes blaNDM-1, blaKPC-2, and blaOXA-48 Coexisting in Clinical Klebsiella pneumoniae Strains of ST39. Microorganisms 2023; 11:microorganisms11020459. [PMID: 36838424 PMCID: PMC9961262 DOI: 10.3390/microorganisms11020459] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Klebsiella pneumoniae, a member of the ESKAPE group of bacterial pathogens, has developed multi-antimicrobial resistance (AMR), including resistance to carbapenems, which has increased alarmingly due to the acquisition of carbapenemase genes located on specific plasmids. METHODS Four clinical K. pneumoniae isolates were collected from four patients of a neuro-intensive care unit in Moscow, Russia, during the point prevalence survey. The AMR phenotype was estimated using the Vitec-2 instrument, and whole genome sequencing (WGS) was done using Illumina and Nanopore technologies. RESULTS All strains were resistant to beta-lactams, nitrofurans, fluoroquinolones, sulfonamides, aminoglycosides, and tetracyclines. WGS analysis revealed that all strains were closely related to K. pneumoniae ST39, capsular type K-23, with 99.99% chromosome identity. The novelty of the study is the description of the strains carrying simultaneously three large plasmids of the IncHI1B, IncC, and IncFIB groups carrying the carbapenemase genes of three types, blaOXA-48, blaNDM-1, and blaKPC-2, respectively. The first of them, highly identical in all strains, was a hybrid plasmid that combined two regions of the resistance genes (blaOXA-48 and blaTEM-1 + blaCTX-M-15 + blaOXA-1 + catB + qnrS1 + int1) and a region of the virulence genes (iucABCD, iutA, terC, and rmpA2::IS110). CONCLUSION The spread of K. pneumoniae strains carrying multiple plasmids conferring resistance even to last-resort antibiotics is of great clinical concern.
Collapse
Affiliation(s)
- Ekaterina S. Kuzina
- Department of Training and Improvement of Specialists, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Angelina A. Kislichkina
- Department of Culture Collection, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Angelika A. Sizova
- Department of Culture Collection, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Yury P. Skryabin
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Tatiana S. Novikova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Olga N. Ershova
- Department of Clinical Epidemiology, National Medical Research Center of Neurosurgery Named after Academician N.N. Burdenko, 125047 Moscow, Russia
| | - Ivan A. Savin
- Department of Clinical Epidemiology, National Medical Research Center of Neurosurgery Named after Academician N.N. Burdenko, 125047 Moscow, Russia
| | - Olga E. Khokhlova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Alexander G. Bogun
- Department of Culture Collection, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Nadezhda K. Fursova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
- Correspondence:
| |
Collapse
|
33
|
Mahazu S, Prah I, Ota Y, Hayashi T, Nukui Y, Suzuki M, Hoshino Y, Akeda Y, Suzuki T, Ishino T, Ablordey A, Saito R. Klebsiella Species and Enterobacter cloacae Isolates Harboring blaOXA-181 and blaOXA-48: Resistome, Fitness Cost, and Plasmid Stability. Microbiol Spectr 2022; 10:e0332022. [PMID: 36453894 PMCID: PMC9769605 DOI: 10.1128/spectrum.03320-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
IncX3 and IncL plasmids have been named as catalysts advancing dissemination of blaOXA-181 and blaOXA-48 genes. However, their impact on the performance of host cells is vastly understudied. Genetic characteristics of blaOXA-48- and blaOXA-181-containing Klebsiella pneumoniae (EFN299), Klebsiella quasipneumoniae (EFN262), and Enterobacter cloacae (EFN743) isolated from clinical samples in a Ghanaian hospital were investigated by whole-genome sequencing. Transfer of plasmids by conjugation and electroporation, plasmid stability, fitness cost, and genetic context of blaOXA-48, blaOXA-181, and blaDHA-1 were assessed. blaOXA-181 was carried on two IncX3 plasmids, an intact 51.5-kb IncX3 plasmid (p262-OXA-181) and a 45.3-kb IncX3 plasmid (p743-OXA-181) without replication protein sequence. The fluoroquinolone-resistant gene qnrS1 region was also excised, and unlike in p262-OXA-181, the blaOXA-181 drug-resistant region was not found on a composite transposon. blaOXA-48 was carried on a 74.6-kb conjugative IncL plasmid with unknown ~10.9-kb sequence insertion. This IncL plasmid proved to be highly transferable, with a conjugation efficiency of 1.8 × 10-2. blaDHA-1 was present on an untypeable 22.2 kb genetic structure. Plasmid stability test revealed plasmid loss rate between 4.3% and 12.4%. The results also demonstrated that carriage of IncX3-blaOXA-181 or IncL-blaOXA-48 plasmids was not associated with any fitness defect, but rather an enhanced competitive ability of host cells. This study underscores the significant contribution of IncX3 and IncL plasmids in the dissemination of resistance genes and their efficient transfer calls for regular monitoring to control the expansion of resistant strains. IMPORTANCE The growing rate of antibiotic resistance is an important global health threat. This threat is exacerbated by the lack of safe and potent alternatives to carbapenems in addition to the slow developmental process of newer and effective antibiotics. Infections by carbapenem-resistant Gram-negative bacteria are becoming almost untreatable, leading to poor clinical outcomes and high mortality rates. OXA-48-like carbapenemases are one of the most widespread carbapenemases accounting for resistance among Enterobacteriaecae. We characterized OXA-48- and OXA-181-producing Enterobacteriaecae to gain insights into the genetic basis and mechanism of resistance to carbapenems. Findings from the study showed that the genes encoding these enzymes were carried on highly transmissible plasmids, one of which had sequences absent in other similar plasmids. This implies that mobile genetic elements are important players in the dissemination of resistance genes. Further characterization of this plasmid is warranted to determine the role of this sequence in the spread of resistance genes.
