1
|
Süssmuth RD, Kulike‐Koczula M, Gao P, Kosol S. Fighting Antimicrobial Resistance: Innovative Drugs in Antibacterial Research. Angew Chem Int Ed Engl 2025; 64:e202414325. [PMID: 39611429 PMCID: PMC11878372 DOI: 10.1002/anie.202414325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/30/2024]
Abstract
In the fight against bacterial infections, particularly those caused by multi-resistant pathogens known as "superbugs", the need for new antibacterials is undoubted in scientific communities and is by now also widely perceived by the general population. However, the antibacterial research landscape has changed considerably over the past years. With few exceptions, the majority of big pharma companies has left the field and thus, the decline in R&D on antibacterials severely impacts the drug pipeline. In recent years, antibacterial research has increasingly relied on smaller companies or academic research institutions, which mostly have only limited financial resources, to carry a drug discovery and development process from the beginning and through to the beginning of clinical phases. This review formulates the requirements for an antibacterial in regard of targeted pathogens, resistance mechanisms and drug discovery. Strategies are shown for the discovery of new antibacterial structures originating from natural sources, by chemical synthesis and more recently from artificial intelligence approaches. This is complemented by principles for the computer-aided design of antibacterials and the refinement of a lead structure. The second part of the article comprises a compilation of antibacterial molecules classified according to bacterial target structures, e.g. cell wall synthesis, protein synthesis, as well as more recently emerging target classes, e.g. fatty acid synthesis, proteases and membrane proteins. Aspects of the origin, the antibacterial spectrum, resistance and the current development status of the presented drug molecules are highlighted.
Collapse
Affiliation(s)
- Roderich D. Süssmuth
- Institut für ChemieTechnische Universität BerlinStrasse des 17. Juni 124, TC210629BerlinGermany
| | - Marcel Kulike‐Koczula
- Institut für ChemieTechnische Universität BerlinStrasse des 17. Juni 124, TC210629BerlinGermany
| | - Peng Gao
- Institut für ChemieTechnische Universität BerlinStrasse des 17. Juni 124, TC210629BerlinGermany
| | - Simone Kosol
- Medical School BerlinDepartment Human MedicineRüdesheimer Strasse 5014195BerlinGermany
| |
Collapse
|
2
|
Heimann D, Kohnhäuser D, Kohnhäuser AJ, Brönstrup M. Antibacterials with Novel Chemical Scaffolds in Clinical Development. Drugs 2025; 85:293-323. [PMID: 39847315 PMCID: PMC11891108 DOI: 10.1007/s40265-024-02137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/24/2025]
Abstract
The rise of antimicrobial resistance represents a significant global health threat, driven by the diminishing efficacy of existing antibiotics, a lack of novel antibacterials entering the market, and an over- or misuse of existing antibiotics, which accelerates the evolution of resistant bacterial strains. This review focuses on innovative therapies by highlighting 19 novel antibacterials in clinical development as of June 2024. These selected compounds are characterized by new chemical scaffolds, novel molecular targets, and/or unique mechanisms of action, which render their potential to break antimicrobial resistance particularly high. A detailed analysis of the scientific foundations behind each of these compounds is provided, including their pharmacodynamic profiles, current development state, and potential for overcoming existing limitations in antibiotic therapy. By presenting this subset of chemically novel antibacterials, the review highlights the ability to innovate in antibiotic drug development to counteract bacterial resistance and improve treatment outcomes.
Collapse
Affiliation(s)
- Dominik Heimann
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Daniel Kohnhäuser
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | | | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany.
- Institute of Organic Chemistry and Biomolecular Drug Research Centre (BMWZ), Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany.
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Inhoffenstraße 7, 38124, Braunschweig, Germany.
| |
Collapse
|
3
|
Wójcicka A, Mączyński M. Antimicrobial Activity of Naphthyridine Derivatives. Pharmaceuticals (Basel) 2024; 17:1705. [PMID: 39770547 PMCID: PMC11678664 DOI: 10.3390/ph17121705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
To combat the problem of the increasing drug resistance of microorganisms, it is necessary to constantly search for new medicinal substances that will demonstrate more effective mechanisms of action with a limited number of side effects. Naphthyridines are N-heterocyclic compounds containing a fused system of two pyridine rings, occurring in the form of six structural isomers with different positions of nitrogen atoms, which exhibit a wide spectrum of pharmacological activity, in particular antimicrobial properties. This review presents most of the literature data about the synthetic and natural naphthyridine derivatives that have been reported to possess antimicrobial activity.
Collapse
Affiliation(s)
- Anna Wójcicka
- Department of Organic Chemistry and Pharmaceutical Technology, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska Str., 50-556 Wroclaw, Poland;
| | | |
Collapse
|
4
|
Chakraborty J, Mondal R, Sultana J, Banerjee S, Mandal AK, Sarkar H. Repurposing of dibucaine and niflumic acid as antimicrobial agents in combination with antibiotics against Staphylococcus aureus. J Antibiot (Tokyo) 2024; 77:746-756. [PMID: 38965361 DOI: 10.1038/s41429-024-00759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/19/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
The versatile human commensal bacteria and pathogen Staphylococcus aureus cause several community and hospital-acquired illnesses associated with significant morbidity and death. Antibiotic therapy for S. aureus infections has grown increasingly difficult as the organism has developed a wide spectrum of antibiotic resistance mechanisms. This situation emphasizes the significance of developing and advocating new antimicrobials for preventative and therapeutic measures. Our study aimed to identify and evaluate new therapeutic options against S. aureus. We investigated the efficacy of two drugs, dibucaine, and niflumic acid, as potential adjuvant for anti-staphylococcal therapeutics. Dibucaine and niflumic acid found to have bactericidal activity against S. aureus. These drugs acted synergistically with antibiotics reducing the required dose of antibiotics up to 4 times. In combination with antibiotics, they were effectively and synergistically inhibited the formation of biofilms of S. aureus. The best synergistic partner of dibucaine was with kanamycin and tetracycline, whereas niflumic acid was with streptomycin and ampicillin. Both the drugs showed significant efflux inhibition in the bacteria. Moreover, the drugs are found to be safe at synergistic doses. Our findings suggest that dibucaine and niflumic acid could be potential adjuvant with antibiotics for the treatment of S. aureus infections. Their ability to significantly enhance the efficacy of antibiotics highlights their potential clinical significance as adjunct therapies.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- Cell Biology and Bacteriology Laboratory, Department of Microbiology, Raiganj University, Raiganj, Uttar Dinajpur, 733134, India
| | - Rittick Mondal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, 733134, India
| | - Jasmine Sultana
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, 700026, India
| | - Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, 700026, India
| | - Amit Kumar Mandal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, 733134, India
| | - Hironmoy Sarkar
- Cell Biology and Bacteriology Laboratory, Department of Microbiology, Raiganj University, Raiganj, Uttar Dinajpur, 733134, India.
| |
Collapse
|
5
|
Butler MS, Vollmer W, Goodall ECA, Capon RJ, Henderson IR, Blaskovich MAT. A Review of Antibacterial Candidates with New Modes of Action. ACS Infect Dis 2024; 10:3440-3474. [PMID: 39018341 PMCID: PMC11474978 DOI: 10.1021/acsinfecdis.4c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/19/2024]
Abstract
There is a lack of new antibiotics to combat drug-resistant bacterial infections that increasingly threaten global health. The current pipeline of clinical-stage antimicrobials is primarily populated by "new and improved" versions of existing antibiotic classes, supplemented by several novel chemical scaffolds that act on traditional targets. The lack of fresh chemotypes acting on previously unexploited targets (the "holy grail" for new antimicrobials due to their scarcity) is particularly unfortunate as these offer the greatest opportunity for innovative breakthroughs to overcome existing resistance. In recognition of their potential, this review focuses on this subset of high value antibiotics, providing chemical structures where available. This review focuses on candidates that have progressed to clinical trials, as well as selected examples of promising pioneering approaches in advanced stages of development, in order to stimulate additional research aimed at combating drug-resistant infections.
Collapse
Affiliation(s)
- Mark S. Butler
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Waldemar Vollmer
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Emily C. A. Goodall
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Robert J. Capon
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Ian R. Henderson
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Mark A. T. Blaskovich
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
6
|
Loukili EH, Ouahabi S, Elbouzidi A, Taibi M, Yahyaoui MI, Asehraou A, Azougay A, Saleh A, Al Kamaly O, Parvez MK, El Guerrouj B, Touzani R, Ramdani M. Phytochemical Composition and Pharmacological Activities of Three Essential Oils Collected from Eastern Morocco (Origanum compactum, Salvia officinalis, and Syzygium aromaticum): A Comparative Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:3376. [PMID: 37836118 PMCID: PMC10574104 DOI: 10.3390/plants12193376] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023]
Abstract
Throughout history, essential oils have been employed for their pleasing scents and potential therapeutic benefits. These oils have shown promise in various areas, including aromatherapy, personal care products, natural remedies, and even as alternatives to traditional cleaning agents or pest control solutions. The study aimed to explore the chemical makeup, antioxidant, and antibacterial properties of Origanum compactum Benth., Salvia officinalis L., and Syzygium aromaticum (L.) Merr. et Perry. Initially, the composition of the three essential oils, O. compactum (HO), S. officinalis (HS), and S. aromaticum (HC) was analyzed using GC-MS technology, revealing significant differences in the identified compounds. α-thujone emerged as the predominant volatile component in the oils, making up 78.04% of the composition, followed by eugenol, which constituted 72.66% and 11.22% of the HC and HO oils, respectively. To gauge antioxidant capabilities, tests involving DPPH scavenging capacity and total antioxidant capacity were conducted. Antioxidant activity was determined through the phosphomolybdate test and the DPPH• radical scavenging activity, with the HO essential oil displaying significant scavenging capacity (IC50 of 0.12 ± 0.02 mg/mL), similar to ascorbic acid (IC50 of 0.26 ± 0.24 mg/mL). Similarly, the TAC assay for HO oil revealed an IC50 of 1086.81 ± 0.32 µM AAE/mg. Additionally, the oils' effectiveness against four bacterial strains, namely Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Listeria monocytogenes, and five fungi, Geotrichum candidum, Aspergillus niger, Saccharomyces cerevisiae, Candida glabrata, and Candida albicans, was tested in vitro. The examined essential oils generally exhibited limited antimicrobial effects, with the exception of HC oil, which demonstrated an exceptionally impressive level of antifungal activity. In order to clarify the antioxidant, antibacterial, and antifungal effects of the identified plant compounds, we employed computational methods, specifically molecular docking. This technique involved studying the interactions between these compounds and established protein targets associated with antioxidant, antibacterial, and antifungal activities.
