1
|
Rice AJ, Sword TT, Chengan K, Mitchell DA, Mouncey NJ, Moore SJ, Bailey CB. Cell-free synthetic biology for natural product biosynthesis and discovery. Chem Soc Rev 2025; 54:4314-4352. [PMID: 40104998 PMCID: PMC11920963 DOI: 10.1039/d4cs01198h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Indexed: 03/20/2025]
Abstract
Natural products have applications as biopharmaceuticals, agrochemicals, and other high-value chemicals. However, there are challenges in isolating natural products from their native producers (e.g. bacteria, fungi, plants). In many cases, synthetic chemistry or heterologous expression must be used to access these important molecules. The biosynthetic machinery to generate these compounds is found within biosynthetic gene clusters, primarily consisting of the enzymes that biosynthesise a range of natural product classes (including, but not limited to ribosomal and nonribosomal peptides, polyketides, and terpenoids). Cell-free synthetic biology has emerged in recent years as a bottom-up technology applied towards both prototyping pathways and producing molecules. Recently, it has been applied to natural products, both to characterise biosynthetic pathways and produce new metabolites. This review discusses the core biochemistry of cell-free synthetic biology applied to metabolite production and critiques its advantages and disadvantages compared to whole cell and/or chemical production routes. Specifically, we review the advances in cell-free biosynthesis of ribosomal peptides, analyse the rapid prototyping of natural product biosynthetic enzymes and pathways, highlight advances in novel antimicrobial discovery, and discuss the rising use of cell-free technologies in industrial biotechnology and synthetic biology.
Collapse
Affiliation(s)
- Andrew J Rice
- Department of Biochemistry, School of Medicine - Basic Sciences, Vanderbilt University Medical Research Building-IV, Nashville, Tennessee, 37232, USA
| | - Tien T Sword
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, USA
| | | | - Douglas A Mitchell
- Department of Biochemistry, School of Medicine - Basic Sciences, Vanderbilt University Medical Research Building-IV, Nashville, Tennessee, 37232, USA
- Department of Chemistry, Vanderbilt University, Medical Research Building-IV, Nashville, Tennessee, 37232, USA
| | - Nigel J Mouncey
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Simon J Moore
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| | - Constance B Bailey
- School of Chemistry, University of Sydney, Camperdown, NSW, 2001, Australia.
| |
Collapse
|
2
|
Chen J, Li S, Wang Q, Wang C, Qiu Y, Yang L, Han R, Du Q, Chen L, Dong Y, Wang T. Optimizing Antimicrobial Dosing for Critically Ill Patients with MRSA Infections: A New Paradigm for Improving Efficacy during Continuous Renal Replacement Therapy. Pharmaceutics 2022; 14:pharmaceutics14040842. [PMID: 35456676 PMCID: PMC9031498 DOI: 10.3390/pharmaceutics14040842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/23/2022] [Accepted: 04/07/2022] [Indexed: 01/08/2023] Open
Abstract
The dosage regimen of vancomycin, teicoplanin and daptomycin remains controversial for critically ill patients undergoing continuous renal replacement therapy (CRRT). Monte Carlo simulation was applied to identify the optimal regimens of antimicrobial agents in patients with methicillin-resistant Staphylococcus aureus (MRSA) infections based on the mechanisms of different CRRT modalities on drug clearance. The optimal vancomycin dosage for patients received a CRRT doses ≤ 30 mL/kg/h was 20 mg/kg loading dose followed by 500 mg every 8 h, while 1 g every 12 h was appropriate when 35 mL/kg/h was prescribed. The optimal teicoplanin dosage under a CRRT dose ≤ 25 mL/kg/h was four loading doses of 10 mg/kg every 12 h followed by 10 mg/kg every 48 h, 8 mg/kg every 24 h and 6 mg/kg every 24 h for continuous veno-venous hemofiltration, continuous veno-venous hemodialysis and continuous veno-venous hemodiafiltration, respectively. When the CRRT dose increased to 30–35 mL/kg/h, the teicoplanin dosage should be increased by 30%. The recommended regimen for daptomycin was 6–8 mg/kg every 24 h under a CRRT dose ≤ 25 mL/kg/h, while 8–10 mg/kg every 24 h was optimal under 30–35 mg/kg/h. The CRRT dose has an impact on probability of target attainment and CRRT modality only influences teicoplanin.
Collapse
Affiliation(s)
- Jiaojiao Chen
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (J.C.); (S.L.); (Q.W.); (C.W.); (Y.Q.); (L.Y.); (R.H.); (Q.D.)
| | - Sihan Li
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (J.C.); (S.L.); (Q.W.); (C.W.); (Y.Q.); (L.Y.); (R.H.); (Q.D.)
| | - Quanfang Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (J.C.); (S.L.); (Q.W.); (C.W.); (Y.Q.); (L.Y.); (R.H.); (Q.D.)
| | - Chuhui Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (J.C.); (S.L.); (Q.W.); (C.W.); (Y.Q.); (L.Y.); (R.H.); (Q.D.)
| | - Yulan Qiu
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (J.C.); (S.L.); (Q.W.); (C.W.); (Y.Q.); (L.Y.); (R.H.); (Q.D.)
| | - Luting Yang
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (J.C.); (S.L.); (Q.W.); (C.W.); (Y.Q.); (L.Y.); (R.H.); (Q.D.)
| | - Ruiying Han
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (J.C.); (S.L.); (Q.W.); (C.W.); (Y.Q.); (L.Y.); (R.H.); (Q.D.)
| | - Qian Du
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (J.C.); (S.L.); (Q.W.); (C.W.); (Y.Q.); (L.Y.); (R.H.); (Q.D.)
| | - Lei Chen
- Department of Hemodialysis, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (J.C.); (S.L.); (Q.W.); (C.W.); (Y.Q.); (L.Y.); (R.H.); (Q.D.)
- Correspondence: (Y.D.); (T.W.); Tel.: +86-29-85323241 (Y.D.); +86-29-85323243 (T.W.)
| | - Taotao Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (J.C.); (S.L.); (Q.W.); (C.W.); (Y.Q.); (L.Y.); (R.H.); (Q.D.)