Collapse
Affiliation(s)
- Samiratu Mahazu
- Department of Molecular Microbiology, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Parasitology and Tropical Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Isaac Prah
- Department of Molecular Microbiology, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Ota
- Department of Molecular Microbiology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takaya Hayashi
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoko Nukui
- Department of Infection Control and Prevention, Tokyo Medical and Dental University Hospital, Tokyo, Japan
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masato Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshihiko Hoshino
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Toshihiko Suzuki
- Department of Bacterial Pathogenesis, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoko Ishino
- Department of Parasitology and Tropical Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Anthony Ablordey
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Ryoichi Saito
- Department of Molecular Microbiology, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Infection Control and Prevention, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| |
Collapse
|
34
|
Brunke MS, Konrat K, Schaudinn C, Piening B, Pfeifer Y, Becker L, Schwebke I, Arvand M. Tolerance of biofilm of a carbapenem-resistant Klebsiella pneumoniae involved in a duodenoscopy-associated outbreak to the disinfectant used in reprocessing. Antimicrob Resist Infect Control 2022; 11:81. [PMID: 35659363 PMCID: PMC9164365 DOI: 10.1186/s13756-022-01112-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/01/2022] [Indexed: 11/25/2022] Open
Abstract
Background One possible transmission route for nosocomial pathogens is contaminated medical devices. Formation of biofilms can exacerbate the problem. We report on a carbapenemase-producing Klebsiella pneumoniae that had caused an outbreak linked to contaminated duodenoscopes. To determine whether increased tolerance to disinfectants may have contributed to the outbreak, we investigated the susceptibility of the outbreak strain to disinfectants commonly used for duodenoscope reprocessing. Disinfection efficacy was tested on planktonic bacteria and on biofilm. Methods Disinfectant efficacy testing was performed for planktonic bacteria according to EN standards 13727 and 14561 and for biofilm using the Bead Assay for Biofilms. Disinfection was defined as ≥ 5log10 reduction in recoverable colony forming units (CFU). Results The outbreak strain was an OXA-48 carbapenemase-producing K. pneumoniae of sequence type 101. We found a slightly increased tolerance of the outbreak strain in planktonic form to peracetic acid (PAA), but not to other disinfectants tested. Since PAA was the disinfectant used for duodenoscope reprocessing, we investigated the effect of PAA on biofilm of the outbreak strain. Remarkably, disinfection of biofilm of the outbreak strain could not be achieved by the standard PAA concentration used for duodenoscope reprocessing at the time of outbreak. An increased tolerance to PAA was not observed in a K. pneumoniae type strain tested in parallel. Conclusions Biofilm of the K. pneumoniae outbreak strain was tolerant to standard disinfection during duodenoscope reprocessing. This study establishes for the first time a direct link between biofilm formation, increased tolerance to disinfectants, reprocessing failure of duodenoscopes and nosocomial transmission of carbapenem-resistant K. pneumoniae. Supplementary Information The online version contains supplementary material available at 10.1186/s13756-022-01112-z.
Collapse
|
35
|
Biedrzycka M, Izdebski R, Urbanowicz P, Polańska M, Hryniewicz W, Gniadkowski M, Literacka E. MDR carbapenemase-producing Klebsiella pneumoniae of the hypervirulence-associated ST23 clone in Poland, 2009-19. J Antimicrob Chemother 2022; 77:3367-3375. [PMID: 36177793 DOI: 10.1093/jac/dkac326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/05/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES To characterize carbapenemase-producing isolates of the Klebsiella pneumoniae hypervirulent (hvKp) clone ST23 in Poland. METHODS Fifteen K. pneumoniae ST23 isolates were identified by the Polish surveillance of carbapenemase-producing Enterobacterales. These comprised a cluster with KPC-2 + NDM-1 (n = 7), KPC-2 (n = 1) or NDM-1 (n = 1) enzymes from one hospital from 2018, and sporadic isolates with KPC-2 (n = 1), NDM-1 (n = 1), VIM-1 (n = 1) or OXA-48 (n = 3), recovered from 2009 to 2019 in different towns. The isolates were sequenced by Illumina MiSeq, followed by MinION for six representatives. Clonality, phylogeny, serotypes, virulomes, resistomes and plasmids of the isolates were analysed and compared with international ST23 strains, using various bioinformatic tools. RESULTS Only two diverse isolates with KPC-2 or VIM-1 were of typical hvKp ST23 serotypes K1 and O1v.2, and its predominant phylogenetic clade. These contained multiple chromosomal (ybt, clb) and pK2044/KpVP-1 plasmid (iuc, iro, rmpADC, rmpA2) virulence loci, whereas carbapenemase and other antimicrobial resistance (AMR) genes were on single additional plasmids. All remaining isolates were of K57 and O2v.2 serotypes, and a minor, distant clade of unclear phylogeny, including also ∼10 isolates from other European countries. These had fewer virulence loci (ybt, iuc, rmpADC, rmpA2) but abounded in plasmids, which with several chromosomal AMR mutations conferred more extensive MDR phenotypes than in K1 O1v.2. Lower clonal diversity than in K1, and numerous common characteristics of the isolates supported the hypothesis of the emerging character of the ST23 K57 clade. CONCLUSIONS A new MDR ST23 lineage has emerged in Europe, causing a potential threat to public health.