Collapse
Affiliation(s)
- El Hassania Loukili
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (S.O.); (R.T.); (M.R.)
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Mohammed First University, Oujda 60000, Morocco;
| | - Safae Ouahabi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (S.O.); (R.T.); (M.R.)
| | - Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco;
| | - Mohamed Taibi
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Mohammed First University, Oujda 60000, Morocco;
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco;
| | - Meryem Idrissi Yahyaoui
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (M.I.Y.); (A.A.)
| | - Abdeslam Asehraou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (M.I.Y.); (A.A.)
| | - Abdellah Azougay
- Laboratory of Applied Geosciences (LGA), Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco;
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (A.S.); (O.A.K.)
| | - Omkulthom Al Kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (A.S.); (O.A.K.)
| | - Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy King Saud University, P.O. Box 3660, Riyadh 11481, Saudi Arabia;
| | - Bouchra El Guerrouj
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Mohammed First University, Oujda 60000, Morocco;
| | - Rachid Touzani
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (S.O.); (R.T.); (M.R.)
| | - Mohammed Ramdani
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (S.O.); (R.T.); (M.R.)
| |
Collapse
|
7
|
Butler MS, Henderson IR, Capon RJ, Blaskovich MAT. Antibiotics in the clinical pipeline as of December 2022. J Antibiot (Tokyo) 2023; 76:431-473. [PMID: 37291465 PMCID: PMC10248350 DOI: 10.1038/s41429-023-00629-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 06/10/2023]
Abstract
The need for new antibacterial drugs to treat the increasing global prevalence of drug-resistant bacterial infections has clearly attracted global attention, with a range of existing and upcoming funding, policy, and legislative initiatives designed to revive antibacterial R&D. It is essential to assess whether these programs are having any real-world impact and this review continues our systematic analyses that began in 2011. Direct-acting antibacterials (47), non-traditional small molecule antibacterials (5), and β-lactam/β-lactamase inhibitor combinations (10) under clinical development as of December 2022 are described, as are the three antibacterial drugs launched since 2020. Encouragingly, the increased number of early-stage clinical candidates observed in the 2019 review increased in 2022, although the number of first-time drug approvals from 2020 to 2022 was disappointingly low. It will be critical to monitor how many Phase-I and -II candidates move into Phase-III and beyond in the next few years. There was also an enhanced presence of novel antibacterial pharmacophores in early-stage trials, and at least 18 of the 26 phase-I candidates were targeted to treat Gram-negative bacteria infections. Despite the promising early-stage antibacterial pipeline, it is essential to maintain funding for antibacterial R&D and to ensure that plans to address late-stage pipeline issues succeed.
Collapse
Affiliation(s)
- Mark S Butler
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, 4072, Australia.
| | - Ian R Henderson
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Robert J Capon
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, 4072, Australia.
| |
Collapse
|
8
|
Ouahabi S, Loukili EH, Elbouzidi A, Taibi M, Bouslamti M, Nafidi HA, Salamatullah AM, Saidi N, Bellaouchi R, Addi M, Ramdani M, Bourhia M, Hammouti B. Pharmacological Properties of Chemically Characterized Extracts from Mastic Tree: In Vitro and In Silico Assays. Life (Basel) 2023; 13:1393. [PMID: 37374175 DOI: 10.3390/life13061393] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The mastic tree, scientifically known as Pistacia lentiscus, which belongs to the Anacardiaceae family, was used in this study. The aim of this research was to analyze the chemical composition of this plant and assess its antioxidant and antibacterial properties using both laboratory experiments and computer simulations through molecular docking, a method that predicts the binding strength of a small molecule to a protein. The soxhlet method (SE) was employed to extract substances from the leaves of P. lentiscus found in the eastern region of Morocco. Hexane and methanol were the solvents used for the extraction process. The n-hexane extract was subjected to gas chromatography-mass spectrometry (GC/MS) to identify its fatty acid content. The methanolic extract underwent high-performance liquid chromatography with a diode-array detector (HPLC-DAD) to determine the presence of phenolic compounds. Antioxidant activity was assessed using the DPPH spectrophotometric test. The findings revealed that the main components in the n-hexane extract were linoleic acid (40.97 ± 0.33%), oleic acid (23.69 ± 0.12%), and palmitic acid (22.83 ± 0.10%). Catechin (37.05 ± 0.15%) was identified as the predominant compound in the methanolic extract through HPLC analysis. The methanolic extract exhibited significant DPPH radical scavenging, with an IC50 value of 0.26 ± 0.14 mg/mL. The antibacterial activity was tested against Staphylococcus aureus, Listeria innocua, and Escherichia coli, while the antifungal activity was evaluated against Geotrichum candidum and Rhodotorula glutinis. The P. lentiscus extract demonstrated notable antimicrobial effects. Additionally, apart from molecular docking, other important factors, such as drug similarity, drug metabolism and distribution within the body, potential adverse effects, and impact on bodily systems, were considered for the substances derived from P. lentiscus. Scientific algorithms, such as Prediction of Activity Spectra for Substances (PASS), Absorption, Distribution, Metabolism, Excretion (ADME), and Pro-Tox II, were utilized for this assessment. The results obtained from this research support the traditional medicinal usage of P. lentiscus and suggest its potential for drug development.
Collapse
Affiliation(s)
- Safae Ouahabi
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco
| | - El Hassania Loukili
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco
| | - Amine Elbouzidi
- Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
| | - Mohamed Taibi
- Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
| | - Mohammed Bouslamti
- Laboratories of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Nezha Saidi
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco
| | - Reda Bellaouchi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
| | - Mohamed Addi
- Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
| | - Mohamed Ramdani
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco
| | - Belkheir Hammouti
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco
| |
Collapse
|
9
|
Ruggieri F, Compagne N, Antraygues K, Eveque M, Flipo M, Willand N. Antibiotics with novel mode of action as new weapons to fight antimicrobial resistance. Eur J Med Chem 2023; 256:115413. [PMID: 37150058 DOI: 10.1016/j.ejmech.2023.115413] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/09/2023] [Accepted: 04/22/2023] [Indexed: 05/09/2023]
Abstract
Antimicrobial resistance (AMR) is a major public health issue, causing 5 million deaths per year. Without any action plan, AMR will be in a near future the leading cause of death ahead of cancer. AMR comes from the ability of bacteria to rapidly develop and share resistance mechanisms towards current antibiotics, rendering them less effective. To circumvent this issue and avoid the phenomenon of cross-resistance, new antibiotics acting on novel targets or with new modes of action are required. Today, the pipeline of potential new treatments with these characteristics includes promising compounds such as gepotidacin, zoliflodacin, ibezapolstat, MGB-BP-3, CRS-3123, afabicin and TXA-709, which are currently in clinical trials, and lefamulin, which has been recently approved by FDA and EMA. In this review, we report the chemical synthesis, mode of action, structure-activity relationships, in vitro and in vivo activities as well as clinical data of these eight small molecules listed above.
Collapse
Affiliation(s)
- Francesca Ruggieri
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Nina Compagne
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Kevin Antraygues
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Maxime Eveque
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Marion Flipo
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France.
| |
Collapse
|
10
|
Taibi M, Elbouzidi A, Ou-Yahia D, Dalli M, Bellaouchi R, Tikent A, Roubi M, Gseyra N, Asehraou A, Hano C, Addi M, El Guerrouj B, Chaabane K. Assessment of the Antioxidant and Antimicrobial Potential of Ptychotis verticillata Duby Essential Oil from Eastern Morocco: An In Vitro and In Silico Analysis. Antibiotics (Basel) 2023; 12:antibiotics12040655. [PMID: 37107017 PMCID: PMC10135233 DOI: 10.3390/antibiotics12040655] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Ptychotis verticillata Duby, referred to as Nûnkha in the local language, is a medicinal plant that is native to Morocco. This particular plant is a member of the Apiaceae family and has a longstanding history in traditional medicine and has been utilized for therapeutic purposes by practitioners for generations. The goal of this research is to uncover the phytochemical makeup of the essential oil extracted from P. verticillata, which is indigenous to the Touissite region in Eastern Morocco. The extraction of the essential oil of P. verticillata (PVEO) was accomplished through the use of hydro-distillation via a Clevenger apparatus. The chemical profile of the essential oil was then determined through analysis utilizing gas chromatography–mass spectrometry (GC/MS). The study findings indicated that the essential oil of P. verticillata is composed primarily of Carvacrol (37.05%), D-Limonene (22.97%), γ-Terpinene (15.97%), m-Cymene (12.14%) and Thymol (8.49%). The in vitro antioxidant potential of PVEO was evaluated using two methods: the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical trapping assay and the ferric reducing antioxidant power (FRAP) method. The data demonstrated considerable radical scavenging and relative antioxidative power. Escherichia coli, Staphylococcus aureus, Listeria innocua, and Pseudomonas aeruginosa were the most susceptible bacterial strains tested, while Geotrichum candidum, Candida albicans, and Rhodotorula glutinis were the most resilient fungi strains. PVEO had broad-spectrum antifungal and antibacterial properties. To elucidate the antioxidative and antibacterial characteristics of the identified molecules, we applied the methodology of molecular docking, a computational approach that forecasts the binding of a small molecule to a protein. Additionally, we utilized the Prediction of Activity Spectra for Substances (PASS) algorithm; Absorption, Distribution, Metabolism, and Excretion (ADME); and Pro-Tox II (to predict the toxicity in silico) tests to demonstrate PVEO’s identified compounds’ drug-likeness, pharmacokinetic properties, the anticipated safety features after ingestion, and the potential pharmacological activity. Finally, our findings scientifically confirm the ethnomedicinal usage and usefulness of this plant, which may be a promising source for future pharmaceutical development.