- Correspondence: (Y.D.); (T.W.); Tel.: +86-29-85323241 (Y.D.); +86-29-85323243 (T.W.)
| |
Collapse
|
3
|
Cheng Q, Cheung Y, Liu C, Xiao Q, Sun B, Zhou J, Chan EWC, Zhang R, Chen S. Structural and mechanistic basis of the high catalytic activity of monooxygenase Tet(X4) on tigecycline. BMC Biol 2021; 19:262. [PMID: 34895224 PMCID: PMC8666040 DOI: 10.1186/s12915-021-01199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/24/2021] [Indexed: 11/21/2022] Open
Abstract
Background Tigecycline is a tetracycline derivative that constitutes one of the last-resort antibiotics used clinically to treat infections caused by both multiple drug-resistant (MDR) Gram-negative and Gram-positive bacteria. Resistance to this drug is often caused by chromosome-encoding mechanisms including over-expression of efflux pumps and ribosome protection. However, a number of variants of the flavin adenine dinucleotide (FAD)-dependent monooxygenase TetX, such as Tet(X4), emerged in recent years as conferring resistance to tigecycline in strains of Enterobacteriaceae, Acinetobacter sp., Pseudomonas sp., and Empedobacter sp. To date, mechanistic details underlying the improvement of catalytic activities of new TetX enzymes are not available. Results In this study, we found that Tet(X4) exhibited higher affinity and catalytic efficiency toward tigecycline when compared to Tet(X2), resulting in the expression of phenotypic tigecycline resistance in E. coli strains bearing the tet(X4) gene. Comparison between the structures of Tet(X4) and Tet(X4)-tigecycline complex and those of Tet(X2) showed that they shared an identical FAD-binding site and that the FAD and tigecycline adopted similar conformation in the catalytic pocket. Although the amino acid changes in Tet(X4) are not pivotal residues for FAD binding and substrate recognition, such substitutions caused the refolding of several alpha helixes and beta sheets in the secondary structure of the substrate-binding domain of Tet(X4), resulting in the formation of a larger number of loops in the structure. These changes in turn render the substrate-binding domain of Tet(X4) more flexible and efficient in capturing substrate molecules, thereby improving catalytic efficiency. Conclusions Our works provide a better understanding of the molecular recognition of tigecycline by the TetX enzymes; these findings can help guide the rational design of the next-generation tetracycline antibiotics that can resist inactivation of the TetX variants. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01199-7.
Collapse
Affiliation(s)
- Qipeng Cheng
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.,Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Yanchu Cheung
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Chenyu Liu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Qingjie Xiao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, No.239 Zhangheng Road, Shanghai, 201204, China
| | - Bo Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, No.239 Zhangheng Road, Shanghai, 201204, China
| | - Jiahai Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Edward Wai Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, People's Republic of China
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
4
|
Umuhire Juru A, Hargrove AE. Frameworks for targeting RNA with small molecules. J Biol Chem 2021; 296:100191. [PMID: 33334887 PMCID: PMC7948454 DOI: 10.1074/jbc.rev120.015203] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/31/2022] Open
Abstract
Since the characterization of mRNA in 1961, our understanding of the roles of RNA molecules has significantly grown. Beyond serving as a link between DNA and proteins, RNA molecules play direct effector roles by binding to various ligands, including proteins, DNA, other RNAs, and metabolites. Through these interactions, RNAs mediate cellular processes such as the regulation of gene transcription and the enhancement or inhibition of protein activity. As a result, the misregulation of RNA molecules is often associated with disease phenotypes, and RNA molecules have been increasingly recognized as potential targets for drug development efforts, which in the past had focused primarily on proteins. Although both small molecule-based and oligonucleotide-based therapies have been pursued in efforts to target RNA, small-molecule modalities are often favored owing to several advantages including greater oral bioavailability. In this review, we discuss three general frameworks (sets of premises and hypotheses) that, in our view, have so far dominated the discovery of small-molecule ligands for RNA. We highlight the unique merits of each framework as well as the pitfalls associated with exclusive focus of ligand discovery efforts within only one framework. Finally, we propose that RNA ligand discovery can benefit from using progress made within these three frameworks to move toward a paradigm that formulates RNA-targeting questions at the level of RNA structural subclasses.
Collapse
Affiliation(s)
| | - Amanda E Hargrove
- Department of Chemistry, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
5
|
Umuhire Juru A, Cai Z, Jan A, Hargrove AE. Template-guided selection of RNA ligands using imine-based dynamic combinatorial chemistry. Chem Commun (Camb) 2020; 56:3555-3558. [PMID: 32104839 DOI: 10.1039/d0cc00266f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study establishes the applicability of imine-based dynamic combinatorial chemistry to discover non-covalent ligands for RNA targets. We elucidate properties underlying the reactivity of arylamines and demonstrate target-guided amplification of tight binders in an amiloride-based dynamic library.
Collapse
Affiliation(s)
- Aline Umuhire Juru
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27705, USA.
| | - Zhengguo Cai
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27705, USA.
| | - Adina Jan
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27705, USA.
| | - Amanda E Hargrove
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27705, USA.
| |
Collapse
|
6
|
Yang Y, Li X, Wang T, Guo Q, Xi T, Zheng L. Emerging agents that target signaling pathways in cancer stem cells. J Hematol Oncol 2020; 13:60. [PMID: 32456660 PMCID: PMC7249421 DOI: 10.1186/s13045-020-00901-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) contribute to the initiation, recurrence, and metastasis of cancer; however, there are still no drugs targeting CSCs in clinical application. There are several signaling pathways playing critical roles in CSC progression, such as the Wnt, Hedgehog, Notch, Hippo, and autophagy signaling pathways. Additionally, targeting the ferroptosis signaling pathway was recently shown to specifically kill CSCs. Therefore, targeting these pathways may suppress CSC progression. The structure of small-molecule drugs shows a good spatial dispersion, and its chemical properties determine its good druggability and pharmacokinetic properties. These characteristics make small-molecule drugs show a great advantage in drug development, which is increasingly popular in the market. Thus, in this review, we will summarize the current researches on the small-molecule compounds suppressing CSC progression, including inhibitors of Wnt, Notch, Hedgehog, and autophagy pathways, and activators of Hippo and ferroptosis pathways. These small-molecule compounds emphasize CSC importance in tumor progression and propose a new strategy to treat cancer in clinic via targeting CSCs.