Collapse
Affiliation(s)
| | - R Izdebski
- National Medicines Institute, Warsaw, Poland
| | | | - M Polańska
- Faculty of Biology, Warsaw University, Warsaw, Poland
| | | | | | - E Literacka
- National Medicines Institute, Warsaw, Poland
| |
Collapse
|
36
|
Downing T, Lee MJ, Archbold C, McDonnell A, Rahm A. Informing plasmid compatibility with bacterial hosts using protein-protein interaction data. Genomics 2022; 114:110509. [PMID: 36273742 DOI: 10.1016/j.ygeno.2022.110509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 10/19/2022] [Indexed: 01/15/2023]
Abstract
The compatibility of plasmids with new host cells is significant given their role in spreading antimicrobial resistance (AMR) and virulence factor genes. Evaluating this using in vitro screening is laborious and can be informed by computational analyses of plasmid-host compatibility through rates of protein-protein interactions (PPIs) between plasmid and host cell proteins. We identified large excesses of such PPIs in eight important plasmids, including pOXA-48, using most known bacteria (n = 4363). 23 species had high rates of interactions with four blaOXA-48-positive plasmids. We also identified 48 species with high interaction rates with plasmids common in Escherichia coli. We found a strong association between one plasmid and the fimbrial adhesin operon pil, which could enhance host cell adhesion in aqueous environments. An excess rate of PPIs could be a sign of host-plasmid compatibility, which is important for AMR control given that plasmids like pOXA-48 move between species with ease.
Collapse
Affiliation(s)
- Tim Downing
- School of Biotechnology, Dublin City University, Dublin, Ireland; The Pirbright Institute, UK.
| | - Min Jie Lee
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Conor Archbold
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Adam McDonnell
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Alexander Rahm
- GAATI Lab, University of French Polynesia, Tahiti, French Polynesia
| |
Collapse
|
37
|
Teo JQM, Tang CY, Tan SH, Chang HY, Ong SM, Lee SJY, Koh TH, Sim JHC, Kwa ALH, Ong RTH. Genomic Surveillance of Carbapenem-Resistant Klebsiella pneumoniae from a Major Public Health Hospital in Singapore. Microbiol Spectr 2022; 10:e0095722. [PMID: 36066252 PMCID: PMC9602435 DOI: 10.1128/spectrum.00957-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/04/2022] [Indexed: 12/30/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a global public health threat. In this study, we employed whole-genome sequencing (WGS) to determine the genomic epidemiology of a longitudinal collection of clinical CRKP isolates recovered from a large public acute care hospital in Singapore. Phylogenetic analyses, a characterization of resistance and virulence determinants, and plasmid profiling were performed for 575 unique CRKP isolates collected between 2009 and 2020. The phylogenetic analyses identified the presence of global high-risk clones among the CRKP population (clonal group [CG] 14/15, CG17/20, CG147, CG258, and sequence type [ST] 231), and these clones constituted 50% of the isolates. Carbapenemase production was common (n = 497, 86.4%), and KPC was the predominant carbapenemase (n = 235, 40.9%), followed by OXA-48-like (n = 128, 22.3%) and NDM (n = 93, 16.2%). Hypervirulence was detected in 59 (10.3%) isolates and was most common in the ST231 carbapenemase-producing isolates (21/59, 35.6%). Carbapenemase genes were associated with diverse plasmid replicons; however, there was an association of blaOXA-181/232 with ColKP3 plasmids. This study presents the complex and diverse epidemiology of the CRKP strains circulating in Singapore. Our study highlights the utility of WGS-based genomic surveillance in tracking the population dynamics of CRKP. IMPORTANCE In this study, we characterized carbapenem-resistant Klebsiella pneumoniae clinical isolates collected over a 12-year period in the largest public acute-care hospital in Singapore using whole-genome sequencing. The results of this study demonstrate significant genomic diversity with the presence of well-known epidemic, multidrug-resistant clones amid a diverse pool of nonepidemic lineages. Genomic surveillance involving comprehensive resistance, virulence, and plasmid gene content profiling provided critical information for antimicrobial resistance monitoring and highlighted future surveillance priorities, such as the emergence of ST231 K. pneumoniae strains bearing multidrug resistance, virulence elements, and the potential plasmid-mediated transmission of the blaOXA-48-like gene. The findings here also reinforce the necessity of unique infection control and prevention strategies that take the genomic diversity of local circulating strains into consideration.
Collapse
Affiliation(s)
- Jocelyn Qi-Min Teo
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Cheng Yee Tang
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Si Hui Tan
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
| | - Hong Yi Chang
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
| | - Sze Min Ong
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | | | - Tse-Hsien Koh
- Department of Microbiology, Singapore General Hospital, Singapore, Singapore
| | | | - Andrea Lay-Hoon Kwa
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
- Singhealth Duke-NUS Medicine Academic Clinical Programme, Singapore, Singapore
- Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Rick Twee-Hee Ong
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| |
Collapse
|
38
|
Emergence of Tn 1999.7, a New Transposon in blaOXA-48-Harboring Plasmids Associated with Increased Plasmid Stability. Antimicrob Agents Chemother 2022; 66:e0078722. [PMID: 36200773 DOI: 10.1128/aac.00787-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OXA-48 is the most common carbapenemase in Enterobacterales in Germany and many other European countries. Depending on the genomic location of blaOXA-48, OXA-48-producing isolates vary in phenotype and intra- and interspecies transferability of blaOXA-48. In most bacterial isolates, blaOXA-48 is located on one of seven variants of Tn1999 (Tn1999.1 to Tn1999.6 and invTn1999.2). Here, a novel Tn1999 variant, Tn1999.7, is described, which was identified in 11 clinical isolates from 2016 to 2020. Tn1999.7 differs from Tn1999.1 by the insertion of the 8,349-bp Tn3 family transposon Tn7442 between the lysR gene and blaOXA-48 open reading frame. Tn7442 carries genes coding for a restriction endonuclease and a DNA methyltransferase as cargo, forming a type III restriction modification system. Tn1999.7 was carried on an ~71-kb IncL plasmid in 9/11 isolates. In one isolate, Tn1999.7 was situated on an ~76-kb plasmid, harboring an additional insertion sequence in the plasmid backbone. In one isolate, the plasmid size is only ~63 kb due to a deletion adjacent to Tn7442 that extends into the plasmid backbone. Mean conjugation rates of the Tn1999.7-harboring plasmids in J53 ranged from 4.47 × 10-5 to 2.03 × 10-2, similar to conjugation rates of other pOXA-48-type IncL plasmids. The stability of plasmids with Tn1999.7 was significantly higher than that of a Tn1999.2-harboring plasmid in vitro. This increase in stability could be related to the insertion of a restriction-modification system, which can promote postsegregational killing. The increased plasmid stability associated with Tn1999.7 could contribute to the further spread of OXA-48.