Collapse
Affiliation(s)
- Mohamed Taibi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco
| | - Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
| | - Douaae Ou-Yahia
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco
| | - Mohammed Dalli
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
- Laboratory of Microbiology, Faculty of Medicine and Pharmacy, University Mohammed The First, Oujda 60000, Morocco
| | - Reda Bellaouchi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
| | - Aziz Tikent
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
| | - Mohammed Roubi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
| | - Nadia Gseyra
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
| | - Abdeslam Asehraou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, University of Orleans, CEDEX 2, 45067 Orléans, France
- Correspondence: (C.H.); (M.A.)
| | - Mohamed Addi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
- Correspondence: (C.H.); (M.A.)
| | - Bouchra El Guerrouj
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco
| | - Khalid Chaabane
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
| |
Collapse
|
11
|
Alkatheri AH, Yap PSX, Abushelaibi A, Lai KS, Cheng WH, Erin Lim SH. Microbial Genomics: Innovative Targets and Mechanisms. Antibiotics (Basel) 2023; 12:190. [PMID: 36830101 PMCID: PMC9951906 DOI: 10.3390/antibiotics12020190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Multidrug resistance (MDR) has become an increasing threat to global health because bacteria can develop resistance to antibiotics over time. Scientists worldwide are searching for new approaches that go beyond traditional antibiotic discovery and development pipelines. Advances in genomics, however, opened up an unexplored therapeutic opportunity for the discovery of new antibacterial agents. Genomic approaches have been used to discover several novel antibiotics that target critical processes for bacterial growth and survival, including histidine kinases (HKs), LpxC, FabI, peptide deformylase (PDF), and aminoacyl-tRNA synthetases (AaRS). In this review, we will discuss the use of microbial genomics in the search for innovative and promising drug targets as well as the mechanisms of action for novel antimicrobial agents. We will also discuss future directions on how the utilization of the microbial genomics approach could improve the odds of antibiotic development having a more successful outcome.
Collapse
Affiliation(s)
- Asma Hussain Alkatheri
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Polly Soo-Xi Yap
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Aisha Abushelaibi
- Office of Campus Director, Abu Dhabi Colleges, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Nilai 71800, Malaysia
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| |
Collapse
|
12
|
Essential Paralogous Proteins as Potential Antibiotic Multitargets in Escherichia coli. Microbiol Spectr 2022; 10:e0204322. [PMID: 36445138 PMCID: PMC9769728 DOI: 10.1128/spectrum.02043-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Antimicrobial resistance threatens our current standards of care for the treatment and prevention of infectious disease. Antibiotics that have multiple targets have a lower propensity for the development of antibiotic resistance than those that have single targets and therefore represent an important tool in the fight against antimicrobial resistance. In this work, groups of essential paralogous proteins were identified in the important Gram-negative pathogen Escherichia coli that could represent novel targets for multitargeting antibiotics. These groups include targets from a broad range of essential macromolecular and biosynthetic pathways, including cell wall synthesis, membrane biogenesis, transcription, translation, DNA replication, fatty acid biosynthesis, and riboflavin and isoprenoid biosynthesis. Importantly, three groups of clinically validated antibiotic multitargets were identified using this method: the two subunits of the essential topoisomerases, DNA gyrase and topoisomerase IV, and one pair of penicillin-binding proteins. An additional eighteen protein groups represent potentially novel multitargets that could be explored in drug discovery efforts aimed at developing compounds having multiple targets in E. coli and other bacterial pathogens. IMPORTANCE Many types of bacteria have gained resistance to existing antibiotics used in medicine today. Therefore, new antibiotics with novel mechanisms must continue to be developed. One tool to prevent the development of antibiotic resistance is for a single drug to target multiple processes in a bacterium so that more than one change must arise for resistance to develop. The work described here provides a comprehensive search for proteins in the bacterium Escherichia coli that could be targets for such multitargeting antibiotics. Several groups of proteins that are already targets of clinically used antibiotics were identified, indicating that this approach can uncover clinically relevant antibiotic targets. In addition, eighteen currently unexploited groups of proteins were identified, representing new multitargets that could be explored in antibiotic research and development.
Collapse
|
13
|
Walesch S, Birkelbach J, Jézéquel G, Haeckl FPJ, Hegemann JD, Hesterkamp T, Hirsch AKH, Hammann P, Müller R. Fighting antibiotic resistance-strategies and (pre)clinical developments to find new antibacterials. EMBO Rep 2022; 24:e56033. [PMID: 36533629 PMCID: PMC9827564 DOI: 10.15252/embr.202256033] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Antibacterial resistance is one of the greatest threats to human health. The development of new therapeutics against bacterial pathogens has slowed drastically since the approvals of the first antibiotics in the early and mid-20th century. Most of the currently investigated drug leads are modifications of approved antibacterials, many of which are derived from natural products. In this review, we highlight the challenges, advancements and current standing of the clinical and preclinical antibacterial research pipeline. Additionally, we present novel strategies for rejuvenating the discovery process and advocate for renewed and enthusiastic investment in the antibacterial discovery pipeline.
Collapse
Affiliation(s)
- Sebastian Walesch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Joy Birkelbach
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Gwenaëlle Jézéquel
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany
| | - F P Jake Haeckl
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Julian D Hegemann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Thomas Hesterkamp
- Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany,Helmholtz International Lab for Anti‐InfectivesSaarbrückenGermany
| | - Peter Hammann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany,Helmholtz International Lab for Anti‐InfectivesSaarbrückenGermany
| |
Collapse
|
14
|
Jalil V, Khan M, Haider SZ, Shamim S. Investigation of the Antibacterial, Anti-Biofilm, and Antioxidative Effect of Piper betle Leaf Extract against Bacillus gaemokensis MW067143 Isolated from Dental Caries, an In Vitro-In Silico Approach. Microorganisms 2022; 10:2485. [PMID: 36557738 PMCID: PMC9788100 DOI: 10.3390/microorganisms10122485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 12/23/2022] Open
Abstract
Among oral diseases, dental caries is one of the most frequent to affect human health. The current research work aimed to ascertain the antibacterial, anti-biofilm, and antioxidative potential of Piper betle leaf extract against bacteria isolated from dental caries. Analysis for the presence of phytochemical compounds revealed compounds, such as tannins, steroids, phenolic compounds, and alkaloids, which were also confirmed by TLC and FTIR. GC-MS analysis elucidated the presence of 20 phytocompounds, among which were some well-reported bioactive compounds. The chloroform extract of P. betle demonstrated good antibacterial activity (7 mm) and minimum inhibitory concentration (MIC) (100 mg mL-1) against Bacillus gaemokensis MW067143, which was the frequent biofilm producer among isolated bacterial strains. Fractions of the extract were isolated through column chromatography, after which the antibacterial activity was again evaluated. Spirost-8-en-11-one,3-hydroxy(3β,5α,14β,20β,22β,25R), an oxosteroid in nature, was observed to exhibit remarkable antibacterial potential (12 mm) against B. gaemokensis. Bacterial cells treated with P. betle extract had elevated SOD, APOX, POX, and GR activity, while its proteolytic activity against whole bacterial proteins was pronounced with the suppression of several proteins (50, 40, 15, and 10 kDa) in SDS-PAGE. Bacterial cells treated with P. betle extract demonstrated decreased growth, while the extract was also observed to exhibit inhibition of biofilm formation (70.11%) and demolition of established B. gaemokensis biofilms (57.98%). SEM analysis revealed significant changes to bacterial morphology post treatment with P. betle, with cellular disintegration being prominent. In silico network pharmacology analysis elucidated proteins like ESR1 and IL6 to be majorly involved in biological pathways of dental caries, which also interact with the protective ability of P. betle. Gene Ontology (GO) terms and KEGG pathways were also screened using enrichment analysis. Molecular docking demonstrated the highest binding affinity of Spirost-8-en-11-one,3-hydroxy-,(3β,5α,14β,20β,22β,25R) with bacterial proteins FabI (-12 kcal/mol), MurB (-17.1 kcal/mol), and FtsZ (-14.9 kcal/mol). Therefore, it is suggested that P. betle can serve a potentially therapeutic role and could be used in the preparation of herbal formulations for managing bacterial flora.
Collapse
Affiliation(s)
| | | | | | - Saba Shamim
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Defence Road Campus, Off-Bhobatian Chowk, Lahore 54000, Pakistan
| |
Collapse
|
15
|
Parker E, Cain BN, Hajian B, Ulrich RJ, Geddes EJ, Barkho S, Lee HY, Williams JD, Raynor M, Caridha D, Zaino A, Shekhar M, Muñoz KA, Rzasa KM, Temple ER, Hunt D, Jin X, Vuong C, Pannone K, Kelly AM, Mulligan MP, Lee KK, Lau GW, Hung DT, Hergenrother PJ. An Iterative Approach Guides Discovery of the FabI Inhibitor Fabimycin, a Late-Stage Antibiotic Candidate with In Vivo Efficacy against Drug-Resistant Gram-Negative Infections. ACS CENTRAL SCIENCE 2022; 8:1145-1158. [PMID: 36032774 PMCID: PMC9413440 DOI: 10.1021/acscentsci.2c00598] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 05/13/2023]
Abstract
Genomic studies and experiments with permeability-deficient strains have revealed a variety of biological targets that can be engaged to kill Gram-negative bacteria. However, the formidable outer membrane and promiscuous efflux pumps of these pathogens prevent many candidate antibiotics from reaching these targets. One such promising target is the enzyme FabI, which catalyzes the rate-determining step in bacterial fatty acid biosynthesis. Notably, FabI inhibitors have advanced to clinical trials for Staphylococcus aureus infections but not for infections caused by Gram-negative bacteria. Here, we synthesize a suite of FabI inhibitors whose structures fit permeation rules for Gram-negative bacteria and leverage activity against a challenging panel of Gram-negative clinical isolates as a filter for advancement. The compound to emerge, called fabimycin, has impressive activity against >200 clinical isolates of Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii, and does not kill commensal bacteria. X-ray structures of fabimycin in complex with FabI provide molecular insights into the inhibition. Fabimycin demonstrates activity in multiple mouse models of infection caused by Gram-negative bacteria, including a challenging urinary tract infection model. Fabimycin has translational promise, and its discovery provides additional evidence that antibiotics can be systematically modified to accumulate in Gram-negative bacteria and kill these problematic pathogens.