Collapse
Affiliation(s)
- Yue Yang
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Ting Wang
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Qianqian Guo
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 127 Dongming Road, Zhengzhou, 450003, People's Republic of China
| | - Tao Xi
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
7
|
Fluorescent Trimethylated Naphthyridine Derivative with an Aminoalkyl Side Chain as the Tightest Non-aminoglycoside Ligand for the Bacterial A-site RNA. Chemistry 2018; 24:13862-13870. [DOI: 10.1002/chem.201802320] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/29/2018] [Indexed: 12/31/2022]
|
8
|
Gordillo Guerra P, Clerici P, Micouin L. Modular Access to N-Substituted cis 5-Amino-3-hydroxypiperidines. J Org Chem 2017; 82:7689-7694. [PMID: 28665596 DOI: 10.1021/acs.joc.7b01485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A sequence of oxidative cleavage/reductive amination/reductive cleavage enables the preparation of N-substituted cis 5-amino-3-hydroxypiperidines from a readily available bicyclic adduct. This new route provides straightforward and versatile access to drug-relevant scaffolds or fragments.
Collapse
Affiliation(s)
- Paola Gordillo Guerra
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Faculté des Sciences Fondamentales et Bio-médicales, UMR 8601, CNRS-Paris Descartes University , 45 rue des Saints Pères, 75006 Paris, France
| | - Paolo Clerici
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Faculté des Sciences Fondamentales et Bio-médicales, UMR 8601, CNRS-Paris Descartes University , 45 rue des Saints Pères, 75006 Paris, France
| | - Laurent Micouin
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Faculté des Sciences Fondamentales et Bio-médicales, UMR 8601, CNRS-Paris Descartes University , 45 rue des Saints Pères, 75006 Paris, France
| |
Collapse
|
9
|
Abstract
Aminoglycoside antibiotics are protein synthesis inhibitors applied to treat infections caused mainly by aerobic Gram-negative bacteria. Due to their adverse side effects they are last resort antibiotics typically used to combat pathogens resistant to other drugs. Aminoglycosides target ribosomes. We describe the interactions of aminoglycoside antibiotics containing a 2-deoxystreptamine (2-DOS) ring with 16S rRNA. We review the computational studies, with a focus on molecular dynamics (MD) simulations performed on RNA models mimicking the 2-DOS aminoglycoside binding site in the small ribosomal subunit. We also briefly discuss thermodynamics of interactions of these aminoglycosides with their 16S RNA target.
Collapse
|
10
|
A new role for PGA1 in inhibiting hepatitis C virus-IRES-mediated translation by targeting viral translation factors. Antiviral Res 2015; 117:1-9. [PMID: 25666760 DOI: 10.1016/j.antiviral.2015.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/26/2015] [Accepted: 01/29/2015] [Indexed: 02/06/2023]
Abstract
Previous studies have demonstrated that cyclopentenone prostaglandins (cyPGs) inhibit the replication of a wide variety of DNA and RNA viruses in different mammalian cell types. We investigated a new role for prostaglandin A1 (PGA1) in the inhibition of hepatitis C virus (HCV)-IRES-mediated translation. PGA1 exhibited dose-dependent inhibitory effects on HCV translation in HCV replicon cells. Furthermore, repetitive PGA1 treatment demonstrated the potential to safely induce the suppression of HCV translation. We also validated a new role for PGA1 in the inhibition of HCV-IRES-mediated translation by targeting cellular translation factors, including the small ribosomal subunit (40S) and eukaryotic initiation factors (eIFs). In pull-down assays, biotinylated PGA1 co-precipitated with the entire HCV IRES RNA/eIF3-40S subunit complex. Moreover, the interactions between PGA1 and the elongation factors and ribosomal subunit were dependent upon HCV IRES RNA binding, and the PGA1/HCV IRES RNA/eIF3-40S subunit complex inhibited HCV-IRES-mediated translation. The novel mechanism revealed in this study may aid in the search for more effective anti-HCV drugs.
Collapse
|
11
|
Peselis A, Serganov A. Themes and variations in riboswitch structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:908-918. [PMID: 24583553 DOI: 10.1016/j.bbagrm.2014.02.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/14/2014] [Accepted: 02/20/2014] [Indexed: 11/19/2022]
Abstract
The complexity of gene expression control by non-coding RNA has been highlighted by the recent progress in the field of riboswitches. Discovered a decade ago, riboswitches represent a diverse group of non-coding mRNA regions that possess a unique ability to directly sense cellular metabolites and modulate gene expression through formation of alternative metabolite-free and metabolite-bound conformations. Such protein-free metabolite sensing domains utilize sophisticated three-dimensional folding of RNA molecules to discriminate between a cognate ligand from related compounds so that only the right ligand would trigger a genetic response. Given the variety of riboswitch ligands ranging from small cations to large coenzymes, riboswitches adopt a great diversity of structures. Although many riboswitches share structural principles to build metabolite-competent folds, form precise ligand-binding pockets, and communicate a ligand-binding event to downstream regulatory regions, virtually all riboswitch classes possess unique features for ligand recognition, even those tuned to recognize the same metabolites. Here we present an overview of the biochemical and structural research on riboswitches with a major focus on common principles and individual characteristics adopted by these regulatory RNA elements during evolution to specifically target small molecules and exert genetic responses. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Alla Peselis
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
12
|
Blond A, Dockerty P, Álvarez R, Turcaud S, Lecourt T, Micouin L. Modular Access to N-Substituted cis-3,5-Diaminopiperidines. J Org Chem 2013; 78:12236-42. [DOI: 10.1021/jo401994y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Aurélie Blond
- Laboratoire
de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Faculté
des Sciences Fondamentales et Biomédicales, UMR8601, CNRS-Paris Descartes University, 45 rue des Saints Pères, 75006 Paris, France
| | - Paul Dockerty
- Laboratoire
de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Faculté
des Sciences Fondamentales et Biomédicales, UMR8601, CNRS-Paris Descartes University, 45 rue des Saints Pères, 75006 Paris, France
| | - Raquel Álvarez
- Laboratoire
de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Faculté