Collapse
|
39
|
Biggel M, Horlbog J, Nüesch-Inderbinen M, Chattaway MA, Stephan R. Epidemiological links and antimicrobial resistance of clinical Salmonella enterica ST198 isolates: a nationwide microbial population genomic study in Switzerland. Microb Genom 2022; 8:mgen000877. [PMID: 36301086 PMCID: PMC9676052 DOI: 10.1099/mgen.0.000877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/15/2022] [Indexed: 07/20/2023] Open
Abstract
Salmonella is a leading cause of foodborne outbreaks and systemic infections worldwide. Emerging multi-drug resistant Salmonella lineages such as a ciprofloxacin-resistant subclade (CIPR) within Salmonella enterica serovar Kentucky ST198 threaten the effective prevention and treatment of infections. To understand the genomic diversity and antimicrobial resistance gene content associated with S. Kentucky in Switzerland, we whole-genome sequenced 70 human clinical isolates obtained between 2010 and 2020. Most isolates belonged to ST198-CIPR. High- and low-level ciprofloxacin resistance among CIPR isolates was associated with variable mutations in ramR and acrB in combination with stable mutations in quinolone-resistance determining regions (QRDRs). Analysis of isolates from patients with prolonged ST198 colonization indicated subclonal adaptions with the ramR locus as a mutational hotspot. SNP analyses identified multiple clusters of near-identical isolates, which were often associated with travel but included spatiotemporally linked isolates from Switzerland. The largest SNP cluster was associated with travellers returning from Indonesia, and investigation of global data linked >60 additional ST198 salmonellosis isolates to this cluster. Our results emphasize the urgent need for implementing whole-genome sequencing as a routine tool for Salmonella surveillance and outbreak detection.
Collapse
Affiliation(s)
- Michael Biggel
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zürich, Zürich, Switzerland
| | - Jule Horlbog
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zürich, Zürich, Switzerland
- National Reference Center for Enteropathogenic Bacteria and Listeria (NENT), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | | | | | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zürich, Zürich, Switzerland
| |
Collapse
|
40
|
Findlay J, Perreten V, Poirel L, Nordmann P. Molecular analysis of OXA-48-producing Escherichia coli in Switzerland from 2019 to 2020. Eur J Clin Microbiol Infect Dis 2022; 41:1355-1360. [PMID: 36103096 PMCID: PMC9556411 DOI: 10.1007/s10096-022-04493-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022]
Abstract
OXA-48-type ß-lactamases are the most prevalent carbapenemase-type in Enterobacterales in Switzerland, predominantly found in Escherichia coli and Klebsiella pneumoniae. Bacteria-producing OXA-48-type enzymes are endemic in some parts of the world, including Europe and North Africa, and are a frequent cause of nosocomial infections. Despite the emergence of numerous OXA-48-type variants, the original variant, OXA-48, remains the most prevalent in E. coli. This study describes the epidemiology of OXA-48-producing E. coli isolates submitted to the Swiss National Reference Center for Emerging Antibiotic Resistance (NARA) between January 2019 and December 2020.
Collapse
Affiliation(s)
- Jacqueline Findlay
- Medical and Molecular Microbiology, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, Fribourg, Switzerland.
| | - Vincent Perreten
- Division of Molecular Bacterial Epidemiology & Infectious Diseases, Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Laurent Poirel
- Medical and Molecular Microbiology, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
- INSERM European Unit (IAME, France), University of Fribourg, Fribourg, Switzerland
| | - Patrice Nordmann
- Medical and Molecular Microbiology, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
- INSERM European Unit (IAME, France), University of Fribourg, Fribourg, Switzerland
- Institute for Microbiology, University of Lausanne and University Hospital Centre, Lausanne, Switzerland
| |
Collapse
|
41
|
Hawkey J, Wyres KL, Judd LM, Harshegyi T, Blakeway L, Wick RR, Jenney AWJ, Holt KE. ESBL plasmids in Klebsiella pneumoniae: diversity, transmission and contribution to infection burden in the hospital setting. Genome Med 2022; 14:97. [PMID: 35999578 PMCID: PMC9396894 DOI: 10.1186/s13073-022-01103-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Resistance to third-generation cephalosporins, often mediated by extended-spectrum beta-lactamases (ESBLs), is a considerable issue in hospital-associated infections as few drugs remain for treatment. ESBL genes are often located on large plasmids that transfer horizontally between strains and species of Enterobacteriaceae and frequently confer resistance to additional drug classes. Whilst plasmid transmission is recognised to occur in the hospital setting, the frequency and impact of plasmid transmission on infection burden, compared to ESBL + strain transmission, is not well understood. Methods We sequenced the genomes of clinical and carriage isolates of Klebsiella pneumoniae species complex from a year-long hospital surveillance study to investigate ESBL burden and plasmid transmission in an Australian hospital. Long-term persistence of a key transmitted ESBL + plasmid was investigated via sequencing of ceftriaxone-resistant isolates during 4 years of follow-up, beginning 3 years after the initial study. Results We found 25 distinct ESBL plasmids. We identified one plasmid, which we called Plasmid A, that carried blaCTX-M-15 in an IncF backbone similar to pKPN-307. Plasmid A was transmitted at least four times into different Klebsiella species/lineages and was responsible for half of all ESBL episodes during the initial 1-year study period. Three of the Plasmid A-positive strains persisted locally 3–6 years later, and Plasmid A was detected in two additional strain backgrounds. Overall Plasmid A accounted for 21% of ESBL + infections in the follow-up period. Conclusions Here, we systematically surveyed ESBL strain and plasmid transmission over 1 year in a single hospital network. Whilst ESBL plasmid transmission events were rare in this setting, they had a significant and sustained impact on the burden of ceftriaxone-resistant and multidrug-resistant infections. If onward transmission of Plasmid A-carrying strains could have been prevented, this may have reduced the number of opportunities for Plasmid A to transmit and create novel ESBL + strains, as well as reducing overall ESBL infection burden.
Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01103-0.
Collapse
Affiliation(s)
- Jane Hawkey
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| | - Kelly L Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Louise M Judd
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Taylor Harshegyi
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Luke Blakeway
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Ryan R Wick
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Adam W J Jenney
- Microbiology Unit & Department of Infectious Diseases, The Alfred Hospital, Melbourne, VIC, Australia
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia. .,Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
42
|
OXA-48-Like β-Lactamases: Global Epidemiology, Treatment Options, and Development Pipeline. Antimicrob Agents Chemother 2022; 66:e0021622. [PMID: 35856662 PMCID: PMC9380527 DOI: 10.1128/aac.00216-22] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Modern medicine is threatened by the rising tide of antimicrobial resistance, especially among Gram-negative bacteria, where resistance to β-lactams is most often mediated by β-lactamases. The penicillin and cephalosporin ascendancies were, in their turn, ended by the proliferation of TEM penicillinases and CTX-M extended-spectrum β-lactamases. These class A β-lactamases have long been considered the most important. For carbapenems, however, the threat is increasingly from the insidious rise of a class D carbapenemase, OXA-48, and its close relatives. Over the past 20 years, OXA-48 and "OXA-48-like" enzymes have proliferated to become the most prevalent enterobacterial carbapenemases across much of Europe, Northern Africa, and the Middle East. OXA-48-like enzymes are notoriously difficult to detect because they often cause only low-level in vitro resistance to carbapenems, meaning that the true burden is likely underestimated. Despite this, they are associated with carbapenem treatment failures. A highly conserved incompatibility complex IncL plasmid scaffold often carries blaOXA-48 and may carry other antimicrobial resistance genes, leaving limited treatment options. High conjugation efficiency means that this plasmid is sometimes carried by multiple Enterobacterales in a single patient. Producers evade most β-lactam-β-lactamase inhibitor combinations, though promising agents have recently been licensed, notably ceftazidime-avibactam and cefiderocol. The molecular machinery enabling global spread, current treatment options, and the development pipeline of potential new therapies for Enterobacterales that produce OXA-48-like β-lactamases form the focus of this review.
Collapse
|
43
|
Carbapenem-resistant Enterobacterales in patients with bacteraemia at tertiary academic hospitals in South Africa, 2019 - 2020: An update. S Afr Med J 2022; 112:542-552. [DOI: 10.7196/samj.2022.v112i8.16351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 11/08/2022] Open
Abstract
Background. The emergence of carbapenem-resistant Enterobacterales (CRE) has become a serious and significant public health threat worldwide, owing to the limited antimicrobial therapy options, and the elevated mortality rates associated with these infections.Objectives. To present an update on the epidemiology of CRE bloodstream infections among hospitalised patients reported under the Group for Enteric, Respiratory and Meningeal Diseases Surveillance in South Africa (GERMS-SA) between January 2019 and December 2020. Methods. Patients of all ages with CRE bacteraemia were included and isolates, when available, were sent to the reference laboratory for confirmatory testing and molecular characterisation. Multivariable logistic regression analysis was performed to assess factors associated with in-hospital mortality.
Results. We included 2 144 patients with CRE bacteraemia with a median age of 33 (interquartile range 1 - 51) years, of whom 1 145 (54.2%) were male. Klebsiella pneumoniae accounted for 79.8% of infections (n=863/1 082), of which 89.5% (n=611/683) were healthcare associated (HA). The most common carbapenemase genes were carbapenem-hydrolysing oxacillinase-48 (blaOXA-48-like) (76.8%; n=761/991), New Delhi metallo-β-lactamase (blaNDM) (21.1%; n=209/991) and Verona integron-encoded metallo-β-lactamase (blaVIM) (1.3%; n=13/991). None of the screened isolates with a colistin minimum inhibitory concentration >2 μg/mL harboured the mobilised colistin resistance (mcr)-1 to mcr-5 genes. The crude in-hospital mortality rate was 36.6% (n=377/1 029). Patients aged ≥60 years (v. 1.6 - 9 years) (adjusted odds ratio (aOR) 4.53; 95% confidence interval (CI) 2.21 - 9.28), those with comorbidities (diabetes, malignancy, renal and/or cardiovascular failure) (aOR 1.72; 95% CI 1.17 - 2.52), those with altered mental state (aOR 5.36; 95% CI 3.21 - 8.92) and those with previous antimicrobial use (aOR 1.88; 95% CI 1.27 - 2.77) had increased odds of in-hospital mortality.
Conclusion. The epidemiology of CRE bloodstream infections remained similar compared with the previous surveillance report. Most infections were HA and caused by OXA-48-like carbapenemase-producing K. pneumoniae with no plasmid-mediated colistin resistance. Standard infection control measures should be strengthened.