Collapse
Affiliation(s)
- Erica
N. Parker
- Department
of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Brett N. Cain
- Department
of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Behnoush Hajian
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Rebecca J. Ulrich
- Department
of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Emily J. Geddes
- Department
of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Sulyman Barkho
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Hyang Yeon Lee
- Department
of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - John D. Williams
- Walter
Reed Army Institute of Research, Silver Spring, Maryland 20910 United States
| | - Malik Raynor
- Walter
Reed Army Institute of Research, Silver Spring, Maryland 20910 United States
| | - Diana Caridha
- Walter
Reed Army Institute of Research, Silver Spring, Maryland 20910 United States
| | - Angela Zaino
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Mrinal Shekhar
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Kristen A. Muñoz
- Department
of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Kara M. Rzasa
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Emily R. Temple
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Diana Hunt
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, Boston, Massachusetts 02115, United States
| | - Xiannu Jin
- Walter
Reed Army Institute of Research, Silver Spring, Maryland 20910 United States
| | - Chau Vuong
- Walter
Reed Army Institute of Research, Silver Spring, Maryland 20910 United States
| | - Kristina Pannone
- Walter
Reed Army Institute of Research, Silver Spring, Maryland 20910 United States
| | - Aya M. Kelly
- Department
of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Michael P. Mulligan
- Department
of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Katie K. Lee
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Gee W. Lau
- Department
of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Deborah T. Hung
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, Boston, Massachusetts 02115, United States
| | - Paul J. Hergenrother
- Department
of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
16
|
Katiki M, Neetu N, Pratap S, Kumar P. Biochemical and structural basis for Moraxella catarrhalis enoyl-acyl carrier protein reductase (FabI) inhibition by triclosan and estradiol. Biochimie 2022; 198:8-22. [PMID: 35276316 DOI: 10.1016/j.biochi.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 02/06/2022] [Accepted: 02/22/2022] [Indexed: 11/02/2022]
Abstract
The enoyl-acyl carrier protein reductase (ENR) is an established drug target and catalyzes the last reduction step of the fatty acid elongation cycle. Here, we report the crystal structures of FabI from Moraxella catarrhalis (McFabI) in the apo form, binary complex with NAD+ and ternary complex with NAD + -triclosan (TCL) determined at 2.36, 2.12 and 2.22 Å resolutions, respectively. The comparative study of these three structures revealed three different conformational states for the substrate-binding loop (SBL), including an unstructured intermediate, a structured intermediate and a closed conformation in the apo, binary and ternary complex forms, respectively; indicating the flexibility of SBL during the ligand binding. Virtual screening has suggested that estradiol cypionate may be a potential inhibitor of McFabI. Subsequently, estradiol (EST), the natural form of estradiol cypionate, was assessed for its FabI-binding and -inhibition properties. In vitro studies demonstrated that TCL and EST bind to McFabI with high affinity (KD = 0.038 ± 0.004 and 5 ± 0.06 μM respectively) and inhibit its activity (Ki = 62.93 ± 3.95 nM and 25.97 ± 1.93 μM respectively) and suppress the growth of M. catarrhalis. These findings reveal that TCL and EST inhibit the McFabI activity and thereby affect cell growth. This study suggests that estradiol may be exploited as a novel scaffold for the designing and development of more potential FabI inhibitors.
Collapse
Affiliation(s)
- Madhusudhanarao Katiki
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Neetu Neetu
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Shivendra Pratap
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Pravindra Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
17
|
Choueiry F, Xu R, Zhu J. Adaptive Metabolism of Staphylococcus aureus Revealed by Untargeted Metabolomics. J Proteome Res 2022; 21:470-481. [PMID: 35043624 PMCID: PMC9199441 DOI: 10.1021/acs.jproteome.1c00797] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Staphylococcus aureus (SA) is an opportunistic pathogen that can cause a wide spectrum of infections, from superficial skin inflammation to severe and potentially fatal and invasive diseases. Due to the many potential routes of infection, host-derived environmental signals (oxygen availability, nutrients, etc.) are vital for host colonization and thus contribute to SA's pathogenesis. To uncover the direct effects of environmental factors on SA metabolism, we performed a series of experiments in diverse culture environments and correlated our findings of SA's metabolic adaptation to some of the pathogen's known virulence factors. Untargeted metabolomics was conducted on a Thermo Q-Exactive high-resolution mass spectrometer. We detected 260 intracellular polar metabolites from our bacteria cultured under both aerobic and anaerobic conditions and in glucose- and dextrin-supplemented cultures. These metabolites were mapped to relevant metabolic pathways to elucidate the adaptive metabolic processes of both methicillin-sensitive SA (MSSA) and methicillin-resistant SA (MRSA). We also detected an increased expression of virulence genes agr-I and sea of MRSA supplemented with both glucose and dextrin by qPCR. With the metabolic data collected that may be associated with the adaptive growth and virulence of SA, our study could set up the foundations for future work to identify metabolic inhibitors/modulators to mitigate SA infections in different growth environments.
Collapse
Affiliation(s)
- Fouad Choueiry
- Department of Human Sciences, The Ohio State University, Columbus, OH, 43210
| | - Rui Xu
- Department of Human Sciences, The Ohio State University, Columbus, OH, 43210
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University, Columbus, OH, 43210,James Comprehensive Cancer Center, The Ohio State University, 400 W 12 th Ave, Columbus, OH, 43210,Corresponding author: Jiangjiang Zhu, Ph.D., , Tel: 614-685-2226
| |
Collapse
|
18
|
Bosch B, DeJesus MA, Poulton NC, Zhang W, Engelhart CA, Zaveri A, Lavalette S, Ruecker N, Trujillo C, Wallach JB, Li S, Ehrt S, Chait BT, Schnappinger D, Rock JM. Genome-wide gene expression tuning reveals diverse vulnerabilities of M. tuberculosis. Cell 2021; 184:4579-4592.e24. [PMID: 34297925 PMCID: PMC8382161 DOI: 10.1016/j.cell.2021.06.033] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/13/2021] [Accepted: 06/29/2021] [Indexed: 01/09/2023]
Abstract
Antibacterial agents target the products of essential genes but rarely achieve complete target inhibition. Thus, the all-or-none definition of essentiality afforded by traditional genetic approaches fails to discern the most attractive bacterial targets: those whose incomplete inhibition results in major fitness costs. In contrast, gene "vulnerability" is a continuous, quantifiable trait that relates the magnitude of gene inhibition to the effect on bacterial fitness. We developed a CRISPR interference-based functional genomics method to systematically titrate gene expression in Mycobacterium tuberculosis (Mtb) and monitor fitness outcomes. We identified highly vulnerable genes in various processes, including novel targets unexplored for drug discovery. Equally important, we identified invulnerable essential genes, potentially explaining failed drug discovery efforts. Comparison of vulnerability between the reference and a hypervirulent Mtb isolate revealed incomplete conservation of vulnerability and that differential vulnerability can predict differential antibacterial susceptibility. Our results quantitatively redefine essential bacterial processes and identify high-value targets for drug development.
Collapse
Affiliation(s)
- Barbara Bosch
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY 10065, USA
| | - Michael A DeJesus
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY 10065, USA
| | - Nicholas C Poulton
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY 10065, USA
| | - Wenzhu Zhang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Curtis A Engelhart
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anisha Zaveri
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sophie Lavalette
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nadine Ruecker
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Carolina Trujillo
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joshua B Wallach
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shuqi Li
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY 10065, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Jeremy M Rock
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
19
|
Muñoz KA, Hergenrother PJ. Facilitating Compound Entry as a Means to Discover Antibiotics for Gram-Negative Bacteria. Acc Chem Res 2021; 54:1322-1333. [PMID: 33635073 DOI: 10.1021/acs.accounts.0c00895] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It has been over half a century since the last class of antibiotics active against the most problematic Gram-negative bacteria was approved by the Food and Drug Administration (FDA). The major challenge with developing antibiotics to treat these infections is not drug-target engagement but rather the inability of most small molecules to traverse the Gram-negative membranes, be retained, and accumulate within the cell. Despite an abundance of lead compounds, limited understanding of the physicochemical properties needed for compound accumulation (or avoidance of efflux) in Gram-negative bacteria has precluded a generalizable approach for developing Gram-negative antibiotics. Indeed, in many instances, despite years of intensive derivatization efforts and the synthesis of hundreds of compounds aimed at building in Gram-negative activity, little or no progress has been made in expanding the spectrum of activity for many Gram-positive-only antibiotics. In this Account, we describe the discovery and successful applications of a promising strategy for enhancing the accumulation of Gram-positive-only antibiotics as a means of imbuing compounds with broad-spectrum activity.Utilizing a prospective approach examining the accumulation in Escherichia coli for more than 180 diverse compounds, we found that small molecules have an increased likelihood to accumulate in E. coli when they contain an ionizable Nitrogen, have low Three-dimensionality, and are Rigid. Implementing these guidelines, codified as the "eNTRy rules" and assisted by web application www.entry-way.org, we have facilitated compound entry and systematically built Gram-negative activity into Gram-positive-only antibiotics. Though each antibiotic will have case-specific considerations, we describe a set of important criteria to consider when selecting candidate Gram-positive-only antibiotics for conversion to Gram-negative-active versions via the eNTRy rules. As detailed herein, using this blueprint the spectrum of activity was expanded for three antibiotic classes that engage three different biological targets: DNA gyrase inhibitor 6DNM, FabI inhibitor Debio-1452, and FMN riboswitch inhibitor Ribocil C. In each scenario, the eNTRy rules guided the synthesis of key analogues predisposed to accumulate in Gram-negative bacteria leading to compounds that display antibiotic activity (minimum inhibitory concentrations (MIC) ≤8 μg mL-1) against E. coli and other Gram-negative ESKAPE pathogens. While the eNTRy rules will continue to be refined and enhanced as more accumulation data is gathered, on the basis of these collective results and on other examples not covered herein it is clear that the eNTRy rules are actionable for the development of novel broad-spectrum antibiotics from Gram-positive-only compounds. By enabling the prediction of compound accumulation, the eNTRy rules should facilitate the process of discovering and developing novel antibiotics active against Gram-negative bacteria.
Collapse
Affiliation(s)
- Kristen A. Muñoz
- Department of Chemistry Institute for Genomic Biology, University of Illinois, Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Paul J. Hergenrother
- Department of Chemistry Institute for Genomic Biology, University of Illinois, Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
20
|
Elekhnawy E, Sonbol F, Abdelaziz A, Elbanna T. Potential impact of biocide adaptation on selection of antibiotic resistance in bacterial isolates. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00119-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Antibiotic resistance in pathogenic bacterial isolates has increased worldwide leading to treatment failures.