des Sciences Fondamentales et Biomédicales, UMR8601, CNRS-Paris Descartes University, 45 rue des Saints Pères, 75006 Paris, France
| | - Serge Turcaud
- Laboratoire
de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Faculté
des Sciences Fondamentales et Biomédicales, UMR8601, CNRS-Paris Descartes University, 45 rue des Saints Pères, 75006 Paris, France
| | - Thomas Lecourt
- Laboratoire
de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Faculté
des Sciences Fondamentales et Biomédicales, UMR8601, CNRS-Paris Descartes University, 45 rue des Saints Pères, 75006 Paris, France
| | - Laurent Micouin
- Laboratoire
de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Faculté
des Sciences Fondamentales et Biomédicales, UMR8601, CNRS-Paris Descartes University, 45 rue des Saints Pères, 75006 Paris, France
| |
Collapse
|
13
|
Dibrov SM, Parsons J, Carnevali M, Zhou S, Rynearson KD, Ding K, Garcia Sega E, Brunn ND, Boerneke MA, Castaldi MP, Hermann T. Hepatitis C virus translation inhibitors targeting the internal ribosomal entry site. J Med Chem 2013; 57:1694-707. [PMID: 24138284 DOI: 10.1021/jm401312n] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The internal ribosome entry site (IRES) in the 5' untranslated region (UTR) of the hepatitis C virus (HCV) genome initiates translation of the viral polyprotein precursor. The unique structure and high sequence conservation of the 5' UTR render the IRES RNA a potential target for the development of selective viral translation inhibitors. Here, we provide an overview of approaches to block HCV IRES function by nucleic acid, peptide, and small molecule ligands. Emphasis will be given to the IRES subdomain IIa, which currently is the most advanced target for small molecule inhibitors of HCV translation. The subdomain IIa behaves as an RNA conformational switch. Selective ligands act as translation inhibitors by locking the conformation of the RNA switch. We review synthetic procedures for inhibitors as well as structural and functional studies of the subdomain IIa target and its ligand complexes.
Collapse
Affiliation(s)
- Sergey M Dibrov
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Trylska J, Thoduka SG, Dąbrowska Z. Using sequence-specific oligonucleotides to inhibit bacterial rRNA. ACS Chem Biol 2013; 8:1101-9. [PMID: 23631412 DOI: 10.1021/cb400163t] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The majority of antibiotics used in the clinic target bacterial protein synthesis. However, the widespread emergence of bacterial resistance to existing drugs creates a need to discover or develop new therapeutic agents. Ribosomal RNA (rRNA) has been a target for numerous antibiotics that bind to functional rRNA regions such as the peptidyl transferase center, polypeptide exit tunnel, and tRNA binding sites. Even though the atomic resolution structures of many ribosome-antibiotic complexes have been solved, improving the ribosome-acting drugs is difficult because the large rRNA has a complicated 3D architecture and is surrounded by numerous proteins. Computational approaches, such as structure-based design, often fail when applied to rRNA binders because electrostatics dominate the interactions and the effect of ions and bridging waters is difficult to account for in the scoring functions. Improving the classical anti-ribosomal agents has not proven particularly successful and has not kept pace with acquired resistance. So one needs to look for other ways to combat the ribosomes, finding either new rRNA targets or totally different compounds. There have been some efforts to design translation inhibitors that act on the basis of the sequence-specific hybridization properties of nucleic acid bases. Indeed oligonucleotides hybridizing with functional regions of rRNA have been shown to inhibit translation. Also, some peptides have been shown to be reasonable inhibitors. In this review we describe these nonconventional approaches to screening for ribosome inhibition and function of particular rRNA regions. We discuss inhibitors against rRNA that may be designed according to nucleotide sequence and higher order structure.
Collapse
Affiliation(s)
- Joanna Trylska
- Centre of New Technologies, University of Warsaw, Al. Żwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Sapna G. Thoduka
- Centre of New Technologies, University of Warsaw, Al. Żwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Zofia Dąbrowska
- Centre of New Technologies, University of Warsaw, Al. Żwirki i Wigury 93, 02-089 Warsaw, Poland
| |
Collapse
|
15
|
Singh UP, Pathak M, Dubey V, Bhat HR, Gahtori P, Singh RK. Design, Synthesis, Antibacterial Activity, and Molecular Docking Studies of Novel Hybrid 1,3-Thiazine-1,3,5-Triazine Derivatives as Potential Bacterial Translation Inhibitor. Chem Biol Drug Des 2012; 80:572-83. [PMID: 22702334 DOI: 10.1111/j.1747-0285.2012.01430.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Udaya P Singh
- Department of Pharmaceutical Sciences, Sam Higginbottom Institute of Agriculture Technology and Sciences, Formerly Allahabad Agricultural Institute, Deemed to be University, 211007 Allahabad, India.
| | | | | | | | | | | |
Collapse
|
16
|
Myxobacterium-produced antibiotic TA (myxovirescin) inhibits type II signal peptidase. Antimicrob Agents Chemother 2012; 56:2014-21. [PMID: 22232277 DOI: 10.1128/aac.06148-11] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Antibiotic TA is a macrocyclic secondary metabolite produced by myxobacteria that has broad-spectrum bactericidal activity. The structure of TA is unique, and its molecular target is unknown. Here, we sought to elucidate TA's mode of action (MOA) through two parallel genetic approaches. First, chromosomal Escherichia coli TA-resistant mutants were isolated. One mutant that showed specific resistance toward TA was mapped and resulted from an IS4 insertion in the lpp gene, which encodes an abundant outer membrane (Braun's) lipoprotein. In a second approach, the comprehensive E. coli ASKA plasmid library was screened for overexpressing clones that conferred TA(r). This effort resulted in the isolation of the lspA gene, which encodes the type II signal peptidase that cleaves signal sequences from prolipoproteins. In whole cells, TA was shown to inhibit Lpp prolipoprotein processing, similar to the known LspA inhibitor globomycin. Based on genetic evidence and prior globomycin studies, a block in Lpp expression or prevention of Lpp covalent cell wall attachment confers TA(r) by alleviating a toxic buildup of mislocalized pro-Lpp. Taken together, these data argue that LspA is the molecular target of TA. Strikingly, the giant ta biosynthetic gene cluster encodes two lspA paralogs that we hypothesize play a role in producer strain resistance.