Collapse
|
44
|
Kuzina ES, Novikova TS, Astashkin EI, Fedyukina GN, Kislichkina AA, Kurdyumova NV, Savin IA, Ershova ON, Fursova NK. Rectal and Tracheal Carriage of Carbapenemase Genes and Class 1 and 2 Integrons in Patients in Neurosurgery Intensive Care Unit. Antibiotics (Basel) 2022; 11:886. [PMID: 35884140 PMCID: PMC9312170 DOI: 10.3390/antibiotics11070886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
The spread of multidrug-resistant Gram-negative bacteria, which is associated with the distribution of beta-lactamase genes and class 1 and 2 integrons, is a global problem. In this study, in the Moscow neurosurgery intensive care unit (neuro-ICU), the high prevalence of the above-stated genes was found to be associated with intestinal and tracheal carriage. Seven-point prevalence surveys, which included 60 patients in the neuro-ICU, were conducted weekly in the period from Oct. to Nov. 2019. A total of 293 clinical samples were analyzed, including 146 rectal and 147 tracheal swabs; 344 Gram-negative bacteria isolates were collected. Beta-lactamase genes (n = 837) were detected in the isolates, including beta-lactamase blaTEM (n = 162), blaSHV (n = 145), cephalosporinase blaCTX-M (n = 228), carbapenemase blaNDM (n = 44), blaKPC (n = 25), blaOXA-48 (n = 126), blaOXA-51-like (n = 54), blaOXA-40-like (n = 43), blaOXA-23-like (n = 8), and blaVIM (n = 2), as well as class 1 (n = 189) and class 2 (n = 12) integrons. One extensively drug-resistant Klebsiella pneumoniae strain (sequence type ST39 and capsular type K23), simultaneously carried beta-lactamase genes, blaSHV-40 and blaTEM-1B, three carbapenemase genes, blaNDM, blaKPC, and blaOXA-48, the cephalosporinase gene blaCTX-M, and two class 1 integrons. Before this study, such heavily armed strains have not been reported, suggesting the ongoing evolution of antibiotic resistance.
Collapse
Affiliation(s)
- Ekaterina S. Kuzina
- Department of Training and Improvement of Specialists, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia;
| | - Tatiana S. Novikova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia; (T.S.N.); (E.I.A.)
| | - Evgeny I. Astashkin
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia; (T.S.N.); (E.I.A.)
| | - Galina N. Fedyukina
- Department of Immunobiochemistry of Pathogenic Microorganisms, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia;
| | - Angelina A. Kislichkina
- Department of Culture Collection, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia;
| | - Natalia V. Kurdyumova
- Department of Clinical Epidemiology, National Medical Research Center of Neurosurgery Named after Academician N.N. Burdenko, 125047 Moscow, Russia; (N.V.K.); (I.A.S.); (O.N.E.)
| | - Ivan A. Savin
- Department of Clinical Epidemiology, National Medical Research Center of Neurosurgery Named after Academician N.N. Burdenko, 125047 Moscow, Russia; (N.V.K.); (I.A.S.); (O.N.E.)
| | - Olga N. Ershova
- Department of Clinical Epidemiology, National Medical Research Center of Neurosurgery Named after Academician N.N. Burdenko, 125047 Moscow, Russia; (N.V.K.); (I.A.S.); (O.N.E.)
| | - Nadezhda K. Fursova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia; (T.S.N.); (E.I.A.)
| |
Collapse
|
45
|
Gomez-Simmonds A, Annavajhala MK, Tang N, Rozenberg FD, Ahmad M, Park H, Lopatkin AJ, Uhlemann AC. Population structure of blaKPC-harbouring IncN plasmids at a New York City medical centre and evidence for multi-species horizontal transmission. J Antimicrob Chemother 2022; 77:1873-1882. [PMID: 35412609 PMCID: PMC9633718 DOI: 10.1093/jac/dkac114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/14/2022] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Carbapenem-resistant Enterobacterales (CRE) are highly concerning MDR pathogens. Horizontal transfer of broad-host-range IncN plasmids may contribute to the dissemination of the Klebsiella pneumoniae carbapenemase (KPC), spreading carbapenem resistance among unrelated bacteria. However, the population structure and genetic diversity of IncN plasmids has not been fully elucidated. OBJECTIVES We reconstructed blaKPC-harbouring IncN plasmid genomes to characterize shared gene content, structural variability, and putative horizontal transfer within and across patients and diverse bacterial clones. METHODS We performed short- and long-read sequencing and hybrid assembly on 45 CRE isolates with blaKPC-harbouring IncN plasmids. Eight serial isolates from two patients were included to assess intra-patient plasmid dynamics. Comparative genomic analysis was performed to assess structural and sequence similarity across plasmids. Within IncN sublineages defined by plasmid MLST and kmer-based clustering, phylogenetic analysis was used to identify closely related plasmids. RESULTS Comparative analysis of IncN plasmid genomes revealed substantial heterogeneity including large rearrangements in serial patient plasmids and differences in structure and content across plasmid clusters. Within plasmid sublineages, core genome content and resistance gene regions were largely conserved. Closely related plasmids (≤1 SNP) were found in highly diverse isolates, including ten pST6 plasmids found in eight bacterial clones from three different species. CONCLUSIONS Genomic analysis of blaKPC-harbouring IncN plasmids revealed the presence of several distinct sublineages as well as substantial host diversity within plasmid clusters suggestive of frequent mobilization. This study reveals complex plasmid dynamics within a single plasmid family, highlighting the challenge of tracking plasmid-mediated transmission of blaKPC in clinical settings.