Main body
Many concerns are being raised about the usage of biocidal products (including disinfectants, antiseptics, and preservatives) as a vital factor that contributes to the risk of development of antimicrobial resistance which has many environmental and economic impacts.
Conclusion
Consequently, it is important to recognize the different types of currently used biocides, their mechanisms of action, and their potential impact to develop cross-resistance and co-resistance to various antibiotics. The use of biocides in medical or industrial purposes should be monitored and regulated. In addition, new agents with biocidal activity should be investigated from new sources like phytochemicals in order to decrease the emergence of resistance among bacterial isolates.
Collapse
|
21
|
Affiliation(s)
- Matthew D. Lloyd
- Drug & Target Development, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
22
|
Antibiotics in the clinical pipeline in October 2019. J Antibiot (Tokyo) 2020; 73:329-364. [PMID: 32152527 PMCID: PMC7223789 DOI: 10.1038/s41429-020-0291-8] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 12/27/2022]
Abstract
The development of new and effective antibacterial drugs to treat multi-drug resistant (MDR) bacteria, especially Gram-negative (G−ve) pathogens, is acknowledged as one of the world’s most pressing health issues; however, the discovery and development of new, nontoxic antibacterials is not a straightforward scientific task, which is compounded by a challenging economic model. This review lists the antibacterials, β-lactamase/β-lactam inhibitor (BLI) combinations, and monoclonal antibodies (mAbs) first launched around the world since 2009 and details the seven new antibiotics and two new β-lactam/BLI combinations launched since 2016. The development status, mode of action, spectra of activity, lead source, and administration route for the 44 small molecule antibacterials, eight β-lactamase/BLI combinations, and one antibody drug conjugate (ADC) being evaluated in worldwide clinical trials at the end of October 2019 are described. Compounds discontinued from clinical development since 2016 and new antibacterial pharmacophores are also reviewed. There has been an increase in the number of early stage clinical candidates, which has been fueled by antibiotic-focused funding agencies; however, there is still a significant gap in the pipeline for the development of new antibacterials with activity against β-metallolactamases, orally administered with broad spectrum G−ve activity, and new treatments for MDR Acinetobacter and gonorrhea.
Collapse
|
23
|
Parker EN, Drown BS, Geddes EJ, Lee HY, Ismail N, Lau GW, Hergenrother PJ. Implementation of permeation rules leads to a FabI inhibitor with activity against Gram-negative pathogens. Nat Microbiol 2019; 5:67-75. [PMID: 31740764 PMCID: PMC6953607 DOI: 10.1038/s41564-019-0604-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 10/04/2019] [Indexed: 01/17/2023]
Abstract
Gram-negative bacterial infections are a significant public health concern, and the lack of new drug classes for these pathogens is linked to the inability of most drug leads to accumulate inside Gram-negative bacteria1-7. Here, we report the development of a web application-eNTRyway-that predicts compound accumulation (in Escherichia coli) from its structure. In conjunction with structure-activity relationships and X-ray data, eNTRyway was utilized to re-design Debio-1452-a Gram-positive-only antibiotic8-into versions that accumulate in E. coli and possess antibacterial activity against high-priority Gram-negative pathogens. The lead compound Debio-1452-NH3 operates as an antibiotic via the same mechanism as Debio-1452, namely potent inhibition of the enoyl-acyl carrier protein reductase FabI, as validated by in vitro enzyme assays and the generation of bacterial isolates with spontaneous target mutations. Debio-1452-NH3 is well tolerated in vivo, reduces bacterial burden in mice and rescues mice from lethal infections with clinical isolates of Acinetobacter baumannii, Klebsiella pneumoniae and E. coli. This work provides tools for the facile discovery and development of high-accumulating compounds in E. coli, and a general blueprint for the conversion of Gram-positive-only compounds into broad-spectrum antibiotics.
Collapse
Affiliation(s)
- Erica N Parker
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bryon S Drown
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Emily J Geddes
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyang Yeon Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nahed Ismail
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Gee W Lau
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Paul J Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
24
|
Complete Genome Sequence of Hospital-Acquired Methicillin-Resistant Staphylococcus aureus Strain WCUH29. Microbiol Resour Announc 2019; 8:8/23/e00551-19. [PMID: 31171611 PMCID: PMC6554616 DOI: 10.1128/mra.00551-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hospital-acquired methicillin-resistant Staphylococcus aureus (HA-MRSA) strain WCUH29 has been intensively and widely used as a model system for identification and evaluation of novel antibacterial targets and pathogenicity. In this announcement, we report the complete genome sequence of HA-MRSA WCUH29 (NCIMB 40771).
Collapse
|
25
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Thinking Outside the Box-Novel Antibacterials To Tackle the Resistance Crisis. Angew Chem Int Ed Engl 2018; 57:14440-14475. [PMID: 29939462 DOI: 10.1002/anie.201804971] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/13/2022]
Abstract
The public view on antibiotics as reliable medicines changed when reports about "resistant superbugs" appeared in the news. While reasons for this resistance development are easily spotted, solutions for re-establishing effective antibiotics are still in their infancy. This Review encompasses several aspects of the antibiotic development pipeline from very early strategies to mature drugs. An interdisciplinary overview is given of methods suitable for mining novel antibiotics and strategies discussed to unravel their modes of action. Select examples of antibiotics recently identified by using these platforms not only illustrate the efficiency of these measures, but also highlight promising clinical candidates with therapeutic potential. Furthermore, the concept of molecules that disarm pathogens by addressing gatekeepers of virulence will be covered. The Review concludes with an evaluation of antibacterials currently in clinical development. Overall, this Review aims to connect select innovative antimicrobial approaches to stimulate interdisciplinary partnerships between chemists from academia and industry.
Collapse
Affiliation(s)
- Markus Lakemeyer
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Weining Zhao
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Franziska A Mandl
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases, Sanofi-Aventis (Deutschland) GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Stephan A Sieber
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| |
Collapse
|
26
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Über bisherige Denkweisen hinaus - neue Wirkstoffe zur Überwindung der Antibiotika-Krise. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Markus Lakemeyer
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Weining Zhao
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Franziska A. Mandl
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases; Sanofi-Aventis (Deutschland) GmbH; Industriepark Höchst 65926 Frankfurt am Main Deutschland
| | - Stephan A. Sieber
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| |
Collapse
|
27
|
Ozdemir Z, Tras B, Uney K, Eser Faki H, Besoluk TM. Determination of milk/plasma ratio and milk and plasma pharmacokinetics of amoxicillin after intramuscular administration in lactating cows. J Vet Pharmacol Ther 2018; 42:45-51. [DOI: 10.1111/jvp.12713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/17/2018] [Accepted: 08/13/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Zeynep Ozdemir
- Department of Pharmacology and Toxicology; Faculty of Veterinary Medicine; University of Selcuk; Konya Turkey
| | - Bunyamin Tras
- Department of Pharmacology and Toxicology; Faculty of Veterinary Medicine; University of Selcuk; Konya Turkey
| | - Kamil Uney
- Department of Pharmacology and Toxicology; Faculty of Veterinary Medicine; University of Selcuk; Konya Turkey
| | - Hatice Eser Faki
- Department of Pharmacology and Toxicology; Faculty of Veterinary Medicine; University of Selcuk; Konya Turkey
| | - Tugba Melike Besoluk
- Department of Pharmacology and Toxicology; Faculty of Veterinary Medicine; University of Selcuk; Konya Turkey
| |
Collapse
|
28
|
Ramos PIP, Fernández Do Porto D, Lanzarotti E, Sosa EJ, Burguener G, Pardo AM, Klein CC, Sagot MF, de Vasconcelos ATR, Gales AC, Marti M, Turjanski AG, Nicolás MF. An integrative, multi-omics approach towards the prioritization of Klebsiella pneumoniae drug targets. Sci Rep 2018; 8:10755. [PMID: 30018343 PMCID: PMC6050338 DOI: 10.1038/s41598-018-28916-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 06/27/2018] [Indexed: 02/07/2023] Open
Abstract
Klebsiella pneumoniae (Kp) is a globally disseminated opportunistic pathogen that can cause life-threatening infections. It has been found as the culprit of many infection outbreaks in hospital environments, being particularly aggressive towards newborns and adults under intensive care. Many Kp strains produce extended-spectrum β-lactamases, enzymes that promote resistance against antibiotics used to fight these infections. The presence of other resistance determinants leading to multidrug-resistance also limit therapeutic options, and the use of 'last-resort' drugs, such as polymyxins, is not uncommon. The global emergence and spread of resistant strains underline the need for novel antimicrobials against Kp and related bacterial pathogens. To tackle this great challenge, we generated multiple layers of 'omics' data related to Kp and prioritized proteins that could serve as attractive targets for antimicrobial development. Genomics, transcriptomics, structuromic and metabolic information were integrated in order to prioritize candidate targets, and this data compendium is freely available as a web server. Twenty-nine proteins with desirable characteristics from a drug development perspective were shortlisted, which participate in important processes such as lipid synthesis, cofactor production, and core metabolism. Collectively, our results point towards novel targets for the control of Kp and related bacterial pathogens.
Collapse
Affiliation(s)
- Pablo Ivan Pereira Ramos
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | - Darío Fernández Do Porto
- Plataforma de Bioinformática Argentina (BIA), Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina
| | - Esteban Lanzarotti
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina
| | - Ezequiel J Sosa
- Plataforma de Bioinformática Argentina (BIA), Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Germán Burguener
- Plataforma de Bioinformática Argentina (BIA), Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Agustín M Pardo
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina
| | - Cecilia C Klein
- Inria Grenoble Rhône-Alpes, Grenoble, France
- Université Claude Bernard Lyon 1, Lyon, France
- Centre for Genomic Regulation (CRG), Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marie-France Sagot
- Inria Grenoble Rhône-Alpes, Grenoble, France
- Université Claude Bernard Lyon 1, Lyon, France
| | | | - Ana Cristina Gales
- Laboratório Alerta. Division of Infectious Diseases, Department of Internal Medicine. Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcelo Marti
- Plataforma de Bioinformática Argentina (BIA), Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina
| | - Adrián G Turjanski
- Plataforma de Bioinformática Argentina (BIA), Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina.