Collapse
|
17
|
High-throughput screening of microbial adaptation to environmental stress. J Microbiol Methods 2011; 85:92-7. [DOI: 10.1016/j.mimet.2011.01.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/30/2011] [Accepted: 01/30/2011] [Indexed: 11/22/2022]
|
18
|
Carnevali M, Parsons J, Wyles DL, Hermann T. A modular approach to synthetic RNA binders of the hepatitis C virus internal ribosome entry site. Chembiochem 2010; 11:1364-7. [PMID: 20564282 PMCID: PMC3517111 DOI: 10.1002/cbic.201000177] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Indexed: 02/05/2023]
Affiliation(s)
- Maia Carnevali
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| | - Jerod Parsons
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| | - David L. Wyles
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| | - Thomas Hermann
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| |
Collapse
|
19
|
Li Y, Shen J, Sun X, Li W, Liu G, Tang Y. Accuracy Assessment of Protein-Based Docking Programs against RNA Targets. J Chem Inf Model 2010; 50:1134-46. [DOI: 10.1021/ci9004157] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yaozong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jie Shen
- Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xianqiang Sun
- Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weihua Li
- Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guixia Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yun Tang
- Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
20
|
Dutta S, Higginson CJ, Ho BT, Rynearson KD, Dibrov SM, Hermann T. 1,3-Diazepanes of natural product-like complexity from cyanamide-induced rearrangement of epoxy-delta-lactams. Org Lett 2010; 12:360-3. [PMID: 20028082 DOI: 10.1021/ol9026914] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A synthetic procedure toward 1,3-diazepane scaffolds of natural product-like complexity was developed for the construction of RNA-directed ligand libraries. A molecular building block was designed that combines the characteristics of RNA-binding natural products, including a high density of hydrogen bond donors and acceptors around a rigid, nonplanar scaffold with straightforward total-synthetic accessibility that permits extensive control over the chemical space. The synthesis of the 1,3-diazepane scaffold was achieved via an unprecedented cyanamide-induced rearrangement of epoxy-delta-lactams.
Collapse
Affiliation(s)
- Sanjay Dutta
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
21
|
Sherer EC. Antibiotics Targeting the Ribosome: Structure-Based Design and the Nobel Prize. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1574-1400(10)06009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
22
|
Labuda LP, Pushechnikov A, Disney MD. Small molecule microarrays of RNA-focused peptoids help identify inhibitors of a pathogenic group I intron. ACS Chem Biol 2009; 4:299-307. [PMID: 19278238 PMCID: PMC2777746 DOI: 10.1021/cb800313m] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Peptoids that inhibit the group I intron RNA from Candida albicans, an opportunistic pathogen that kills immunocompromised hosts, have been identified using microarrays. The arrayed peptoid library was constructed using submonomers with moieties similar to ones found in small molecules known to bind RNA. Library members that passed quality control analysis were spotted onto a microarray and screened for binding to the C. albicans group I intron ribozyme. Each ligand binder identified from microarray-based screening inhibited self-splicing in the presence of 1 mM nucleotide concentration of bulk yeast tRNA with IC(50)'s between 150 and 2200 microM. The binding signals and the corresponding IC(50)'s were used to identify features in the peptoids that predispose them for RNA binding. After statistical analysis of the peptoids' structures that bind, a second generation of inhibitors was constructed using these important features; all second generation inhibitors have improved potencies with IC(50)'s of <100 microM. The most potent inhibitor is composed of one phenylguanidine and three tryptamine submonomers and has an IC(50) of 31 microM. This compound is 6-fold more potent than pentamidine, a clinically used drug that inhibits self-splicing. These results show that (i) modulators of RNA function can be identified by designing RNA-focused chemical libraries and screening them via microarray; (ii) statistical analysis of ligand binders can identify features in leads that predispose them for binding to their targets; and (iii) features can then be programmed into second generation inhibitors to design ligands with improved potencies.
Collapse
MESH Headings
- Animals
- Binding Sites
- Candida albicans/drug effects
- Candida albicans/enzymology
- Candida albicans/pathogenicity
- Dose-Response Relationship, Drug
- Introns/genetics
- Ligands
- Molecular Conformation
- Oligonucleotide Array Sequence Analysis/methods
- Peptide Library
- Peptoids/analogs & derivatives
- Peptoids/chemistry
- Peptoids/pharmacology
- Pneumocystis carinii/drug effects
- Pneumocystis carinii/genetics
- RNA Splicing/drug effects
- RNA, Catalytic/antagonists & inhibitors
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Fungal/antagonists & inhibitors
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Transfer/antagonists & inhibitors
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- Tetrahymena thermophila/drug effects
- Tetrahymena thermophila/genetics
Collapse
Affiliation(s)
- Lucas P. Labuda
- Department of Chemistry and The Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, 657 Natural Sciences Complex, Buffalo, NY 14260
| | - Alexei Pushechnikov
- Department of Chemistry and The Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, 657 Natural Sciences Complex, Buffalo, NY 14260
| | - Matthew D. Disney
- Department of Chemistry and The Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, 657 Natural Sciences Complex, Buffalo, NY 14260
| |
Collapse
|
23
|
Setny P, Trylska J. Search for novel aminoglycosides by combining fragment-based virtual screening and 3D-QSAR scoring. J Chem Inf Model 2009; 49:390-400. [PMID: 19434840 PMCID: PMC2772172 DOI: 10.1021/ci800361a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aminoglycosides are antibiotics targeting the 16S RNA A site of the bacterial ribosome. There have been many efforts directed toward design of their synthetic derivatives, however with only few successes. As RNA binders, aminoglycosides are also a difficult target for computational drug design, since most of the existing methods were developed for protein ligands. Here, we present an approach that allows for evading the problems related to still poorly developed RNA docking and scoring algorithms. It is aimed at identification of new molecular scaffolds potentially binding to the A site. The considered molecules are based on the neamine core, which is common for all aminoglycosides and provides specificity toward the binding site, linked with diverse molecular fragments via its O5 or O6 oxygen atom. Suitable fragments are selected with the use of 3D searches of molecular fragments library against two distinct pharmacophores designed on the basis of available structural data for aminoglycoside-RNA complexes. The compounds resulting from fragments assembly with neamine are then scored with a 3D-QSAR model developed using the biological data for known aminoglycoside derivatives. Twenty-one new potential ligands are obtained, four of which have predicted activities comparable to less potent aminoglycoside antibiotics.