Collapse
Affiliation(s)
- Angela Gomez-Simmonds
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, 630 W 168th St, New York NY 10032, USA
| | - Medini K Annavajhala
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, 630 W 168th St, New York NY 10032, USA
| | - Nina Tang
- Barnard College, Columbia University, 3009 Broadway, New York NY 10027, USA
| | - Felix D Rozenberg
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, 630 W 168th St, New York NY 10032, USA
| | - Mehrose Ahmad
- Barnard College, Columbia University, 3009 Broadway, New York NY 10027, USA
| | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, 630 W 168th St, New York NY 10032, USA
| | - Allison J Lopatkin
- Barnard College, Columbia University, 3009 Broadway, New York NY 10027, USA
- Data Science Institute, Columbia University, 550 W 120th St, New York NY 10027, USA
| | - Anne Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, 630 W 168th St, New York NY 10032, USA
| |
Collapse
|
46
|
Multidrug-resistant OXA-48/CTX-M-15 Klebsiella pneumoniae cluster in a COVID-19 Intensive Care Unit: Salient lessons for infection prevention and control during the COVID-19 pandemic. J Hosp Infect 2022; 126:64-69. [PMID: 35562071 PMCID: PMC9088048 DOI: 10.1016/j.jhin.2022.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 11/22/2022]
Abstract
Background Wards caring for COVID-19 patients, including intensive care units (ICUs), have an important focus on preventing transmission of SARS-CoV-2 to other patients and healthcare workers. Aim To describe an outbreak of carbapenemase-producing Enterobacterales (CPE) in a COVID-19 ICU and to discuss key infection control measures enabling prompt termination of the cluster. Methods CPE were isolated from clinical specimens and screening swabs from intensive care patients with COVID-19 disease and from environmental screening. Whole-genome sequencing analysis was instrumental in informing phylogenetic relationships. Findings Seven clinical isolates and one environmental carbapenemase-producing Klebsiella pneumoniae isolate – all carrying OXA-48, CTX-M-15 and outer membrane porin mutations in ompK35/ompK36 – were identified with ≤1 single nucleotide polymorphism difference, indicative of clonality. A bundle of infection control interventions including careful adherence with contact precautions and hand hygiene, twice weekly screening for multidrug-resistant organisms, strict antimicrobial stewardship, and enhanced cleaning protocols promptly terminated the outbreak. Conclusion Prolonged use of personal protective equipment is common with donning and doffing stations at the ward entrance, leaving healthcare workers prone to reduced hand hygiene practices between patients. Minimizing transmission of pathogens other than SARS-CoV-2 by careful adherence to normal contact precautions including hand hygiene, even during high patient contact manoeuvres, is critical to prevent outbreaks of multidrug-resistant organisms. Appropriate antimicrobial stewardship and screening for multidrug-resistant organisms must also be maintained throughout surge periods to prevent medium-term escalation in antimicrobial resistance rates. Whole-genome sequencing is highly informative for multidrug-resistant Enterobacterales surveillance strategies.
Collapse
|
47
|
Ledda A, Cummins M, Shaw LP, Jauneikaite E, Cole K, Lasalle F, Barry D, Turton J, Rosmarin C, Anaraki S, Wareham D, Stoesser N, Paul J, Manuel R, Cherian BP, Didelot X. Hospital outbreak of carbapenem-resistant Enterobacterales associated with a blaOXA-48 plasmid carried mostly by Escherichia coli ST399. Microb Genom 2022; 8:000675. [PMID: 35442183 PMCID: PMC9453065 DOI: 10.1099/mgen.0.000675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A hospital outbreak of carbapenem-resistant Enterobacterales was detected by routine surveillance. Whole genome sequencing and subsequent analysis revealed a conserved promiscuous blaOXA-48 carrying plasmid as the defining factor within this outbreak. Four different species of Enterobacterales were involved in the outbreak. Escherichia coli ST399 accounted for 35 of all the 55 isolates. Comparative genomics analysis using publicly available E. coli ST399 genomes showed that the outbreak E. coli ST399 isolates formed a unique clade. We developed a mathematical model of pOXA-48-like plasmid transmission between host lineages and used it to estimate its conjugation rate, giving a lower bound of 0.23 conjugation events per lineage per year. Our analysis suggests that co-evolution between the pOXA-48-like plasmid and E. coli ST399 could have played a role in the outbreak. This is the first study to report carbapenem-resistant E. coli ST399 carrying blaOXA-48 as the main cause of a plasmid-borne outbreak within a hospital setting. Our findings suggest complementary roles for both plasmid conjugation and clonal expansion in the emergence of this outbreak.
Collapse
Affiliation(s)
- Alice Ledda
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, UK
- Healthcare Associated Infections and Antimicrobial Resistance Division, National Infection Service, Public Health England, London, UK
- *Correspondence: Alice Ledda,
| | - Martina Cummins
- Department of Microbiology and Infection Control, Barts Health NHS Trust, London, UK
| | - Liam P. Shaw
- Department of Zoology, University of Oxford, Oxford, UK
| | - Elita Jauneikaite
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, UK
- NHIR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious disease, Imperial College London, Hammersmith Campus, London, UK
| | | | - Florent Lasalle
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, UK
- Microbes and Pathogens Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Deborah Barry
- Department of Microbiology and Infection Control, Barts Health NHS Trust, London, UK
| | - Jane Turton
- Healthcare Associated Infections and Antimicrobial Resistance Division, National Infection Service, Public Health England, London, UK
| | - Caryn Rosmarin
- Department of Microbiology and Infection Control, Barts Health NHS Trust, London, UK
| | - Sudy Anaraki
- North East and North Central London Health Protection Team, Public Health England, London, UK
| | - David Wareham
- Department of Microbiology and Infection Control, Barts Health NHS Trust, London, UK
| | - Nicole Stoesser
- Modernising Medical Microbiology, Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - John Paul
- Brighton and Sussex Medical school, Department of Global health and Infection, University of Sussex, Falmer, Brighton, UK
| | - Rohini Manuel
- Public Health Laboratory London, National Infection Service, Public Health England, London, UK
| | - Benny P. Cherian
- Department of Microbiology and Infection Control, Barts Health NHS Trust, London, UK
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, UK
| |
Collapse
|
48
|
Companion Animals—An Overlooked and Misdiagnosed Reservoir of Carbapenem Resistance. Antibiotics (Basel) 2022; 11:antibiotics11040533. [PMID: 35453284 PMCID: PMC9032395 DOI: 10.3390/antibiotics11040533] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/19/2022] Open
Abstract
The dissemination of antimicrobial-resistance is a major global threat affecting both human and animal health. Carbapenems are human use β-lactams of last resort; thus. the dissemination of carbapenemase-producing (CP) bacteria creates severe limitations for the treatment of multidrug-resistant bacteria in hospitalized patients. Even though carbapenems are not routinely used in veterinary medicine, reports of infection or colonization by carbapenemase-producing Enterobacterales in companion animals are being reported. NDM-5 and OXA-48-like carbapenemases are among the most frequently reported in companion animals. Like in humans, Escherichia coli and Klebsiella pneumoniae are the most represented CP Enterobacterales found in companion animals, alongside with Acinetobacter baumannii. Considering that the detection of carbapenemase-producing Enterobacterales presents several difficulties, misdiagnosis of CP bacteria in companion animals may lead to important animal and public-health consequences. It is of the upmost importance to ensure an adequate monitoring and detection of CP bacteria in veterinary microbiology in order to safeguard animal health and minimise its dissemination to humans and the environment. This review encompasses an overview of the carbapenemase detection methods currently available, aiming to guide veterinary microbiologists on the best practices to improve its detection for clinical or research purposes.