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina.
| | - Marisa F Nicolás
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil.
| |
Collapse
|
29
|
|
30
|
Staphylococcus aureus Utilizes Host-Derived Lipoprotein Particles as Sources of Fatty Acids. J Bacteriol 2018; 200:JB.00728-17. [PMID: 29581406 DOI: 10.1128/jb.00728-17] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/13/2018] [Indexed: 11/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a threat to global health. Consequently, much effort has focused on the development of new antimicrobials that target novel aspects of S. aureus physiology. Fatty acids are required to maintain cell viability, and bacteria synthesize fatty acids using the type II fatty acid synthesis (FASII) pathway. FASII is significantly different from human fatty acid synthesis, underscoring the therapeutic potential of inhibiting this pathway. However, many Gram-positive pathogens incorporate exogenous fatty acids, bypassing FASII inhibition and leaving the clinical potential of FASII inhibitors uncertain. Importantly, the source(s) of fatty acids available to pathogens within the host environment remains unclear. Fatty acids are transported throughout the body by lipoprotein particles in the form of triglycerides and esterified cholesterol. Thus, lipoproteins, such as low-density lipoprotein (LDL), represent a potentially rich source of exogenous fatty acids for S. aureus during infection. We sought to test the ability of LDLs to serve as a fatty acid source for S. aureus and show that cells cultured in the presence of human LDLs demonstrate increased tolerance to the FASII inhibitor triclosan. Using mass spectrometry, we observed that host-derived fatty acids present in the LDLs are incorporated into the staphylococcal membrane and that tolerance to triclosan is facilitated by the fatty acid kinase A, FakA, and Geh, a triacylglycerol lipase. Finally, we demonstrate that human LDLs support the growth of S. aureus fatty acid auxotrophs. Together, these results suggest that human lipoprotein particles are a viable source of exogenous fatty acids for S. aureus during infection.IMPORTANCE Inhibition of bacterial fatty acid synthesis is a promising approach to combating infections caused by S. aureus and other human pathogens. However, S. aureus incorporates exogenous fatty acids into its phospholipid bilayer. Therefore, the clinical utility of targeting bacterial fatty acid synthesis is debated. Moreover, the fatty acid reservoir(s) exploited by S. aureus is not well understood. Human low-density lipoprotein particles represent a particularly abundant in vivo source of fatty acids and are present in tissues that S. aureus colonizes. Herein, we establish that S. aureus is capable of utilizing the fatty acids present in low-density lipoproteins to bypass both chemical and genetic inhibition of fatty acid synthesis. These findings imply that S. aureus targets LDLs as a source of fatty acids during pathogenesis.
Collapse
|
31
|
Santiago M, Lee W, Fayad AA, Coe KA, Rajagopal M, Do T, Hennessen F, Srisuknimit V, Müller R, Meredith TC, Walker S. Genome-wide mutant profiling predicts the mechanism of a Lipid II binding antibiotic. Nat Chem Biol 2018; 14:601-608. [PMID: 29662210 PMCID: PMC5964011 DOI: 10.1038/s41589-018-0041-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 02/27/2018] [Indexed: 12/11/2022]
Abstract
Identifying targets of antibacterial compounds remains a challenging step in antibiotic development. We have developed a two-pronged functional genomics approach to predict mechanism of action that uses mutant fitness data from antibiotic-treated transposon libraries containing both upregulation and inactivation mutants. We treated a Staphylococcus aureus transposon library containing 690,000 unique insertions with 32 antibiotics. Upregulation signatures, identified from directional biases in insertions, revealed known molecular targets and resistance mechanisms for the majority of these. Because single gene upregulation does not always confer resistance, we used a complementary machine learning approach to predict mechanism from inactivation mutant fitness profiles. This approach suggested the cell wall precursor Lipid II as the molecular target of the lysocins, a mechanism we have confirmed. We conclude that docking to membrane-anchored Lipid II precedes the selective bacteriolysis that distinguishes these lytic natural products, showing the utility of our approach for nominating antibiotic mechanism of action.
Collapse
Affiliation(s)
- Marina Santiago
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Wonsik Lee
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Antoine Abou Fayad
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Kathryn A Coe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Mithila Rajagopal
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Truc Do
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Fabienne Hennessen
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Veerasak Srisuknimit
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Saarbrücken, Germany.
| | - Timothy C Meredith
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA. .,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA.
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA. .,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
32
|
Foster TJ. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol Rev 2018; 41:430-449. [PMID: 28419231 DOI: 10.1093/femsre/fux007] [Citation(s) in RCA: 456] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/12/2017] [Indexed: 12/11/2022] Open
Abstract
The major targets for antibiotics in staphylococci are (i) the cell envelope, (ii) the ribosome and (iii) nucleic acids. Several novel targets emerged from recent targeted drug discovery programmes including the ClpP protease and FtsZ from the cell division machinery. Resistance can either develop by horizontal transfer of resistance determinants encoded by mobile genetic elements viz plasmids, transposons and the staphylococcal cassette chromosome or by mutations in chromosomal genes. Horizontally acquired resistance can occur by one of the following mechanisms: (i) enzymatic drug modification and inactivation, (ii) enzymatic modification of the drug binding site, (iii) drug efflux, (iv) bypass mechanisms involving acquisition of a novel drug-resistant target, (v) displacement of the drug to protect the target. Acquisition of resistance by mutation can result from (i) alteration of the drug target that prevents the inhibitor from binding, (ii) derepression of chromosomally encoded multidrug resistance efflux pumps and (iii) multiple stepwise mutations that alter the structure and composition of the cell wall and/or membrane to reduce drug access to its target. This review focuses on development of resistance to currently used antibiotics and examines future prospects for new antibiotics and informed use of drug combinations.
Collapse
|
33
|
Zheng W, Sun W, Simeonov A. Drug repurposing screens and synergistic drug-combinations for infectious diseases. Br J Pharmacol 2018; 175:181-191. [PMID: 28685814 PMCID: PMC5758396 DOI: 10.1111/bph.13895] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/16/2017] [Accepted: 05/22/2017] [Indexed: 12/12/2022] Open
Abstract
Infectious diseases account for nearly one fifth of the worldwide death toll every year. The continuous increase of drug-resistant pathogens is a big challenge for treatment of infectious diseases. In addition, outbreaks of infections and new pathogens are potential threats to public health. Lack of effective treatments for drug-resistant bacteria and recent outbreaks of Ebola and Zika viral infections have become a global public health concern. The number of newly approved antibiotics has decreased significantly in the last two decades compared with previous decades. In parallel with this, is an increase in the number of drug-resistant bacteria. For these threats and challenges to be countered, new strategies and technology platforms are critically needed. Drug repurposing has emerged as an alternative approach for rapid identification of effective therapeutics to treat the infectious diseases. For treatment of severe infections, synergistic drug combinations using approved drugs identified from drug repurposing screens is a useful option which may overcome the problem of weak activity of individual drugs. Collaborative efforts including government, academic researchers and private drug industry can facilitate the translational research to produce more effective new therapeutic agents such as narrow spectrum antibiotics against drug-resistant bacteria for these global challenges. LINKED ARTICLES This article is part of a themed section on Inventing New Therapies Without Reinventing the Wheel: The Power of Drug Repurposing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.2/issuetoc.
Collapse
Affiliation(s)
- Wei Zheng
- National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaMDUSA
| | - Wei Sun
- National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaMDUSA
| | - Anton Simeonov
- National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
34
|
Morvan C, Halpern D, Kénanian G, Pathania A, Anba-Mondoloni J, Lamberet G, Gruss A, Gloux K. The Staphylococcus aureus FASII bypass escape route from FASII inhibitors. Biochimie 2017; 141:40-46. [PMID: 28728970 DOI: 10.1016/j.biochi.2017.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/13/2017] [Indexed: 01/05/2023]
Abstract
Antimicrobials targeting the fatty acid synthesis (FASII) pathway are being developed as alternative treatments for bacterial infections. Emergence of resistance to FASII inhibitors was mainly considered as a consequence of mutations in the FASII target genes. However, an alternative and efficient anti-FASII resistance strategy, called here FASII bypass, was uncovered. Bacteria that bypass FASII incorporate exogenous fatty acids in membrane lipids, and thus dispense with the need for FASII. This strategy is used by numerous Gram-positive low GC % bacteria, including streptococci, enterococci, and staphylococci. Some bacteria repress FASII genes once fatty acids are available, and "constitutively" shift to FASII bypass. Others, such as the major pathogen Staphylococcus aureus, can undergo high frequency mutations that favor FASII bypass. This capacity is particularly relevant during infection, as the host supplies the fatty acids needed for bacteria to bypass FASII and thus become resistant to FASII inhibitors. Screenings for anti-FASII resistance in the presence of exogenous fatty acids confirmed that FASII bypass confers anti-FASII resistance among clinical and veterinary isolates. Polymorphisms in S. aureus FASII initiation enzymes favor FASII bypass, possibly by increasing availability of acyl-carrier protein, a required intermediate. Here we review FASII bypass and consequences in light of proposed uses of anti-FASII to treat infections, with a focus on FASII bypass in S. aureus.
Collapse
Affiliation(s)
- Claire Morvan
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - David Halpern
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Gérald Kénanian
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Amit Pathania
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Jamila Anba-Mondoloni
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Gilles Lamberet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Alexandra Gruss
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - Karine Gloux
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
35
|
Design, synthesis, 3D pharmacophore, QSAR, and docking studies of some new (6-methoxy-2-naphthyl) propanamide derivatives with expected anti-bacterial activity as FABI inhibitor. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1939-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
36
|
Kim W, Hendricks GL, Lee K, Mylonakis E. An update on the use of C. elegans for preclinical drug discovery: screening and identifying anti-infective drugs. Expert Opin Drug Discov 2017; 12:625-633. [PMID: 28402221 DOI: 10.1080/17460441.2017.1319358] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The emergence of antibiotic-resistant and -tolerant bacteria is a major threat to human health. Although efforts for drug discovery are ongoing, conventional bacteria-centered screening strategies have thus far failed to yield new classes of effective antibiotics. Therefore, new paradigms for discovering novel antibiotics are of critical importance. Caenorhabditis elegans, a model organism used for in vivo, offers a promising solution for identification of anti-infective compounds. Areas covered: This review examines the advantages of C. elegans-based high-throughput screening over conventional, bacteria-centered in vitro screens. It discusses major anti-infective compounds identified from large-scale C. elegans-based screens and presents the first clinically-approved drugs, then known bioactive compounds, and finally novel small molecules. Expert opinion: There are clear advantages of using a C. elegans-infection based screening method. A C. elegans-based screen produces an enriched pool of non-toxic, efficacious, potential anti-infectives, covering: conventional antimicrobial agents, immunomodulators, and anti-virulence agents. Although C. elegans-based screens do not denote the mode of action of hit compounds, this can be elucidated in secondary studies by comparing the results to target-based screens, or conducting subsequent target-based screens, including the genetic knock-down of host or bacterial genes.