Collapse
Affiliation(s)
- Piotr Setny
- Interdisciplinary Centre for Mathematical and Computational Modelling and Faculty of Physics, University of Warsaw, Warsaw 02-089, Poland.
| | | |
Collapse
|
24
|
Zhou Y, Chow C, Murphy DE, Sun Z, Bertolini T, Froelich JM, Webber SE, Hermann T, Wall D. Antibacterial activity in serum of the 3,5-diamino-piperidine translation inhibitors. Bioorg Med Chem Lett 2008; 18:3369-75. [PMID: 18440814 PMCID: PMC2474707 DOI: 10.1016/j.bmcl.2008.04.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 04/09/2008] [Accepted: 04/10/2008] [Indexed: 10/22/2022]
Abstract
Translation inhibitors of the 3,5-diamino-piperidine series act as aminoglycoside mimetics that inhibit bacterial growth. Here we show antibacterial SAR in the presence and absence of serum with a particular focus toward Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Yuefen Zhou
- Anadys Pharmaceuticals, Inc., San Diego, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Jason R Thomas
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, Illinois 61822, USA
| | | |
Collapse
|
26
|
Sekhar YN, Nayana MRS, Sivakumari N, Ravikumar M, Mahmood SK. 3D-QSAR and molecular docking studies of 1,3,5-triazene-2,4-diamine derivatives against r-RNA: novel bacterial translation inhibitors. J Mol Graph Model 2008; 26:1338-52. [PMID: 18372201 DOI: 10.1016/j.jmgm.2008.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 01/12/2008] [Accepted: 01/23/2008] [Indexed: 10/22/2022]
Abstract
Aminoglycoside mimetics inhibit bacterial translation by interfering with the ribosomal decoding site. To elucidate the structural properties of these compounds important for antibacterial activity, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were applied to a set of 56 aminoglycosides mimetics. The successful CoMFA model yielded the leave-one-out (LOO) cross-validated correlation coefficient (q(2)) of 0.708 and a non-cross-validated correlation coefficient (r(2)) of 0.967. CoMSIA model gave q(2)=0.556 and r(2)=0.935. The CoMFA and CoMSIA models were validated with 36 test set compounds and showed a good r(pred)(2) of 0.624 and 0.640, respectively. Contour maps of the two QSAR approaches show that electronic effects dominantly determine the binding affinities. These obtained results were agreed well with the experimental observations and docking studies. The results not only lead to a better understanding of structural requirements of bacterial translation inhibitors but also can help in the design of novel bacterial translation inhibitors.
Collapse
Affiliation(s)
- Y Nataraja Sekhar
- Bioinformatics division, Environmental Microbiology Lab, Department of Botany, Osmania University, Hyderabad 500007, AP, India
| | | | | | | | | |
Collapse
|
27
|
|
28
|
Handman E, Kedzierski L, Uboldi AD, Goding JW. Fishing for anti-leishmania drugs: principles and problems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 625:48-60. [PMID: 18365658 DOI: 10.1007/978-0-387-77570-8_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
To date, there are no vaccines against any of the major parasitic diseases including leishmaniasis, and chemotherapy is the main weapon in our arsenal. Current drugs are toxic and expensive, and are losing their effectiveness due to parasite resistance. The availability of the genome sequence of two species of Leishmania, Leishmania major and Leishmania infantum, as well as that of Trypanosoma brucei and Trypanosoma cruzi should provide a cornucopia of potential new drug targets. Their exploitation will require a multi-disciplinary approach that includes protein structure and function and high throughput screening of random and directed chemical libraries, followed by in vivo testing in animals and humans. We outline the opportunities that are made possible by recent technologies, and potential problems that need to be overcome.
Collapse
Affiliation(s)
- Emanuela Handman
- Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.
| | | | | | | |
Collapse
|
29
|
Characterization of a 30S ribosomal subunit assembly intermediate found in Escherichia coli cells growing with neomycin or paromomycin. Arch Microbiol 2007; 189:441-9. [DOI: 10.1007/s00203-007-0334-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 11/20/2007] [Indexed: 10/22/2022]
|
30
|
Yassin A, Mankin AS. Potential New Antibiotic Sites in the Ribosome Revealed by Deleterious Mutations in RNA of the Large Ribosomal Subunit. J Biol Chem 2007; 282:24329-42. [PMID: 17591769 DOI: 10.1074/jbc.m703106200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ribosome is the main target for antibiotics that inhibit protein biosynthesis. Despite the chemical diversity of the known antibiotics that affect functions of the large ribosomal subunit, these drugs act on only a few sites corresponding to some of the known functional centers. We have used a genetic approach for identifying structurally and functionally critical sites in the ribosome that can be used as new antibiotic targets. By using randomly mutagenized rRNA genes, we mapped rRNA sites where nucleotide alterations impair the ribosome function or assembly and lead to a deleterious phenotype. A total of 77 single-point deleterious mutations were mapped in 23 S rRNA and ranked according to the severity of their deleterious phenotypes. Many of the mutations mapped to familiar functional sites that are targeted by known antibiotics. However, a number of mutations were located in previously unexplored regions. The distribution of the mutations in the spatial structure of the ribosome showed a strong bias, with the strongly deleterious mutations being mainly localized at the interface of the large subunit and the mild ones on the solvent side. Five sites where deleterious mutations tend to cluster within discrete rRNA elements were identified as potential new antibiotic targets. One of the sites, the conserved segment of helix 38, was studied in more detail. Although the ability of the mutant 50 S subunits to associate with 30 S subunits was impaired, the lethal effect of mutations in this rRNA element was unrelated to its function as an intersubunit bridge. Instead, mutations in this region had a profound deleterious effect on the ribosome assembly.