Collapse
|
49
|
In Vitro Investigation of the Impact of Bacterial-Fungal Interaction on Carbapenem-Resistant Klebsiella pneumoniae. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082541. [PMID: 35458737 PMCID: PMC9026558 DOI: 10.3390/molecules27082541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/17/2022]
Abstract
Fungal-bacterial co-culturing is a potential technique for the production of secondary metabolites with antibacterial activity. Twenty-nine fungal species were screened in a co-culture with carbapenem-resistant Klebsiella pneumoniae at different temperatures. A temperature of 37 ° showed inhibition of bacterial growth. Antimicrobial susceptibility testing for K. pneumoniae was conducted to compare antibiotic resistance patterns before and after the co-culture. Genotypic comparison of the K. pneumonia was performed using next generation sequencing (NGS). It was shown that two out of five K. pneumoniae, with sequence type ST 101 isolates, lost bla-OXA48, bla-CTX-M-14, tir, strA and strB genes after the co-culture with Scopulariopsis brevicaulis fungus. The other three isolates (ST 383 and 147) were inhibited in the co-culture but did not show any changes in resistance. The total ethyl acetate extract of the fungal-bacterial co-culture was tested against K. pneumoniae using a disc diffusion method. The concentration of the crude extract was 0.97 mg/µL which resulted in total inhibition of the bacteria. Using chromatographic techniques, the purified compounds were identified as 11-octadecenoic acid, 2,4-Di-tert-butylphenol, 2,3-Butanediol and 9-octadecenamide. These were tested against K. pneumoniae using the well diffusion method at a concentration of 85 µg/µL which resulted in total inhibition of bacteria. The co-culture results indicated that bacteria under chemical stress showed variable responses and induced fungal secondary metabolites with antibacterial activities.
Collapse
|
50
|
Lázaro-Perona F, Dahdouh E, Sotillo A, Pérez-Blanco V, Villa J, Viedma E, Ruiz-Carrascoso G, Mingorance J. Dissemination of a single ST11 clone of OXA-48-producing Klebsiella pneumoniae within a large polyclonal hospital outbreak determined by genomic sequencing. Microb Genom 2022; 8. [PMID: 35394416 PMCID: PMC9453077 DOI: 10.1099/mgen.0.000808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The population structure of a set of OXA-48-producing Klebsiella pneumoniae isolates belonging to sequence type 11 (ST11 Kp-OXA) and obtained from two hospitals in Madrid in the period from 2012 to 2015 was studied by genome sequencing. Overall, 97 ST11 Kp-OXA isolates were sequenced and their population structure and demography were studied by Bayesian phylodynamic analysis using core-genome SNVs. In total, 92 isolates were from Hospital La Paz, 57 of them from two selected units. The remaining five isolates were from different units of Hospital Doce de Octubre. Altogether, 96 out of the 97 ST11 Kp-OXA isolates could be ascribed to a single lineage that evolved into three sublineages. Demographic inference showed an expansion of the ST11 Kp-OXA in the first half of 2013 in agreement with the registered incidences. Dated phylogeny showed transmission clusters within hospital wards, between wards and between hospitals. The ST11 Kp-OXA outbreak in Hospital La Paz was largely due to the expansion of a single clone that was transmitted between different units and to Hospital Doce de Octubre. This clone diverged into three sub-lineages and spread out following a mixed mode of neutral core-genome evolution with some features of antibiotic selection, frequent large deletions and plasmid loss and gain events.
Collapse
Affiliation(s)
- Fernando Lázaro-Perona
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de La Castellana 261, 28046 Madrid, Spain
| | - Elias Dahdouh
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de La Castellana 261, 28046 Madrid, Spain
| | - Alma Sotillo
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de La Castellana 261, 28046 Madrid, Spain
| | - Verónica Pérez-Blanco
- Servicio de Medicina Preventiva, Hospital Universitario La Paz, IdiPAZ, Paseo de La Castellana 261, 28046 Madrid, Spain
| | - Jennifer Villa
- Servicio de Microbiología, Hospital Universitario 12 de Octubre, Imas12, Avenida de Córdoba sn, Madrid 28041, Spain
| | - Esther Viedma
- Servicio de Microbiología, Hospital Universitario 12 de Octubre, Imas12, Avenida de Córdoba sn, Madrid 28041, Spain
| | - Guillermo Ruiz-Carrascoso
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de La Castellana 261, 28046 Madrid, Spain
| | - Jesús Mingorance
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de La Castellana 261, 28046 Madrid, Spain
| |
Collapse
|