Collapse
Affiliation(s)
- Wooseong Kim
- a Division of Infectious Diseases , Rhode Island Hospital, Alpert Medical School of Brown University , Providence , RI , USA
| | - Gabriel Lambert Hendricks
- a Division of Infectious Diseases , Rhode Island Hospital, Alpert Medical School of Brown University , Providence , RI , USA
| | - Kiho Lee
- a Division of Infectious Diseases , Rhode Island Hospital, Alpert Medical School of Brown University , Providence , RI , USA
| | - Eleftherios Mylonakis
- a Division of Infectious Diseases , Rhode Island Hospital, Alpert Medical School of Brown University , Providence , RI , USA
| |
Collapse
|
37
|
Fozo EM, Rucks EA. The Making and Taking of Lipids: The Role of Bacterial Lipid Synthesis and the Harnessing of Host Lipids in Bacterial Pathogenesis. Adv Microb Physiol 2016; 69:51-155. [PMID: 27720012 DOI: 10.1016/bs.ampbs.2016.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In order to survive environmental stressors, including those induced by growth in the human host, bacterial pathogens will adjust their membrane physiology accordingly. These physiological changes also include the use of host-derived lipids to alter their own membranes and feed central metabolic pathways. Within the host, the pathogen is exposed to many stressful stimuli. A resulting adaptation is for pathogens to scavenge the host environment for readily available lipid sources. The pathogen takes advantage of these host-derived lipids to increase or decrease the rigidity of their own membranes, to provide themselves with valuable precursors to feed central metabolic pathways, or to impact host signalling and processes. Within, we review the diverse mechanisms that both extracellular and intracellular pathogens employ to alter their own membranes as well as their use of host-derived lipids in membrane synthesis and modification, in order to increase survival and perpetuate disease within the human host. Furthermore, we discuss how pathogen employed mechanistic utilization of host-derived lipids allows for their persistence, survival and potentiation of disease. A more thorough understanding of all of these mechanisms will have direct consequences for the development of new therapeutics, and specifically, therapeutics that target pathogens, while preserving normal flora.
Collapse
Affiliation(s)
- E M Fozo
- University of Tennessee, Knoxville, TN, United States.
| | - E A Rucks
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.
| |
Collapse
|
38
|
Antibiotics in the clinical pipeline at the end of 2015. J Antibiot (Tokyo) 2016; 70:3-24. [PMID: 27353164 DOI: 10.1038/ja.2016.72] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/24/2016] [Accepted: 05/12/2016] [Indexed: 12/13/2022]
Abstract
There is growing global recognition that the continued emergence of multidrug-resistant bacteria poses a serious threat to human health. Action plans released by the World Health Organization and governments of the UK and USA in particular recognize that discovering new antibiotics, particularly those with new modes of action, is one essential element required to avert future catastrophic pandemics. This review lists the 30 antibiotics and two β-lactamase/β-lactam combinations first launched since 2000, and analyzes in depth seven new antibiotics and two new β-lactam/β-lactamase inhibitor combinations launched since 2013. The development status, mode of action, spectra of activity and genesis (natural product, natural product-derived, synthetic or protein/mammalian peptide) of the 37 compounds and six β-lactamase/β-lactam combinations being evaluated in clinical trials between 2013 and 2015 are discussed. Compounds discontinued from clinical development since 2013 and new antibacterial pharmacophores are also reviewed.
Collapse
|
39
|
Yao J, Rock CO. Resistance Mechanisms and the Future of Bacterial Enoyl-Acyl Carrier Protein Reductase (FabI) Antibiotics. Cold Spring Harb Perspect Med 2016; 6:a027045. [PMID: 26931811 DOI: 10.1101/cshperspect.a027045] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Missense mutations leading to clinical antibiotic resistance are a liability of single-target inhibitors. The enoyl-acyl carrier protein reductase (FabI) inhibitors have one intracellular protein target and drug resistance is increased by the acquisition of single-base-pair mutations that alter drug binding. The spectrum of resistance mechanisms to FabI inhibitors suggests criteria that should be considered during the development of single-target antibiotics that would minimize the impact of missense mutations on their clinical usefulness. These criteria include high-affinity, fast on/off kinetics, few drug contacts with residue side chains, and no toxicity. These stringent criteria are achievable by structure-guided design, but this approach will only yield pathogen-specific drugs. Single-step acquisition of resistance may limit the clinical application of broad-spectrum, single-target antibiotics, but appropriately designed pathogen-specific antibiotics have the potential to overcome this liability.
Collapse
Affiliation(s)
- Jiangwei Yao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
40
|
Activity of Debio1452, a FabI inhibitor with potent activity against Staphylococcus aureus and coagulase-negative Staphylococcus spp., including multidrug-resistant strains. Antimicrob Agents Chemother 2015; 59:2583-7. [PMID: 25691627 DOI: 10.1128/aac.05119-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/08/2015] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus and coagulase-negative staphylococci (CoNS) are responsible for a wide variety of human infections. The investigational antibacterial Debio1450 (previously AFN-1720), a prodrug of Debio1452 (previously AFN-1252), specifically targets staphylococci without significant activity against other Gram-positive or Gram-negative species. Debio1452 inhibits FabI, an enzyme critical to fatty acid biosynthesis in staphylococci. The activity of Debio1452 against CoNS, methicillin-susceptible S. aureus (MSSA), and methicillin-resistant S. aureus (MRSA), including significant clones, was determined. A globally diverse collection of 574 patient isolates from 35 countries was tested that included CoNS (6 species, 103 strains), MSSA (154 strains), MRSA (163 strains), and molecularly characterized strains (including spa-typed MRSA clones; 154 strains). The isolates were tested for susceptibility by CLSI broth microdilution methods against Debio1452 and 10 comparators. The susceptibility rates for the comparators were determined using CLSI and EUCAST breakpoint criteria. All S. aureus and CoNS strains were inhibited by Debio1452 concentrations of ≤ 0.12 and ≤ 0.5 μg/ml, respectively. The MIC50s for MSSA, MRSA, and molecularly characterized MRSA strains were 0.004 μg/ml, and the MIC90s ranged from 0.008 to 0.03 μg/ml. The MICs were higher for the CoNS isolates (MIC50/90, 0.015/0.12 μg/ml). Among S. aureus strains, resistance was common for erythromycin (61.6%), levofloxacin (49.0%), clindamycin (27.6%), tetracycline (15.7%), and trimethoprim-sulfamethoxazole (7.0%). Debio1452 demonstrated potent activity against MSSA, MRSA, and CoNS. Debio1452 showed significantly greater activity overall (MIC50, 0.004 μg/ml) than the other agents tested against these staphylococcal species, which included dominant MRSA clones and strains resistant to currently utilized antimicrobial agents.
Collapse
|
41
|
Wang H, Lu Y, Liu L, Kim SW, Hooker JM, Fowler JS, Tonge PJ. Radiosynthesis and biological evaluation of a novel enoyl-ACP reductase inhibitor for Staphylococcus aureus. Eur J Med Chem 2014; 88:66-73. [PMID: 25217335 DOI: 10.1016/j.ejmech.2014.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/27/2014] [Accepted: 09/03/2014] [Indexed: 11/18/2022]
Abstract
The pharmacokinetics (PK) and pharmacodynamics (PD) of PT119, a potent Staphylococcus aureus enoyl-ACP reductase (saFabI) inhibitor with a Ki value of 0.01 nM and a residence time of 750 min on the enzyme target, has been evaluated in mice. PT119 was found to have promising antibacterial activity in two different S. aureus infection models: it caused a 3 log reduction in the CFU's in a mouse thigh muscle infection model and increased the survival rate from 0% to 50% in a mouse systemic infection model. PT119 was then radiolabeled with carbon-11 to evaluate its biodistribution and PK in both healthy and S. aureus infected mice using positron emission tomography (PET). The biodistribution of [11C]PT119 and/or its labeled metabolites did not differ significantly between the healthy group and the infected group, and PT119 was found to distribute equally between serum and tissue during the ∼1 h of analysis permitted by the carbon-11 half life. This approach provides important data for PK/PD modeling and is the first step in identifying radiotracers that can non-invasively image bacterial infection in vivo.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yang Lu
- Institute of Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Li Liu
- Institute of Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Sung Won Kim
- Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jacob M Hooker
- Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Joanna S Fowler
- Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Peter J Tonge
- Institute of Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
42
|
Périamé M, Pagès JM, Davin-Regli A. Enterobacter gergoviaeadaptation to preservatives commonly used in cosmetic industry. Int J Cosmet Sci 2014; 36:386-95. [DOI: 10.1111/ics.12140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 04/26/2014] [Indexed: 11/29/2022]
Affiliation(s)
- M. Périamé
- UMR-MD-1; Aix-Marseille Université; IRBA; Transporteurs Membranaires; Chimiorésistance et Drug Design; Marseille France
| | - J.-M. Pagès
- UMR-MD-1; Aix-Marseille Université; IRBA; Transporteurs Membranaires; Chimiorésistance et Drug Design; Marseille France
| | - A. Davin-Regli
- UMR-MD-1; Aix-Marseille Université; IRBA; Transporteurs Membranaires; Chimiorésistance et Drug Design; Marseille France
| |
Collapse
|
43
|
Curson ARJ, Burns OJ, Voget S, Daniel R, Todd JD, McInnis K, Wexler M, Johnston AWB. Screening of metagenomic and genomic libraries reveals three classes of bacterial enzymes that overcome the toxicity of acrylate. PLoS One 2014; 9:e97660. [PMID: 24848004 PMCID: PMC4029986 DOI: 10.1371/journal.pone.0097660] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/22/2014] [Indexed: 11/22/2022] Open
Abstract
Acrylate is produced in significant quantities through the microbial cleavage of the highly abundant marine osmoprotectant dimethylsulfoniopropionate, an important process in the marine sulfur cycle. Acrylate can inhibit bacterial growth, likely through its conversion to the highly toxic molecule acrylyl-CoA. Previous work identified an acrylyl-CoA reductase, encoded by the gene acuI, as being important for conferring on bacteria the ability to grow in the presence of acrylate. However, some bacteria lack acuI, and, conversely, many bacteria that may not encounter acrylate in their regular environments do contain this gene. We therefore sought to identify new genes that might confer tolerance to acrylate. To do this, we used functional screening of metagenomic and genomic libraries to identify novel genes that corrected an E. coli mutant that was defective in acuI, and was therefore hyper-sensitive to acrylate. The metagenomic libraries yielded two types of genes that overcame this toxicity. The majority encoded enzymes resembling AcuI, but with significant sequence divergence among each other and previously ratified AcuI enzymes. One other metagenomic gene, arkA, had very close relatives in Bacillus and related bacteria, and is predicted to encode an enoyl-acyl carrier protein reductase, in the same family as FabK, which catalyses the final step in fatty-acid biosynthesis in some pathogenic Firmicute bacteria. A genomic library of Novosphingobium, a metabolically versatile alphaproteobacterium that lacks both acuI and arkA, yielded vutD and vutE, two genes that, together, conferred acrylate resistance. These encode sequential steps in the oxidative catabolism of valine in a pathway in which, significantly, methacrylyl-CoA is a toxic intermediate. These findings expand the range of bacteria for which the acuI gene encodes a functional acrylyl-CoA reductase, and also identify novel enzymes that can similarly function in conferring acrylate resistance, likely, again, through the removal of the toxic product acrylyl-CoA.