Collapse
Affiliation(s)
- Aymen Yassin
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois 60607, USA
| | | |
Collapse
|
31
|
Tam VK, Kwong D, Tor Y. Fluorescent HIV-1 Dimerization Initiation Site: design, properties, and use for ligand discovery. J Am Chem Soc 2007; 129:3257-66. [PMID: 17319662 PMCID: PMC2525870 DOI: 10.1021/ja0675797] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The HIV-1 Dimerization Initiation Site (DIS) is an intriguing, yet underutilized, viral RNA target for potential antiretroviral therapy. To study the recognition features of this target and to provide a quantitative, rapid, and real-time tool for the discovery of new binders, a fluorescence-based assay has been constructed. It relies on strategic incorporation of 2-aminopurine, an isosteric fluorescent adenosine analogue, into short hairpin RNA constructs. These oligomers self-associate to form a kissing loop that thermally rearranges into a more stable extended duplex, thereby mimicking the association and structural features of the native RNA sequence. We demonstrate the ability of two fluorescent DIS constructs, DIS272(2AP) and DIS273(2AP), to report the binding of known DIS binders via changes in their emission intensity. Binding of aminoglycosides such as paromomycin to DIS272(2AP) results in significant fluorescence enhancement, while ligand binding to DIS273(2AP) results in fluorescence quenching. These observations are rationalized by comparison to the sequence-analogous bacterial A-site, where the relative emission of the fluorescent probe is dependent on the placement of the flexible purine residues inside or outside the helical domain. Analysis of binding isotherms generated using DIS272(2AP) yields submicromolar EC50 values for paromomycin (0.5 +/- 0.2 microM) and neomycin B (0.6 +/- 0.2 microM). Other neomycin-family aminoglycosides are less potent binders with neamine, the core pharmacophore, displaying the lowest affinity of 21 +/- 1 microM. Screening of additional aminoglycosides and their derivatives led to the discovery of new, previously unreported, aminoglycoside binders of the HIV DIS RNA, among them butirosin A (5.5 +/- 0.6 microM) and apramycin (7.6 +/- 1.0 microM). A conformationally constrained neomycin B analogue displays a rather high affinity to the DIS (1.9 +/- 0.2 microM). Among a series of nucleobase aminoglycoside conjugates, only the uracil derivatives display a measurable affinity using this assay with EC50 values in the 2 microM range. In addition, similarity between the solution behavior of HIV-1 DIS and the bacterial decoding A-site has been observed, particularly with respect to the intra- and extra-helical residence of the conformationally flexible A residues within the bulge. Taken together, the observations reported here shed light on the solution behavior of this important RNA target and are likely to facilitate the design of new DIS selective ligands as potential antiretroviral agents.
Collapse
Affiliation(s)
- Victor K. Tam
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0358
| | - Denise Kwong
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0358
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0358
| |
Collapse
|
32
|
Zhou Y, Gregor VE, Ayida BK, Winters GC, Sun Z, Murphy D, Haley G, Bailey D, Froelich JM, Fish S, Webber SE, Hermann T, Wall D. Synthesis and SAR of 3,5-diamino-piperidine derivatives: novel antibacterial translation inhibitors as aminoglycoside mimetics. Bioorg Med Chem Lett 2007; 17:1206-10. [PMID: 17188860 PMCID: PMC1858661 DOI: 10.1016/j.bmcl.2006.12.024] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 12/05/2006] [Accepted: 12/07/2006] [Indexed: 11/16/2022]
Abstract
Aminoglycoside antibiotics target an internal RNA loop within the bacterial ribosomal decoding site. Here, we describe the synthesis and SAR of novel 3,5-diamino-piperidine derivatives as aminoglycoside mimetics, and show they act as inhibitors of bacterial translation and growth.
Collapse
Affiliation(s)
- Yuefen Zhou
- Anadys Pharmaceuticals, Inc., San Diego, USA
| | | | | | | | | | | | - Greg Haley
- Anadys Pharmaceuticals, Inc., San Diego, USA
| | | | | | - Sarah Fish
- Anadys Pharmaceuticals, Inc., San Diego, USA
| | | | | | - Daniel Wall
- Anadys Pharmaceuticals, Inc., San Diego, USA
| |
Collapse
|
33
|
Abstract
A combination of approaches and compounds-many of which failed to yield immediate results in the past-will ultimately prove invaluable to the drug industry in the ongoing battle against infectious disease.
Collapse
Affiliation(s)
- Prabhavathi Fernandes
- Cempra Pharmaceuticals Inc., 170 Southport Drive, Suite 500, Morrisville, North Carolina 27560, USA.
| |
Collapse
|
34
|
Janin YL. Antituberculosis drugs: ten years of research. Bioorg Med Chem 2007; 15:2479-513. [PMID: 17291770 DOI: 10.1016/j.bmc.2007.01.030] [Citation(s) in RCA: 361] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 12/26/2006] [Accepted: 01/17/2007] [Indexed: 02/03/2023]
Abstract
Tuberculosis is today amongst the worldwide health threats. As resistant strains of Mycobacterium tuberculosis have slowly emerged, treatment failure is too often a fact, especially in countries lacking the necessary health care organisation to provide the long and costly treatment adapted to patients. Because of lack of treatment or lack of adapted treatment, at least two million people will die of tuberculosis this year. Due to this concern, this infectious disease was the focus of renewed scientific interest in the last decade. Regimens were optimized and much was learnt on the mechanisms of action of the antituberculosis drugs used. Moreover, the quest for original drugs overcoming some of the problems of current regimens also became the focus of research programmes and many new series of M. tuberculosis growth inhibitors were reported. This review presents the drugs currently used in antituberculosis treatments and the most advanced compounds undergoing clinical trials. We then provide a description of their mechanism of action along with other series of inhibitors known to act on related biochemical targets. This is followed by other inhibitors of M. tuberculosis growth, including recently reported compounds devoid of a reported mechanism of action.