Collapse
Affiliation(s)
- Andrew R. J. Curson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- * E-mail:
| | - Oliver J. Burns
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Sonja Voget
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Jonathan D. Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Kathryn McInnis
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Margaret Wexler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrew W. B. Johnston
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
44
|
Schiebel J, Chang A, Shah S, Lu Y, Liu L, Pan P, Hirschbeck MW, Tareilus M, Eltschkner S, Yu W, Cummings JE, Knudson SE, Bommineni GR, Walker SG, Slayden RA, Sotriffer CA, Tonge PJ, Kisker C. Rational design of broad spectrum antibacterial activity based on a clinically relevant enoyl-acyl carrier protein (ACP) reductase inhibitor. J Biol Chem 2014; 289:15987-6005. [PMID: 24739388 DOI: 10.1074/jbc.m113.532804] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Determining the molecular basis for target selectivity is of particular importance in drug discovery. The ideal antibiotic should be active against a broad spectrum of pathogenic organisms with a minimal effect on human targets. CG400549, a Staphylococcus-specific 2-pyridone compound that inhibits the enoyl-acyl carrier protein reductase (FabI), has recently been shown to possess human efficacy for the treatment of methicillin-resistant Staphylococcus aureus infections, which constitute a serious threat to human health. In this study, we solved the structures of three different FabI homologues in complex with several pyridone inhibitors, including CG400549. Based on these structures, we rationalize the 65-fold reduced affinity of CG400549 toward Escherichia coli versus S. aureus FabI and implement concepts to improve the spectrum of antibacterial activity. The identification of different conformational states along the reaction coordinate of the enzymatic hydride transfer provides an elegant visual depiction of the relationship between catalysis and inhibition, which facilitates rational inhibitor design. Ultimately, we developed the novel 4-pyridone-based FabI inhibitor PT166 that retained favorable pharmacokinetics and efficacy in a mouse model of S. aureus infection with extended activity against Gram-negative and mycobacterial organisms.
Collapse
Affiliation(s)
- Johannes Schiebel
- From the Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Wuerzburg, D-97080 Wuerzburg, Germany, the Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, D-97074 Wuerzburg, Germany
| | - Andrew Chang
- the Institute for Chemical Biology and Drug Discovery, Department of Chemistry, and School of Dental Medicine, Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, New York 11794-3400, and
| | - Sonam Shah
- the Institute for Chemical Biology and Drug Discovery, Department of Chemistry, and
| | - Yang Lu
- the Institute for Chemical Biology and Drug Discovery, Department of Chemistry, and School of Dental Medicine, Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, New York 11794-3400, and
| | - Li Liu
- the Institute for Chemical Biology and Drug Discovery, Department of Chemistry, and
| | - Pan Pan
- the Institute for Chemical Biology and Drug Discovery, Department of Chemistry, and
| | - Maria W Hirschbeck
- From the Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Wuerzburg, D-97080 Wuerzburg, Germany
| | - Mona Tareilus
- From the Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Wuerzburg, D-97080 Wuerzburg, Germany
| | - Sandra Eltschkner
- From the Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Wuerzburg, D-97080 Wuerzburg, Germany
| | - Weixuan Yu
- the Institute for Chemical Biology and Drug Discovery, Department of Chemistry, and
| | - Jason E Cummings
- the Rocky Mountain Regional Center of Excellence and Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| | - Susan E Knudson
- the Rocky Mountain Regional Center of Excellence and Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| | - Gopal R Bommineni
- the Institute for Chemical Biology and Drug Discovery, Department of Chemistry, and
| | - Stephen G Walker
- School of Dental Medicine, Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, New York 11794-3400, and
| | - Richard A Slayden
- the Rocky Mountain Regional Center of Excellence and Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| | - Christoph A Sotriffer
- the Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, D-97074 Wuerzburg, Germany
| | - Peter J Tonge
- the Institute for Chemical Biology and Drug Discovery, Department of Chemistry, and
| | - Caroline Kisker
- From the Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Wuerzburg, D-97080 Wuerzburg, Germany,
| |
Collapse
|
45
|
Fisher M, Basak R, Kalverda AP, Fishwick CWG, Bruce Turnbull W, Nelson A. Discovery of novel FabF ligands inspired by platensimycin by integrating structure-based design with diversity-oriented synthetic accessibility. Org Biomol Chem 2014; 12:486-94. [DOI: 10.1039/c3ob41975d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
46
|
Butler MS, Blaskovich MA, Cooper MA. Antibiotics in the clinical pipeline in 2013. J Antibiot (Tokyo) 2013; 66:571-91. [PMID: 24002361 DOI: 10.1038/ja.2013.86] [Citation(s) in RCA: 283] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 12/17/2022]
Abstract
The continued emergence of multi-drug-resistant bacteria is a major public health concern. The identification and development of new antibiotics, especially those with new modes of action, is imperative to help treat these infections. This review lists the 22 new antibiotics launched since 2000 and details the two first-in-class antibiotics, fidaxomicin (1) and bedaquiline (2), launched in 2011 and 2012, respectively. The development status, mode of action, spectra of activity, historical discovery and origin of the drug pharmacophore (natural product, natural product derived, synthetic or protein/mammalian peptide) of the 49 compounds and 6 β-lactamase/β-lactam combinations in active clinical development are discussed, as well as compounds that have been discontinued from clinical development since 2011. New antibacterial pharmacophore templates are also reviewed and analyzed.
Collapse
Affiliation(s)
- Mark S Butler
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
47
|
|
48
|
Wang Y, Ma S. Recent Advances in Inhibitors of Bacterial Fatty Acid Synthesis Type II (FASII) System Enzymes as Potential Antibacterial Agents. ChemMedChem 2013; 8:1589-608. [DOI: 10.1002/cmdc.201300209] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 06/30/2013] [Indexed: 12/25/2022]
|
49
|
Hu X, Compton JR, Abdulhameed MDM, Marchand CL, Robertson KL, Leary DH, Jadhav A, Hershfield JR, Wallqvist A, Friedlander AM, Legler PM. 3-substituted indole inhibitors against Francisella tularensis FabI identified by structure-based virtual screening. J Med Chem 2013; 56:5275-87. [PMID: 23815100 DOI: 10.1021/jm4001242] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we describe novel inhibitors against Francisella tularensis SchuS4 FabI identified from structure-based in silico screening with integrated molecular dynamics simulations to account for induced fit of a flexible loop crucial for inhibitor binding. Two 3-substituted indoles, 54 and 57, preferentially bound the NAD(+) form of the enzyme and inhibited growth of F. tularensis SchuS4 at concentrations near that of their measured Ki. While 57 was species-specific, 54 showed a broader spectrum of growth inhibition against F. tularensis , Bacillus anthracis , and Staphylococcus aureus . Binding interaction analysis in conjunction with site-directed mutagenesis revealed key residues and elements that contribute to inhibitor binding and species specificity. Mutation of Arg-96, a poorly conserved residue opposite the loop, was unexpectedly found to enhance inhibitor binding in the R96G and R96M variants. This residue may affect the stability and closure of the flexible loop to enhance inhibitor (or substrate) binding.
Collapse
Affiliation(s)
- Xin Hu
- Center of Bio/Molecular Science and Engineering, Naval Research Laboratories , Washington, D.C. 20375, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Parsons JB, Rock CO. Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res 2013; 52:249-76. [PMID: 23500459 PMCID: PMC3665635 DOI: 10.1016/j.plipres.2013.02.002] [Citation(s) in RCA: 346] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 11/29/2022]
Abstract
Membrane lipid homeostasis is a vital facet of bacterial cell physiology. For decades, research in bacterial lipid synthesis was largely confined to the Escherichia coli model system. This basic research provided a blueprint for the biochemistry of lipid metabolism that has largely defined the individual steps in bacterial fatty acid and phospholipids synthesis. The advent of genomic sequencing has revealed a surprising amount of diversity in the genes, enzymes and genetic organization of the components responsible for bacterial lipid synthesis. Although the chemical steps in fatty acid synthesis are largely conserved in bacteria, there are surprising differences in the structure and cofactor requirements for the enzymes that perform these reactions in Gram-positive and Gram-negative bacteria. This review summarizes how the explosion of new information on the diversity of biochemical and genetic regulatory mechanisms has impacted our understanding of bacterial lipid homeostasis. The potential and problems of developing therapeutics that block pathogen phospholipid synthesis are explored and evaluated. The study of bacterial lipid metabolism continues to be a rich source for new biochemistry that underlies the variety and adaptability of bacterial life styles.
Collapse
Affiliation(s)
- Joshua B Parsons
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | |
Collapse
|