Collapse
Affiliation(s)
- Yves L Janin
- URA 2128 CNRS-Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
35
|
McGaha SM, Champney WS. Hygromycin B inhibition of protein synthesis and ribosome biogenesis in Escherichia coli. Antimicrob Agents Chemother 2006; 51:591-6. [PMID: 17043113 PMCID: PMC1797780 DOI: 10.1128/aac.01116-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aminoglycoside antibiotic hygromycin B was examined in Escherichia coli cells for inhibitory effects on translation and ribosomal-subunit formation. Pulse-chase labeling experiments were performed, which verified lower rates of ribosomal-subunit synthesis in drug-treated cells. Hygromycin B exhibited a concentration-dependent inhibitory effect on viable-cell numbers, growth rate, protein synthesis, and 30S and 50S subunit formation. Unlike other aminoglycosides, hygromycin B was a more effective inhibitor of translation than of ribosomal-subunit formation in E. coli. Examination of total RNA from treated cells showed an increase in RNA corresponding to a precursor to the 16S rRNA, while mature 16S rRNA decreased. Northern hybridization to rRNA in cells treated with hygromycin B showed that RNase II- and RNase III-deficient strains of E. coli accumulated 16S rRNA fragments upon treatment with the drug. The results indicate that hygromycin B targets protein synthesis and 30S ribosomal-subunit assembly.
Collapse
Affiliation(s)
- Susan M McGaha
- Department of Biochemistry and Molecular Biology, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | | |
Collapse
|
36
|
Zhou Y, Sun Z, Froelich JM, Hermann T, Wall D. Structure–activity relationships of novel antibacterial translation inhibitors: 3,5-Diamino-piperidinyl triazines. Bioorg Med Chem Lett 2006; 16:5451-6. [PMID: 16890435 DOI: 10.1016/j.bmcl.2006.07.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 07/17/2006] [Indexed: 11/21/2022]
Abstract
Structure-activity relationships of the 3,5-diamino-piperidinyl triazine series, a novel class of bacterial translation inhibitors, are described. Optimization was focused on the triazine C-4 position in which aromatic substituents that contained electron-withdrawing groups led to potent inhibitors. The initial lack of antibacterial activity was correlated with poor cellular penetration. Whole cell antibacterial activity was achieved by linking additional aromatic moieties at the triazine C-4 position.
Collapse
Affiliation(s)
- Yuefen Zhou
- Anadys Pharmaceuticals, Inc., San Diego, USA
| | | | | | | | | |
Collapse
|
37
|
Foloppe N, Matassova N, Aboul-Ela F. Towards the discovery of drug-like RNA ligands? Drug Discov Today 2006; 11:1019-27. [PMID: 17055412 DOI: 10.1016/j.drudis.2006.09.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 08/18/2006] [Accepted: 09/04/2006] [Indexed: 10/24/2022]
Abstract
Targeting RNA with small molecule drugs is an area of great potential for therapeutic treatment of infections and possibly genetic and autoimmune diseases. However, a mature set of precedents and established methodology is lacking. The physicochemical properties of RNA raise specific issues and obstacles to development, and contribute to explain the distinct characteristics of natural RNA ligands, including antibiotics. Yet, RNA-targeting strategies are being implemented to reinvigorate antibacterial discovery by using the ribosomal X-ray structures to modify known antibiotics. To exploit further these structures, we suggest the use of existing protein kinase-directed libraries of drug-like compounds to target the A-site of the bacterial ribosome, on the basis of a specific structural hypothesis.
Collapse
Affiliation(s)
- Nicolas Foloppe
- Vernalis (R&D) Ltd., Granta Park, Abington, Cambridge, CB1 6GB, UK
| | | | | |
Collapse
|
38
|
Kaul M, Barbieri CM, Pilch DS. Aminoglycoside-induced reduction in nucleotide mobility at the ribosomal RNA A-site as a potentially key determinant of antibacterial activity. J Am Chem Soc 2006; 128:1261-71. [PMID: 16433544 DOI: 10.1021/ja056159z] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Steady-state and time-resolved fluorescence techniques have been used to characterize the energetics and dynamics associated with the interaction of an E. coli 16 S rRNA A-site model oligonucleotide and four aminoglycoside antibiotics that exhibit a broad range of antibacterial activity. The results of these characterizations suggest that aminoglycoside-induced reduction in the mobility of an adenine residue at position 1492 of the rRNA A-site is a more important determinant of antibacterial activity than drug affinity for the A-site. This observation is consistent with a recently proposed model for the mechanism of protein synthesis inhibition by aminoglycosides that invokes a drug-induced alteration in the conformational equilibrium of the rRNA A-site (centered around the conserved adenine residues at positions 1492 and 1493), which, in turn, promotes an enhanced interaction between the rRNA and the minihelix formed by the tRNA anticodon and the mRNA codon, even when the anticodon is noncognate. Regarded as a whole, the results reported here indicate that the rational design of antibiotics that target the 16 S rRNA A-site requires consideration of not only the structure and energetics of the drug-RNA complex but also the dynamics associated with that complex.
Collapse
Affiliation(s)
- Malvika Kaul
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, 08854-5635, USA
| | | | | |
Collapse
|
39
|
Przerwa A, Zimecki M, Switała-Jeleń K, Dabrowska K, Krawczyk E, Łuczak M, Weber-Dabrowska B, Syper D, Miedzybrodzki R, Górski A. Effects of bacteriophages on free radical production and phagocytic functions. Med Microbiol Immunol 2006; 195:143-50. [PMID: 16447074 DOI: 10.1007/s00430-006-0011-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Indexed: 01/05/2023]
Abstract
Reactive oxygen species (ROS) play a major role in mediating antibacterial functions of phagocytic cells. However, excessive ROS production may cause oxidative stress and tissue damage. Uncompensated ROS release has been implicated in a variety of disorders. Novel means of controlling elevated ROS production are urgently needed. We showed that homologous but not the heterologous phages inhibited, in a dose dependent manner, the degree of chemiluminescence in phagocytes induced by Escherichia coli. Treatment of the cells with the phages alone resulted in a small increase in ROS production. Homologous phages also facilitated phagocytosis when preincubated with bacteria. On the other hand, both homologous and heterologous phages inhibited phagocytosis following preincubation with phagocytic cells. The treatment of infected and uninfected mice with phages did not significantly alter the rate of phagocytosis by blood granulocytes and monocytes. In conclusion, we showed that bacteriophages can decrease ROS production by phagocytes. Although in some in vitro experimental models the phages tended to diminish phagocytosis, this phenomenon may be of little significance in clinical situations, since the process of eliminating bacteria in phage-treated patients is predominantly accomplished by both phages and phagocytes.
Collapse
Affiliation(s)
- Anna Przerwa
- Transplantation Institute, Medical University of Warsaw, 02-006 Warsaw, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|